
Theory of abelian varieties and their moduli spaces

Damien Robert

March 2021

[ Draft Version: Tuesday March 7, 2023 at 18:13 ]



[ Draft Version: Tuesday March 7, 2023 at 18:13 ]



CONTENTS

1 introduction 1

i Abelian varieties 3
2 abelian varieties 5

2.1 Abelian varieties over ℂ 5
2.1.1 Complex torus and cohomology 5
2.1.2 Line bundles 6
2.1.3 Polarisations 7
2.1.4 Period matrix 7
2.1.5 Isogenies 8

2.2 Abelian varieties 8
2.2.1 Definition 8
2.2.2 Basic properties of abelian varieties 9
2.2.3 Isogenies 9
2.2.4 Line bundles 10
2.2.5 Cohomology 10
2.2.6 Abelian varieties over finite fields 12

2.3 Abelian schemes 12
2.3.1 Definitions 12
2.3.2 The relative Picard functor and the dual abelian scheme 13
2.3.3 Rigidity 15
2.3.4 Isogenies 16
2.3.5 Characterisations of abelian schemes 17
2.3.6 Using abelian schemes 18

2.4 Jacobians 20
2.4.1 Curves 20
2.4.2 The Jacobian of a curve 20
2.4.3 Properties of Jacobians 22
2.4.4 Generalised Jacobians 23

3 degenerations and lifts 25
3.1 Semi-abelian varieties and Néron models 25

3.1.1 Semi-abelian varieties 25
3.1.2 Néron models 26
3.1.3 Good reduction 27
3.1.4 Semi-stable reduction 29
3.1.5 Extension of isogenies and morphisms 31

3.2 Reduction of curves 33
3.2.1 Minimal regular models and canonical models 33
3.2.2 Stable reduction of curves 34
3.2.3 Elliptic curves 36

3.3 𝑝-divisible groups 36
Planned topics 36

3.3.1 Finite flat group schemes 36
3.3.2 Barsotti-Tate groups 37
3.3.3 Applications to abelian varieties 37

3.4 Lifts of abelian varieties 38
3.4.1 General theory 38
3.4.2 Lifting abelian varieties 38

iii

[ Draft Version: Tuesday March 7, 2023 at 18:13 ]



Contents

3.4.3 Serre-Tate theorem and canonical lifts 38
4 pairings in abelian varieties 39

4.1 The Weil pairing 39
4.1.1 The many facets of the Weil pairing 39
4.1.2 Weil’s reciprocity and alternative definitions of the Weil pairing 42
4.1.3 Restricting the Weil pairing to subgroups 44

4.2 The Tate pairing 45
4.2.1 The Tate-Cartier pairing 45
4.2.2 The Tate-Lichtenbaum pairing 48
4.2.3 Restricting the Tate-Lichtenbaum pairing to subgroups 48
4.2.4 The Tate pairing 49

i i Moduli of abelian varieties 51
5 moduli spaces of abelian varieties 53

Planned topics 53
5.1 Moduli spaces from the analytic point of view 53

5.1.1 Siegel spaces 53
5.1.2 Hilbert spaces 53
5.1.3 Shimura varieties 54

5.2 Moduli spaces from the algebraic point of view 54
5.2.1 Algebraic stacks of abelian varieties 54
5.2.2 The structure of the moduli space 54
5.2.3 Stratifications of the moduli space 54

5.3 Modular space of level 𝛤0(𝑝) 54
5.3.1 Hilbert-Blumenthal algebraic stacks 54

Current draft version 54
5.4 Siegel moduli space 54
5.5 Hilbert moduli space 55
5.6 Shimura varieties 56
5.7 Siegel moduli space over ℤ 56
5.8 Hilbert moduli space over ℤ 58
5.9 Algebraic modular forms 58

5.9.1 Siegel modular forms 58
5.9.2 Hilbert modular forms 59

5.10 The Kodaira-Spencer isomorphism 59
6 moduli spaces via theta functions 63

Planned topics 63
6.1 Equations for the moduli 63
6.2 Equations for the universal abelian scheme 63
6.3 Theta as modular forms 63

7 moduli space of curves 65
Planned topics 65
7.1 Compactification 65
7.2 The Torelli morphism 65
7.3 Teichmuller modular forms. 65
Current draft version 65
7.4 The Torelli morphism 65

8 moduli spaces of small dimension 67
Planned topics 67
8.1 Moduli of elliptic curves 67
8.2 Moduli of curves of genus 2 and abelian surfaces 67

iv

[ Draft Version: Tuesday March 7, 2023 at 18:13 ]



Contents

8.2.1 Moduli of hyperelliptic curves of genus 2 67
8.2.2 Moduli of abelian surfaces 67
8.2.3 Real multiplications 67
8.2.4 Examples of Hilbert surface 68

Current draft version 68
8.3 Covariants of hyperelliptic curves of genus 2 68

8.3.1 Covariants 68
8.3.2 Algebraic interpretation 69
8.3.3 Arithmetic invariants 69
8.3.4 The case of characteristic 2 70
8.3.5 Covariants and modular forms 71
8.3.6 Absolute invariants 72

9 complex multiplication 75
Planned topics 75
9.1 The fundamental theorem of complex multiplication 75
9.2 CM lifting 75
Current draft version 75
9.3 CM fields and the Shimura class group 75
9.4 Abelian varieties with complex multiplication over a number field 76
9.5 Abelian varieties with complex multiplication over finite fields 77

i i i Topics in algebraic geometry 79
a results from algebraic geometry 81

A.1 The proper base change theorem 81
A.2 Cohomological flatness in dimension 0 82
A.3 Proper morphisms and connected fibers 82
A.4 Morphisms over an Henselian local ring 83

b algebraic groups and group schemes 85
B.1 Algebraic groups 85
B.2 Structure of algebraic groups 87

b.2.1 The Chevalley decomposition 87
b.2.2 Torus 87
b.2.3 Unipotent groups 88
b.2.4 The structure of commutative affine groups 88
b.2.5 The structure of reductive linear groups 89

B.3 Group schemes 89
B.4 Morphisms and isogeny of group schemes 91

c algebraic stacks 93
C.1 Rings 93
C.2 Schemes 93
C.3 Algebraic spaces 94
C.4 Algebraic stacks 94

c.4.1 Artin’s representability theorem 94
d coarse moduli spaces and quotients 97

Planned topics 97
D.1 Quotients 97
D.2 Coarse moduli space 97
Current draft version 97
D.3 Coarse moduli spaces 97
D.4 The local structure of tame stacks 99
D.5 Étale slices 99

v

[ Draft Version: Tuesday March 7, 2023 at 18:13 ]



Contents

101

vi

[ Draft Version: Tuesday March 7, 2023 at 18:13 ]



1 I N TRODUCT ION

chap:intro
This notes are meant as a complement of my hdr [Rob21], which is more focused on the algorithmic aspect of
abelian varieties and modular forms.

This is a partial overview of some results about abelian varieties and their moduli spaces.
An outline to learn about the subject would be to first learn about complex abelian varieties: the first chapter of

Mumford’s book [Mum70a] and [BL04], along with Mumford’s TATA lectures [Mum83], [Mum84]. Then learn
about abeian varieties, via Milne’s book [Mil91] and then Mumford’s book [Mum70a], complemented by the articles
[Mil86; Mil85]. Then go on to more advanced topics, like abelian schemes [MFK94], Néron models [BLR12] and
compactifications [FC90].

These results about abelian varieties are completed by appendix chapters about some results from algebraic
geometry, group schemes and the theory of algebraic stacks.

Unfortunately there are for now incomplete. So some chapters contain only a list of planned topic, with sometime
a draft version that covers more or less these topics.

A big missing topic from this outline is on how to construct points on an abelian variety over a number field:
descent [Sto06], Heegner points [Bir04; Gro84], the Chabauty method [MP12], quadratic Chabauty [BD18]…An-
other topic missing is a quick summary of heights [HS13], Raynaud’s isogeny theorem [Ray85], Faltings theorems
[FWG+84; Fal86; BSa; Con+11].

I restrict to topic interesting from an algorithmic point of view: abelian scheme allow to study families of abelian
varieties, degenerations allow to study their reduction, lift allow to do the converse. Pairings are used a lot in
cryptographic protocols. Moduli spaces encode interesting families of abelian varieties. I apologize to the experts
in algebraic geometry from my probably naive point of view on these subjects.

One of the fascinating aspect of abelian varieties is that most of the results that hold for complex abelian varieties
are true in any characteristic (with the appropriate reformulations). For instance the complex lattice 𝛬 can be
replaced in most case by the Tate modules 𝑇ℓ𝐴 and 𝑇𝑝𝐴. Analytically, 𝛬 is the dual of the singular homology
𝐻1(𝐴, ℤ), while the Tate module 𝑇ℓ(𝐴) is the dual of the étale cohomology 𝐻1

𝑒𝑡(𝐴, ℤℓ) and 𝑇𝑝(𝐴) (which is
already defined contragradiently) is given by the crystalline cohomology 𝐻1

𝑐𝑟𝑦𝑠(𝐴𝑘/𝑊(𝑘), ℤ𝑝), see Section 2.2.5.
As a Galois module the Tate module 𝑇ℓ𝐴 is also the module associated to the divisible group 𝐴(ℓ) by Grothendieck’s
étale Galois theory, while 𝑇𝑝𝐴 is the (contragredient) crystal associated to 𝐴(𝑝), see Chapter 3.

It is remarkable that these two abstract cohomology theories, the étale cohomology and the crystalline cohomol-
ogy allow in some sense to recover the lattice 𝛬 of complex abelian varieties in the algebraic setting. Even more
remarkable is the fact that these cohomologies can be efficiently computed for an abelian variety over a finite field,
paving the way for efficient point counting. Indeed, Schoof algorithm [Sch85; Sch95] on elliptic curves and its
generalisation to abelian varieties in [Pil90] can be seen as an explicit version of étale cohomology computation,
and is useful when the characteristic is large. We refer to [Rob21, ??] for more details, in particular on how to adapt
the improvements of Elkies [Elk92; Elk92] from the case of elliptic curves to abelian surfaces. In small characteristic,
one can use Kedlaya’s algorithm [Ked01], which is based onMonsky-Washnitzer cohomology. Alternatively, in small
characteristic one can use Satoh’s method of canonical lift [Sat00], whose existence can be seen as an application
of crystalline cohomology. We refer to [Gau04; Col08] for surveys of point counting algorithms, [Con08] for a
survey of rigid geometry (rigid cohomology is a common generalisation of Monsky-Washnitzer cohomology and
crystalline cohomology), and [Ked16a; Ked16b; Ked04; Ked07] for good introductions to 𝑝-adic cohomology and
its applications to point counting.

The fact that abstract constructions become so concrete and explicit for abelian variety has been a big factor in
developing these theories: just to give an example abelian varieties were keys in the construction by Grothendieck
of crystalline cohomology (as the story is very well told in [Ill15], see also [Gro66a]) and of course 𝑝-adic Hodge
theory started with the 𝑝-adic Hodge decomposition of abelian varieties (and 𝑝-divisible groups). Conversely, the
theory is very useful to develop algorithms, for instance to transfer results from complex abelian varieties to abelian
varieties over general fields (eg see Section 2.3.6).
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2 ABEL I AN VAR I E T I E S

chap:thav
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2.1 abelian varieties over ℂ
sec:avC

References for this section are [Mum70a, Chapter 1], [BL04], and a more detailed summary of these results is
in [Rob10, Chapitre 2]. Analytic theta functions are studied in details in [Mum83; Mum84; Mum91]. Complete
abelian varieties are completely described from their period matrices. This give an easy description of their moduli
space. Algorithmically, one can use complex approximation methods to compute class polynomials or modular
polynomials, via for instance the Fourier series of the corresponding modular invariants.

2.1.1 Complex torus and cohomology

A complex abelian variety 𝐴/ℂ is a connected algebraic compact complex lie group.
It is easy to see that a connected compact complex Lie group 𝑋 of dimension 𝑔 is a complex torus 𝑋 = 𝑉/𝛬

where 𝑉 ≃ ℂ𝑔 can be identified to 𝑇0𝑋 and 𝛬 ≃ ℤ2𝑔 is a lattice.
The proof goes in two steps: first one prove that 𝑋 is commutative, then one can either construct the isomorphism

𝑋 = 𝑉/𝛬 using the exponential map as in [Mum70a, §1], or by seeing 𝜋 ∶ 𝑉 → 𝑋 as the universal covering as in
[BL04, Lemma 1.1.1]. This shows that 𝛬 = 𝐻1(𝑋, ℤ) = 𝜋1(𝑋, 0).
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2. Abelian varieties

Algebraizability is more delicate. If 𝑋 is algebraizable, then it is complete (since we assumed 𝑋 compact), and
then it is projective (since an abelian variety over a field is always projective). Such 𝑋 is algebraic if and only if
it is projective. It is equivalent to check for the existence of an ample line bundle ℒ on 𝐴. We first recall some
cohomological results.

Since 𝑉 is the universal covering of 𝑋, 𝜋1(𝑋) = 𝛬, so the universal coefficient theorem gives 𝐻1(𝑋, ℤ) =
Hom(𝛬, ℤ). Künneth formula then implies 𝐻𝑛(𝑋, ℤ) = ⋀𝑛 𝛬∗, and the universal coefficient theorem gives
𝐻𝑛(𝑋, ℂ) = 𝐻𝑛(𝑋, ℤ) ⊗ ℂ = ⋀𝑛 Homℝ(𝑉, ℂ) = ⋀𝑛(𝑇 ⊕ 𝑇) = ⨁𝑝+𝑞=𝑛 ⋀𝑝 𝑇 ⊗ ⋀𝑞 𝑇, where 𝑇 =
Homℂ(𝑉, ℂ) is the space of linear forms on 𝑉 and 𝑇 = Homℂ(𝑉, 𝐶) is the space of antilinear forms.

Alternatively, one can use De Rham’s theorem to get 𝐻𝑛(𝑋, ℂ) as the space 𝐼𝐹𝑛(𝑋) of real differential forms
of degree 𝑛 on 𝑉 invariant by translation. We have 𝐼𝐹𝑛(𝑋) = ⨁𝑝+𝑞=𝑛 𝐼𝐹𝑝,𝑞(𝑋), where 𝐼𝐹𝑝,𝑞(𝑋) is the space
spanned by forms of the form 𝑑𝑣1 ∧ ⋯ ∧ 𝑑𝑣𝑝 ∧ 𝑑𝑣1 ∧ ∧̇𝑑𝑣𝑞, so 𝐼𝐹𝑝,𝑞(𝑋) = ⋀𝑝 𝑇 ⊗ ⋀𝑞 𝑇.

We recover the Hodge decomposition, 𝐻𝑛(𝑋, ℂ) = ⨁𝑝+𝑞=𝑛 𝐻𝑞(𝑋, 𝛺𝑝
𝑋) where 𝛺𝑝

𝑋 is the sheaf of 𝑝-differential
holomorphic forms. Indeed, since 𝒪𝑋 ⊗ℂ ⋀𝑝 𝑇 ∼→ 𝛺𝑝

𝑋, 𝐻𝑞(𝑋, 𝛺𝑝
𝑋) = 𝐻𝑞(𝑋, 𝑂𝑋) ⊗ ⋀𝑝 𝑇, and from Harmonic

analysis 𝐻𝑞(𝑋, 𝑂𝑋) ≃ 𝐼𝐹0,𝑞(𝑋) ≃ ⋀𝑞 𝑇, so 𝐻𝑞(𝑋, 𝛺𝑝
𝑋) = ⋀𝑝 𝑇 ⊗ ⋀𝑞 𝑇.

We note that the morphisms 𝐻𝑛(𝑋, ℤ) → 𝐻𝑛(𝑋, ℂ) → 𝐻𝑛(𝑋, 𝒪𝑋) are the natural ones via the above
isomorphisms, and the decomposition is compatible with the cup product. We refer to [Rob10, Théorème 2.3.2] for
more details.

2.1.2 Line bundles
subcec:linebundlesC

Now we have the commutative diagram [Rob10, Proposition 2.3.3]

𝐻1(𝛬, 𝛤(𝒪∗
𝑉))

𝐻1(𝑋, 𝒪∗
𝑋)

∼
𝐻2(𝛬, ℤ)

𝐻2(𝑋, ℤ)

∼

⋀2 𝛬∗

∼

𝑐1 𝐻2(𝑋, 𝒪𝑋)
𝛾

⋀2 𝑇.

∼

which show that if ℒ ∈ 𝐻1(𝑋, 𝒪∗
𝑋) is a line bundle on 𝑋, then its Chern class 𝑐1(ℒ) is canonically identified with

a symplectic form 𝐸 ∈ Alt2ℝ(𝑉, ℂ), such that furthermore 𝐸(𝛬, 𝛬) ⊂ ℤ and 𝐸(𝑖𝑥, 𝑖𝑦) = 𝐸(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑉.
We get an Hermitian form 𝐻(𝑥, 𝑦) = 𝐸(𝑖𝑥, 𝑦) + 𝑖𝐸(𝑥, 𝑦) such that Im𝐻(𝛬, 𝛬) ⊂ ℤ. Thus two line bundles ℒ1

and ℒ2 are algebraically equivalent if and only if they have the same Hermitian form. Conversely by the diagram
above, these type of Hermitian forms span the Néron-Severi group NS(𝑋) ≔ ker𝐻2(𝑋, ℤ) → 𝐻2(𝑋, 𝒪𝑋).
Furthermore, given 𝐻, ℒ can be recovered from a canonical choice of its automorphic factor 𝑎ℒ ∈ 𝑍1(𝛬, 𝛤(𝒪∗

𝑉))
as 𝑎ℒ(𝜆, 𝑣) = 𝜒(𝜆)𝑒𝜋𝐻(𝑣,𝜆)+ 𝜋

2 𝐻(𝜆,𝜆), where 𝜒 is a semi-character: 𝜒(𝜆1 + 𝜆2) = 𝜒(𝜆1)𝜒(𝜆2)𝑒𝑖𝜋𝐸(𝜆1,𝜆2). We
call 𝐻, the polarisation associated to ℒ. From this we deduce [Rob10, Théorème 2.3.6]:

Theorem 2.1.1 (Appell-Humbert). We have a commutative diagram:

0 Hom(𝛬, ℂ∗
1) Group of (𝐻, 𝜒)

Hermitian forms
on 𝑉 such that
Im𝐻(𝛬, 𝛬) ⊂ ℤ.

0

0 Pic0(𝑋) Pic(𝑋) NS(𝑋) 0.
𝑐1

∼ ∼ ∼

th@appell@humbert
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2.1. Abelian varieties over ℂ

We will denote 𝐻ℒ (or 𝐸ℒ), 𝜒ℒ the Hermitian form (or symplectic form) and quasi-character associated to the
line bundle ℒ, and conversely 𝐿(𝐻, 𝜒) the line bundle associated to 𝐻 and 𝜒.

It remains to identify the ample line bundles.

th:lefschetzavc Theorem 2.1.2 (Lefschetz). A line bundle ℒ is ample if and only if its associated Hermitian form 𝐻 is positive. In
this case ℒ3 is very ample.

Proof. See [Mum70a, p. 30] or [BL04, Theorem 4.5.1]. Here we implicitly use that by Chow’s theorem a closed
analytic subset of a complete complex algebraic variety is Zariski closed, hence an analytic embedding into the
projective space give an algebraic embedding.

rem:lefschetzpolsquare Remark 2.1.3. The case of ℒ2 is detailed in [BL04, §4.4, §4.5, §4.8]. (𝐴, ℒ) ≃ (𝐴0, ℒ0) ×𝑘
𝑖=1 (𝐴𝑖, ℳ𝑖) where ℳ𝑖

is principal and ℒ0 is without fixed component. Then ℒ2
0 is very ample, and ℳ2

𝑖 descend to a very ample line
bundle on the Kummer variety 𝐾𝐴𝑖

≔ 𝐴𝑖/ ± 1. In particular, if 𝐴 is indecomposable and ℒ principal, ℒ2 gives an
embedding of the Kummer variety 𝐾𝐴.

In summary, a complex abelian variety 𝐴/ℂ is given by three data

• Linear data: A complex vector space 𝑉 of dimension 𝑔;

• Arithmetic data: A ℤ-lattice 𝛬 of rank 2𝑔 in 𝑉

• Quadratic data: A positive Hermitian form 𝐻.

2.1.3 Polarisations

The Hermitian form 𝐻 is only intrinsic to 𝐴 as a polarized abelian variety. In particular, 𝐻 can essentially be seen
as a way to embed 𝐴 into projective space, or as an isogeny to its dual.

Indeed, whenever ℒ is a non degenerate line bundle (meaning that 𝐻 = 𝐻ℒ is non degenerate), then since the
quotient of two quasicharacter is a character, we see that all the other quasi-characters are of the form 𝜒 = 𝜒ℒ𝐻(𝑐, ⋅).
In particular 𝐿(𝐻, 𝜒) = 𝑡∗

𝑐ℒ is a translate of ℒ. So whenever ℒ is very ample, the map 𝐴 → ℙ∗(𝛤(𝐴, ℒ)) is
determined by 𝐻 up to translation. Furthermore, if 𝛬 = 𝛬1 ⊕ 𝛬2 is a symplectic decomposition of 𝛬 for 𝐸,
𝜒0(𝜆) = 𝑒𝑖𝜋𝐸(𝜆1,𝜆2) is a canonical symmetric semi-character, hence this decomposition induces a canonical
symmetric line bundle ℒ0 in the algebraic equivalence class of ℒ.

The dual abelian variety 𝐴 of 𝐴 is Pic0
𝐴 = Hom(𝛬, ℂ∗

1) = Homℂ(𝑉, ℂ)/𝛬 = 𝑉/𝛬 where 𝛬 is the ℤ-dual of
𝛬 for the canonical pairing (𝑣, 𝑓 ) ↦ ℑ𝑓 (𝑣). This canonical pairing induces the Poincaré 𝒫 bundle on 𝐴 × 𝐴, whose
Hermitian form on 𝑉 × 𝑉 is 𝐻((𝑣1, 𝑓1), (𝑓2, 𝑣2) = 𝑓2(𝑣1) + (𝑓1(𝑣2))1. In particular 𝜙𝐻 ∶ 𝐴 → 𝐴, 𝑥 ↦ 𝐻(𝑥, ⋅) is
well defined and induce an isogeny from 𝐴 to its dual. Algebraically, the point 𝜙𝐻(𝑥) ∈ Pic0

𝐴 corresponds to the
degree 0, line bundle on 𝐴 represented by the character 𝑒2𝑖𝜋𝐸(𝑥,⋅), in other words 𝜙𝐻(𝑥) = 𝑡∗

𝑥ℒ ⊗ ℒ−1. We will
also denote the last morphism as 𝜙ℒ.

Pulling back the canonical pairing induced by the Poincarré bundle by Id×𝜙𝐻 gives a pairing on 𝐴 × 𝐴;
analytically this is the pairing induced by 𝐻 on 𝑉 × 𝑉 (or by 𝐸 on 𝛬 × 𝛬). This is the Weil pairing induced by the
polarisation, which we will study in more details in Chapter 4.

The kernel 𝐾(𝐻) (also denoted 𝐾(ℒ)) of 𝜙𝐻 is given by 𝛬(𝐻)/𝛬 where 𝛬(𝐻) is the ℤ-dual of 𝛬 for 𝐸:
𝛬(𝐻) = {𝑣 ∈ 𝑉 ∣ 𝐸(𝑣, ⋅) ⊂ ℤ}. Algebraically, 𝐾(ℒ) is the set of translates of ℒ isomorphic to it. When ℒ is
ample, its degree 𝑑 of ℒ can be defined via the degree of the 𝑔-fold intersection (of an effective divisor representing
it) 𝑑 = (ℒ ⋅ ℒ ⋯ ℒ)/𝑔!. The cardinal of 𝐾(ℒ) is then 𝑑2, and the rank of 𝛤(𝐴, ℒ) is 𝑑. An explicit basis of 𝑑
sections is given by the analytic theta functions. It is easier to define them by looking at a period matrix of 𝛬.

2.1.4 Period matrix

Since 𝐸 is integral on 𝛬, there is a “symplectic” basis such that the action of 𝐸 is given by the matrix

𝑀𝛿 = ( 0 𝐷𝛿
−𝐷𝛿 0 )

1And 𝒫 is the line bundle corresponding to the symplectic decomposition 𝛬 ⊕ 𝛬
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2. Abelian varieties

where 𝐷𝛿 is the diagonal matrix 𝛿 = (𝛿1, 𝛿2, … , 𝛿𝑔), with 𝛿1 ∣ 𝛿2| ⋯ ∣ 𝛿𝑔 and 𝛿𝑖 > 0 for 𝑖 ∈ [1..𝑔]. We say that ℒ
is of type 𝛿, since 𝐾(𝛿) ≃ (ℤ𝑔/𝛿ℤ𝑔)2, the degree 𝑑 of ℒ is then 𝑑 = ∏ 𝛿𝑖 = det𝐷𝛿. Taking the corresponding
symplectic decomposition 𝛬 = 𝛬1 ⊕ 𝛬2, we may take a basis of 𝑉 such that 𝛬 = 𝐷𝛿ℤ𝑔 ⊕ 𝛺′ℤ𝑔. Then 𝛺 ∈ ℌ𝑔,
the Siegel space of symmetric matrices 𝛺 with ℑ𝛺 > 0. In this basis, 𝐻 = (ℑ𝛺)−1, and 𝐸(𝑥1 + 𝛺𝑥2, 𝑦1 + 𝛺𝑦2) =
𝑥1𝑦2 − 𝑥2𝑦1.

For 𝛺 ∈ ℌ𝑔 and 𝑎, 𝑏 ∈ ℚ𝑔, analytic theta functions are defined as

𝜃 [ 𝑎
𝑏 ] (𝑧, 𝛺) = ∑

𝑛∈ℤ𝑔
𝑒𝜋𝑖 𝑡(𝑛+𝑎)𝛺(𝑛+𝑎)+2𝜋𝑖 𝑡(𝑛+𝑎)(𝑧+𝑏). (2.1) {eq@thetaab}

and a basis of section of ℒ0 is given by (𝜃 [ 𝑎
0 ] (⋅, 𝛺))𝑎∈𝐷−1ℤ𝑔/ℤ𝑔. (More precisely these analytic functions are

sections of a different factor of automorphy than 𝑎ℒ0
, see [Rob10, § 2.6].)

