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1 Symmetric theta structures and the isogeny theorem

Let A be an abelian variety of dimension g defined over an algebraically closed field k. LetL0 be a symmetric
ample line bundle of degree one on A,L0 defines a principal polarization: A→ Â. If n is evenL =L n

0 is then
totally symmetric, and the kernel K(L ) of the polarization associated toL is A[n].

From now on, we assume that n is prime to the characteristic of k, so thatL defines a separable polarisation.
SinceL is totally symmetric, there exist a symmetric theta structure on the theta group G(L ). Fixing such a
structure fix a unique projective basis of theta functions [Mum66] that we call theta functions of level n. Note:
the theta structure induces an isomorphism between the symplectic spaces Z(n)× Ẑ(n) and K(L ) = A[n]
where Z(n) = (Z/nZ)g and Ẑ(n) is the Cartier dual of Z(n). We note K(L ) =K1(L )⊕K2(L ) where K1(L )
corresponds to Z(n) and K2(L ) to Ẑ(n). Usually the canonical basis of the theta functions of level n are indexed
by i � Z(n), but in these notes we will index them by i � K1(L ) which permit us to not track explicitly the
isomorphism between Z(n) and K1(L ).

If n > 2 then the theta functions of level n give a projective embedding of A into Pn g−1

k
, while if n = 2 we only

get an embedding of the Kummer variety A/± 1 (the n = 2 case assume that A is absolutely simple, see [BL04]).
Under a generic condition (the even theta null coordinates are non zero), this embedding of the Kummer variety
is actually projectively normal (see [Koi76]).

Theorem 1.1 :
The symmetric theta structure on G(L ) is uniquely determined by a choice of symplectic basis (e1, . . . eg , e ′1, . . . e ′g ) on
A[n] and a choice of symplectic basis ( f1, . . . fg , f ′1 , . . . f ′g ) on A[2n] such that ei = 2 fi , e ′i = 2 f ′i . (Here symplectic
mean for the commutator pairing eL and eL 2 respectively).

Moreover, changing these symplectic basis do not change the resulting symmetric theta structure if and only if

• The symplectic basis of A[n] is left invariant;

• The fi are replaced by points fi + ti with ti �A[2] such that eL (ei , ti ) = 1.

In particular, fixing a symplectic basis of A[n] and a symplectic decomposition A[2n] = A1[2n]⊕A2[2n] of
the 2n-torsion into a sum of maximal isotropic subspaces is enough (and even stronger) to fix the symmetric theta
structure.

Proof : This is implicit in [Mum66, Section 3]. A symmetric theta structure comes from an isomorphism
between the Heisenberg group and the theta group that commutes with the action of [−1]. It induces an
isomorphism between the symplectic spaces Z(n)× Ẑ(n) and K(L ) =A[n] and hence fix a symplectic basis of
the n-torsion.

Conversely, having fixed a symplectic basis of the n-torsion, sinceL is totally symmetric, there is always a
symmetric theta structure respecting this symplectic basis. Such a choice of a symmetric theta structure can be
seen as a choice of a symmetric element above each of the element of the basis (e1, . . . e ′g ); since there is only two
symmetric elements ±gi above each ei a symmetric theta structure above the symplectic basis can be seen as a
choice of sign for each element of the basis.
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If gi � G(L 2) is a symmetric element of the theta group above a point fi such that ei = 2 fi , then (gi )
2

determines a symmetric element of the theta group above ei that uniquely depends on the choice of fi (since the
other symmetric element above fi is −gi which gives rise to (−gi )

2 = (gi )
2 above ei . Via the transfer map δ2

from [Mum66], we see how the choices of the fi above the ei are enough to determine the symmetric theta
structure on G(L ).

It is a straightforward verification to see that replacing fi by fi + ti where ti is a point of 2-torsion involve
replacing (gi )

2 by eL 2( fi , ti )(gi )
2 which concludes the proof.