Via the change of variable 𝑧 ↦ 𝐷−1𝑧, we have 𝛬 = 𝛺′ℤ𝑔 ⊕ ℤ𝑔 = 𝛺0𝐷 ⊕ ℤ𝑔, where 𝛺0 ∈ ℌ𝑔, 𝛺 = 𝐷𝛺0𝐷,
𝛺′ = 𝛺0𝐷. For these new coordinates, 𝐻 = (ℑ𝛺0)−1, the old basis is then (𝜃 [ 𝑎

0 ] (𝐷⋅, 𝐷𝛺′))𝑎∈𝐷−1ℤ𝑔/ℤ𝑔, and
another basis is given by (𝜃 [ 0

𝑏 ] (⋅, 𝛺′𝐷−1))𝑏∈𝐷−1ℤ𝑔/ℤ𝑔 = 𝜃 [ 0
𝑏 ] (⋅, 𝛺0).

In particular, if ℒ0 is of degree 1 (in other words ℒ is a principal line bundle, and (𝐴, ℒ) is a principally polarised
abelian variety), with hermitian form 𝐻, then the hermitian form corresponding to ℒ𝑛

0 is 𝑛𝐻, and if 𝑛 = 𝑛1𝑛2 a
basis of sections (called theta functions of level 𝑛) is given by (𝜃 [ 𝑎

𝑏 ] (𝑛1⋅, 𝑛1𝛺0/𝑛2))𝑎,𝑏∈ 1
𝑛1

ℤ𝑔/ℤ𝑔× 1
𝑛2

ℤ𝑔/ℤ𝑔 .

2.1.5 Isogenies

A group morphism 𝑓 ∶ 𝐴 → 𝐵 between two abelian varieties is induced by the linear morphism 𝜌(𝑓 ) ∶ 𝑇0𝐴 → 𝑇0𝐵,
𝑓 is an isogeny whenever 𝜌(𝑓 ) is bijective. The kernel of the isogeny is then 𝑓 −1𝛬𝐵/𝛬𝐴. If ℳ is a polarisation on 𝐵
with associated Hermitian form 𝐻𝑀, then ℒ = 𝑓 ∗ℳ has associated Hermitian form 𝐻ℒ(𝜌(𝑓 )(⋅), 𝜌(𝑓 )(⋅)).

If 𝑓 ∶ 𝐴 → 𝐵 is an isogeny, the complex transpose 𝜌(𝑓 )∗ = 𝑡𝜌(𝑓 ) induce a dual isogeny ̂𝑓 ∶ �̂� → 𝐴. In particular,
Ker 𝑓 is the dual of Ker ̂𝑓, and description of 𝐻ℒ above show that we have 𝛷𝑓 ∗ℳ = ̂𝑓 ∘ 𝛷𝑀 ∘ 𝑓, and

2.2 abelian varieties
sec:av

This is the core object of this work. The best reference on this subject is still [Mum70a], even 50 years after its
publication! One can also consult [Mil85; Mil86] for the treatment of Jacobians and simplifications made by using
the étale cohomology, Milne’s course notes [Mil91] (which essentially restrict to separable isogenies) , Bhatt’s course
notes [Bha] and also the unfortunately still unfinished [EGM12]. A modern point of view via the Fourier-Mukai
transform is in [Pol03].

Remark 2.2.1. In [Mum70a] Mumford works with an algebraically closed field. But his result generally hold for
a perfect field 𝑘 by Galois descent, or even for an arbitrary field by fpqc descent. (Essentially assuming 𝑘 perfect
allows to describe étale finite groups 𝐺 via their 𝑘-points 𝐺(𝑘), while for a general 𝑘 we would use 𝐺(𝑘𝑠) instead
where 𝑘𝑠 is the separable closure of 𝑘.) The book [EGM12] gives explicit statements over any field.

2.2.1 Definition
av:def

Definition 2.2.2. An abelian variety 𝐴/𝑘 is a proper geometrically integral group scheme over 𝑘.

From the discussion on algebraic group Appendix B.1, we have:

prop:caracav Proposition 2.2.3. The following are equivalent:

• 𝐴/𝑘 is an abelian variety;

• 𝐴/𝑘 is a proper smooth (geometrically) connected2 group scheme;
2Since 0𝐴 is rational, 𝐴 connected ⇔ 𝐴 geometrically connected.
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2.2. Abelian varieties

• 𝐴/𝑘 is a proper group scheme, geometrically reduced3 and (geometrically) connected;

• 𝐴/𝑘 is a connected group scheme locally of finite type, universally closed and whose neutral point 0𝐴 is geomet-
rically reduced4;

2.2.2 Basic properties of abelian varieties

As the name imply, we have [Mum70a, Chapter II]:

Proposition 2.2.4. If 𝐴/𝑘 is an abelian variety, it is commutative and projective.

Projectivity was not known to Weil when he developed the theory of abelian varieties to prove the Weil conjecture
for curves, hence he had to introduce abstract algebraic varieties. It was then proved by Chow for Jacobians, and by
Barsotti, Matsusaka and Weil for abelian varieties.

Quite a lot of the geometric theory of abelian varieties can be derived from Weil’s theorem of the cube:

Theorem 2.2.5 ([Mum70a, §6, §10]). Let 𝑘 = 𝑘 be an algebraically closed field. If 𝑋, 𝑌 are complete varieties and 𝑍
a connected scheme over 𝑘. Let ℒ a line bundle on 𝑋 × 𝑌 × 𝑍 whose restriction to {𝑥0} × 𝑌 × 𝑍, to 𝑋 × {𝑦0} × 𝑍, and
𝑋 × 𝑌 × {𝑧0} is trivial for some 𝑥0 ∈ 𝑋, 𝑦0 ∈ 𝑌, 𝑧0 ∈ 𝑍. Then ℒ is trivial.

We get the following corollaries [Mum70a, § 6, Cor 2, 3, 4]:

th:square Corollary 2.2.6. • If 𝑓 , 𝑔, ℎ are morphisms from a variety 𝑋 to an abelian variety 𝐴, for all ℒ ∈ Pic(𝐴),

(𝑓 + 𝑔 + ℎ)∗ℒ ≃ (𝑓 + 𝑔)∗ℒ ⊗ (𝑓 + ℎ)∗ℒ ⊗ (𝑔 + ℎ)∗ℒ ⊗ 𝑓 ∗ℒ−1 ⊗ 𝑔∗ℒ−1 ⊗ ℎ∗ℒ−1.

• For all 𝑛 ∈ ℤ, [𝑛]∗ℒ ≃ ℒ
𝑛2+𝑛

2 ⊗ [−1]∗ℒ
𝑛2−𝑛

2 . In particular if ℒ is symmetric, [𝑛]∗ℒ ≃ ℒ𝑛2 and if ℒ is
antisymmetric, [𝑛]∗ℒ ≃ ℒ𝑛.

• Theorem of the square: 𝑡∗
𝑥+𝑦ℒ ⊗ ℒ ≃ 𝑡∗

𝑥ℒ ⊗ 𝑡∗
𝑦ℒ where 𝑡𝑥 denotes the translation by 𝑥.

Another very nice property is that rational map to an abelian variety extends:

prop:extensionav Proposition 2.2.7. A rational map 𝑋𝐴 from a regular variety 𝑋 to an abelian variety is defined everywhere on 𝑋.

Proof. This is [Mil91, Theorem 3.2] using that a rational map 𝑋𝑌 from a normal variety to a complete variety is
defined everywhere except at a locus of codimension ≥ 2 [Mil91, Theorem 3.1] and that a rational map 𝑋𝐺 from
a non singular variety to a group variety is defined everywhere except at a locus of pure codimension 1 (if non
empty) [Mil91, Lemma 3.3].

See Proposition 2.3.16 and Proposition 3.1.7 for a generalisation of these theorems to abelian schemes and group
schemes.

2.2.3 Isogenies
subsec:avisogenies

Definition 2.2.8. An isogeny of abelian varieties 𝑓 ∶ 𝐴 → 𝐵 is a finite surjective group morphism.

If dim𝐴 = dim𝐵 and 𝑓 ∶ 𝐴 → 𝐵 is a group morphism, it suffices to check that Ker 𝑓 is finite or that 𝑓 is surjective.
The isogeny is étale whenever it is separable. In fact, if 𝐴 is an abelian variety and 𝜋 ∶ 𝑋 → 𝐴 is an étale cover by a
connected scheme, then 𝑋 is an abelian variety and 𝜋 is a separable isogeny.

Commutativity of abelian varieties can also be seen as a corollary of the following rigidity theorem:

Theorem 2.2.9 (Rigidity of abelian varieties [Mum70a, Theorem p.44]). If 𝑋 is a complete variety with a point
𝑒 and a morphism 𝑚 ∶ 𝑋 × 𝑋 → 𝑋 such that 𝑚(𝑥, 𝑒) = 𝑚(𝑒, 𝑥) = 𝑥 for all geometric points 𝑥, then (𝑋, 𝑚) is an
abelian variety.

3If 𝑘 is perfect, this is equivalent to 𝐴/𝑘 reduced
4Or just reduced if 𝑘 is perfect
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2. Abelian varieties

As a corollary, if 𝐴, 𝐵 are abelian varieties, any morphism (as varieties) 𝑓 ∶ 𝐴 → 𝐵 which sends 0𝐴 to 0𝐵 is a
group morphism, so a morphism of variety 𝑓 ∶ 𝐴 → 𝐵 is the composition of a group morphism and a translation.

If 𝐴 is an abelian variety, there is a canonical structure of abelian variety on 𝐴 = Pic0(𝐴), and there is a universal
Poincare bundle 𝒫 on 𝐴 × 𝐴 [Mum70a, §8, §13]. It is rigidified along the zero sections of 𝐴 and 𝐴 and its universal
property is that any line bundle ℒ on 𝐴 × 𝑆 rigidified along the pullback 0𝐴 × 𝑆 of the neutral point of 𝐴 and
such that ℒ𝑠 ∈ Pic0 𝐴 for all geometric point of 𝑠 is the pullback of 𝒫 by a unique morphism 𝜙 ∶ 𝑆 → 𝐴. By this
universal property, the Poincare line bundle itself induces a canonical morphism 𝐴 → 𝐴∨, and it is an isomorphism
by [Mum70a, §13].

If 𝑓 ∶ 𝐴 → 𝐵 is an isogeny, the morphism 𝑓 ∗ ∶ Pic0(𝐵) → Pic0(𝐴), ℳ → 𝑓 ∗ℳ induce an isogeny ̂𝑓 ∶ �̂� → 𝐴.
We call ̂𝑓 the dual isogeny, and by biduality of 𝐴, Ker ̂𝑓 is the Cartier dual of Ker 𝑓 [Mum70a, §14, §15 Theorem 1].

The degree deg 𝑓 of an isogeny can be defined as the degree deg 𝑓 (as a scheme) of its kernel ker 𝑓, so by duality 𝑓
and ̂𝑓 have the same degree. We then have 𝜒(𝑓 ∗ℳ) = deg 𝑓 𝜒(ℳ) for any line bundle ℳ on 𝐵.

If 𝛼 is an endomorphism of 𝐴, its characteristic polynomial is defined by 𝜒𝛼(𝑛) = deg(𝛼 − 𝑛) for 𝑛 ∈ ℤ. It is
monic of degree 2𝑔, and can be computed as its characteristic polynomial acting on 𝑉ℓ𝐴 ≔ 𝑇ℓ𝐴 ⊗ℤℓ

ℚℓ [Mil91,
Theorem 10.9] (see Section 2.2.5 for these definitions).

2.2.4 Line bundles
subsec:avlinebundles

If ℒ is a line bundle, then by the theorem of the square (Corollary 2.2.6) 𝑡∗
𝑥+𝑦ℒ ⊗ ℒ ≃ 𝑡∗

𝑥ℒ ⊗ 𝑡∗
𝑦ℒ so 𝛷ℒ ∶ 𝑥 ↦

𝑡∗
𝑥ℒ ⊗ ℒ−1 is a morphism from 𝐴 to 𝐴, of kernel 𝐾(ℒ). If the line bundle ℒ is ample then 𝛷ℒ is an isogeny, it is
the polarisation associated to ℒ.

th:polarisations Theorem 2.2.10. Let ℒ be a line bundle on an abelian variety 𝐴.

• Riemann-Roch: if ℒ = 𝒪𝑋(𝐷), 𝜒(ℒ) = (𝐷𝑔)/𝑔!;

• deg𝛷ℒ = 𝜒(𝐿)2;

• Vanishing theorem: if ℒ is non degenerate (which means 𝐾(ℒ) is finite), there is a unique integer 0 ≤ 𝑖(ℒ) ≤ 𝑔
such that 𝐻𝑖(𝐴, ℒ) ≠ 0. Moreover 𝑖(ℒ−1) = 𝑔 − 𝑖(ℒ).

And ℒ is ample if and only if it is non degenerate and 𝑖(ℒ) = 0, if and only if 𝛷ℒ is an isogeny and ℒ is represented
by an effective divisor.

Proof. See [Mum70a, §16]. The index 𝑖(ℒ) is equal to the number of positive roots of the polynomial 𝑃(𝑛) =
𝜒(ℒ𝑛 ⊗ 𝑀), 𝑀 any non ample line bundle. In the complex case, this is the number of negative eigenvalues of
𝐻ℒ.

If ℒ is degenerate, ℒ and its sections descend to 𝐴/𝐾∘(ℒ) where 𝐾∘(ℒ) is the connected component of 0𝐴 in
𝐾(ℒ), so we reduce to the non degenerate case.

Lefschetz theorem still holds:

th:lefschetzav Theorem 2.2.11 (Lefschetz). If ℒ is ample, then ℒ2 is base point free and induce a finite morphism into projective
space, and ℒ3 is very ample.

Proof. See [Mum70a, §17].

2.2.5 Cohomology
subsec:av:cohomology

By [Mum70a], some of the cohomology computations of Section 2.1 hold in the algebraic case. Let 𝐴/𝑘 be an
abelian variety over an algebraically closed field 𝑘 = 𝑘. Then 𝐻𝑞(𝐴, 𝛺𝑝) ≃ ⋀𝑝 𝐻0(𝐴, 𝛺1) ⊗𝑘 ⋀𝑞 𝐻1(𝐴, 𝒪𝐴𝑘

).
Furthermore 𝛺1

𝐴 is canonically isomorphic to 𝛺0 ⊗𝑘 𝒪𝑋 where 𝛺0 = 𝑇∗
𝐴,0 is the cotangent space. Via this

isomorphism, the image of 𝛺0 are the translation invariants differential forms, and since 𝐻0(𝐴, 𝒪𝐴𝑘
) = 𝑘 these

are exactly the forms regular everywhere, ie the global sections of 𝛺1
𝐴: 𝑇0(𝐴) = Lie(𝐴) ≃ 𝐻0(𝐴, 𝛺1)∨. We also

have a canonical isomorphism Lie(𝐴) = 𝑇0𝐴 ≃ 𝐻1(𝐴, 𝒪𝐴𝑘
).

10

[ Draft Version: Tuesday March 7, 2023 at 18:13 ]



2.2. Abelian varieties

Now let 𝑘 be any field, 𝑝 its characteristic, and let 𝐴/𝑘 be an abelian variety. Instead of a lattice, we can consider
the divisible group lim−→𝑝∤𝑛

𝐴[𝑛](𝑘𝑠) or the Tate module lim←−𝑝∤𝑛
𝐴[𝑛](𝑘𝑠).

By theChinese RemainderTheorem, it suffices to consider the ℓ-divisible group for ℓ ≠ 𝑝:𝐴(ℓ) ≔ lim−→𝑛
𝐴[ℓ𝑛](𝑘𝑠)

and the ℓ-Tate module 𝑇ℓ𝐴 = lim←−𝑛
𝐴[ℓ𝑛](𝑘𝑠).

We recall that [𝑛], the multiplication by 𝑛 is an isogeny of degree 𝑛𝑔, and is separable if and only if 𝑝 ∤ 𝑛,
in which case the kernel 𝐴[𝑛](𝑘𝑠) is isomorphic to ℤ2𝑔/𝑛ℤ2𝑔. The multiplication by 𝑝 is never separable, and
𝐴[𝑝](𝑘𝑠) = ℤ𝑟/𝑝ℤ𝑟 where 0 ≤ 𝑟 ≤ 𝑔 is called the 𝑝-rank of 𝐴. Then 𝐴[𝑝𝑚](𝑘𝑠) = ℤ𝑟/𝑝𝑚ℤ𝑟.

An abelian variety is ordinary if its 𝑝-rank is 0. Be careful that unlike the elliptic case, an abelian variety of 𝑝-rank
0 may not be supersingular: for 𝐴 to be supersingular we need that the only slope of its Newton polygon is 1/2
(so in dimension 2, 𝐴 is of 𝑝-rank 0 still imply that 𝐴 is supersingular because there is only one possibility for its
Newton polygon). In this case 𝐴 is isogenous to a product of supersingular elliptic curves, it is called superspecial if
it is isomorphic to such a product. We refer to [Pri08; AP15] for more details.

When ℓ ≠ 𝑝, the Tate module is a good substitute of the period lattice, because it is recovered by the étale
cohomology:

th:etalecoh Theorem 2.2.12.

𝐻1
𝑒𝑡(𝐴𝑘𝑠

, ℤℓ) ≃ Homℤℓ
(𝑇ℓ𝐴, ℤℓ)

𝐻𝑞
𝑒𝑡(𝐴𝑘𝑠

, ℤℓ) ≃ 𝛬𝑞𝐻1
𝑒𝑡(𝐴, ℤℓ)

where these isomorphisms are compatible with the Galois action, and the bottom isomorphism is induced by the first
via the cup product.

Proof. See [Mil86], [Mil, §12]. By Galois theory, 𝐻1(𝐴, ℤℓ) = Hom(𝜋𝑒𝑡
1 𝐴, ℤℓ), so 𝐻1(𝐴, ℤℓ) is the dual of the

Galois module associated to 𝐴(ℓ), and this is exactly 𝑇ℓ𝐴, see Section 3.3.2.

In particular if 𝐴/ℂ is a complex abelian variety, we get 𝐻1
𝑒𝑡(𝐴ℂ, ℤℓ) ≃ 𝛬∗ ⊗ ℤℓ = 𝐻1(𝐴, ℤℓ) as expected

from Grothendieck’s comparison theorem [Gro71, Exposé XII], [Art66].
If 𝐴/𝐾 is an abelian variety over a 𝑝-adic field 𝐾, we let 𝐾 denote the algebraic closure and ℂ𝑝 the completion of 𝐾.

Seeing ℂ𝑝 as a 𝐺𝐾 = Gal(𝐾/𝐾)-Galois module, we denote by ℂ𝑝(1) the Tate twist.Then theHodge decomposition
𝐻1(𝐴, ℂ) = 𝐻0(𝐴, 𝑂𝐴) ⊕ 𝐻0(𝐴, 1

𝐴) of a complex abelian variety has a 𝑝-adic analogue:

Theorem 2.2.13 (Hodge-Tate decomposition). Let 𝐴/𝐾 be an abelian variety, 𝑆 = Spec𝑂𝐾 and 𝜂 its generic point,
𝜂 the geometric point above 𝜂 corresponding to 𝐾. Then 𝐴 can be seen as an abelian variety over 𝜂, and

𝐻1
𝑒𝑡(𝐴𝜂, ℤ𝑝) ⊗ℤ𝑝

ℂ𝑝 ≃ 𝐻0(𝐴, 1
𝐴/𝜂) ⊗𝐾 ℂ𝑝(−1) ⊕ 𝐻1(𝐴, 𝑂𝐴) ⊗𝐾 ℂ𝑝

(the isomorphism is Galois equivariant).

Proof. If 𝐴/𝐾 has good reduction, this is proved by Tate in [Tat67] using the theory of 𝑝-divisible groups, see
[Ser66, Théorème 3].

The general case is proved by Raynaud in [Gro72, Exposé 9, Théorème 3.6 et Proposition 5.6]. The general
Hodge-Tate decomposition for a proper smooth scheme is proved by Faltings (among others) in [Fal88b], as a
special case of the étale cohomologie and crystalline/De Rham cohomology comparison theorems using Fontaine’s
period rings [Fon82; Fal88b; Fal88a]. We refer to [ABB+19; Car19] for a good exposition of 𝑝-adic Hodge theory.

Dually: 𝐻0(𝐴, 1
𝐴/𝐾)∨ ≃ Lie(𝐴) and 𝐻1(𝐴, 𝑂𝐴) ≃ Lie(𝐴∨) and the Hodge-Tate decomposition is 𝑇𝑝(𝐴) ⊗ℤ𝑝

ℂ𝑝 ≃ (Lie(𝐴∨)∨ ⊗𝐾 ℂ𝑝) ⊕ (Lie(𝐴) ⊗𝐾 ℂ𝑝(1)).
And since the Weil pairing induces a perfect pairing 𝑇𝑝𝐴 × 𝑇𝑝𝐴 → ℤ𝑝(1), we have 𝐻1

𝑒𝑡(𝐴𝜂, ℤ𝑝(1)) ≃
Homℤ𝑝

(𝑇𝑝(𝐴𝜂), ℤ𝑝(1)) ≃ 𝑇𝑝𝐴, hence theHodge-Tate decomposition gives isomorphisms𝑇0𝐴 ≃ 𝐻1(𝐴, 𝑂𝐴) ≃
Homℤ𝑝[𝐺𝐾](𝑇𝑝(𝐴𝜂), ℂ𝑝) and 𝐻0(𝐴, 1

𝐴/𝜂) ≃ Homℤ𝑝[𝐺𝐾](𝑇𝑝(𝐴𝜂), ℂ𝑝(1)).

When ℓ = 𝑝, the Tate module is not enough to recover all the arithmetic information of 𝐴. We define instead
𝑇𝑝𝐴 to be the Dieudonné module of the 𝑝-divisible group. We recall that the crystalline cohomology of a smooth
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2. Abelian varieties

proper scheme can be seen either as the sheaf cohomology of the crystalline site [Ill94], or as the hypercohomology
of its De Rahm-Witt complex [Ill79], or as the De Rham (hyper)cohomology of any proper smooth lift [Ber06;
BJ11].

As expected, crystalline cohomology is the correct one when ℓ = 𝑝:

Theorem 2.2.14 (Mazur-Messing-Oda).

𝐻1
𝑐𝑟𝑦𝑠(𝐴𝑘/𝑊(𝑘), ℤ𝑝) ≃ 𝑇𝑝(𝐴)

𝐻𝑞
𝑐𝑟𝑦𝑠(𝐴𝑘/𝑊(𝑘), ℤ𝑝) ≃ 𝛬𝑞𝐻1

𝑐𝑟𝑦𝑠(𝐴𝑘/𝑊(𝑘), ℤ𝑝).

2.2.6 Abelian varieties over finite fields

TODO: endomorphisms, classification, Honda-Tate.

2.3 abelian schemes
sec:abschemes

Algorithmically, abelian schemes allow to study families of abelian varieties (for instance to construct families of
abelian surfaces with real multiplication). They are also useful to construct the moduli of abelian varieties (which
as we will see in Section 2.3.6 allow us to extend results over ℂ to results over any field), and to study reduction
modulo 𝑝.

There is a surprising lack of textbooks on this subject. But as we will see, because of rigidity most of the theory
reduce immediately to abelian varieties. Rigidity of abelian schemes is proved in [MFK94, Chapter 6] for projective
abelian schemes. Projectivity5 was needed to ensure the existence of the dual abelian scheme, this was later proven
in the general case by Artin and Raynaud, see [FC90, Chapter 1]. Raynaud’s book [Ray70] contains many wonderful
result about projectivity of group schemes, and in particular abelian schemes. SGA 7 also contains a wealth of
results on abelian schemes [Gro72] (like the semi-stable reduction theorem and a fine study of duality via the
theory of biextensions), and SGA 3 [DA70] is also useful in the study of quotients (eg to construct isogenies).

2.3.1 Definitions

def:avscheme Definition 2.3.1. Let 𝑆 be a scheme. An abelian scheme 𝐴/𝑆 is a proper smooth group scheme 𝐴 → 𝑆 with
geometrically connected fibers.

By Proposition 2.2.3, an abelian scheme has abelian varieties as its geometric fibers, so alternatively an abelian
scheme 𝐴/𝑆 is a flat proper finitely presented group scheme with abelian varieties as geometric fibers. We refer to
Section 2.3.5 for other characterisations.

Since an abelian scheme is flat by definition, a lot of properties can be checked fiberwise. For instance if 𝑓 ∶ 𝐴 → 𝐵
is an application between abelian schemes, it is

• Flat if and only if it is fiberwise flat [Stacks, Tag 039C];

• (Schematically) dense if it is fiberwise (schematically) dense [GD64, pp. IV.11.10.9, IV.11.10.10].

Furthermore, since 𝐴 is proper, and ℒ is a line bundle on 𝐴, then the locus 𝑈 of 𝑠 ∈ 𝑆 such that ℒ𝑠 is ample is
open, and ℒ∣𝑈 is ample over 𝑈 [GD64, p. IV.9.6.5].

Sometimes abelian schemes are constructed étale locally, as in the construction of the dual abelian variety (see
Section 2.3.2). The resulting algebraic space is actually a scheme.

th:algabelian Theorem 2.3.2 (Raynaud). Let 𝐴/𝑆 be an abelian algebraic space. Then 𝐴 is an abelian scheme. If 𝑆 is affine, 𝐴/𝑆
is an AF-scheme6.

5Unlike abelian varieties, an abelian scheme need not be projective
6See Appendix D for the definition.
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2.3. Abelian schemes

Proof. We refer to [FC90, Theorem 1.9] for a proof. The affine finite condition will be useful to construct isogenies
in Proposition 2.3.15.

An abelian scheme needs not be projective (see [Ray70] for counterexamples). By a theorem of Murre [Mur64, p.
258], it is if the base 𝑆 is integral and normal. More generally:

Theorem 2.3.3 (Grothendieck). Let 𝑆 be an integral scheme with generic point 𝜂 = 𝜂𝑆 geometrically unibranch. Let
𝐴/𝑆 be an abelian scheme, and ℒ𝜂 invertible on 𝐴𝜂. Then there exists a symmetric line bundle ℳ such that ℳ𝜂 is
algebraically equivalent to ℒ2

𝜂 . If ℒ𝜂 is ample then ℳ is 𝑆-ample. In particular 𝐴/𝑆 is projective.

Proof. This is [Ray70, Th XI.1.4].

2.3.2 The relative Picard functor and the dual abelian scheme
subsec:picard

We begin by a disgression on the relative Picard functor. This will allow us to construct the dual abelian scheme,
and also Jacobians of (relative) curves in Section 2.4 Much more details can be found in [BLR12, Chapter 8] (but
beware of the missing hypotheses in some of their statements).

If 𝑋/𝑆 is a scheme, the Picard functor Pic(𝑋) is the set of isomorphism classes of line bundles on 𝑋. Since a line
bundle is the same as a 𝔾𝑚-torsor, Pic(𝑋) ≃ 𝐻1(𝑋, 𝑂∗

𝑋). By fpqc descent of line bundles7, this isomorphism is
true in the Zariski, étale, fppf or even fpqc topology.

The relative Picard functor 𝒫𝑖𝑐𝑋/𝑆 is defined to be 𝑅𝑓∗,𝑓 𝑝𝑝𝑓𝔾𝑚 [BLR12, Definition 8.1.2], in other words it is
the fppf-sheafication of the presheaf Pic𝑋/𝑆 ∶ 𝑇/𝑆 ↦ Pic(𝑋𝑇), where we denote by 𝑋𝑇 the pullback 𝑋𝑇 ≔ 𝑋𝑥𝑆𝑇.
If 𝑋/𝑆 is proper, 𝒫𝑖𝑐𝑋/𝑆 = 𝑅𝑓∗,𝑡𝑎𝑙𝑒𝔾𝑚 [BLR12, p. 203].By construction, it commutes with base change.

If 𝑋/𝑆 is qcqs, the Leray spectral sequence induces an exact sequence [BLR12, p. 203]

0 → 𝐻1(𝑆, 𝑓∗(𝔾𝑚)) → 𝐻1(𝑋, 𝔾𝑚) → 𝒫𝑖𝑐
𝑋/𝑆

(𝑆) → 𝐻2(𝑆, 𝑓∗𝔾𝑚) → 𝐻2(𝑋, 𝔾𝑚) (2.2) {eq:leray}

We say that 𝑓 is an 𝑂-morphism when 𝑓∗𝑂𝑋 = 𝑂𝑆. In this case the pullback by a flat base change is still an
𝑂-morphism (ie, in the terminology of [MFK94] this notion is uniform). We say that 𝑓 is an universal 𝑂-morphism
if the pullback by an arbitrary morphism is an 𝑂-morphism. If 𝑓 is an 𝑂-morphism, then for every 𝑇 → 𝑆 flat (resp.
every 𝑇 → 𝑆 if 𝑓 is an universal 𝑂-morphism), the exact sequence from Equation (2.2) can be interpreted as follow
[BLR12, Proposition 8.1.4]

0 → Pic(𝑇) → Pic(𝑋𝑇) → 𝒫𝑖𝑐
𝑋/𝑆

(𝑇) → Br(𝑇) → Br(𝑋𝑇) (2.3) {eq:leray2}

So if the map Br(𝑇) → Br(𝑋𝑇) is injective, for instance if 𝑋 → 𝑆 has a section, then the exact sequence collapse to
to

0 → Pic(𝑇) → Pic(𝑋𝑇) → 𝒫𝑖𝑐
𝑋/𝑆

(𝑇) → 0 (2.4) {eq:leray3}

In particular, when 𝑋/𝑆 has a section 𝑒, then there is an alternative definition of 𝒫𝑖𝑐𝑋/𝑆 that is easier to describe
than the sheafication process: 𝒫𝑖𝑐𝑋/𝑆(𝑇) is isomorphic to the group of isomorphism class of line bundles ℒ on
𝑋 ×𝑆 𝑇 rigidified along the pullback of 𝑒, ie there is an isomorphim 𝑂𝑇 ≃ 𝑒∗

𝑇ℒ. Indeed, up to an action of Pic(𝑇)
each line bundle on 𝑋𝑇 can be rigidified, so since rigidified line bundles have no automorphism, the set of rigidified
line bundles is isomorphic to Pic(𝑋𝑇)/Pic(𝑇).

We have the following representability theorems of the relative Picard functor. First if 𝑓 ∶ 𝑋 → 𝑆 is proper flat and
finitely presented with 𝑆 reduced, then if 𝒫𝑖𝑐𝑋/𝑆 is representable by an algebraic space, 𝑓 has to be cohomologically
flat in dimension 08 by [BLR12, Remark 8.3.2].

Remarkably, cohomological flatness is enough for representability.

th:picard Theorem 2.3.4. Let 𝑓 ∶ 𝑋 → 𝑆 be a proper locally finitely presented flat morphism of algebraic spaces, cohomologically
flat in dimension 0.

7This is a special case of Grothendieck’s fpqc descent of quasi-coherent modules, but for line bundles this can also be seen as an
application of Hilbert 90

8We refer to Appendix A.2 for the definition of a morphism cohomologically flat in dimension 0.
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2. Abelian varieties

th:picardi (i) 𝒫𝑖𝑐𝑋/𝑆 is an (qs) algebraic space.
th:picardii (ii) If furthermore 𝑓 is a universal 𝑂-morphism and admits a section, then 𝑋 ×𝑆 𝒫𝑖𝑐𝑋/𝑆 has a universal rigidified

line bundle.
th:picardiii (iii) Lie(𝒫𝑖𝑐𝑋/𝑆) ≃ 𝑅1𝑓∗𝑂𝑋;
th:picardiv (iv) If 𝐻2(𝑋𝑠, 𝑂𝑋𝑠

) = 0 (for instance if 𝑋/𝑆 is a relative curve), 𝒫𝑖𝑐𝑋/𝑆 is formally smooth in a neighbourhood of
𝑠.

th:picardv (v) If the geometric fibers of 𝑓 are integral, Pic𝑋/𝑆 is separated. If furthermore 𝑓 is smooth, each closed subspace 𝑍 of
𝒫𝑖𝑐𝑋/𝑆 of finite type over 𝑆 is proper.

th:picardvi (vi) If 𝑓 is projective with integral geometric fibers, 𝒫𝑖𝑐𝑋/𝑆 is a disjoint union of quasi-projective spaces: 𝒫𝑖𝑐𝑋/𝑆 =
⨆𝛷∈ℚ[𝑡] 𝒫𝑖𝑐𝛷

𝑋/𝑆, where 𝒫𝑖𝑐𝛷
𝑋/𝑆 is the subfunctor of line bundles whose Hilbert polynomial is 𝛷 In particular

𝒫𝑖𝑐𝑋/𝑆 is a separated scheme, locally of finite presentation.

Proof. If 𝑓 is cohomologically flat in dimension 0, Artin proves the representability by algebraic space in [Art69b,
Theorem 7.3] using his criterion for algebraicity. See also [BLR12, Theorem 8.3.1].

Raynaud also proves representability of the rigidified Picard functor when 𝑓 admits a rigidificator, see [BLR12,
Theorem 8.3.3]. This is in particular the case when 𝑓 has a section, and if it is furthermore an universal 𝑂-morphism,
then we have seen that the rigidified Picard functor is 𝒫𝑖𝑐𝑋/𝑆. The universal rigidified line bundle on 𝑋 ×𝑆 𝒫𝑖𝑐𝑋/𝑆
comes from the universal property applied to id ∶ 𝒫𝑖𝑐𝑋/𝑆 → 𝒫𝑖𝑐𝑋/𝑆.

The third item is [BLR12, Theorem 8.4.1], and the fourth is [BLR12, Proposition 8.4.2, Theorem 8.4.3]
The last item was proved by Grothendieck, [Gro62, n°232, Theorem 3.1]: if 𝑋/𝑆 is projective, finitely presented,

flat, with integral geometric fibers, then 𝒫𝑖𝑐𝑋/𝑆 is a separated scheme locally of finite presentation over 𝑆. See also
[BLR12, Theorems 8.2.1 and 8.2.5], and [BLR12, Theorem 8.2.2] for Mumford’s theorem which state that under the
conditions above, but we only assume that the fibers are geometrically reduced and their irreducible components
are geometrically irreducible, the 𝒫𝑖𝑐𝑋/𝑆 is a scheme (not necessarily separated) locally of finite presentation over
𝑆.

cor:picardk Corollary 2.3.5. If 𝑘 is a field, and 𝑋/𝑘 is a proper geometrically reduced scheme over 𝑘.

cor:picardki (i) 𝒫𝑖𝑐𝑋/𝑘 is a scheme locally of finite type, and is separated if 𝑋 is geometrically integral.
cor:picardkii (ii) If 𝑋 is smooth and geometrically connected, the identity component 𝒫𝑖𝑐0

𝑋/𝑘 is a proper scheme over 𝑘, and is
projective if 𝑋/𝑘 is projective.

cor:picardkiii (iii) dim𝑘 𝒫𝑖𝑐𝑋/𝑘 ≤ dim𝑘 𝐻1(𝑋, 𝑂𝑋), with equality if and only if 𝒫𝑖𝑐𝑋/𝑘 is smooth over 𝑘 (this is always the case
in characteristic zero).

Proof. If 𝑋/𝑘 is proper and geometrically reduced, it is cohomologically flat in dimension 0 by Lemma A.2.1, hence
𝒫𝑖𝑐𝑋/𝑘 is an qs algebraic space by Theorem 2.3.4.(i).

But a decent [Stacks, Tag 0318] (in particular quasi-separated) algebraic space 𝑋 contains a dense open schematic
locus 𝑈 [Stacks, Tag 086U]. In particular a quasi-separated group algebraic space 𝐺/𝑘 contains a dense open
schematic locus 𝑈, so by translation 𝐺 is is a scheme. (This was already observed by Artin in the separated case
in [Art69b].) So 𝒫𝑖𝑐𝑋/𝑘 is a scheme. In particular, we recover the Murre-Oor theorem that if 𝑋/𝑘 is proper and
geometrically integral, 𝒫𝑖𝑐𝑋/𝑆 is a separated scheme [BLR12, Theoerem 8.2.1].

By Lemma B.1.1, a connected group scheme locally of finite type over 𝑘 is of finite type, so 𝒫𝑖𝑐0
𝑋/𝑘 is a proper

scheme by Theorem 2.3.4.(v).
Corollary 2.3.5.(iii) is immediate from Theorem 2.3.4.(iii). We refer to [BLR12, Theorems 8.4.1 and 8.4.3] for

more details.

rem:pictau Remark 2.3.6. In the situation above, we define Pic𝜏
𝑋/𝑘 be the preimage of the torsion points in the Neron-Severi

group 𝑁𝑆(𝑋) = Pic𝑋 /Pic0
𝑋. More generally if 𝑋/𝑆 is proper locally of finite presentation over a qc S, we define

𝒫𝑖𝑐𝜏
𝑋/𝑆 and 𝒫𝑖𝑐0

𝑋/𝑆 fiberwise. Then by [BLR12, Theorem 8.4.4], 𝒫𝑖𝑐𝜏
𝑋/𝑆 → 𝒫𝑖𝑐𝑋/𝑆 is relatively representable

by an open qc immersion, and 𝒫𝑖𝑐𝜏
𝑋/𝑆 is of finite type. In particular if 𝑓 is smooth with integral geometric fibers,

𝒫𝑖𝑐𝜏
𝑋/𝑆 is proper by Theorem 2.3.4.(v), and projective if 𝑋/𝑆 is projective by Theorem 2.3.4.(vi). Furthermore if

𝑋/𝑆 is projective with geometric integral fibers, 𝒫𝑖𝑐𝜏
𝑋/𝑆 → 𝒫𝑖𝑐𝑋/𝑆 is an open and closed immersion [BLR12,

Theorem 8.4.4.(b)].
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2.3. Abelian schemes

We can now prove that the dual abelian scheme exist (and is an abelian scheme):

th:biduality Theorem 2.3.7 (Mumford). If 𝐴/𝑆 is an abelian scheme, the relative Picard functor 𝒫𝑖𝑐0
𝐴/𝑆 is also an abelian scheme

𝐴, and is projective if 𝐴/𝑆 is projective. The Poincare sheaf 𝒫 on 𝐴 ×𝑆 𝐴 correspond to the line bundle associated
to the map id ∶ 𝐴 → 𝐴 by the universal property of the relative Picard functor. It is symmetric and this is also the
Poincare sheaf on 𝐴 ×𝑆 𝐴, so 𝐴 is canonically isomorphic to its bidual.

Proof. Since 𝐴/𝑆 is proper smooth with connected fibers, it is cohomologically flat in dimension 0 by Lemma A.2.1,
so 𝒫𝑖𝑐𝐴/𝑆 is a separated algebraic space by Theorems 2.3.4.(i) and 2.3.4.(v) and 𝒫𝑖𝑐𝜏

𝐴/𝑆 is proper by Theo-
rem 2.3.4.(v), and smooth by [MFK94, Proposition 6.7]. (The idea of the proof is as follow: to prove formal
smoothness of 𝒫𝑖𝑐𝜏

𝐴/𝑆 one need to lift line bundles, the obstruction to lifting is represented by an element in 𝐻2,
and by using the group law Mumford shows that this obstruction vanishes.) Hence it is an abelian algebraic space,
so it is an abelian scheme by Theorem 2.3.2. It is projective if 𝐴/𝑆 is projective by Theorem 2.3.4.(vi). Finally since
an abelian variety has no torsion, 𝒫𝑖𝑐𝜏

𝐴/𝑆 = 𝒫𝑖𝑐0
𝐴/𝑆, so 𝐴 is the identity component of 𝒫𝑖𝑐𝐴/𝑆. Since 𝐴/𝑆 is a

group scheme, it has a section 𝜖, so by Theorem 2.3.4.(ii) there is a universal rigidified Poincare bundle on 𝐴 ×𝑆 𝐴
by Theorem 2.3.4.(ii). Biduality can be checked fiberwise, so result from biduality of abelian varieties (Section 2.2.3,
[BLR12, Theorem 8.4.5]).

2.3.3 Rigidity

Commutativity of abelian schemes can be proven by a similar rigidity argument as for abelian varieties.

lem:rigidity Lemma 2.3.8 (Rigidity lemma). Let 𝑓 ∶ 𝑋 → 𝑆 be a proper flat morphism, with 𝑆 noetherian and connected and
𝐻0(𝑋𝑠, 𝑂𝑋𝑠

) = 𝑘(𝑠) for all geometric points 𝑠. Let 𝑔 ∶ 𝑌 → 𝑆 be separated and ℎ ∶ 𝑋 → 𝑌 an 𝑆-morphism, such
that ℎ𝑠 ∶ 𝑋𝑠 → 𝑌𝑠 is constant for some 𝑠 ∈ 𝑆. Then ℎ is constant, ie ℎ factors through 𝑆.

Proof. This is [MFK94, Proposition 6.1], [Bha, Corollary 2.2].

Remark 2.3.9. In the notations above, if 𝑌 → 𝑆 is affine, then since 𝑓 is an 𝑂-morphism by Lemma A.2.1 and
Hom𝑆(𝑋, 𝑌) = Hom𝑂𝑆

(𝑔∗𝑌, 𝑓∗𝑋), ℎ is also constant [Bha, Proposition 2.1].

As with abelian varieties, we get the usual corollaries:

Corollary 2.3.10. • Any schematic morphism 𝑔 ∶ 𝐴 → 𝐵 of abelian schemes is the composition of a translation
and a group morphism;

• An abelian scheme is commutative;

• If 𝐴 → 𝑆 is proper smooth with connected fibers, and given a section 𝜖𝐴/𝑆, there is at most one structure of
abelian scheme on 𝐴 whose unit is 𝜖𝐴/𝑆.

Proof. See [MFK94, Corollaries 6.4 and 6.5], [Bha, Corollary 2.4]. For the first item we only need 𝐵/𝑆 to be a
separated group scheme.

Note that these results hold if 𝑆 is not noetherian. We may assume 𝑆 is affine, and we invoke approximation
[GD64, §IV.8, §IV.11].

In fact, rigidity of abelian varieties extends to an even stronger version for abelian schemes:

th:rigidityavscheme Theorem 2.3.11 (Rigidity of abelian schemes, Grothendieck-Mumford [MFK94, Theorem 6.14]). Assume that 𝑆
is connected, 𝑓 ∶ 𝑋 → 𝑆 proper smooth and 𝜖 ∶ 𝑆 → 𝑋 a section of 𝑓. If, for a geometric point 𝑠, the fiber 𝑋𝑠 is an
abelian variety of neutral point 𝜖(𝑠), then 𝑋/𝑆 is an abelian scheme, with identity 𝜖.

Theorem 2.3.11 extends a theorem of Koizumi [Koi+60] saying that if an abelian variety 𝐴 over 𝐾 = Frac𝑅, 𝑅 a
dvr extends to a smooth and proper scheme 𝒜 over Spec𝑅, then 𝒜 is an abelian scheme (ie the group structure
extends). Furthermore 𝒜 is unique [KG59] (this is now subsumed in the theory of Néron models [BLR12], see
Section 3.1.2).
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2. Abelian varieties

More Details 2.3.12. Milne version (Theorem 3.4): if 𝑉 × 𝑊 → 𝐴, 𝑉 × 𝑊 is geom irred and 𝑉,𝑊 non singular or one of them
complete; then if the two axes collapse above 𝑎, the morphism is constant.

Rigidity allows us in most cases to generalize theorems from abelian varieties to abelian schemes by checking
them fiberwise (rather than globally).

If ℒ is a line bundle on 𝐴, it is straightforward to generalise the morphism 𝛷ℒ ∶ 𝐴 → 𝐴 from Section 2.2.4;
this only depends on the algebraic equivalence class of ℒ (by rigidity, since this is true when 𝑆 = Spec 𝑘) [MFK94,
§6.2]. We recall that a line bundle ℒ is algebraically equivalent to 0 if it is equal to 0 in each of the geometric fibers
of the Néron-Severi group NS𝐴/𝑆(𝑠) ≔ Pic𝐴𝑠/𝑘(𝑠)(𝑘(𝑠))/Pic0

𝐴𝑠/𝑘(𝑠)(𝑘(𝑠)). In particular if ℒ is relatively ample,
𝛷ℒ is an isogeny, so it induces a polarisation 𝐴 → 𝐴.

One need to be careful that for abelian scheme the converse need not be true, a polarisation 𝑓 ∶ 𝐴 → 𝐴 need not
come from a relatively ample line bundle 𝐴 (indeed 𝐴 may not even be locally projective). Instead we only require 𝑓
to come locally from a relatively ample line bundle in the étale (or fppf or fpqc) topology. This means that étale
locally, 𝑓 is of the form 𝛷ℒ, but the different line bundles ℒ may not glue together to a global line bundle on 𝐴
(since we have seen that algebraically equivalent lines bundles induce the same polarisation). But by rigidity, it
suffice to check that 𝑓 comes from an ample line bundle fiberwise! In fact it suffice to check this at a point:

prop:rigidpolarisation Proposition 2.3.13. Let 𝐴/𝑆 be an abelian scheme, and 𝜆 ∶ 𝐴 → 𝐴 be a morphism. Then the set of geometric points
𝑠 ∈ 𝑆 such that 𝜆𝑠 is a polarisation is open and closed. In particular, if 𝑆 is connected and 𝜆𝑠 is a polarisation for one
geometric point 𝑠, then 𝜆 is a polarisation.

Proof. We use the following criteria for polarisations. 𝜆 ∶ 𝐴 → 𝐴 is a polarization if and only if:

(i) 𝜆 is symmetric with respect to biduality
(ii) The line bundle (1, 𝜆)∗(𝒫𝐴) on A is fiberwise ample.

Indeed by [MFK94, Proposition 6.10], if 𝜆 ∶ 𝐴 → 𝐴 is a polarization and ℒ𝜆 = (𝜆 × id)∗𝒫, then 𝛷ℒ = 2𝜆. One
can then check that these two criteria are open and closed in 𝑆. We refer to [nfd16] for more details.

Let 𝜆 ∶ 𝐴 → 𝐴 be a polarisation, and assume that it is represented by an ample line bundle ℒ (this is always the
case étale locally). Then we have the following properties:

prop:lefchetzscheme Proposition 2.3.14. Let ℒ be a relatively ample line bundle on an abelian scheme 𝑓 ∶ 𝐴 → 𝑆.

(i) 𝑅𝑖𝑓∗ℒ = 0 if 𝑖 > 0, and 𝑓∗ℒ is locally free on 𝑆 of rank 𝑟;
(ii) 𝛷ℒ ∶ 𝐴 → 𝐴 is an isogeny of degree 𝑟2 (where the degree of an isogeny 𝜙 is the rank of 𝜙∗𝑂𝐴);

Lefschetz If 𝑛 ≥ 2, 𝑓∗ℒ𝑛 is base point free (ie its sections have no common zeroes in 𝐴, so induce amorphism 𝐴 → ℙ(𝑓∗ℒ).
If 𝑛 ≥ 3 this morphism is a closed immersion;

Proof. This is [MFK94, Proposition 6.13]. Since 𝐻𝑖(𝐴𝑠, ℒ𝑠) = 0 when 𝑖 > 0 for all geometric points 𝑠 ∈ 𝑆 by
Theorem 2.2.10, the first item is a special case of the proper base change theorem, see Lemma A.1.1 below. This
also shows that the sections of 𝐻0(𝐴𝑠, ℒ𝑠) are generated by 𝑓∗ℒ. The second item can be checked fiberwise, and
the third also by [GD64, p. III.6.7].

2.3.4 Isogenies
subsec:avschemeisogenies

We can also construct isogenies fiberwise (compare with Appendix B.4).

prop:isogeny Proposition 2.3.15. A morphism 𝑓 ∶ 𝐴 → 𝐵 of abelian schemes over 𝑆 is projective of finite presentation, and is flat
if 𝑓 is surjective. If it is fiberwise an isogeny, its degree is locally constant and its kernel is a finite flat (over 𝑆) subgroup
𝐺. Conversely, if 𝐺 is a finite flat subgroup of 𝐴, the quotient 𝐴/𝐺 is an abelian scheme.

Proof. If 𝑓 is any surjective morphism of group schemes 𝑓 ∶ 𝑋 → 𝑌 over 𝑆, with 𝑋/𝑆 flat and 𝑌/𝑆 smooth, then 𝑓
is fiberwise flat by Proposition B.1.4, hence flat (see also [MFK94, Lemma 6.12]). If 𝑓 ∶ 𝐴 → 𝐵 is a morphism of
abelian schemes, it is automatically proper of finite presentation by the usual cancellation properties, and its kernel
𝐺 is the pullback of the zero section 0𝐵, which is a closed immersion in 𝐵 since 𝐵/𝑆 is separated, so it is closed in
𝐴, hence proper over 𝑆. Since 𝑓 is flat, 𝐺 is also flat over 𝑆 (see the discussion in Appendix B.4).
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2.3. Abelian schemes

If 𝑓 is fiberwise an isogeny, 𝐺 is proper quasi-finite over 𝑆 hence finite by Lemma B.4.1. Since 𝐺 is finite flat, its
rank is locally constant, so the degree of 𝑓 is locally constant.

Raynaud proved that if 𝑆 is affine, then 𝐴/𝑆 is an AF-scheme, so by Appendix D 𝐴/𝐺 exists as a scheme.
Alternatively 𝐴/𝐺 exists a an algebraic space by Deligne’s theorem (see Appendix D, so is an abelian scheme by
Raynaud’s theorem Theorem 2.3.2.

We refer to Proposition B.4.2 for more details. In fact, the same argument shows that a quotient 𝐴/𝐴′ by a
subgroup scheme 𝐴′ of 𝐴 which is flat over 𝑆 is an abelian scheme (since it is an abelian algebraic space).

Biduality of abelian schemes Theorem 2.3.7 gives that a birational map from a nice scheme to an abelian scheme
extends everywhere:

prop:neronprop Proposition 2.3.16 ([BLR12, Corollary 8.4.6].). If 𝐴/𝑆 is an abelian scheme, any rational 𝑆-morphism 𝑔 ∶ 𝑇𝐴
from a regular scheme 𝑇 is defined everywhere.

In particular, if 𝑆 is regular, a rational morphism 𝑔 ∶ 𝐴𝐵 of abelian schemes is defined everywhere.

Proof. By considering the pullback over 𝑇, we may assume 𝑇 = 𝑆 and we need to show that 𝑔 extends to 𝑆. By
biduality, the map 𝑔 corresponds to a line bundle on 𝐴𝑈 where 𝑈 is an open of 𝑆, and this line bundle extends to a
line bundle on 𝐴 since 𝐴 is regular (being smooth over the regular 𝑆).

As another striking illustration of rigidity of abelian schemes with respect to extension of isogenies, see [Gro66b].
See Section 3.1.5 for other examples of extending isogenies.

2.3.5 Characterisations of abelian schemes
subsec:avcarac

The definition of an abelian group scheme itself does not seems to be fibral, since flatness and properness are global
conditions. But we will see that this will actually be the case, at least if 𝑆 is reduced. Since I was not able to find
references in the literature, I wrote an appendix section Appendix B.3 giving more details in the proofs than in the
other sections of this summary.

Combining Proposition B.3.3 and Theorem 2.3.11, we get the following equivalent definitions of an abelian
scheme, for an arbitrary connected base 𝑠.

th:avschemecarac Theorem 2.3.17. Assume that 𝑆 is a connected scheme. An abelian scheme 𝑓 ∶ 𝐴 → 𝑆 is either

• A proper group scheme with some conditions on all fibers:

(i) A proper smooth group scheme whose fibers are abelian varieties (ie are geometrically integral, or equiva-
lently geometrically irreducible or connected).

(i’) A proper flat finitely presented group scheme whose fibers are abelian varieties (ie are geometrically integral,
or equivalently are smooth and geometrically connected, or geometrically reduced and geometrically
connected).

(i”) (If 𝑆 is reduced) A proper finitely presented group scheme whose fibers are abelian varieties of the same
dimension 𝑔 (ie are geometrically integral of dimension 𝑔, or equivalently are smooth and geometrically
connected of dimension 𝑔).