(One could also replace the application δ2 by the isogeny [2] which would involve working in G(L 4), as in
[Kem89].) ■

Corollary 1.2 :
Let (A,L0)/Fq be a ppav over the finite field Fq . Assume that µn(Fq ) ⊂ Fq (n = 2n0 even). Then there exist a
rational symmetric theta structure onL =L n

0 iff there exist a rational symplectic basis (e1, . . . eg , e ′1, . . . , e ′ g ) such
that eT ,2(n0ei , ei ) = 1; where eT ,2 denotes the 2-Tate pairing. (In other words, ei form a symplectic basis consisting of
elements whose self n-Tate pairing is not a primitive n-th root of unity).

Proof : This is clear from Theorem 1.1 and the definition of the Tate pairing as eT ,2(n0ei , ei ) = eW ,2(n0ei ,π( fi )−
fi ) where 2 fi = ei and π is the Frobenius of Fq . ■

Remark 1.3 :
In the case that Fq does not contain the n-th root of unity, a rational theta structure of level n induces an

equivariant (for the Galois action) isomorphism between A[n] and Z(n)× Ẑ(n). In particular, this does not
impose that all geometric points of A[n] are rational.

Proposition 1.4 :
Let L be a symmetric line bundle on A, defining a polarization of type δ = (δ1, . . . ,δg ). Then there exists a
symmetric theta structure on G(L ) if and only if for every x �A[2]

⋂

K(L ), we have e∗(x) = 1.
In this case we callL totally symetrisable (because a totally symmetric line bundle satisfy the condition), and the

obvious generalisation of Theorem 1.1 to this case also holds.

Proof : [Kem89; Mum66]. ■

The idea is that (for instance in dimension 2), L ℓ0 is of type (ℓ,ℓ) and allows to compute isogenies with
maximal isotropic kernels, but for a cyclic isogeny we need a polarisation of type (1,ℓ) (like the type ofL ρ0
from Section ??).

Theorem 1.5 :
Let f : (A,L )→ (B ,M ) be an isogeny between pav. Then K = Ker f is isotropic in K(L ) for the commutator
pairing eL , and K(M )≃K⊥/K.

Assume that we have a symmetric theta structure on G(L ) coming from a symplectic basis ( fi , f ′i ) on K(L 2).
Assume that K is compatible with the induced symplectic decomposition K(L ) =K1(L )⊕K2(L ) into maximal
isotropic subspaces in the sense that K = K1⊕K2 where Ki = Ki (L )

⋂

K. In this case K(M )≃ K2,⊥/K1⊕K1,⊥/K2

where K2,⊥ =K⊥2
⋂

K1(L ) and K1,⊥ =K⊥1
⋂

K2(L )
Let eK be the level subgroup above K induced by this theta structure; the corresponding descent data give a line

bundleM ′ algebraically equivalent toM . MoreoverM ′ is totally symetrisable, and we can define a symmetric
theta structure onM ′ as follow: from the symplectic basis of K(L 2) one derives a “canonical” basis (g1, . . . , g ′g ) of

[2]−1K⊥. Pushing this basis via the isogeny f gives a symplectic basis on K(M ′2), which determines the symmetric
theta structure onM ′. It is easy to see that by construction, it is compatible with the theta structure onL .

We can then apply the isogeny theorem: there exist λ such that for all i �K1(M ′)

ϑM
′

i = λ
∑

j�K1(L )| f ( j )=i

ϑLj .

Proof : [Kem89; Mum66; Rob10]. ■
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Corollary 1.6 :
• IfM is of type δ ′ with 2 | δ ′ (meaning that A[2]

⋂

K(L )⊂K⊥), thenM ′ is the unique totally symmetric
line bundle in the equivalence class ofM .

• If A[2]
⋂

K(L ) ⊂ K, then every symmetric theta structure on G(L ) induces the same symmetric theta
structure on G(M ′).

Proof : See [Kem89; Rob10]. ■
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