• A proper group scheme with a condition on one fiber:

(ii) A proper smooth group scheme with one fiber an abelian varieties (ie is geometrically integral/irre-
ducible/connected).

(ii’) A proper flat finitely presented group scheme whose fibers are smooth (or geometrically reduced) and one
is an abelian variety (ie is geometrically connected).

(ii”) (If 𝑆 is reduced) A proper finitely presented group scheme whose fibers are smooth (or geometrically
reduced) of the same dimension 𝑔 and one is an abelian variety (ie is geometrically connected).

• A group scheme with conditions on all fibers:
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2. Abelian varieties

(iii) A flat finitely presented group scheme, whose fibers are abelian varieties (ie are proper geometrically
integral, or equivalently proper smooth geometrically connected).

(iii”) (If 𝑆 is reduced) A finitely presented group scheme whose fibers are abelian varieties of the same dimension 𝑔
(ie are proper geometrically integral of dimension 𝑔, or equivalently are proper smooth and geometrically
connected of dimension 𝑔).

• 𝐴/𝑆 admit a section 𝜖 ∶ 𝑆 → 𝐴 such that either:

(iv) a scheme 𝑓 ∶ 𝐴 → 𝑆 proper smooth, and with a section 𝜖 such that 𝐴𝑠 → 𝑘(𝑠) is an abelian variety with
neutral point 𝜖(𝑠) at a point 𝑠.

(iv’) a scheme 𝐴 → 𝑆 flat of finite presentation, whose fibers are proper, geometrically connected and smooth,
and with a section 𝜖 such that 𝐴𝑠 → 𝑘(𝑠) is an abelian variety with neutral point 𝜖(𝑠) at a point 𝑠.

(iv”) [If S is reduced] a scheme 𝐴 → 𝑆 proper of finite presentation, whose fibers are smooth of the same
dimension 𝑔, and with a section 𝜖 such that 𝐴𝑠 → 𝑘(𝑠) is an abelian variety with neutral point 𝜖(𝑠) at a
point 𝑠.

(iv”’) [If S is reduced] a scheme 𝐴 → 𝑆 of finite presentation, whose fibers are proper, smooth, geometrically
connected of the same dimension 𝑔, and with a section 𝜖 such that 𝐴𝑠 → 𝑘(𝑠) is an abelian variety with
neutral point 𝜖(𝑠) at a point 𝑠.

By Proposition 2.2.3 in the above we may replace “geometrically connected” by “connected”, and by Lemma B.3.1 we
may also replace “of finite presentation” by “locally of finite presentation”.

Proof. Thedifferent characterisations of an abelian varieties come fromProposition 2.2.3. (𝑖) ⇔ (𝑖′) by definition of
smooth. (𝑖) ⇔ (𝑖𝑖) ⇔ (𝑖𝑖′) ⇔ (𝑖𝑖𝑖) by Proposition A.3.6. (𝑖) ⇔ (𝑖") ⇔ (𝑖𝑖") ⇔ (𝑖𝑖𝑖") by Proposition B.3.3. (𝑖) ⇔
(𝑖𝑣) by rigidity, Theorem 2.3.11. (𝑖𝑣) ⇔ (𝑖𝑣′) by Proposition A.3.6, (𝑖𝑣′) ⇔ (𝑖𝑣") ⇔ (𝑖𝑣˝) by Propositions B.3.3
and A.3.6.

2.3.6 Using abelian schemes
subsec:usingabelianschemes

Assume that we have a property (𝑃) of abelian varieties, and which we can prove for some abelian varieties (typically
abelian varieties over ℂ). We explain some standard method to show that it is valid over all fields. Essentially all
these methods involve extending (𝑃) to abelian schemes, (eg so that it is defined on the universal abelian scheme,
or at least on a Néron model so that we can reduce). The extension will typically be that (𝑃) is true for all fibers of
the abelian scheme, along some flatness condition.

Lifting arguments

Suppose that (𝑃) involves a level 𝑛 structure. We use that the universal abelian stack with a level 𝑛 structure
𝒳𝑔,𝑛 → 𝒜𝑔,𝑛 is smooth over ℤ[1/𝑛] Section 5.7. Since 𝒜𝑔,𝑛 is a DM stack, it has an étale cover by a scheme, so
every property that is étale-local on target (see [Stacks, Tag 04QW], [Stacks, Tag 0CFY]) extends to 𝒳𝑔,𝑛 → 𝒜𝑔,𝑛,
in particular all results of this Section hold for 𝒳𝑔,𝑛 → 𝒜𝑔,𝑛.

This can be used for lifting arguments. By the Lefschetz principle [FR86], (P) is true over a field of characteristic
zero. Note that we don’t really need to invoke the Lefschetz principle here, since the moduli stack of polarised
abelian varieties is of finite type over ℤ, an abelian variety 𝐴/𝑘 is the pullback of an abelian variety defined over a
field of finite transcendance degree over the base field, hence embeds into ℂ in case of characteristic zero.

If 𝐴 is defined over a perfect field 𝑘, and 𝑘 is of characteristic 𝑝 prime to 𝑛, we can lift 𝐴 to an abelian scheme
𝐴/𝑊(𝑘), ie to characteristic zero. Indeed, by smoothness of 𝒜𝑔,𝑛 over ℤ[1/𝑛], we can lift 𝐴 to the finite Witt
vectors, and then we invoke that 𝒜𝑔,𝑛 if finitely presented, hence its functor of points commute with filtered limits,
to lifts to the Witt vectors.

If 𝐴 → 𝑊(𝑘) is a lift, the generic fiber is of characteristic zero so (𝑃) holds. We can then typically use genericity
arguments or property of Néron models to extend (𝑃) to all of 𝐴 (ie show that (𝑃) has good reduction), so (𝑃)
holds for the special fiber 𝐴 = 𝐴𝑘.
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Approximation arguments

Since 𝒜𝑔,𝑛 is smooth over ℤ[1/𝑛], its connected components are normal, hence integral. The generic points of
the connected components are of characteristic zero, and the associated fields are of finite transcendance degree
𝑔(𝑔 + 1)/2 over ℚ hence embed into ℂ.

So (𝑃) is valid over the generic fibers of 𝒳𝑔,𝑛, and we often will be able to use the approximation results of
[GD64, §IV.8] to show that (𝑃) is valid over an open containing these generic points, hence a dense open, hence
valid everywhere if (𝑃) is a closed property. (The same strategy holds if (𝑃) is a property of ℓ-isogenies, and we
apply this to the universal isogeny 𝒳𝑔,ℓ𝑛 → 𝒳𝑔,𝑛 ×𝒜𝑔,𝑛

𝒜𝑔,ℓ𝑛, by using that 𝒳𝑔,𝑛 is separated and 𝒳𝑔,ℓ𝑛 is reduced).
An essentially equivalent reformulation is that we can cover 𝒜𝑔,𝑛 by affine integral schemes whose fraction field

embeds into ℂ. (The covers are étale covers if 𝒜𝑔,𝑛 is a stack, and can be taken to be Zariski covers when 𝒜𝑔,𝑛 is a
scheme).

This is essentially a reformulation of the lifting argument, hidden in the fact that the connected components of
𝒜𝑔,𝑛 dominate ℤ[1/𝑛], hence their generic points are of characteristic zero.

Flatness arguments

Since Specℂ → Specℚ is faithfully flat, proving that (𝑃) holds for 𝒜𝑔,𝑛 ⊗ ℚ is the same as proving it holds for
𝒜𝑔,𝑛 ⊗ ℂ for all properties (𝑃) which are fpqc-local (or just étale local) on the base.

Sometimes, this is enough to prove that (𝑃) holds for 𝒜𝑔,𝑛 over ℤ[1/𝑛]. For instance, if we have a line bundle
ℒ on 𝒜𝑔,𝑛 and two sections 𝑠1, 𝑠2 of ℒ. Since 𝒜𝑔,𝑛 is smooth over ℤ[1/𝑛], then ℒ is torsion free over ℤ[1/𝑛],
hence we can test equality to the pullback over ℚ.

More generally, if we have two morphisms 𝑓1, 𝑓2 ∶ 𝒜𝑔,𝑛 → 𝑇 where 𝑇 is separated, the locus where 𝑓1 = 𝑓2 is a
closed subscheme. Since 𝒜𝑔,𝑛 has no embedded points, it suffices to check that it contains the generic points to
show that 𝑓1 = 𝑓2 everywhere.

Rigidity arguments

We can use the rigidity lemma Lemma 2.3.8 on an abelian scheme. This apply in particular to the universal
abelian stack 𝒳𝑔,𝑛 → 𝒜𝑔,𝑛. We can also apply Lemma 2.3.8 to suitable compactifications of 𝒜𝑔, since its fibers are
geometrically connected.

Let us give an exemple: suppose that 𝐴/𝑆 is an abelian scheme, and that we have a finite flat subgroup scheme
𝐾/𝑆. We want to construct the isogeny 𝑓 ∶ 𝐴 → 𝐵 = 𝐴/𝐾.

Suppose that we know 𝐵 and define a morphism 𝑔 ∶ 𝐴 → 𝐵 which is proper flat (and sends the zero section of 𝐴
to the zero section of 𝐵). This is usually easy to check by the fiberwise criteria for flatness and the valuation property
for properness. Then by the rigidity lemma it suffices to check that 𝑓 and 𝑔 coincide on one fiber to get that 𝑓 = 𝑔.

A related argument can be made using Proposition 3.1.21. Assume that 𝐴/𝑆 and 𝐵/𝑆 are abelian schemes and 𝑆
is (noetherian) and normal. Since 𝑆 is in particular reduced, we recall that by Theorem 2.3.17 this just amount to
say that there is a zero section 𝜖 ∶ 𝐴 → 𝑆 and that all fibers of 𝐴/𝑆 are abelian varieties of the same dimension 𝑔.
(In fact it even suffices to check that the fibers are proper smooth geometrically connected of the same dimension 𝑔
and that one of them is an abelian variety).

Let 𝜂 be the generic point of 𝑆, and assume we have a surjective morphism 𝑓𝜂 ∶ 𝐴𝜂 → 𝐵𝜂 (eg an isogeny).
Then 𝑓𝜂 extends to a surjective morphism 𝑓 ∶ 𝐴 → 𝐵 by Proposition 3.1.21, hence a proper flat morphism by
Proposition 2.3.15. If we have defined a proper flat candidate 𝑔 ∶ 𝐴 → 𝐵 above, it suffice to check equality on one
fiber (eg the generic fiber) to get that 𝑓 = 𝑔.

These arguments show that if we have a generic isogeny 𝑓, extending it is essentially just a matter of definition of 𝑓
as a map of abelian schemes. It will automatically be an isogeny. Applying this to 𝒜𝑔,𝑛, this shows that if we have a
candidate for an isogeny formula that is defined for every abelian scheme (in such a way that the resulting map on
the universal abelian schemes is proper flat), then it suffices to check that it is valid in characteristic zero to know
that it is valid everywhere.
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2.4 jacobians
sec:jacobians

References for this section are [Mil85; BLR12]. From the algorithmic point of view Jacobians varieties are easy to
work with. We have Mumford coordinates on Jacobians of hyperelliptic curves, and more generally we can use the
algorithms of [Hes02; Khu04; Khu07] to work on a Jacobian.

For instance, if 𝑘 is a field, any indecomposable principally polarised abelian variety of dimension 𝑔 ≤ 3 is the
Jacobian of a (smooth geometrically connected) curve 𝐶/𝑘 of genus 𝑔9. In particular any principally polarised
abelian variety 𝐴/𝑘 of dimension 𝑔 ≤ 3 is a product of Jacobians [OU73]. Thus curves provide convenient models
of abelian varieties of small dimension. In a similar vein: any abelian variety 𝐴/𝑘 over an infinite field is a quotient
of a Jacobien [Mil85, Theorem 10.1].

2.4.1 Curves
subsec:curves

A curve 𝑓 ∶ 𝑋 → 𝑆 is a proper finitely presented scheme of relative dimension 1 (we do not yet impose smoothness
conditions). We first recall the Riemann-Roch theorem. There is a 1-dualizing sheaf 𝜔𝑓 on 𝑋10. Then by definition,
if 𝐿 is an invertible sheaf on 𝑋, 𝐻0(𝑋, 𝐿∨ ⊗ 𝜔𝑓) ≃ Hom𝑂𝑋

(𝐿, 𝜔𝑓) ≃ 𝐻1(𝑋, 𝐿)∨.

prop:projcurve Proposition 2.4.1 ([BLR12, Remark 9.3.2]). Let 𝑓 ∶ 𝑋 → 𝑆 be a proper flat curve whose geometric fibers are integral
curves of genus 𝑔. Assume that 𝑋 is a relative local complete intersection (l.c.i.) over 𝑆. Then the relative dualizing
sheaf 𝜔𝑓 is a line bundle (since 𝑋 is Gorenstein), which is ample if 𝑔 ≥ 2. If 𝑔 = 0, 𝜔−1

𝑓 is ample. In both case 𝑋/𝑆 is
projective. If 𝑔 = 1, 𝑋/𝑆 is étale locally projective.

th:riemannroch Theorem 2.4.2 (Riemann-Roch). Let 𝑓 ∶ 𝐶 → 𝑘 be a proper curve, and 𝐷 a Cartier divisor. Then

th:riemannrochi (i) 𝜒(𝑂𝐶(𝐷)) = deg𝐷+𝜒(𝑂𝐶), where 𝜒 is the Euler-Poincare characteristic.In particular, if 𝐷 = ÷𝑓 is principal,
deg(𝐷) = 0.

(ii) The arithmetic genus 𝑝𝑎(𝐶) is defined by 𝜒(𝑂𝐶) = 1 − 𝑝𝑎(𝐶). We thus get by duality dim𝑘 𝐻0(𝐶, 𝑂𝐶(𝐷)) −
dim𝑘 𝐻0(𝐶, 𝜔𝑓 ⊗𝑂𝐶

(−𝐷)) = deg𝐷 + 1 − 𝑝𝑎.
(iii) By duality, 𝐻0(𝐶, 𝜔𝑓) ≃ 𝐻1(𝐶, 𝑂𝐶)∨, 𝐻0(𝐶, 𝑂𝐶) ≃ 𝐻1(𝐶, 𝜔𝑓)∨. In particular, 𝜒(𝜔𝑓) = −𝜒(𝑂𝐶), so

deg(𝜔𝑓) = 2(𝑝𝑎 − 1).
Thus if dim𝑘 𝐻0(𝐶, 𝑂𝐶) = 1 (for instance 𝐶 is geometrically connected and geometrically reduced), 𝑝𝑎(𝐶) =
dim𝑘 𝐻1(𝐶, 𝑂𝐶) = dim𝑘 𝐻0(𝐶, 𝜔𝑓).

(iv) If 𝐶 is l.c.i., the (geometric) genus is 𝑔(𝐶) = dim𝑘 𝐻0(𝐶, 𝜔𝐶/𝑘), so since 𝜔𝐶/𝑘 = 𝜔𝑓 it is equal to the
arithmetic genus if 𝐶 is geometrically connected and geometrically reduced. If 𝐶 is smooth, 𝜔𝐶/𝑘 = 𝛺1

𝐶/𝑘.

Proof. See [Liu02, §7.3.2].

If 𝑋/𝑆 is a flat proper curve, and ℒ a line bundle, since the Euler-Poincare characteristic is locally constant
by [GD64, p. III.7.9.4], degℒ is locally constant by Theorem 2.4.2.(i) ([BLR12, Proposition 9.1.2]). In particular,
dim𝑘(𝑠) 𝐻0(𝑋𝑠, 𝑂𝑋𝑠

) is locally constant if and only if dim𝑘(𝑠) 𝐻1(𝑋𝑠, 𝑂𝑋𝑠
) is locally constant. So if 𝑋/𝑆 is coho-

mologically flat in dimension 0, the arithmetic genus of the geometric fibers is locally constant, and conversely if 𝑆
is reduced by Lemma A.2.1.

2.4.2 The Jacobian of a curve

th:jacobian Theorem 2.4.3. Let 𝑋/𝑆 be a proper smooth relative curve (which means that the fibers are of dimension 1) with
connected geometric fibers. Then the Jacobian 𝐽 = 𝐽(𝑋/𝑆) is an abelian projective scheme over 𝑆 representing the
relative Picard functor 𝒫𝑖𝑐0

𝑋/𝑆. We have a canonical isomorphism Lie(𝐽) ≃ 𝑅1𝑓∗𝑂𝑋.
9Be careful that we require the polarisation to be indecomposable, not only the abelian variety 𝐴. Indeed a Jacobian of an hyperelliptic

curve of genus 2 can also be a product of two elliptic curves, but the polarisation is different. See [Kan94; Kan16; Kan19a] for a precise
description of when this can happen.

10By [Kle80, Theorem 4], if 𝑓 ∶ 𝑋 → 𝑆 is proper finitely presented with fibers of dimension ≤ 𝑟, a 𝑟-dualizing sheaf 𝜔𝑓 always exist
and it is equal to 𝑓 !𝑂𝑌. (For full duality we need that each fiber is Cohen-Macauley [Kle80, Theorem 21]). If 𝑓 is projective and a locally
complete intersection, 𝜔𝑓 is the canonical line bundle 𝜔𝑋/𝑆, so 𝜔𝑓 = 𝛺𝑟

𝑋/𝑆 if 𝑓 is smooth [Liu02, § 6.4.3].
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There is a canonical principal polarisation 𝜆 ∶ 𝐽 → ̂𝐽, the pullback of 𝒫 by id×𝜆 is then a canonical 𝑆-ample
rigidified line bundle ℒ on 𝐽.

If 𝑋 has a section, there is a canonical rigidified line bundle on 𝑋 ×𝑆 𝐽(𝑋/𝑆) which induces a morphism 𝑋 → 𝐽,
and the canonical principal polarisation 𝜆 ∶ 𝐽 → ̂𝐽 comes from the 𝛩-divisor on 𝐽.

Finally, the connected components of 𝒫𝑖𝑐𝑋/𝑆 are given by 𝒫𝑖𝑐𝑋/𝑆 = ⨆(𝒫𝑖𝑐𝑋/𝑆)𝑛 where each (𝒫𝑖𝑐𝑋/𝑆)𝑛 is a
torsor under 𝒫𝑖𝑐0

𝑋/𝑆 and (𝒫𝑖𝑐𝑋/𝑆)0 ≃ 𝒫𝑖𝑐0
𝑋/𝑆. If 𝑋/𝑆 has a section, (𝒫𝑖𝑐𝑋/𝑆)𝑛 represents the (rigidified) line

bundles of degree 𝑛.

Proof. This is [MFK94, Propositon 6.9] and [BLR12, Proposition 9.4.4] (see also [Mil85, §8]). By Theorem 2.3.4
and Remark 2.3.6 we know that 𝒫𝑖𝑐𝜏

𝑋/𝑆 is a proper smooth group algebraic space, since formal smoothness is
immediate from Theorem 2.3.4.(iii). But a curve has no torsion, so 𝒫𝑖𝑐𝜏

𝑋/𝑆 = 𝒫𝑖𝑐0
𝑋/𝑆 so the fibers are connected,

hence 𝒫𝑖𝑐0
𝑋/𝑆 is an abelian algebraic space, hence an abelian scheme by Theorem 2.3.2.

If 𝑋/𝑆 is projective, 𝐽/𝑆 is projective by Remark 2.3.6. But a curve is étale locally projective by Proposition 2.4.1,
so 𝐽/𝑆 is projective on an étale cover 𝑆′ of 𝑆, and the canonical line bundle on 𝐽 descend to 𝑆 (since it is canonical),
hence 𝐽 is projective [BLR12, Theorem 6.1.7].

We have the decomposition into connected components 𝒫𝑖𝑐𝑋/𝑆 = ⨆(𝒫𝑖𝑐𝑋/𝑆)𝑛 where (𝒫𝑖𝑐𝑋/𝑆)𝑛 represents
the line bundles of degree 𝑛 by [BLR12,Theorem 9.3.1]. Indeed the degree of a line bundle is constant on a connected
component. It remains to check that (𝒫𝑖𝑐𝑋/𝑆)𝑛 is connected. If 𝑋/𝑆 has a section, (𝒫𝑖𝑐𝑋/𝑆)𝑛 is isomorphic to
(𝒫𝑖𝑐𝑋/𝑆)0. Since 𝑋/𝑆 is flat it has a section fppf-locally, hence (𝒫𝑖𝑐𝑋/𝑆)𝑛 is a torsor under (𝒫𝑖𝑐𝑋/𝑆)0. It remains
to prove that (𝒫𝑖𝑐𝑋/𝑆)0 = 𝒫𝑖𝑐0

𝑋/𝑆. We reduce to 𝑆 = Spec 𝑘 with 𝑘 = 𝑘 algebraically closed, and 𝑋 = 𝐶 is a
curve over 𝑘. We fix a point 𝑃 on 𝐶. Then the map 𝐶<𝑔> → 𝒫𝑖𝑐𝐶/𝑘, (𝑃1, … , 𝑃𝑔) ↦ ∑[𝑃𝑖 − 𝑃] (or precisely maps
to the line bundle associated to this divisor) lands into 𝒫𝑖𝑐0

𝐶/𝑘 by connectedness. Hence the universal line bundle
on 𝐶 × 𝒫𝑖𝑐0

𝐶/𝑘 has degree 0. Conversely by the Riemann-Roch theorem (Theorem 2.4.2), 𝐶<𝑔> → (𝒫𝑖𝑐𝐶/𝑘)0 is
surjective. Hence 𝒫𝑖𝑐0

𝐶/𝑘 = (𝒫𝑖𝑐𝐶/𝑘)0. Hence the geometric points of 𝒫𝑖𝑐0
𝐶/𝑘 do correspond to line bundles of

degree 0 on 𝐶.
The principal polarisation 𝐽 → ̂𝐽 is constructed in [MFK94, Propositon 6.9]. If 𝑋 has a section, since 𝑋 → 𝑆

is an universal 𝑂-morphism by Lemma A.2.1, we have the existence of the canonical rigidified line bundle by
Theorem 2.3.4.(ii). This line bundle induces a morphism 𝑋 → ̂𝐽 by the universal property of ̂𝐽, hence a morphism
𝑋 → 𝐽 via the principal polarisation.

In fact Mumford proof is the other way around: 𝑋 naturally maps to 𝒫𝑖𝑐1
𝑋/𝑆, so if 𝑋/𝑆 has a section 𝜎 we have a

natural map to 𝒫𝑖𝑐0
𝑋/𝑆 = 𝐽. We get a morphism from ̂𝐽 → 𝐽 (induced by pulling back line bundles), which is an

isomorphism fiberwise, hence an isomorphism by flatness of 𝐽 and ̂𝐽. This define the polarisation 𝜆 ∶ 𝐽 → ̂𝐽 when
𝑋/𝑆 has a section. It is principal by [Mil85, Theorem 6.6]. It is shown in [BLR12, Proposition 9.4.4] that 𝜆 is the
polarisation induced by the usual theta divisor. Indeed the symmetric power (𝑋/𝑆)<𝑔−1> naturally maps into
𝒫𝑖𝑐𝑔−1

𝑋/𝑆 and using the section 𝜎 we get a map to 𝒫𝑖𝑐0
𝑋/𝑆. The schematic image 𝑊𝑔−1 is birational to (𝑋/𝑆)<𝑔−1>

and is a translation of the theta divisor 𝛩𝜎.
But 𝑋/𝑆 always have a section fppf locally (since 𝑋/𝑆 is flat and its pullback over itself admits a section), so we

have fppf local maps 𝐽𝑆′ → ̂𝐽𝑆′ which glue together, hence by descent they define the polarisation 𝐽 → ̂𝐽.
If ℒ = (1 × 𝜆)∗𝒫, then ℒ is ample. Indeed this can be checked fiberwise, so we reduce to the case of a Jacobian

over a field, in which case the result is from Weil. Be careful that ℒ does not induce 𝜆, indeed 𝛷ℒ = 2𝜆 by the
proof of Proposition 2.3.13.

Remark 2.4.4. There are examples of smooth projective geometrically connected curves over ℚ such that the
principal polarisation on their Jacobians 𝐽 is not induced by a principal line bundle on 𝐽. Such curves necessarily
have 𝐶(ℚ) = ∅ by Theorem 2.4.3.

We recall that the relative Picard functor is the fppf sheafication of the relative Picard presheaf Pic𝑋/𝑆. In the
case when 𝑆 = Spec 𝑘 is a field, and 𝑋 = 𝐶 is a proper smooth connected curve over 𝑘, 𝒫𝑖𝑐0

𝑋/𝑆(𝑇) = Pic0
𝑋/𝑆(𝑇)

whenever 𝐶(𝑇) is non empty [Mil85, Theorem 1.1] (since 𝒫𝑖𝑐 commutes with base change, this is a special case of
Theorem 2.3.4.(ii)). In particular, 𝐽(𝑘) = Pic0

𝐶/𝑘 if 𝐶(𝑘) is non empty.
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2. Abelian varieties

There are several constructions of the Jacobians when 𝑆 = Spec 𝑘 and 𝑘 = 𝑘 is an algebraically closed field. One
may glue together the symmetric powers 𝐶<𝑖> for 𝑖 = 0, 1, … , 𝑔. Chow’s construction use the fact that if 𝑟 > 2𝑔−2,
𝐶<𝑟> → 𝐽 is smooth with fibers isomorphic to ℙ𝑟−𝑔 by the Riemann-Roch theorem (see Proposition 2.4.5)11.
Weil’s construction was to define a birational group law on 𝐶<𝑔>, and prove an extension theorem to extend the
group law from 𝐶<𝑔> to its birational 𝐽. We refer to [Mil85] for an overview of these constructions.

2.4.3 Properties of Jacobians

prop:symmetric Proposition 2.4.5. Let 𝑘 be a field, 𝐶/𝑘 be a smooth proper connected curve and 𝑃0 ∈ 𝐶(𝑘) a point. Let 𝑓𝑃 ∶ 𝐶 → 𝐽
be the map sending a point 𝑃 to [𝑃 − 𝑃0].

• Since 𝑇0𝐽 ≃ 𝐻1(𝐶, 𝑂𝐶), the pullback 𝑓 ∗
𝑃 ∶ 𝛤(𝐽, 𝛺1

𝐽 ) → 𝛤(𝐶, 𝛺1
𝐶) is an isomorphism.

• The map 𝑓𝑃 is a closed immersion.

• It induces amap 𝑓 <𝑟>
𝑃 from 𝐶<𝑟> (the symmetric power of 𝐶, which is smooth) to 𝐽. Its image is a closed subvariety

𝑊𝑟 of 𝐽 and there is a stratification 𝐽 = ⨆𝑟
𝑖=0 𝑊𝑟. The pullback 𝑓 <𝑟>

𝑃
∗ ∶ 𝛤(𝐽, 𝛺1

𝐽 ) → 𝛤(𝐶<𝑟>, 𝛺1
𝐶<𝑟>) is an

isomorphism.

• If 𝑟 ≤ 𝑔, 𝑓 <𝑟>
𝑃 ∶ 𝐶<𝑟> → 𝑊𝑟 is birational, in particular, 𝐽 is birational to 𝐶<𝑔>. The theta divisor 𝛩 is a

translation of 𝑊𝑔−1 (to make it symmetric) and is principal and ample.

• If 𝐷 is an effective divisor of degree 𝑟 on 𝐶, and 𝐹 is the fibre of 𝑓 <𝑟>
𝑃 at 𝐷, we have

0 → 𝑇𝐷(𝐹) → 𝑇𝐷(𝐶<𝑟>) → 𝑇𝑓 <𝑟>
𝑃 (𝐷)𝐽

Since 𝐹 is the space of all effective divisors linearly equivalent to 𝐷, it is isomorphic to |𝐷|, a projective space of
dimension 𝑚 = ℎ0(𝐷) − 1.

• The multiplicity of (the image of) 𝐷 in 𝑊𝑟 is (𝑔−𝑟+𝑚
𝑚 ) (so is 𝑚 + 1 if 𝑟 = 𝑔 − 1).

Proof. The first four statements are mostly a corollary of Theorem 2.4.3 specialised to 𝑆 = Spec 𝑘. For more details,
see [Mil85, §2, §5]. The last statement is Riemann-Kempf theorem [Rie65; Kem73]. Riemann’s singularity theorem
is useful to compute the order of vanishing of a theta function at the 𝛩 divisor.

Remark 2.4.6. If 𝐶/𝑘 is a proper smooth geometrically connected curve of Jacobian 𝐽 = Jac(𝐶) over a perfect
field 𝑘, we may relate the rational points 𝐽(𝑘) and its Picard group Pic0

𝑋/𝑘(𝑘) as follow. Let 𝑋/𝑘 be a scheme of
finite type over a perfect field 𝑘, 𝑘 an algebraic closure and 𝐺 the Galois-group. The Leray spectral sequence applied
to 𝑅(𝑋 → 𝑘)∗𝔾𝑚 gives the exact sequence:

0 → 𝐻1(𝐺, 𝑘[𝑋]∗) → Pic(𝑋) → Pic(𝑋)𝐺 → 𝐻2(𝐺, 𝑘[𝑋]∗) → ker[Br(𝑋) → Br(𝑋)𝐺] → 𝐻1(𝐺,Pic(𝑋)) → 𝐻3(𝐺, 𝑘[𝑋]∗)

since Pic(𝑋) = 𝐻1(𝑋, 𝐺𝑚) and we denote by 𝐵𝑟(𝑋) = 𝐻2(𝑋, 𝐺𝑚) the Brauer cohomological group. If 𝑋 is
proper, 𝑘[𝑋]∗ = 𝑘

∗
so 𝐻1(𝐺, 𝑘

∗
) = 0 by Hilbert 90, and the exact sequence becomes:

0 → Pic(𝑋) → Pic(𝑋)𝐺 → Br(𝑘) → ker[Br(𝑋) → Br(𝑋𝑏𝑎𝑟)𝐺] → 𝐻1(𝐺,Pic(𝑋)) → 𝐻3(𝐺, 𝑘
∗
)

If 𝑋 has point over 𝑘, then Br(𝑘) → Br(𝑋) has a section (via the evaluation on the point), so is injective. We get:
Pic(𝑋) ≃ Pic(𝑋)𝐺 and there is an exact sequence:

0 → Br(𝑘) → Br1(𝑋) → 𝐻1(𝐺,Pic(𝑋)) → 0

where Br1(𝑋) = ker[Br(𝑋) → Br(𝑋)𝐺].
Going back to our curve 𝐶, since 𝐽(𝑘) = 𝐽(𝑘)𝐺 = Pic(𝑋)𝐺, we get that Pic𝐶/𝑘(𝑘) → 𝐽(𝑘) is always injective,

and we recover that it is a bijection when 𝐶 has a rational point, since in this case every rational linear equivalence
class of divisors arise from a rational divisor on 𝐶.

11Khuri-Makdisi’s algorithm [Khu07] is also based on this idea
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2.4. Jacobians

Theorem2.4.7 (Torelli). Let 𝐶/𝑘 be a smooth geometrically connected curve, Jac(𝐶) its Jacobian and 𝛩𝐶 its canonical
divisor. Then 𝐶 is uniquely determined b (Jac𝐶, 𝛩𝐶).

More precisely, for every isomorphism of (polarized) abelian varieties 𝐹 ∶ (Jac(𝐶), 𝛩𝐶) ∼→ (Jac(𝐶′), 𝛩𝐶′), there
exists a unique isomorphism 𝑓 ∶ 𝐶 → 𝐶′ and 𝑒 = ±1 such that 𝐹 = 𝑒 Jac 𝑓. Moreover if 𝐶 is hyperelliptic, 𝑒 = 1.

In particular, Aut(𝐽, 𝛩𝐶) = Aut(𝐶) if 𝐶 is hyperelliptic and Aut(𝐽, 𝛩𝐶) = ±1 × Aut(𝐶) otherwise.

Proof. This refined version is in [Ser01]. See also [Mil85, Theorem 12.1] for a proof of the standard Torelli theorem
over 𝑘 = 𝑘.

Remark 2.4.8. We recall that a smooth geometrically connected curve 𝐶/𝑘 of genus 𝑔 ≥ 2 is hyperelliptic if there
is a degree 2 morphism to 𝜋 ∶ 𝐶 → ℙ1

𝑘 . Alternatively, 𝑘(𝐶) is a quadratic cyclic extension of 𝑘(ℙ1), and the Galois
action induce the hyperelliptic involution 𝚤 on 𝐶 (such that 𝜋(𝑃) = 𝜋(𝑄) if and only if 𝑃 = 𝑄 or 𝑃 = 𝚤(𝑄).

Since 𝚤 is canonical, the cover 𝜋 ∶ 𝐶 → ℙ1
𝑘 is unique up to postcomposition by an automorphism of ℙ1

𝑘 . The
involution 𝚤 induces [−1] on the Jacobian, and so it commutes with every automorphism of 𝐶, and we have an
exact sequence 1 → ⟨𝚤⟩ → Aut𝑘(𝐶) → Aut𝑘 ℙ1 [Liu02, §7.4.3] and [CNP05, §1.1].

2.4.4 Generalised Jacobians

If 𝐶/𝑘 is a smooth proper curve, its Jacobian 𝐽(𝐶) = 𝒫𝑖𝑐0
𝐶/𝑘 is an abelian variety.

In general, when 𝐶/𝑘 is just a proper curve, 𝒫𝑖𝑐0
𝐶/𝑘 is still a smooth scheme by Corollary 2.3.5, it is sometimes

called the generalised Jacobian 𝐽(𝐶). Concretely, 𝐽(𝐶) consists of all elements in 𝒫𝑖𝑐𝑋/𝑘 whose partial degree on
each irreducible component of 𝑋𝐾 is zero [BLR12, Proposition 9.2.13]. We refer to [BLR12, §9.2] and [Rom13,
§3.3] for the structure of this generalised Jacobian.

Anticipating Sections 3.1 and 3.2, we note two important properties of 𝐽(𝐶), for a curve 𝐶/𝑘 reduced proper
over a perfect field 𝑘:

• 𝐽(𝐶) contains no unipotent connected subgroup (ie is semi-abelian), if and only if 𝐶 is weakly normal
[BLR12, Proposition 9.2.9], and then singularities of 𝑋𝑘 are analytically isomorphic to the crossing of the
coordinates axes in 𝔸𝑛 [BLR12, Corollary 9.2.12.(a)])

• If 𝐽(𝐶) is an abelian variety, then the irreducible components of 𝑋 are smooth and the configuration of
the irreducible components of 𝑋𝑘 is tree like, ie 𝐻1(𝑋𝑘, ℤ) = 0 by [BLR12, Corollary 9.2.12.(c)]), and
conversely if furthermore 𝑋 is weakly normal by [BLR12, Propositions 9.2.9 and 9.2.10].
In particular this provides a way to construct a product ∏ 𝐽(𝐶𝑖) of Jacobians of smooth propers curves as
the generalised Jacobian 𝐽(⨆ 𝐶𝑖).

We have the following important example:

Example 2.4.9 ([BLR12, Example 9.2.8]). Let 𝐶/𝑘 be a (weak) semistable curve. Then 𝐽(𝐶) is a semi-abelian
variety, and if 𝐶1, … , 𝐶𝑟 are its irreducible components, the canonical decomposition of 𝐽(𝐶) into an abelian part
and a torus part

1 → 𝑇 → 𝐽(𝐶) =
0

𝒫𝑖𝑐
𝐶/𝑘

→ 𝐴 → 1

is given by 𝐴 = 𝐽(𝐶𝑖) where 𝐶𝑖 is the normalisation of 𝐶𝑖 and 𝑋(𝑇) = 𝐻1(𝛤, ℤ), for the dual graph 𝛤 of 𝐶𝑘, so is
of rank rank𝐻1(𝛤(𝑋𝑘), ℤ) [Con+11, Proposition 7.14].

We recall [Liu02, §10.1.3] that the dual graph 𝛤 has a vertice for each 𝐶𝑖, and its edges correspond to the
singularities of 𝐶, the edge links 𝐶𝑖 to 𝐶𝑗 if the two analytic branches of the singularities belong to 𝐶𝑖 and 𝐶𝑗
respectively (hence is a loop if 𝐶𝑖 = 𝐶𝑗).

We finish by a discussion on representability theorems of the generalised Jacobian over a general base. First if 𝑋/𝑆
is projective flat curve locally of finite presentation, with integral geometric fibers, then 𝒫𝑖𝑐𝑋/𝑆 = ⨆(𝒫𝑖𝑐𝑋/𝑆)𝑛 by
Theorem 2.3.4.(vi).The same arguments as inTheorem 2.4.3 show that the (𝒫𝑖𝑐𝑋/𝑆)𝑛 are torsors under (𝒫𝑖𝑐𝑋/𝑆)0,
and the description of the generalised Jacobian 𝐽(𝐶/𝑘) in [BLR12, Proposition 9.2.13] shows that (𝒫𝑖𝑐𝑋/𝑆)0 =
𝒫𝑖𝑐0

𝑋/𝑆 since by assumption the geometric fibers of 𝑋/𝑆 are irreducible curve (see [BLR12, Theorem 9.3.1]).
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2. Abelian varieties

More generally, we have:

th:jacobianssemistable Theorem 2.4.10. • (Deligne, [BLR12, Theorem 9.4.1]): Let 𝑋/𝑆 be a (weak) semistable curve locally of finite
presentation. Then 𝒫𝑖𝑐𝑋/𝑆 is a smooth algebraic space, and 𝒫𝑖𝑐0

𝑋/𝑆 is a semiabelian scheme (so in particular
is a smooth separated scheme), and it has a canonical 𝑆-ample line bundle ℒ.

• (Raynaud, [BLR12, Theorem 9.4.2]): if 𝑆 is the spectrum of a dvr, 𝑓 ∶ 𝑋 → 𝑆 proper flat curve and an 𝑂-
morphism, and the gcd of the geometric multiplicities of the irreducible components of the special fiber is 1, then
𝒫𝑖𝑐𝑋/𝑆 is a smooth algebraic space, and 𝒫𝑖𝑐0

𝑋/𝑆 is a smooth separated scheme.

More Details 2.4.11. Other representability theorem:
[BLR12, Theorem 9.3.7]: If S is a stricly henselian local scheme, 𝑋/𝑆 flat projective morphism whose geometric fibres are

reduced and connected curves. Then smooth separated and coincide with 𝒫𝑖𝑐0
𝑋/𝑆 is a smooth and separated scheme.

Corollary of Raynaud’s theorem [BLR12, Corollary 9.4.3]: if 𝑆 dvr, 𝑋/𝑆 proper flat curve with connected generic fibre, 𝑋
regular and there is a rational point in its generic fibre. Then 𝒫𝑖𝑐𝑋/𝑆 is an algebraic space and 𝒫𝑖𝑐0

𝑋/𝑆 a separated scheme.
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3 DEGENERAT IONS AND L I F TS

chap:lift
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In this Chapter we study two related topics: degenerations and lifts. Degenerations study what happen when we
reduce an abelian variety 𝐴 defined over a number field 𝐾 modulo a prime ideal 𝔭. For this to make sense, we need
a good model 𝒜 of 𝐴 over the maximal order 𝑂𝐾. This is provided by the theory of Neron models. This allow to
construct modular varieties (like class polynomials or modular polynomials) by constructing them modulo 𝔭 a
CRT approach

Degenerations also allow us to tackle what happen at the boundary of the moduli space of abelian varieties
(suitably compactified). This is useful to show that certain spaces of modular form are finitely generated, or to
construct modular forms from polynomial covariants of curves in small dimension.

3.1 semi-abelian varieties and néron models
sec:semiab

3.1.1 Semi-abelian varieties

A good intuition for a commutative linear group scheme is that the unipotent part is “bad” (behaves badly) while
the torus part is “good”. So a semi-abelian variety is almost as nice as an abelian variety:

def:semiab Definition 3.1.1. A semi-abelian variety 𝐺/𝑘 over a field 𝑘 is a connected smooth commutative group scheme such
that 𝐺𝑘 is an extension of an abelian variety by a torus (equivalently 𝐺𝑘 contains no nontrivial smooth connected
unipotent group). A semi-abelian scheme 𝐺/𝑆 is a smooth separated commutative group scheme whose (geometric)
fibers are semi-abelian varieties.

We leave as an exercice a fiberwise characterisation of semi-abelian schemes, as in Section 2.3.5, using Proposi-
tion B.3.3 and Lemma B.3.1.
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3. Degenerations and lifts

Remark 3.1.2. Be careful that the definition from [BLR12, p. 178] does not requires 𝐺 connected, contrary to
the usual definitions (see eg [FC90, Definition 1.2.3]). We will call these varieties weakly semiabelian, likewise for
weakly semiabelian schemes.

This notion is stable by isogeny [] and if 1 → 𝐺′ → 𝐺 → 𝐺" → 1 is an exact sequence, 𝐺 is (weakly) semi-abelian
if and only if 𝐺′ and 𝐺" are.

We have the following structure theorem, which show that commutativity is automatic and that the torus part
descend over the base field:

th:structsemiab Theorem 3.1.3 ([Con+11, L13, Theorem 3.1]). Let 𝐺/𝑘 be a smooth connected group, such that the affine part of
𝐺𝑘 is a torus. Then 𝐺 is commutative, and there is a unique short exact sequence of 𝑘-groups:

1 → 𝑇 → 𝐺 → 𝐴 → 1

where 𝑇/𝑘 is a torus and 𝐴/𝑘 is an abelian variety.

3.1.2 Néron models
subsec:neron

Let 𝑆 be a Dedekind connected scheme with field of fractions 𝐾, and let 𝐺𝐾 = Gal(𝐾) = Gal(𝐾𝑠/𝐾) for a separably
closed extension 𝐾𝑠 of 𝐾. When 𝑆 is affine, we denote 𝑆 = Spec𝑅, and when 𝑅 is furthermore local (so a dvr), we
denote by 𝑚 = (𝜋) its maximal ideal, 𝜋 a uniformiser, 𝑣 the corresponding place on 𝐾 and by 𝑘 = 𝑅/𝑚 its residue
field and 𝑝 the characteristic of 𝑘. Implicitly, often when we mention 𝑅 we assume that we are in the local case.
(Most of what follows extend to a general Dedekind scheme 𝑆 by looking at its connected components.)

Néron models are in some sense the best possible models 𝒜 of an abelian variety 𝐴/𝐾, and allow us to get what
the best possible reduction 𝒜𝑘 of 𝐴 (sometimes denoted 𝐴𝑘 by abuse of notation) we can obtain. These results will
be extremely useful to reduce abelian varieties defined over a number field to abelian varieties defined over finite
fields.

def:neronmodel Definition 3.1.4. Let 𝑋/𝐾 be a smooth separated scheme of finite type (equivalently qc). A Néron model is a
smooth separated scheme of finite type 𝒳/𝑆 such that 𝒳𝐾 ≃ 𝑋 and which satisfy the Néron mapping property: for
any smooth scheme 𝒴/𝑆 with a mapping 𝒴𝐾 → 𝑋 there is an extension to a mapping 𝒴 → 𝒳.

See [Con+11, pp. L11, 1.3.12] and [BLR12, Definition 1.1.1] for the interpretation of the Néron mapping property
as a version of a valuative criterion.

If 𝑅 is local, we denote by 𝒳° the open subscheme of 𝒳 obtained from 𝒳 by removing the non identity components
of the special fiber 𝑋𝑘.

As an exemple of the Néron mapping property, if 𝒳 is a Néron model of 𝑋, then if 𝑋 is a group scheme, there is a
unique structure of group scheme on 𝒳 extending the one on 𝑋 [BLR12, Proposition 1.2.6]. As another exemple,
if 𝑅 is local we have an isomorphism 𝒳(𝑅) ≃ 𝑋(𝐾)1, and if 𝒴 is a Néron model of 𝑌, then Hom𝑆(𝒳, 𝒴) ≃
Hom𝐾(𝑋, 𝑌).

Proposition 3.1.5. • The formation of Néron models commute with étale base change.

• If 𝑅 is local, a smooth group scheme of finite type 𝒢/𝑅 is the Néron model of its generic fiber if and only if
𝐺(𝑅𝑠ℎ) → 𝐺(𝐾𝑠ℎ) is an isomorphism where 𝑅𝑠ℎ is the strict henselian completion of 𝑅 (this is the Weak Néron
property; equivalently 𝐺(𝑅′) → 𝐺(𝐾′) is an isomorphism for all 𝑅′/𝑅 étale local);

• If 𝑅 is local and 𝑅 ⊂ 𝑅′ ⊂ 𝑅𝑠ℎ, then a Néron model 𝒢 ′ over 𝑅′ descends to a Néron model 𝒢 over 𝑅.

• More generally, if 𝑅 ⊂ 𝑅′ is a local extension of dvr with ramification index 12 (in particular 𝑅′ = �̂� is the
completion). Then a Néron model descends from 𝑅′ to 𝑅 and ascends from 𝑅 to 𝑅′.

1By definition of a pullback, we always have 𝒳(𝐾) = 𝒳𝐾(𝐾) = 𝑋(𝐾).
2This means that the uniformizer 𝜋 of 𝑅 induces a uniformizer on 𝑅′, and the residue field 𝑘′ = 𝑅′/𝜋𝑅′ is separable over 𝑘 = 𝑅/𝜋𝑅.

If 𝑅′/𝑅 is of finite type and furthermore 𝐾′/𝐾 is separable then 𝑅 → 𝑅′ is étale.
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Proof. Thefirst item is [BLR12, Proposition 1.2.2] (see also [Con+11, L11, Proposition 1.4.3]), the second is [BLR12,
Criterion 1.2.9 and Theorem 7.1.1] (see also [Con+11, L11, Proposition 6.1.1]), the third [BLR12, Corollary 6.5.4]
(see also [Con+11, L11, Proposition 6.2.1]), and the fourth [BLR12, §3.6 and Theorem 7.2.1] (see also [Con+11,
L11, Proposition 6.2.2]).

Note that any weak Néron model 𝒳/𝑆 of 𝑋/𝐾 satisfy the weak Néron mapping property: given a smooth scheme
𝒵/𝑆 with irreducible special fiber 𝑍𝑘, a 𝐾-rational map 𝒵𝐾𝒳𝐾 extends to an 𝑅-rational map 𝒵𝒳 [Con+11, L11,
Proposition 3.3.1].

th:neron Theorem 3.1.6 (Néron [Nér64]). An abelian variety 𝐴/𝐾 admits a Néron model 𝒜 over 𝑆.

Proof. This is [BLR12, Theorem 1.4.3]. By standard limit arguments (approximation) [GD64, §IV.8], an abelian
variety extends to an abelian scheme over an open 𝑈 of 𝑆 [BLR12, Proposition 1.4.2]. By Néron’s theorem [BLR12,
Theorem 1.3.1 and Corollary 1.3.2], there exists a local Néron model 𝒜𝑠 over each closed point 𝑠 ∈ 𝑆 ∖ 𝑈, and
these glue together to a global Néron model 𝒜/𝑆. Conversely, a scheme 𝒜 is a Néron model if and only if 𝒜𝑠 is a
Néron model of 𝐴 over 𝑂𝑆,𝑠 for each closed point 𝑠 ∈ 𝑆 [BLR12, Proposition 1.2.4].

We refer to [BLR12] for the full proof (this is the canonical book on the subject), and to [Con+11, L11, Theo-
rem 2.3.4] for an overview. See also [Liu02] for the case of elliptic curves.

The proof of Theorem 3.1.6 use two crucial ingredients due to Weil. The first is an extension of rational map into
group schemes:

prop:extendinggroupmorphisms Proposition 3.1.7 ([BLR12, Theorem 4.4.1]). If 𝑢 ∶ 𝑈𝐺 is a 𝑇-rational map from a smooth scheme 𝑈/𝑇 to a smooth
and separated group scheme 𝐺/𝑇, with the base 𝑇 normal and noetherian, then if 𝑢 is defined in codimension ≤ 1 it
is defined everywhere.

The second is that birational group laws extend to a group law [BLR12, Theorem 6.6.1].

ex:avschemeneron Example 3.1.8. By Proposition 2.3.16, an abelian scheme satisfy a stronger version of the Néron mapping property,
so in particular is the Néron model of its generic fiber [BLR12, Proposition 1.2.8].

More generally, if 𝐴/𝐾 has a smooth and proper model 𝒜/𝑆, then 𝒜 is an abelian scheme hence is the Néron
model of𝐴. (See [BLR12, Proposition 1.4.2] or useTheorem2.3.11 togetherwith the valuative criterion of properness
to extend 𝜖 ∶ Spec𝐾 → 𝐴 to 𝜖 ∶ 𝑆 → 𝒜.)

In fact for an abelian variety we have a stronger version of the Neron mapping property:

prop:extendingisogeniesneron Proposition 3.1.9 ([BLR12, Proposition 1.4.4]). Let 𝐴/𝐾 be an abelian variety and 𝒜/𝑆 its Néron model. Then for
each smooth scheme 𝑌/𝑆 each 𝐾-rational map 𝑌𝐾𝐴 extends to a unique 𝑆-map 𝑌 → 𝒜.

Proof. This is immediate combining Proposition 2.2.7 and the mapping property of a Néron model. Alternatively
this is an immediate application of Proposition 2.3.16 since the 𝐾-rational map extends to an open by [GD64,
§IV.8].

3.1.3 Good reduction
subsec:goodreduction

With the same notations as above, an abelian variety 𝐴/𝐾 has good reduction if it extends to an abelian scheme
𝒜/𝑅. We recall by Example 3.1.8 that 𝒜/𝑅 is then the Néron model of its generic fiber.

th:goodreduction Theorem 3.1.10 (Good reduction). An abelian variety 𝐴/𝐾 with Néron model 𝒜 has good reduction if it satisfy one
of these equivalent conditions:

• The Néron model 𝒜 of 𝐴 is an abelian scheme, or 𝒜° is an abelian scheme;

• 𝒜 or 𝒜° is proper;

And if 𝑅 is local this is also equivalent to:

• The identity component 𝒜°𝑘 of its special fiber is proper;

27

[ Draft Version: Tuesday March 7, 2023 at 18:13 ]



3. Degenerations and lifts

• The representation 𝜌ℓ of 𝐺𝐾 on the Tate module 𝑇ℓ(𝐴) is unramified (ie the inertia 𝐼𝐾 acts trivially) for one
(resp. any) ℓ ≠ 𝑝 (Néron-Ogg-Shafarevich). Equivalently 𝐴[𝑚] is not ramified for all 𝑚 prime to 𝑝 (resp. an
infinite number of 𝑚 prime to 𝑝).

• The ℓ-divisible group 𝐴(ℓ) has good reduction (if 𝑅 is henselian this means that it extends to a ℓ-divisible
subgroup over 𝑅), for one (resp. any) ℓ, including ℓ = 𝑝.

Proof. If 𝒜 is an abelian scheme, it is proper, and if 𝒜 or 𝒜° is proper so is 𝒜°𝑘. The converse is Lemma A.3.3. In
fact if we have a flat model 𝒜 of 𝐴 such that 𝒜°𝑘 is proper, then 𝒜° is an abelian scheme by Lemma A.3.3 so is the
Néron model of 𝐴.

The Néron-Ogg-Shafarevich condition is the main result of [ST68] (see [ST68, Theorem 1] and [BLR12, The-
orem 7.4.5]). The inertia 𝐼𝐾 is not strictly defined (it depends of a choice of place on 𝐾𝑠 extending the place 𝑣
representing 𝑚), but since all choice are conjugate to each other, the unramifiedness of the action does not depend
on any choice. Grothendieck’s theorem is in [Gro72, p. 5.10] in the case of mixed characteristic, and extended by
de Jong in [Jon98, Theorem 2.5] to the case of equal characteristic (see [De 98, Theorem 3] for a summary). See
[Con+11, L11, Corollary 2.2.7 and Theorem 5.3.1] for an overview of the proofs.

As a corollary, this notion is stable by isogeny, and by exact extension: if 0 → 𝐴′ → 𝐴 → 𝐴" → 0 is an exact
sequence, 𝐴 has good reduction if and only if 𝐴′ and 𝐴" have good reduction.

Remark 3.1.11. If 𝐴 has an ample line bundle ℒ and has good reduction, then the polarisation 𝛷ℒ ∶ 𝐴 → 𝐴
extend to a polarisation 𝒜 → 𝒜 of the Néron model. Since the base scheme 𝑆 is normal, this polarisation is induced
by a line bundle on 𝒜. In otherwords, if 𝑅 is local, 𝒜 is the Zariski closure in ℙ𝑅 of the embedding of 𝐴 into ℙ𝐾.

An abelian variety has potential stable reduction if it acquires good reduction over a finite field extension 𝐾′/𝐾.
Then by Theorem 3.1.10, 𝐴 has potential good reduction if and only if the image 𝜌ℓ(𝐼𝐾) of the inertia 𝐼𝐾 is finite in
𝑇ℓ(𝐴) for a ℓ ≠ 𝑝 (and in this case the restriction of 𝜌ℓ to 𝐼 is independent of ℓ in a sense made precise in [ST68,
Theorem 2.ii]), if and only if the modular invariant of 𝐴 is integral at 𝑣 (the place corresponding to 𝑚) [ST68, §2].

prop:potentialgood Proposition 3.1.12 (Potential good reduction). Assume that 𝑅 is local. If the action of 𝐺𝐾 on 𝑇ℓ(𝐴) is commutative,
or if 𝐴 is CM, then 𝐴 has potential good reduction.

If 𝐴 has potential good reduction, then the connected component 𝒜𝑘° of the special fiber of its Néron model is an
extension of an abelian variety by a unipotent group (hence the extension where it acquires good reduction is exactly
the same extension where it acquires semi-stable reduction, in other words if 𝐴 has both potential good reduction and
semi-stable reduction, it has good reduction).

If 𝐴 has potential good reduction, then if 𝑚 ≥ 3 is prime to 𝑝,

• The inertia group of 𝐾(𝐴[𝑚])/𝐾 is independent of 𝑚, and this extension is tamely ramified if 𝑝 > 2𝑔 + 1;

• 𝐾(𝐴[𝑚]/𝐾) is unramified if and only if 𝐴 has good reduction;

• If 𝑅 is strictly henselian, 𝐾(𝐴[𝑚]) is the smallest extension of good reduction (so is independent of 𝑚 ≥ 3) and
its Galois group is Ker 𝜌ℓ.

If furthermore the residue field 𝑘 is a finite field 𝔽𝑞, there exists an extension 𝐾′/𝐾 of good reduction with the same
residue field. Moreover if 𝜎 represent the Frobenius in 𝐺𝐾 = Gal(𝐾), then the action of 𝜎 on 𝑇ℓ(𝐴) is the action of
the Frobenius on 𝑇ℓ(𝒜 ′

𝑘) = 𝑇ℓ(𝐴′) = 𝑇ℓ(𝐴), so its characteristic polynomial is the characteristic polynomial of the
Frobenius acting on 𝒜 ′

𝑘.

Proof. This is [ST68, §2], except the part about CM abelian varieties which is [ST68, Theorem 6] and is developed
in much more details in [ST68, §4 to 7]. See also [Con+11, L13, Proposition 6.5] for a proof using the semi-stable
theorem.

Remark 3.1.13. We use the potential good reduction of CM abelian varieties to develop a CRT algorithm to
construct class polynomials in [Rob21, ??].
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3.1.4 Semi-stable reduction

We continue with the notations from Section 3.1.2. We refer to [Cas13] for a more general overview of the topic of
semi-stable reduction.

A group scheme 𝐺/𝑆 is said to have semi-abelian (or semi-stable) reduction at a closed point 𝑠 ∈ 𝑆 if 𝐺°𝑠 is a
semi-abelian variety (in other words if 𝐺𝑠 is a weak semi-abelian variety). We say that an abelian variety 𝐴/𝐾 has
semi-stable reduction at 𝑠 if its Néron model 𝒜 has semi-abelian reduction at 𝑠 [BLR12, §7.4].

prop:semiabelianneron Proposition 3.1.14. Let 𝑅 be local, and 𝐴/𝐾 be an abelian variety with Néron model 𝒜/𝑅. Assume that 𝐴 has a
model 𝐺/𝑅 by a smooth separated group scheme which has semi-abelian reduction (ie 𝐺/𝑅 is weakly semi-abelian).
Then the canonicalmorphism 𝐺 → 𝒜 is an open immersion and restricts to an isomorphism on the identity components,
so 𝐴 has semi-stable reduction.

In particular if 𝐴 has semi-stable reduction, then the formation of 𝒜° is compatible with local base change 𝑅 → 𝑅′

of dvrs.

Proof. This is [BLR12, Proposition 7.4.3 andCorollary 7.4.4], see also [Con+11, L13,Theorem4.4 andCorollary 4.5].

As a corollary, a semi-abelian scheme 𝒜/𝑆 whose generic fiber is an abelian variety 𝐴 is the identity component
of the Néron model of 𝐴. When 𝐴 has semi-stable reduction, its Néron model still does not commute with local
base change (only its identity component does). In particular, the component group 𝜋0(𝒩(𝐴)) can increase. In
fact, the limit of the component groups 𝜋0(𝒩(𝐴𝐾′)) is Hom(𝑋(𝑇𝑘), ℚ/ℤ) where 𝑇 is the maximal torus of the
semi-abelian 𝒩(𝐴)𝑘 [Gro72, Exposé IX, §11.9].

The notion of semi-stable reduction is stable by isogeny, hence by exact extension [BLR12, Lemma 7.4.2]. More
precisely:

Proposition 3.1.15. Let 𝑅 be local, 𝑓 ∶ 𝐴 → 𝐵 be an isogeny of abelian varieties over 𝐾, and let 𝒜, ℬ be their
Néron model. Then if either 𝒜°𝑘 or ℬ°𝑘 is semi-abelian then so is the other, and in this case 𝑓 °𝑘 is an isogeny. And
furthermore Hom𝐾(𝐴, 𝐵) → Hom𝑘(𝒜°𝑘, ℬ°𝑘) is injective.

Proof. The first part is immediate by the extension of isogenies to their Néron-models mentioned in Section 3.1.2
and the fact that semi-abelian varieties are stable under isogenies (of smooth group schemes). See [Con+11, L13,
Proposition 4.1] and [BLR12, Corollary 7.3.7].The injectivity of the reductionmap is [Con+11, L13, Proposition 6.4].

Like potential good reduction, there is a notion of potential semi-stable reduction.

th:potentialsemistable Theorem 3.1.16 (Potential semi-stable reduction). Every abelian variety 𝐴/𝐾 has potential semi-stable reduction
everywhere. More precisely, if 𝑅 is local, there is a finite separable field extension 𝐾′/𝐾 such that 𝐴𝐾′ has semistable
reduction over 𝑅′, the integral closure of 𝑅 in 𝐾′.

Proof. This is proved by Grothendieck in [Gro72]. From the potential semi-stable reduction of Jacobians we can
deduce the potential semi-stable reduction of curves [DM69]. Nowadays the proof goes the other way around:
potential semistability of curves is proved directly, from which we deduce potential semistability of Jacobians,
and hence of any abelian variety (since they are always quotient of Jacobians). See [BLR12, Theorem 7.4.1] and
[Con+11, L13, Theorem 4.2]. In characteristic different from 2 there is also a very nice proof due to Mumford using
the theory of theta functions [Cha85, Appendix II].

Concretely an abelian variety 𝐴 acquires semistable reduction at all places of the Galois splitting field 𝐾(𝐴[𝑁])/𝐾
of 𝐴[𝑁] for any 𝑁 ≥ 3 not divisible by 𝑝 = char 𝑘 by Raynaud’s theorem [Gro72, Exposé IX, Proposition 4.7]
(see also [Con+11, L13, Proposition 6.5]) (compare with Proposition 3.1.12, we recall that if 𝐴 has potential good
reduction, it acquires good reduction whenever it acquires semistable reduction). By [SZ95], it also has semistable
eduction whenever all points of a maximal isotropic subgroup of 𝐴[𝑁] are defined for a 𝑁 ≥ 5 not divisible by 𝑝.

We also have a criteria for semi-stability, proved by Grothendieck:

th:semistabcriteria Theorem 3.1.17. Let 𝑅 be local, 𝐼𝐾 the inertia group of 𝐺𝐾. Then 𝐴/𝐾 has semi-stable reduction if and only if it
satisfy one of these equivalent condition:
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• the action of 𝐼𝐾 on one (resp. all) 𝑇ℓ𝐴 with ℓ ≠ 𝑝 is unipotent. The unipotency index is then (at most) 2.

• The ℓ-divisible group 𝐴(ℓ) has semi-stable reduction, for one (resp. any) ℓ, including ℓ = 𝑝.

Proof. The first item is proven in [Gro72, p. IX.3.5], see [Con+11, L13, Theorem 5.8] for an overview of the proof
or [BLR12, Theorem 7.4.6]. See [De 98, Theorem 2] and [Jon98, Theorem 2.5] for the second item.

As a corollary, we recover that semistability is stable under isogenies or exact sequences.

Orthogonality

We finish by a discussion on duality and the orthogonality theorem. We refer to [Con+11, L13, §5] for more details.
Let 𝑅 be local and 𝐴 be an abelian variety and assume that it has semi-stable reduction, and let 𝒜 be its Néron
model. Then since 𝒜°𝑘 is semi-abelian, by Theorem 3.1.3 there is an exact sequence

0 → 𝑇 → 𝒜°𝑘 → 𝐵

with 𝑇/𝑘 a torus and 𝐵/𝑘 and an abelian variety. Since 𝐴 is isogenous to its dual 𝐴, 𝐴 is also semistable. By [Gro72,
§IX], in the decomposition 0 → 𝑇′ → 𝒜°𝑘 → 𝐵′ of the Néron model of 𝐴, 𝐵′ is canonically dual to 𝐵 and 𝑇′ dual
to 𝑇 (which means that their Galois lattices 𝑋(𝑇)(𝑘𝑠) and 𝑋(𝑇′)(𝑘𝑠) are dual).

Fix an integer 𝑁, then 𝒜[𝑁] is flat quasi-finite by [BLR12, Lemma 7.3.2] (and is étale if 𝑁 is prime to 𝑝). We
remark that if 𝑝 ∤ 𝑁, 𝒜°𝑘[𝑁] has order 𝑁𝑡+2𝑎 where 𝑎 = dim𝐵 and 𝑡 is the rank of 𝑇.

Assume that 𝑅 is henselian, then by the structure theorem of quasi-finite morphisms Corollary A.4.5 we have
𝒜[𝑁] = 𝒜[𝑁]𝑓 ⨆ 𝒜[𝑁]𝜂 with 𝒜[𝑁]𝑓 finite with special fiber 𝒜𝑘[𝑁] and 𝒜[𝑁]𝜂 having empty special fiber
(this is a special case of [GD64, p. III.5.5.2] or [Stacks, Tag 03GX]). Since 𝑅 is henselian, the open and closed
subgroups 𝑇[𝑁] and 𝒜°𝑘[𝑁] of 𝒜°𝑁 lift to 𝒜[𝑁]𝑓 into a filtration: 𝒜[𝑁]𝑡 ⊂ 𝒜[𝑁]𝑓° ⊂ 𝒜[𝑁].

lem:subgroupsneron Lemma 3.1.18. With the notations above, assume that 𝑅 is henselian, and let 𝐾𝑢𝑛 = 𝐾𝐼𝐾
𝑠 be the maximal unramified

extension of 𝐾, and 𝑅𝑠ℎ the strict henselisation of 𝑅 seen as the extension of 𝑣 to 𝐾𝑢𝑛, its residue field is then 𝑘𝑠.
Then if 𝑝 ∤ 𝑁, 𝐴[𝑁](𝐾) = 𝒜[𝑁]𝑓(𝐾) = 𝒜[𝑁](𝑅) = 𝒜𝑘[𝑁](𝑘) and 𝐴[𝑁](𝐾𝑠)𝐼𝐾 = 𝐴[𝑁](𝐾𝑢𝑛) =

𝒜[𝑁]𝑓(𝐾𝑠) = 𝒜[𝑁](𝑅𝑠ℎ) = 𝒜𝑘[𝑁](𝑘𝑠).
In general, 𝐴(𝐾𝑢𝑛) = 𝒜(𝑅𝑠ℎ) → 𝒜𝑘(𝑘𝑠) is surjective.

Proof. If 𝑋 is a scheme separated étale and quasi-finite over an henselian local ring 𝑅, 𝑋(𝑅) ≃ 𝑋𝑘(𝑘). Indeed by
the structure theorem of quasi-finite morphisms Corollary A.4.5 𝑋 = 𝑋𝑓 ⨆ 𝑋𝜂 with 𝑋𝑓 finite étale and use the
Henselian property to get 𝑋𝑓(𝑅) = 𝑋𝑓 ,𝑘(𝑘) = 𝑋𝑘(𝑘) But since 𝑅 is connected, we have 𝑋𝑓(𝑅) = 𝑋(𝑅) and since 𝑋𝑓
is finite, 𝑋𝑓(𝑅) = 𝑋𝑓(𝐾) by the valuative criterion of properness. In summary: 𝑋𝑓(𝐾) = 𝑋(𝑅) = 𝑋𝑓(𝑅) = 𝑋𝑘(𝑘).
(See also [BLR12, Proposition 7.3.3].)

We apply this to 𝒜[𝑁], to get all the equalities of the first equation, except 𝐴[𝑁](𝐾) = 𝒜[𝑁](𝑅) which
comes from the (weak) Néron mapping property: 𝐴(𝐾) = 𝒜(𝐾) = 𝒜(𝑅). The second equation comes from base
changing 𝒜 to 𝒜/𝑅𝑠ℎ (using commutativity of Néron models with étale extensions). The last surjection simply
comes from the fact that 𝒜/𝑅𝑠ℎ is smooth.

Note also that if 𝑋 is not étale, 𝑋𝑓 is just finite, but we may form its largest finite étale quotient 𝑋𝑒𝑡
𝑓 (see the proof

of Lemma B.1.2). Then (𝑋𝑒𝑡
𝑓 )𝑘(𝑘) ≃ (𝑋𝑓)𝑘(𝑘) and so (𝑋𝑒𝑡

𝑓 )𝑘(𝑘) ≃ (𝑋𝑓)𝑘(𝑘) = 𝑋𝑘(𝑘), so 𝑋𝑘(𝑘) ≃ 𝑋𝑒𝑡
𝑓 (𝑅).

Thus, if we relax the condition 𝑝 ∤ 𝑁, we can use the connected-étale sequence Lemma B.1.2 and Sec-
tion 3.3.1 to get the reduction morphism: 𝐴[𝑁](𝐾) = 𝒜[𝑁](𝑅) = 𝒜[𝑁]𝑓(𝑅) = 𝒜[𝑁]𝑓(𝐾) → 𝒜[𝑁]𝑒𝑡

𝑓 (𝐾) =
𝒜[𝑁]𝑒𝑡

𝑓 (𝑅) = 𝒜𝑒𝑡
𝑘 [𝑁](𝑘) = 𝒜𝑘[𝑁](𝑘) with the different reduction map from the left members to the right

members all compatible.

Passing to ℓ-divisible groups for 𝒜[ℓ𝑛]𝑡 and 𝒜[ℓ𝑛]𝑓° (which are of heights 𝑡 and 𝑡 + 2𝑎), and viewing their
generic fibers inside of the ℓ-divisible group of 𝐴, we get if ℓ ≠ 𝑝 (in fancy term by passing through their crystal,
which in this case is just the Tate module) the filtration of 𝐺𝐾-stable saturated ℤℓ submodules:

𝑇ℓ(𝐴)𝑡 ⊂ 𝑇ℓ(𝐴)𝑓 ⊂ 𝑇ℓ(𝐴).
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3.1. Semi-abelian varieties and Néron models

We have 𝑇ℓ(𝐴)𝑓 = 𝑇ℓ(𝐴)𝐼𝐾 is the inertial fixed part, since 𝒜[𝑁]𝑓(𝐾𝑠) ⊂ 𝒜[𝑁](𝐾𝑠) is exactly the unramified
submodule, ie the 𝐾𝑢𝑛 points by Lemma 3.1.18 or [Con+11, L13, Remark 5.3].

The orthogonality theorem (deduced from the duality of 𝒜 and 𝒜 or directly as in [Con+11, L13, Theorem 5.5])
then gives that under the Weil pairing 𝑇ℓ(𝐴) × 𝑇ℓ(𝐴) → ℤℓ(1), that 𝑇ℓ(𝐴)𝑓 and 𝑇ℓ(𝐴)𝑡 are the exact annihilators
of each others. In particular the Cartier dual of 𝑇ℓ(𝐴)𝑡 is 𝑇ℓ(𝐴)/𝑇ℓ(𝐴)𝑓, hence has trivial 𝐼𝐾 action. This gives one
direction in Theorem 3.1.17.

3.1.5 Extension of isogenies and morphisms
subsec:extendingisogenies

We have already seen some results about extension of morphisms and isogenies. Here 𝑇 denotes a general base, and
𝑆 a Dededking scheme.

1. If 𝐴/𝑘 is an abelian variety, any birational morphism from a regular variety 𝑌/𝑘 is defined everywhere
Proposition 2.2.7.

item:extensionii 2. More generally, Proposition 2.3.16: If 𝐴/𝑇 is an abelian scheme, any rational 𝑇-morphism 𝑔 ∶ 𝑌𝐴 from a
regular scheme 𝑌 is defined everywhere. (Note that if 𝑇 is integral of generic point 𝜂, then any 𝜂-rational map
𝑋𝜂𝑌𝜂 of schemes finitely presented over 𝑇 extend to an open of 𝑇 by [GD64, §IV.8]. So in the proposition
above it suffices to have an 𝜂-rational map 𝑌𝐴, 𝑌 regular, for it to be defined everywhere.)

3. If 𝑇 is normal and noetherian, a 𝑇-rational map 𝑌𝐺 from a smooth scheme 𝑌/𝑇 to a smooth and separated
group scheme 𝐺/𝑇, is defined everywhere if it is defined in codimension ≤ 1 Proposition 3.1.7.

4. If 𝐴/𝐾 is abelian variety and 𝒜/𝑆 its Néron model, by Definition 3.1.4, for each smooth scheme 𝑌/𝑆 each
𝐾-rational map 𝑌𝐾𝐴 extends to a unique 𝑆-map 𝑌 → 𝒜.

5. If 𝒜/𝑆 is an abelian scheme, it is the Néron model of 𝒜𝐾, so for each smooth scheme 𝑌/𝑆, each 𝐾-rational
map 𝑌𝐾𝐴 extends to a unique 𝑆-map 𝑌 → 𝒜 (this is a particular case of Item 2).

item:extensionvi 6. If 𝑆 is local and 𝒜/𝑆 is a semi-abelian scheme whose generic fiber is abelian, it is the identity component of
its Néron model Proposition 3.1.14, so for every smooth scheme 𝑌/𝑆 such that 𝑌𝑘 is connected, every map
𝑌𝐾 → 𝒜𝐾 extends uniquely to 𝑌 → 𝒜.

The proof by [BLR12] of Item 6 uses as an intermediate result the following Proposition which is interesting in its
own right: an isogeny of abelian varieties of degree prime to the residue characteristic extend to the Néron models.

prop:extendingisogeniesviacontragredient Proposition 3.1.19. An isogeny 𝑓 ∶ 𝐴 → 𝐵 of abelian varieties over 𝐾 extend to an isogeny 𝒜 → ℬ of their Néron
models over a local 𝑅 if 𝐴 has semi-stable reduction or deg 𝑓 is prime to the residue characteristic.

Proof. This is [BLR12, §7.3]. The proof goes as follow. First assume we are over a general base 𝑆, and let 𝐺/𝑆 be a
smooth commutative group scheme of finite type. Then if ℓ does not divide the residual characteristics of 𝑆, the
multiplication by ℓ [ℓ] ∶ 𝐺 → 𝐺 is étale, so the ℓ-torsion subgroup 𝐺[ℓ] is étale. In general, provided that 𝐺 is
(weakly) semi-abelian, 𝐺[ℓ] is always flat quasi-finite [BLR12, Lemma 7.3.2].

Secondly, if 𝑓 ∶ 𝐺 → 𝐺′ is an isogeny of smooth commutative algebraic groups over a field 𝑘, and that either
char 𝑘 ∤ deg 𝑓 or 𝐺 is (weakly) semi-abelian, then there is a contragredient isogeny 𝑔 ∶ 𝐺′ → 𝐺 such that
𝑔 ∘ 𝑓 = [deg 𝑓 ] [BLR12, Lemma 7.3.5].

So going back to 𝑆 = Spec𝑅 Dedekind local, if 𝐺/𝑆 and 𝐺′/𝑆 are Néron models of their generic fibers 𝐺𝐾
and 𝐺′

𝐾 (smooth commutative algebraic groups), and 𝑓𝐾 ∶ 𝐺𝐾 → 𝐺′
𝐾 is an isogeny such that either 𝐺 is (weakly)

semi-abelian or deg 𝑓 does not divide 𝑝, then 𝑓𝐾 and its contragredient isogeny 𝑔𝐾 extends [BLR12, Proposition 7.3.6].
As a corollary, 𝐺 is weakly semi-abelian if and only if 𝐺′ is weakly semi-abelian [BLR12, Corollary 7.3.7].

Remark 3.1.20. Conversely, if 𝑓 ∶ 𝐴 → 𝐵 is a morphism of abelian varieties over 𝐾, and we denote 𝑓 ∶ 𝒜 → ℬ the
induced map on their Néron models, then if 𝑓 °𝑘 ∶ 𝒜°𝑘 → ℬ°𝑘 is an isogeny, then 𝑓 is an isogeny [Con+11, L13,
Proposition 4.1.(2)].
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We can strengthen Proposition 3.1.19 to a normal base (and also not requiring the generic fiber to be abelian) as
follow:

prop:extendingisogeniesrem:extendingisogenies Proposition 3.1.21. If 𝒜/𝑇 and ℬ/𝑇 are two semiabelian schemes over a normal locally Noetherian scheme 𝑇, and
𝑓 ∶ 𝒜|𝑈 → ℬ|𝑈 a morphism (of groups) defined over a dense open 𝑈 of 𝑇, then 𝑓 extends uniquely to 𝑇.

Proof. This is [Fal86, Lemma 2.1], see also [Con+11, L12, Lemma 35]. By [BLR12, §10.1], a smooth algebraic
group 𝐺𝐾 over admits a Néron model (resp. an lft Néron model) over 𝑅 (strictly henselian excellent) if and only
if 𝐺𝐾 does not contains 𝔾𝑎 and 𝔾𝑚 (resp. 𝐺𝐾 does not contains 𝔾𝑎). In particular, if 𝑅 is a complete dvr with
algebraically closed residue field, it is excellent and strictly henselian, so a semi-abelian scheme 𝐴/𝐾 has an lft
Néron model (which is only locally of finite type). But the same reasoning as in Proposition 3.1.14 show that if
𝒜/𝑅 is a semi-abelian scheme, it is the identity component of its Néron model. So in particular, 𝑓 extends by the
property of lft Néron models (since the special fiber of 𝒜 is connected). Of course, if the generic fibers are abelian,
this is juste Item 6.

For the general case, we consider the closure 𝑋 of the graph of 𝑓, and we need to show that 𝑝1 ∶ 𝑋 → 𝒜 is an
isomorphism. We may then reduce to the case treated above by using [Stacks, Tag 0CM1] and [GD64, Inew.5.5.2].
Indeed, since the map extends above excellent strictly henselian local rings, and the extension is unique because
torsion points are dense, this shows that the map 𝑝1 is a bijection (hence is quasi-finite). Since it is birational due to
the existence of 𝑓0 it is an isomorphism by ZMT since 𝑇 is normal.

A related result is that if we have an isogeny over a separable field extension of 𝑘(𝑇), the isogeny extends over an
étale cover of 𝑇:

prop:extendingisogenies2 Proposition 3.1.22. If 𝒜/𝑇 and ℬ/𝑇 are two abelian schemes over a normal integral locally Noetherian scheme
𝑇, 𝐿 a separable extension of 𝐾 = 𝑘(𝑇) and 𝑓 ∶ 𝒜𝐿 → ℬ𝐿 a morphism (of groups), then 𝑓 extends to a morphism
𝑓 ∶ 𝒜𝑇′ → ℬ𝑇′ for an étale cover (ie an étale finite map) 𝑇′ → 𝑇.

Proof. This is [Sta17]. The idea is that ℋ𝑜𝑚𝑇(𝒜, ℬ) has connected components proper (by Weil’s extension
theorem Proposition 3.1.7) and unramified (by the rigidity Lemma Lemma 2.3.8). If 𝑇 is normal, then any finite
unramified dominant morphism to 𝑇 is étale, hence the components of ℋ𝑜𝑚𝑇(𝒜, ℬ) that dominate 𝑇 are finite
étale.

If the degree is invertible, then we can extend the isogeny as well as the target semiabelian variety:

ex:extensionofisogenies Proposition 3.1.23. If 𝑇 is normal and locally noetherian, and 𝑈 is an open of 𝑇, then if 𝑓0 ∶ 𝐴0 → 𝐵0 is an isogeny
of semi-abelian schemes over 𝑈 of degree invertible in 𝑂𝑇, and 𝐴0/𝑈 extends to a semi-abelian scheme 𝐴/𝑆, then 𝑓0
extends to an isogeny 𝑓 ∶ 𝐴 → 𝐵 over 𝑆.

If 𝐴 is abelian, then 𝐵 too (and we only need 𝑇 to be geometrically unibranch locally noetherian for this result).

Proof. This is [Ore20]. We first only assume that 𝑇 is geometrically unibranch locally noetherian. We may reduce
to 𝑇 connected by working on each connected component. Then we take the kernel of 𝑓 to be the closure 𝐾 of
the kernel 𝐾 of 𝑓0 in 𝐴[𝑚], 𝑚 the degree of 𝑓 (which is constant since 𝑇 is connected). Since 𝑇 is geometrically
unibranch, 𝐴[𝑚] too (since it is étale over 𝑇), and this shows that 𝐾 is étale over 𝑇. Then we may define 𝐵 = 𝐴/𝐾.
This is a semiabelian algebraic space.

If 𝐴 is abelian, 𝐵 is an abelian algebraic space, hence an abelian scheme by Theorem 2.3.2. Otherwise, if 𝑆 is
normal, 𝐵 is a semiabelian scheme by Proposition B.3.4.

See [FC90, §V.6] for more on extending semi-abelian schemes: an abelian scheme over a dense open subscheme
of a regular local ring whose complement is a divisor with normal crossing extends to a semi-abelian scheme
provided the ℓ-adic monodromy is unipotent and the generic characteristic is zero.

See also [FC90, p. 192] for an example of an isogeny 𝑓0 ∶ 𝐴0 → 𝐵0 of abelian schemes over 𝑈 such that 𝐴0
extends over 𝑆 but 𝐵0 does not.
More Details 3.1.24. By [BLR12, Theorem 7.5.4] (see also [Con+11, L11, Theorem 6.3.1]): if 0 → 𝐴′ → 𝐴 → 𝐴"− > 0 is an
exact sequence of abelian varieties, 𝑅 of characteristic (0, 𝑝) and absolute ramification 𝑒 < 𝑝 − 1, 𝐴 has good reduction, then
the Néron models are abelian schemes and satisfy 0 → 𝒜 ′ → 𝒜 → 𝒜" → 0. If 𝐴 has only semiabelian reduction, the sequence
are formed by semiabelian schemes and is still left exact.

From the purity result of [FC90, §V.6], the authors deduce that any morphism from the complement of a divisor with normal
crossings in a regular scheme to 𝒜∗

𝑔,𝑛 automatically extends (uniquely) to 𝑆 provided the generic characteristic of 𝑆 is zero.
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3.2. Reduction of curves

3.2 reduction of curves
sec:sscurves

3.2.1 Minimal regular models and canonical models

We briefly detail the link between stability of curves and their Jacobians. A good references for curves is [Liu02], a
good summary is in [Rom13] and [Con+11, p. L12].We continue with the notations of Section 3.1.2.

We recall that if 𝐶/𝑘 is a curve, a nodal singularity (or an ordinary double point) is a point 𝑥 such that �̂�𝐶,𝑥 ≃
𝑘[[𝑢, 𝑣]]/𝑢𝑣. By Artin’s approximation theorem [Art69a], this means that étale locally around 𝑥, the curve look
like the intersection of the 𝑥 coordinate and the 𝑦 coordinate in the plane at 0.

Definition 3.2.1. A curve 𝐶/𝑘 is semistable (resp. stable) if it is proper, reduced, connected of dimension 1, with
only nodal singularities, and whose irreducible components isomorphic to ℙ1 meet the other components in at
least 2 points (resp. 3 points).

A proper flat (relative) curve 𝒞/𝑆 is stable (resp. semistable) if it has stable (resp. semistable) geometric fibers.

Stable curves were introduced in [DM69], to construct a smooth proper compactification of ℳ𝑔 the moduli
stack of smooth curves of genus 𝑔. The terminology comes from [MFK94], and if we exclude curves of arithmetic
genus 1, the condition of stability (resp. semistability) becomes equivalent to 𝐶/𝑘 is complete connected with
only ordinary double points as singularities and Aut(𝐶) is finite (resp. is reductive), see [Rom13, Lemmas 4.2.1
and 4.2.2]. For semistable curves, sometime only the condition on nodal singularities is required, as in [BLR12,
Definition 9.2.6]. We call these weak semistable curves.

If 𝐶/𝑘 is a stable curve, then 𝐻1(𝐶, 𝜔𝑛
𝐶/𝑘

) = 0 if 𝑛 ≥ 2 and 𝜔𝑛
𝐶/𝑘

is very ample if 𝑛 ≥ 3 [DM69, Theorem 1.2].
So if 𝒞/𝑆 is a proper flat stable curve, 𝜔𝑛

𝒞/𝑆 is relatively very ample for 𝑛 ≥ 3 (since this is a fibral condition) and
its pushforward is locally free by Lemma A.1.1. In particular it is projective.

Note that if 𝒞/𝑆 is a proper flat relative curve, since 𝑆 is of dimension 1 we may also see 𝒞 as an arithmetic
surface. By Lipman’s resolution of singularities of an arithmetic surface (ie an excellent reduced noetherian scheme
of dimension 2) [Liu02, §8.3.4], a curve 𝑋/𝑆 has a birational proper regular model. We can then develop a theory
of intersection.

For simplicity, assume for now that 𝑅 is local and 𝑘 = 𝑘. and if 𝐸𝑖 are the irreducible components of 𝑋𝑘, then
𝐸𝑖 ⋅ 𝐸𝑗 is the number of intersections of points in 𝐸𝑖 ∩ 𝐸𝑗, and 𝐸𝑖 ⋅ 𝐸𝑖 is the opposite of the number of points where
𝐸𝑖 meets another component [Rom13, Example 2.3.3]. Hence 𝑋/𝑆 is semistable (resp. stable) if and only if it does
not contains a projective line with self intersection −2 (resp. −1) or less. By the adjonction formula, if 𝐸 is a vertical
effective divisor with 0 < 𝐸 ≤ 𝑋𝑘, −2𝜒(𝐸) = 𝐸 ⋅ (𝐸 + 𝐾𝑋/𝑆) where 𝐾𝑋/𝑆 is a canonical divisor representing the
canonical sheaf 𝜔𝑋/𝑆 (see Section 2.4.1) [Rom13, Theorem 2.3.4].

One important tool in order to construct “minimal models” is contractions and blow downs. Indeed, when we
have a regular model 𝑋/𝑆 of 𝐶/𝑘, a blow up �̃�/𝑆 is still a regular model of 𝐶/𝑘.

Example 3.2.2 ([Rom13, Example 2.4.2]). Let 𝑥 be a nodal singularity in the special fibre of a normal arithmetical
surface. The completed local ring is 𝑅[[𝑎, 𝑏]]/(𝑎𝑏 − 𝜋𝑛). Blowing up at 𝑥, we get that if 𝑛 = 1 the exceptional
divisor is a projective line with self intersection −1, if 𝑛 = 2 it is a smooth conic over 𝑘 with self intersection −2,
and if 𝑛 > 2 its gives two projective lines intersecting in a nodal singularity of thickness 𝑛 − 2, each meeting the
rest of the special fibre at one point.

Contractions exist by [Rom13, Theorem 2.4.5]. For blow downs, we want to contract a component 𝐸 into a point
𝑒 ∈ 𝑋0 such that the resulting contraction is still regular, and 𝐸 is the exceptional divisor of the blowup at 𝑒 in 𝑋0.
If 𝐸 is a vertical prime divisor, a blow down exists if and only if 𝐸 ≃ ℙ1 and 𝐸2 = −1 [Rom13, Theorem 2.4.6].

More generally, if 𝑘 is non necessarily algebraically closed, a vertical divisor 𝐸 ⊂ 𝑋𝑠 is an exceptional divisor if
and only if 𝐸 ≃ ℙ1 and 𝐸2 = −[𝐻0(𝐸, 𝑂𝐸) ∶ 𝑘(𝑠)] [Liu02, Theorem 9.3.8], [Con+11, L12, Theorem 6]. This is
Castelnuovo’s criterion, and 𝐸 is said to be an exceptional divisor.

Going back to the general case, using blow downs, we get

curveminimal Theorem 3.2.3 (Lichtenbaum-Shafarevich). Let 𝐶/𝐾 be a smooth geometrically connected curve of genus 𝑔 ≥ 1.
Then there is a unique (up to unique isomorphism) minimal proper regular model 𝑋/𝑆 (resp. minimal regular model
with normal crossings, which means that the reduced special fibre is a normal crossing divisor) of 𝐶 over 𝑆. This
minimal model is projective, and Aut𝑆(𝑋) ≃ Aut𝐾(𝐶).
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Proof. This is [Rom13, Theorems 2.5.1 and 2.5.2] or [DM69, §2] or [Liu02, Theorem 9.3.21] or [Con+11, L12,
Theorem 14]. If we start with a regular model 𝑋 and blow down exceptional divisors, we get a relative regular
minimal model, and one can show that this model is actually minimal. By the same proof, every regular arithmetic
surface 𝑋 whose generic fiber of arithmetic genus 𝑝𝑎(𝑋𝐾) ≥ 1 has a unique minimal model.

The assertions on automorphism is from the minimality [Con+11, L12, Proposition 12].

One can also construct canonical models using the canonical dualizing sheaf 𝜔𝑋/𝑆 represented by its divisor
𝐾𝑋/𝑆:

Theorem 3.2.4 (Canonical model). Let 𝑋/𝑆 be a regular arithmetic surface, such that the arithmetic genus of the
generic fiber is greater or equalt to 2: 𝑝𝑎(𝑋𝐾) ≥ 2. Let ℰ be the list of all a vertical divisors such that 𝐾𝑋/𝑆.𝐷 = 0.
Then

• ℰ is finite, and there is a birational morphism 𝑋 → 𝑌 that contracts all the divisors in ℰ.

• the dualizing sheaf 𝜔𝑌/𝑆 is relatively ample;

• There is a 𝑚 such that 𝜔𝑚
𝑋/𝑆 is base point free, and then if 𝜙 is the morphism 𝑋 → ℙ𝑁

𝑆 associated to a generating
system, 𝜙(𝑋) = 𝑌.

Proof. This is [Liu02, Proposition 4.20]. See also [Con+11, L12, §3]. If 𝐷 is a vertical divisor over 𝑠, and 𝑘′ = 𝛤(𝐷),
the condition 𝐾𝑋/𝑆.𝐷 = 0 is equivalent to 𝐷/𝑘′ is a conic and deg𝑘′ 𝑂𝑋(𝐷) ∣ 𝐷 = −2, or that 𝐻1(𝐷, 𝑂𝐷) = 0
and 𝐷2 = −2[𝑘′ ∶ 𝑘(𝑠)] by [Liu02, Proposition 9.4.8]. The intersection matrix (𝐷𝑖 ⋅ 𝐷𝑗) of all 𝐷𝑖 ∈ ℰ is then
definite negative, and the contraction exists by Artin’s theorem [Liu02, Theorem 9.4.2 and Corollary 9.4.7].

3.2.2 Stable reduction of curves

A curve 𝐶/𝐾 has good reduction if there exists a smooth proper model 𝑋/𝑆; since 𝐶/𝐾 is smooth it always have
good reduction almost everywhere.

A curve 𝐶/𝐾 has stable (resp. semistable) reduction if there exists a regular model 𝑋/𝑆, proper and flat over
𝑆, such that its special fiber is a stable (resp. semistable) curve. Semistability is stable by dominant base change
of Dedekind scheme [Liu02, Proposition 10.3.15], and descends from étale morphisms or completions [Liu02,
Corollary 10.3.36].

Proposition 3.2.5. Let 𝐶/𝐾 be a smooth geometrically connected curve of genus 𝑔 ≥ 1, and let 𝑋 be its minimal
regular model.

Then 𝐶 has good reduction over 𝑆 if and only if 𝑋/𝑆 is smooth, and in this case 𝑋/𝑆 is the only smooth model of
𝑋. And 𝐶 has semistable reduction ⇔ its minimal regular model 𝑋/𝑆 is semistable ⇔ 𝑋𝑘 is reduced and has only
ordinary double points (ie is weakly semistable).

If 𝑔 ≥ 2, and let 𝑌/𝑆 is the canonical model, then we also have that 𝐶 has semistable reduction ⇔ 𝐶 has stable
reduction ⇔ 𝑌/𝑆 is stable (and in this case it is the unique stable model).

Proof. The assertion on good reduction is [Liu02, Proposition 10.1.21], for semistability and stability this is [Liu02,
Theorem 10.3.34]. See also [Con+11, Propositions 25 and 26, Theorem 30] and [Rom13, Proposition 3.1.1].

If 𝑋/𝑅 is a semistable model, by blow downs we may assume that it has no exceptional divisor. The singular
points of 𝑋𝑘 has for completed ring �̂�𝑋,𝑥 = 𝑅[[𝑎, 𝑏]]/(𝑎𝑏 − 𝜋𝑛). Blowing-up this singularity [𝑛/2] times yields a
regular scheme 𝑋′ whose special fibre has 𝑛 − 1 new projective lines of self intersection −2. This is the minimal
regular model by the proof of Theorem 3.2.3, so it is semistable.

Conversely if the minimal model is semistable, contracting all the projective lines of self intersection −2 in the
special fiber gives a normal surface with nodal singularities [Liu02, Theorem 9.4.15] (using that 𝑔 ≥ 2), hence a
stable model. See also [DM69, Proposition 2.3].

If 𝑋/𝑆 is a semistable curve whose generic fiber is smooth and geometrically irreducible, we may construct
the Néron model 𝒥 of the Jacobian 𝐽(𝑋𝐾) or the generalised Jacobian of 𝑋/𝑆, which is then semiabelian by
Theorem 2.4.10. As expected, the two are related:

34

[ Draft Version: Tuesday March 7, 2023 at 18:13 ]



3.2. Reduction of curves

prop:neronmodelgenjacobian Proposition 3.2.6. Let 𝑋/𝑆 be a proper flat and normal semistable curve whose generic fiber 𝑋𝐾 is geometrically
irreducible. Let 𝒥 be the Néron model of Jac(𝑋𝐾). Then 𝒥0 ≃ 𝒫𝑖𝑐0

𝑋/𝑆.

Proof. Since 𝒫𝑖𝑐0
𝑋/𝑆 is semiabelian by Theorem 2.4.10, it is the connected component of the Néron model of its

generic fiber 𝒫𝑖𝑐0
𝑋𝐾

by Proposition 3.1.14. See also [BLR12, Corollary 9.7.2] for another proof.

Remark 3.2.7. There are other cases where the Néron model 𝒥 of the Jacobian 𝐽(𝑋𝐾) of the generic fiber coincide
with the generalised Jacobian 𝒫𝑖𝑐0

𝑋/𝑆 of 𝑋/𝑆:

• If 𝑋/𝑆 is regular, flat, projective and has geometrically integral fibres, then 𝒥 ≃ 𝒫𝑖𝑐0
𝑋/𝑆 [BLR12, Theo-

rem 9.5.1], so the special fiber of 𝒥 is connected.

• If 𝑋/𝑆 is a regular, proper flat curve, whose generic fibre is geometrically irreducible, and 𝑘 is perfect (or
the spécial fibre is geometrically reduced), and the gcd of the geometric multiplicities of the irreducible
components of the special fiber is 1 (so that we can apply Theorem 2.4.10), then 𝒥0 ≃ 𝒫𝑖𝑐0

𝑋/𝑆. See also
[BLR12, Theorem 9.7.1] for a generalisation of both this result and Proposition 3.2.6.

cor:semistablecurvejac Corollary 3.2.8. Let 𝐶/𝐾 be a smooth geometrically connected curve of genus 𝑔 ≥ 2, and 𝑋/𝑆 be its minimal
regular model. Then 𝐶 has stable reduction over 𝑅 if and only if 𝐽(𝐶/𝐾) has semistable reduction over 𝑅 if and only if
𝒫𝑖𝑐0(𝑋𝑘) is a semi-abelian variety (ie has no unipotent subgroup).

Proof. One direction is clear by Proposition 3.2.6. For the converse, see [DM69, Theorem 2.4]. By descent, they
reduce to the case where 𝐶(𝐾) has a rational point. See also [Rom13, Theorem 3.4.1] for a summary of the proof in
this case. And in this case, the rational point extends to a point over 𝑋 by the valuative criterion of properness,
hence a rational point of 𝑋𝑘, so 𝐶/𝐾 has stable reduction if and only if Pic0(𝑋𝑘) is semiabelian.

Remark 3.2.9 (Good reduction of 𝐶 and its Jacobian). If 𝐶/𝐾 has good reduction over 𝑅, then its minimal regular
model 𝑋 is smooth, so Pic0

𝑋/𝑆 is an abelian scheme, and so is the Néron model of 𝐽 = 𝐽(𝐶): 𝒥 = Pic0
𝑋/𝑆. In

particular 𝐽(𝐶) has good reduction.
Conversely, if 𝐽(𝐶) has good reduction, then 𝐶 has stable reduction by Corollary 3.2.8, and 𝐽(𝐶)𝑘 = 𝐽(𝑋𝑘) by

functoriality of 𝒫𝑖𝑐. Since 𝐽(𝐶)𝑘 is abelian, 𝑋𝑘 is a curve of compact type. But 𝑋𝑘 may not be smooth, hence 𝐶
may not have good reduction. It will have good reduction if and only if 𝐽(𝐶)𝑘 is absolutely simple [Rou17].

th:potsemistablecurve Theorem 3.2.10 (Potential stable reduction of curves). Let 𝐶/𝐾 be a proper smooth geometrically connected curve.
Then it has potential semistable reduction (hence potential stable reduction if 𝑔 ≥ 2), ie there is a separate field
extension 𝐾′/𝐾 and a (semi)stable model (which can be chosen regular) 𝑋′/𝑅 of 𝑋𝐾 ⊗𝐾 𝐾′. This stable model is
unique.

Proof. Using Corollary 3.2.8, this is deduced from the potential semistable reduction of abelian varieties Theo-
rem 3.1.16 if 𝑔 ≥ 2. See [BLR12, Theorem 9.2.7] and [Rom13, Theorem 3.4.2].

If 𝑔 = 1, then 𝐶 is an elliptic curve (if it has a rational point), so we can directly use the theory of Néron models,
see Section 3.2.3.

There are also direct proofs (which can then be used to give a proof of the potential semistable reduction theorem
for abelian varieties), see the references in [Stacks, Tag 0C2Q] and [Liu02, Theorem 10.4.3].

rem:Mgconnected Remark 3.2.11. Theorem 3.2.10 is exactly the valuative criterion of properness for ℳ𝑔, the moduli stack of stable
curves of genus 𝑔 ≥ 2 by [Stacks, Tags 0CLY and 0CLK]. Hence this stack is proper ([Rom13, § 4.1]). By Zariski
main theorem, since ℳ𝑔 ⊗ℤ ℂ is connected, every fibers of ℳ𝑔/ℤ are geometrically connected [Stacks, Tag 0AY8],
hence geometrically irreducible since ℳ𝑔/ℤ is smooth. This is the proof in [DM69, §5] (see [DM69, Theorem 5.2]
where they show it is a proper smooth Deligne-Mumford stack), see also [DM69, §3] for an algebraic proof.

See also [MFK94, Appendix 5.D p.228] for an analog proof using the fact that the coarce moduli M𝑔 of ℳ𝑔 is a
projective variety with geometrically unibranch fibers. (Note that the geometric irreductibility of the ℳ𝑔 ⊗ℤ 𝔽𝑝
implies the one of their coarse moduli space since they have the same topological space.)

Note that curves of genus 1 have too many automorphisms so the moduli stack is constructed by fixing some
points.
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3. Degenerations and lifts

3.2.3 Elliptic curves
subsec:elliptic

An elliptic curve is both a smooth proper curve and an abelian variety. Hence we can relate its Néron model with
its proper minimal regular model.

Theorem 3.2.12. Let 𝐸/𝐾 an elliptic curve, then the Néron model 𝒩 of 𝐸 is the smooth locus of its minimal regular
proper model ℰ, and the smooth locus of a minimal Weierstrass model 𝒲 is isomorphic to ℰ0.

Proof. This is [Liu02,Theorem10.2.14] (see also [BLR12, Proposition 1.5.1]).Moreover𝐻0(ℰ, 𝜔ℰ/𝑆) = 𝐻0(𝒩, 𝜔𝒩/𝑆) =
𝐻0(𝒲, 𝜔𝒲/𝑆) ⊂ 𝐻0(𝐸, 𝜔𝐸/𝑆)). Note that there are effective algorithms (Tate algorithm) to construct the minimal
Weierstrass model 𝒲 (assuming 𝑆 affine), and ℰ is then the minimal desingularisation of 𝒲.

As an application, we recover the reduction map: 𝑟 ∶ 𝐸(𝐾) = 𝒩(𝑅) → 𝒩𝑘(𝑘) ⊂ 𝒩0
𝑘 (𝑘) = 𝒲𝑠𝑚(𝑘). Using this

reduction map, we define a filtration of abelian groups 𝐸(𝐾)1 ⊂ 𝐸(𝐾)0 ⊂ 𝐸(𝐾) such that 𝐸(𝐾)1 = 𝑘𝑒𝑟(𝑟) ⊂
𝐸(𝐾)0 ∶= 𝑟−1(𝒩0

𝑘 (𝑘)) ⊂ 𝐸(𝐾). The reduction map 𝑟 then induces isomorphisms 𝐸(𝐾)0/𝐸(𝐾)1 ≃ 𝒩0
𝑘 (𝑘),

𝐸(𝐾)/𝐸(𝐾)0 ≃ 𝛷𝐸(𝑘) = 𝒩𝑘/𝒩0
𝑘 by [Liu02, Proposition 10.2.26].

3.3 𝑝-divisible groups
sec:pdivisible

Planned topics

3.3.1 Finite flat group schemes
subsec:finiteflat

Grothendieck’s Galois theory gives an equivalence of category between finite etale covers over 𝑆 and 𝜋1(𝑆, 𝑠)-finite
sets given by the fiber (𝑠 a geometric point of the connected locally noetherian 𝑆): [Gro71]. This induces an
equivalence between finite etale groups and 𝜋 ≔ 𝜋1(𝑆, 𝑠)-finite groups.

Finite flat group schemes (Deligne theorem: a commutative finite flat group schemes is killed by its order).
The (functorial) connected-étale exact sequence 0 → 𝐺0 → 𝐺 → 𝐺𝑒𝑡 [Tat97, p. 3.7] over an Henselian local

ring 𝑅. (This extends Lemma B.1.2 by using Proposition A.4.1.)

• If 𝐺 = Spec𝐴 is affine then 𝐺𝑒𝑡 is the spectrum of the largest étale quotient of 𝐴, so in general a morphism
from 𝐺 to an étale 𝐻 factors through 𝐺𝑒𝑡.

• The order of 𝐺0 is a power of 𝑝 (in characteristic zero: 𝐺 = 𝐺𝑒𝑡).

• If 𝑅 = 𝑘, then 𝐺 is killed by its order, and if 𝑘 is perfect the connected-étale exact sequence splits (via
𝐺red ≃ 𝐺𝑒𝑡).

• 𝐺𝑒𝑡(𝑘) ≃ 𝐺(𝑘)

See also the very nice application to elliptic curves in [BCn10].
Generalisation to an arbitrary base: the connected-étale sequence of a finite flat group scheme 𝐺/𝑆 exists if and

only if the separable rank is locally constant [Mes72, Lemma 4.8]3.
Warning: for a general base, the connected component of the identity does not commute with (non local) base

change (eg passage to the generic fiber). See the discussion at [TJC16].
Prolongations [Tat97, §4], Classification?
Dieudonne module: if 𝐺/𝑘 is a finite commutative algebraic 𝑘-group, 𝑀(𝐺) = Hom(𝐺, 𝐶𝑊) where 𝐶𝑊 is the

fppf sheaf of Witt covectors. This defines an anti-equivalence from the category of finite commutative algebraicp-
groups over 𝑘 to that of Dieudonné modules of finite length over 𝑊(𝑘) (ie with an action of 𝐹 and 𝑉).

Dieudonné-Manin classification theorem.

3Let me quote Messing about this proof: “Apologies are offered in advance to the reader for the proof in the following lemma”.
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3.3. 𝑝-divisible groups

3.3.2 Barsotti-Tate groups
subsec:BTgroups

𝑝-divisible/Barsotti-Tate groups, fppf groups sheaves [Con+11, pp. L09, L10], [Rio03].
Connected-étale exact sequence by going to the limit. Also the equivalence of category on finite étale group

above (ie by Grothendieck’s Galois theory) gives an equivalence of category between étale 𝑝-divisible groups and
free ℤ𝑝-modules with a continuous action of 𝜋.

Example: For 𝐴/𝑅 an abelian scheme (𝑅 henselian local), themodule associated to 𝐴(ℓ) (ℓ ≠ 𝑝) is 𝑇ℓ(𝐴) with the
action of 𝜋1(𝑅). Rem: 𝐴(ℓ) also encode the ℓ-covers of 𝐴. By Galois theory we have 𝐻1(𝐴, ℤℓ) = Hom(𝜋𝑒𝑡

1 𝐴, ℤℓ).
So this proves that 𝐻1(𝐴, ℤℓ) = 𝑇ℓ(𝐴)∨ as in Theorem 2.2.12.

Extension of 𝑀(𝐺) to formal group and to 𝑝-divisible groups. The contravariant Dieudonné functor induces
an anti-equivalence between 𝑝-divisible groups and Dieudonné modules free of finite rank over 𝑊(𝑘). (The
Dieudonné module can be seen as the “limit” 𝔻(𝐺/𝑊(𝑘))𝑊(𝑘) of the crystal 𝔻(𝐺/𝑊(𝑘)) associated to it, [CO09,
Remark 4.34].) For an étale 𝑝-divisible group the associated Dieudonné module/crystal is the free ℤ𝑝 module with
its Galois action from the Galois theory above. (When 𝐺 is étale, 𝐹 is bijective and so induces 𝑉; eg 𝑉 is zero if we
are in characteristic 𝑝.)

Hodge-Tate decomposition of 𝑝-divisible groups [Ser66, Théorèmes 2 et 3]: 𝑇𝑝𝐺 ⊗ ℂ𝑝 ≃ 𝑡𝐺 ⊗ ℂ𝑝(1) ⊕
Hom(𝑡𝐺∨, ℂ𝑝). Proof: Logarithm: 𝐿 ∶ 𝐺(𝑅) ⊗ ℚ𝑝 ≃ 𝑡𝐺 ⊗𝑅 𝐾 where 𝑡𝐺 is the tangent space to 𝐺°. We have
isomorphisms 𝛼 ∶ 𝐺(𝑅) → Hom𝜋(𝑇𝑝𝐺∨, 𝑈ℂ𝑝

) and 𝑑𝛼 ∶ 𝑡𝐺 ⊗𝑅 𝐾 → Hom𝜋(𝑇𝑝𝐺∨, 𝑈ℂ𝑝
). Where 𝑈ℂ𝑝

∶
inversibles elements of 𝒪ℂ𝑝

congruent to 1.

Equivalence between connected 𝑝-divisible groups and formal lie algebra [Ser66, §1.4]. (By seeing them both
as fppf group sheaves). The Cartier module of the formal group is isomorphic to the Dieudonne module of the
connected 𝑝-divisible group [CO09, Theorem 4.33].

Formal smoothness of 𝑝-divisible groups [Ill15, Theorem 4.2.1], [Ill85, §4.4], [CO09, Theorem 2.4].
Crystals [Mes72] (= extension of the Dieudonné functor to schemes). Fully faithfull embedding [De 98, §2].

Surjectivity (hence bijectivity) of the reduction of morphisms to the generic fiber (Tate [Tat67], [Ser66, Théorème 1]
for number fields and De Jong) [De 98, §3], [Jon98, Theorem 1.1] for function fields). Deforming divisible groups
= lifting the Hodge filtration (in an admissible way) [Mes72, Theorem V.1.6]. See also the nice summary in [CN90,
§ 2].

Newton polygons (and lift under specialization): [Ill15, §5], [Oor01b], [CO09, Theorem 1.22].

3.3.3 Applications to abelian varieties

The crystal of 𝐴(ℓ) is exactly 𝑇ℓ(𝐴) (both for ℓ ≠ 𝑝 and ℓ = 𝑝). If ℓ = 𝑝, this is also the first crystalline cohomology
group. If 𝐴0/𝑅0 lift to 𝐴/𝑅 (𝑅 𝔭-adically complete separated), then the crystalline cohomology (for the crystalline
site induced by 𝑅) of 𝐴0 is 𝐻1

𝐷𝑅(𝐴/𝑅).TheHodge filtration induces a Hoge filtration on the crystalline cohomology
(ie the crystal), which is exactly the filtration corresponding to the deformation of 𝔻(𝐴0(𝑝)) from Section 3.3.2.

The connected-étale exact sequence for an abelian variety.The connected part of its 𝑝-divisible group corresponds
to the formal group law of 𝐴. Compatibility with Cartier duality.

Application to Tate’s isogeny theorem (via equivalence between isogenies of abelian varieties and of their 𝑝-
divisible groups, and then using crystals which are their Tate modules), both for finite fields (Tate) [WM71,
Theorem 6], number fields (Faltings [Fal86]), and function fields (Zarhin [Zar75] and Morin [Mor78] for 𝑇ℓ , De
Jong for 𝑇𝑝 [De 98, Theorem 4], [Jon98, Theorem 2.6]). (Warning: this is not true over ℚ𝑝)

Application: if we have a morphism 𝐹 between Tate modules of abelian schemes 𝐴, 𝐵 over 𝑆 (reduced and
connected), such that 𝐹𝑠 is realised by an isogeny 𝑓 ∶ 𝐴𝑠 → 𝐵𝑠, then 𝑚𝐹 is realised by an isogeny 𝑓 ∶ 𝐴 → 𝐵 for a
suitable power 𝑚 = 𝑝𝑒 of 𝑝 (so 𝑚 = 1 if 𝑝 = 0), see [Gro66a; Per13].

Recall we have seen: 𝐴/𝑅 has good/semi-stable reduction iff 𝐴(ℓ) has (even if ℓ = 𝑝), [De 98].
Serre-Tate local coordinates [Kat81; CN90, § 3].
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3. Degenerations and lifts

3.4 lifts of abelian varieties
sec:lifts

3.4.1 General theory

Lifting schemes to artinian rings and obstructions (in 𝐻2) via the cotangent complex [Stacks, Tag 08V3], [Ill72],
[FGI05, §8.5.7]. For a smooth scheme this is just the tangent space.

Formal schemes [FGI05, §8.1], [Stacks, Tag 0AHW]. Grothendieck criterion of formal representability [Oor71a],
Schlessinger criterion [Stacks, Tags 06G7 and 06JK], versality [Stacks, Tag 06SX].

Grothendieck’s existence/algebraicity theorem [FGI05, §8.4], [Stacks, Tags 087V, 0886, 0CYW].

3.4.2 Lifting abelian varieties

For an abelian variety, lifting as a scheme lift the group structure by rigidity, and the obstruction vanishes using the
group law [FGI05, Theorem 8.5.23].

Pro-representability of the functor of lifts of an abelian variety: non polarised case (Grothendieck) [Oor71a,
Theorem 2.2.1] and polarised case (Mumford) [Oor71a, Theorem 2.3.3].

Application to algebraicity of polarised abelian varieties: algebraicity when the when the polarisation is separable
(hence lift), in particular for principally polarised abelian varieties [Oor71a, Theorem 2.4.1 and Corollary 2.4.2].

An abelian variety always lift in characteristic zero [Oor79; NO80] (possibly over a ramified extension if the
polarisation is non separable).

See also the surveys [Oor95; Oor15] about lifting abelian varieties. For the particular case of lifting CM abelian
varieties, see the book [CCO13] (and its survey [Oor09]).

3.4.3 Serre-Tate theorem and canonical lifts

Serre-Tate theorem [LST64], [Ser66, Théorème 4] (Drinfeld’s proof as exposed in [Kat81] and the nice surveys [Dos;
You15]). Good references are [Mes72, § V.3.4 and Appendix; Kat81]; see also [MS87, Appendix] for an extension to
smooth projective varieties.

See also the alternative proof by Grothendieck [Ill85] using the refined version of BT lifting [Ill15, Theorem 4.2.1]
So we reduce to lifting BT groups, which reduces (in nice cases) to lifting the Hodge filtration of their crystals

𝐷(𝐺) (if 𝑝 > 2) [Mes72, Theorem V.1.6].
Canonical lifts of ordinary abelian varieties over a perfect field 𝑘 (the connected-étale sequence split and we take

the unique lift that still split4), canonical coordinates on the moduli space [Mes72, Appendix; Kat81]. See also
[Rob21, ??].

Canonical lifting is a fully faithful functor compatible with the Galois action.They are characterized by End(𝐴) =
End(𝐴) or by lifting of the Frobenius. [Mes72, Appendix, Corollaries 1.2 and 1.3].

4If 𝑅 is henselian local and 𝑘 perfect, if 𝐺° is of multiplicative type, there is a unique lift of a 𝑝-divisible 𝐺/𝑘 to 𝐺/𝑅 such that the
connected-étale exact sequence stays split. Indeed, 𝐺𝑒𝑡 lifts uniquely to an étale 𝑝-divisible group, so 𝐺° too by duality, and we have a
bijection between lifts 𝐺/𝑅 and Ext1(𝐺°/𝑅, 𝐺𝑒𝑡/𝑅). So we have a group structure on lifts, and the zero element corresponds to the split
connected-étale exact-sequence; this is the canonical lift
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4 PA I R I NGS IN ABEL I AN VAR I E T I E S

chap:pairings

contents
4.1 The Weil pairing 39

4.1.1 The many facets of the Weil pairing 39
4.1.2 Weil’s reciprocity and alternative definitions of the Weil pairing 42
4.1.3 Restricting the Weil pairing to subgroups 44

4.2 The Tate pairing 45
4.2.1 The Tate-Cartier pairing 45
4.2.2 The Tate-Lichtenbaum pairing 48
4.2.3 Restricting the Tate-Lichtenbaum pairing to subgroups 48
4.2.4 The Tate pairing 49

4.1 the weil pairing
sec:weil

4.1.1 The many facets of the Weil pairing
subsec:weilpairingdef

There is many instance of the Weil pairing. We describe some of these. Note that if 𝑒𝑊 is a bilinear application
with value the multiplicative group, 𝑒𝑛

𝑊 is still bilinear but certainly cannot be non-degenerate (hence a pairing)
in characteristic 𝑝 ∣ 𝑛. So since the Weil pairing is universal over ℤ, there is essentially only a sign ambiguity in
defining the Weil pairing1.

Let us first give the philosophy behind the Weil pairing. If 𝐴/𝑘 is an abelian variety, the dual abelian variety 𝐴
is the scheme representing the connected component of the Picard sheaf. (This coincides with the definition of
Pic0(𝐴) as the line bundles algebraically equivalent to zero, and this extends to abelian scheme using the relative
Picard sheaf. We refer to Section 2.3.2 for more details.) Since 𝐴 has a rational point 0𝐴, this allow us to describe
𝐴(𝑇) as the set of line bundles fiberwise algebraically equivalent to zero and rigidified along the pullback of the
zero section. In particular, 𝐴(𝑘) are the rational line bundles over 𝐴 algebraically equivalent to zero. There is
a canonical/universal Poincare sheaf 𝒫 on 𝐴 × 𝐴. For instance this is the line bundle induced by the universal
property of 𝐴 on the identity morphism id ∶ 𝐴 → 𝐴. Using the Poincare bundle, one can show that 𝐴 is canonically
isomorphic to its bidual [Mum70a].

This means that 𝐴 ≃ Hom𝑘(𝐴, 𝐵𝔾𝑚) where 𝐵𝔾𝑚 is the classifying stack of 𝔾𝑚 over 𝑘 (hence represents line
bundles). So 𝐴 is the dual of 𝐴 in a somewhat abstract manner, and theWeil pairing can be seen as a way tomake this
duality “concrete”, at last on finite subgroups of 𝐴, eg by showing that 𝐴[𝑚] is the Cartier dual of 𝐴[𝑚] (canonically).
Alternatively, we will see that2 we may also interpret 𝐴 as the Ext-sheaf Ext1𝑘(𝐴, 𝔾𝑚) ≃ 𝜏≤1𝑅Hom𝑘(𝐴, 𝔾𝑚)[1]
(where 𝑅Hom is in the derived category and the isomorphism comes from the fact that Hom𝑘(𝐴, 𝔾𝑚) = 0 since
𝐴/𝑘 is projective and 𝔾𝑚 is affine). Once again this somewhat abstract duality is made concrete by the Weil pairing.

Let us close this philosophical parenthese, and go back to the concrete definition of the Weil pairing. References
for these definitions are [Mum70a; Mil91, §16; Sil10] The Weil pairing is geometric (it does not depends on the
field extension), and commutes with the Galois action. So we might as well assume that 𝐴 is defined over 𝑘.

1This raises the interesting question of whether the Weil pairing is the only pairing on abelian schemes satisfying suitable functorial like
properties and defined over ℤ

2I am told that this also follow formally from the Dold-Kan correspondance. There is also probably a way to define a derived dual abelian
scheme as ℝ𝐴 = 𝑅Hom(𝐴, 𝐵𝔾𝑚), so that ℝ𝐴 corresponds to 𝑅Hom(𝐴, 𝔾𝑚), but my knowledge of this subject is far too limited to
hasard such a statement.
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4. Pairings in abelian varieties

• If 𝑓 ∶ 𝐴 → 𝐵 is an isogeny, 𝐾 = Ker 𝑓, then if 𝐾 is the kernel of the dual isogeny ̂𝑓 ∶ 𝐴 → �̂�, 𝐾 is canonically
identified with the Cartier dual of 𝐾: 𝐾 ≃ Hom(𝐾, 𝔾𝑚). Hence there is a canonical non degenerate pairing
(often called the Weil-Cartier pairing): 𝑒𝑓 ∶ 𝐾 × 𝐾 → 𝔾𝑚.

We can compute 𝑒𝑓 as follow. Let 𝑄 ∈ �̂�(𝑘), 𝑄 then correspond to a line bundle ℒ𝑄 algebraically equivalent
to 0 on 𝐵𝑘. Concretely, if 𝒫 is the Poincare bundle on 𝐵 × �̂�, ℒ𝑄 = 𝒫𝑄 where 𝒫𝑄 is the pullback of 𝒫
by 𝐵 → 𝐵 × �̂�, 𝑃 ↦ (𝑃, 𝑄). Then ̂𝑓 (𝑄) = 𝑓 ∗ℒ𝑄 = 0 ∈ 𝐴 = Pic0(𝐴𝑘), so 𝑓 ∗𝑄 is isomorphic to the
trivial bundle 𝒪𝐴𝑘

on 𝐴𝑘. In other words, 𝒪𝐴𝑘
descend via 𝑓 to the line bundle ℒ𝑄, by descent theory this

correspond to a section 𝐾 → 𝐺(𝒪𝐴𝑘
) associated to such an isomorphism 𝜓𝑄 ∶ 𝑓 ∗𝑄 → 𝒪𝐴𝑘

. Then 𝑒𝑓(𝑃, 𝑄)
is the scalar that makes the following diagram commute:

𝑓 ∗ℒ𝑄 𝒪𝐴

𝜏∗
𝑃𝑓 ∗ℒ𝑄 𝜏∗

𝑃𝒪𝐴.

𝜓𝑄

𝜏∗
𝑃𝜓𝑄

𝑒𝑓(𝑃, 𝑄)

(4.1) {eq@pairing@isogenie@diagcommutatif}

Wecan reformulate this diagram as follow: since𝒪𝐴𝑘
∈ Pic0(𝐴𝑘),𝐺(𝒪𝐴𝑘

) = 𝐴𝑘×𝑘 is commutative (because
𝑒𝒪𝐴𝑘

is trivial on 𝐴𝑘). The action of 𝐺(𝒪𝐴𝑘
) on the trivial line bundle 𝐴𝑘 × 𝔸1

𝑘
is given by (𝑥, 𝜆).(𝑦, 𝛾) =

(𝑥 + 𝑦, 𝜆𝛾). So the section 𝐾 → 𝐺(𝒪𝐴𝑘
) corresponds to a character 𝜒 such that 𝐾 acts on the trivial line

bundle via 𝑥.(𝑦, 𝛾) = (𝑦 + 𝑥, 𝜒(𝑥)𝛾) and ℒ𝑄 is the quotient of 𝐴𝑘 × 𝔸1
𝑘
by this action. Then [Mum70a,

p. 183; EGM12, (11.12)]:
𝑒𝑓(𝑃, 𝑄) = 𝜒(𝑃).

More geometrically, if 𝐷𝑄 is a divisor representing ℒ𝑄, 𝑓 ∗𝐷𝑄 is principal, so is the divisor of a rational
function 𝑔𝑓 ,𝑄. Then 𝑔𝑓 ,𝑄/𝑡∗

𝑃𝑔𝑓 ,𝑄 = 𝜒(𝑃) so that [Mum70a, p. 184; EGM12, (11.13)]

𝑒𝑓(𝑃, 𝑄) = 𝑔𝑓 ,𝑄(𝑋)/𝑔𝑓 ,𝑄(𝑋 + 𝑃) (4.2) {eq:pairinggQ}

where 𝑋 is any point of 𝐴𝑘 such that 𝑔(𝑋 + 𝑃) is well defined.
The functoriality of the dual isogeny induce the following functoriality on the Weil-Cartier pairing: if
𝛼 ∶ 𝑈 → 𝐴 and 𝛽 ∶ 𝐵 → 𝑉 are isogenies, then for 𝑃 ∈ 𝛼−1(𝐾(𝑘)) and 𝑄 ∈ ̂𝛽−1�̂�(𝑘) we have

𝑒𝛼∘𝑓 ∘𝛽(𝑃, 𝑄) = 𝑒𝑓(𝛼𝑃, ̂𝛽𝑄). (4.3) {eq:pairingcompatisogeny}

• A particular case is the isogeny [𝑛] of multiplication by 𝑛, this gives a non degenerate pairing 𝑒𝑛 ∶ 𝐴[𝑛] ×
𝐴[𝑛] → 𝜇𝑛, usually called the Weil pairing.

We have the following compatibility: if 𝑃 ∈ 𝐴[𝑛𝑚1](𝑘), 𝑄 ∈ 𝐴[𝑛𝑚2], 𝑒𝑛𝑚1𝑚2
(𝑃, 𝑄) = 𝑒𝑛(𝑚1𝑃, 𝑚2𝑄).

So the Weil pairings glue to form a pairing ̂𝑒ℓ ∶ 𝑇ℓ𝐴 × 𝑇ℓ𝐴 → ℤℓ(1) where ℤℓ(1) = lim←− 𝜇ℓ𝑛 is the Tate twist.

• If ℒ is an ample line bundle (or even simply a non degenerate line bundle), then the associated polarisation
𝛷ℒ ∶ 𝐴 → 𝐴 is an isogeny. 𝛷ℒ is autodual (using that 𝐴 is canonically isomorphic to its bidual), hence the
pairing associated to this isogeny is: 𝑒ℒ ∶ 𝐾(ℒ) × 𝐾(ℒ) → 𝔾𝑚.
As a particular case of a Weil-Cartier pairing, we have that the following diagram is commutative up to the
action of 𝑒𝜙(ℒ)(𝑃, 𝑄):

ℒ 𝜏∗
𝑃ℒ

𝜏∗
𝑄ℒ 𝜏∗

𝑃+𝑄ℒ.

𝜓𝑃

𝜏∗
𝑄𝜓𝑃

𝜓𝑄 𝜏∗
𝑃𝜓𝑄
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4.1. The Weil pairing

We have the following functorial compatibilities (see [Mum70a, p. 228]):
point@fonctorialite@pairing@polarisation1 1. If 𝑓 ∶ 𝐴 → 𝐵 is an isogeny and ℳ is ample on 𝐵,

𝑒𝑓 ∗ℳ(𝑥, 𝑦) = 𝑒ℳ(𝑓 (𝑥), 𝑓 (𝑦))

for all 𝑥, 𝑦 ∈ 𝑓 −1(𝐾(ℳ)).
item:cartierpairingproductpolarisation 2. If ℒ1 and ℒ2 are ample on 𝐴, 𝑒ℒ1⊗ℒ2

(𝑥, 𝑦) = 𝑒ℒ1
(𝑥, 𝑦)𝑒ℒ2

(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝐾(ℒ1) ⋂ 𝐾(ℒ2).
Indeed, 𝛷(ℒ1 ⊗ ℒ2) = 𝛷(ℒ1) + 𝛷(ℒ2), so 𝛷ℒ1⊗ℒ2

so this result can be seen by looking at
the composition 𝐴 → 𝐴 × 𝐴 → 𝐴 × 𝐴 → 𝐴 given by 𝑥 ↦ (𝑥, 𝑥) ↦ (𝛷ℒ1

(𝑥), 𝛷ℒ2
(𝑥)) ↦

𝛷ℒ1
(𝑥) + 𝛷ℒ2

(𝑥).

point@fonctorialite@pairing@polarisation3 3. 𝑒ℒℓ(𝑥, 𝑦) = 𝑒ℒ(𝑥, ℓ𝑦) for all 𝑥 ∈ 𝐾(ℒ) and 𝑦 ∈ [ℓ]−1(𝐾(ℒ)).

• If ℒ is an ample line bundle, the theta group 𝐺(ℒ) is a central extension of 𝐾(ℒ) by 𝔾𝑚. The associated
commutator pairing (which can also be defined in term of the 2-cocycle associated to the extension, see
[Rob21, ??]) gives a pairing 𝑒ℒ ∶ 𝐾(ℒ) × 𝐾(ℒ) → 𝔾𝑚. This is exactly the same pairing as above, as the
commutative diagram above shows.

• On the other side of the spectrum, if ℒ is algebraically equivalent to 0, then 𝐺(ℒ) is commutative and an
extension of 𝐴 by 𝔾𝑚. This provide a canonical identification of 𝐴 with Ext1(𝐴, 𝔾𝑚) [Mum70a].
Then if 𝑓 ∶ 𝐴 → 𝐵 is an isogeny, the standard long cohomological sequence gives gives 0 → Hom(Ker 𝑓 , 𝔾𝑚) →
Ext1(𝐵, 𝔾𝑚) → Ext1(𝐴, 𝔾𝑚) → 0 using that Hom(𝐴, 𝔾𝑚) = 0 and Ext1(Ker 𝑓 , 𝔾𝑚) = 0. We recover
this way the dual isogeny ̂𝑓 and a canonical identification Ker ̂𝑓 = Hom(Ker 𝑓 , 𝔾𝑚), which induces the
Weil-Cartier pairing 𝑒𝑓.

Concretely the identification of 𝐴 with Ext1(𝐴, 𝔾𝑚) is as follow. First we identify 𝐴 with Pic0
𝐴. Then

if [𝐷] ∈ Pic0
𝐴, then all 𝑃 ∈ 𝐴(𝑘), 𝜏∗

𝑃𝐷 − 𝐷 is principal, of the form 𝑔𝐷,𝑃, hence we get an element
of Ext1(𝐴, 𝔾𝑚) by (𝑃, 𝑄) ↦ 𝑔𝐷,𝑃(𝑥 + 𝑄)/𝑔𝑃(𝑥) for any 𝑥 where this is well defined. Plugging this
identification into 𝑒𝑓, we recover Equation (4.2).

• If ℒ is an ample line bundle, then ℒ𝑛 is ample and 𝐾(ℒ𝑛) = [𝑛]−1𝐾(ℒ). The pairing corresponding to
the isogeny 𝛷ℒ𝑛 𝑒ℒ𝑛 ∶ 𝐾(ℒ𝑛) × 𝐾(ℒ𝑛) → 𝔾𝑚 is also the Weil-Cartier pairing associated to the isogeny
𝛷ℒ ∘ [𝑛].
Its relationship with the Weil pairing 𝑒𝑛 is as follow:

𝑒ℒ𝑛(𝑥, 𝑦) = 𝑒𝑛(𝑥, 𝜙ℒ(𝑦))

for all 𝑥 ∈ 𝐴[𝑛] and 𝑦 ∈ [𝑛]−1𝐾(ℒ) = 𝜙−1
ℒ (𝐴[𝑛]).

So the 𝑒ℒ𝑛 glue together to form a pairing ̂𝑒ℒ,ℓ on 𝑇ℓ𝐴, and we have ̂𝑒ℒ,ℓ(𝑥, 𝑦) = ̂𝑒ℓ(𝑥, 𝛷ℒ(𝑦)).

• The Poincare line bundle 𝒫 is principal on 𝐴×𝐴, hence 𝒫𝑛 induce a pairing on 𝐴[𝑛]×𝐴[𝑛]×𝐴[𝑛]×𝐴[𝑛],
which is given by 𝑒𝒫𝑛(𝑥1, 𝑥2, 𝑦1, 𝑦2) = 𝑒𝑛(𝑥1, 𝑦2)𝑒−1

𝑛 (𝑥2, 𝑦1).
In particular we may recover the Weil pairing 𝑒𝑛 from 𝑒𝒫𝑛 .

• If 𝑋 is a complex curve of genus 𝑔, there is a period map 𝐻1(𝑋, ℤ) × 𝛺1
𝑋 → ℂ, (𝛾, 𝜔) ↦ ∫𝛾 𝜔, where

𝛺1
𝑋 = 𝐻0(𝑋, 𝛺1). The Jacobian of 𝑋 is then 𝐽(𝑋) = 𝛺1

𝑋
∨/𝐻1(𝑋, ℤ) ≃ ℂ𝑔/𝛬. We also have a dual

construction: 𝐻1(𝑋, ℤ) embeds into 𝐻1(𝑋, ℝ), which is dual to 𝐻1(𝑋, ℝ) by Poincare duality. The com-
plex structure on 𝐻1(𝑋, ℝ) is compatible with the Hodge decomposition 𝐻1(𝑋, ℂ) = 𝐻1

𝑑𝑅(𝑋, ℂ) =
𝐻0,1(𝑋, ℂ) ⊕ 𝐻1,0(𝑋, ℂ) = 𝐻0(𝑋, 𝛺1) ⊕ 𝐻1(𝑋, 𝑂𝑋). So we may also dually construct 𝐽(𝑋) as 𝐽(𝑋) =
𝐻1(𝑋, 𝑂𝑋)/𝐻1(𝑋, ℤ).
The intersection product yields an alternate pairing 𝐻1(𝑋, ℤ) × 𝐻1(𝑋, ℤ) → ℤ, hence 𝐻1(𝑋, ℤ/𝑛ℤ) ×
𝐻1(𝑋, ℤ/𝑛ℤ) → ℤ/𝑛ℤ, hence a pairing 𝐽(𝑋)[𝑛] × 𝐽(𝑋)[𝑛] → ℤ/𝑛ℤ. This is exactly the Weil pairing on
the principally polarised 𝐽(𝑋).
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4. Pairings in abelian varieties

• If 𝑋/ℂ is a complex abelian variety, we have seen that an ample polarisation corresponds to an hermitian
form 𝐻 (and a symplectic form 𝐸 = ℑ𝐻 on the lattice 𝛬). Then for 𝑥, 𝑦 ∈ 𝐾(𝐻), 𝑒𝐻(𝑥, 𝑦) = 𝑒−2𝑖𝜋𝐸(𝑥,𝑦).
The pairing corresponding to the polarisation 𝑛𝐻 is then for 𝑥, 𝑦 ∈ 𝐾(𝑛𝐻) = [𝑛]−1𝐾(𝐻), 𝑒𝑛𝐻(𝑥, 𝑦) =
𝑒−2𝑖𝜋𝑛𝐸(𝑥,𝑦). So the Weil pairing induced by all 𝑛𝐻, 𝑛 ∈ ℕ encode the symplectic form 𝐸 on 𝛬.
If 𝑋 = 𝑉/𝛬, the dual abelian variety �̂� is �̂� = Hom(𝛬, ℂ∗

1) = Homℂ(𝑉, ℂ)/𝛬⋆ where 𝛬⋆ = {𝑓 ∈
Homℂ(𝑉, ℂ), ℑ𝑓 ⊂ ℤ}, [Rob10, p. 29]. The polarisation corresponding to the Poincare bundle on 𝑋 × �̂� is
then (𝑣1, 𝑣2, 𝑓1, 𝑓2) ↦ 𝑓1(𝑣2) + 𝑓2(𝑣1).

• For an abelian variety 𝐴 over 𝑘, given a polarisation (induced by a line bundle) ℒ, one may also recover a
symplectic form on the Tate module 𝑇ℓ𝐴 when ℓ ≠ 𝑝 imitating the procedure to get the symplectic form 𝐸
on 𝛬 in the complex case (see Section 2.1.2), as follow: the Kummer exact sequence 1 → 𝜇ℓ𝑛 → 𝔾𝑚

ℓ𝑛
−−→

𝔾𝑚 → 1 yields the following exact sequence in étale cohomology, using that Pic(𝐴) = 𝐻1(𝐴, 𝔾𝑚):

0 → Pic(𝐴𝑘)/ℓ𝑛 Pic(𝐴𝑘) → 𝐻2(𝐴𝑘, 𝜇ℓ𝑛) → 𝐻2(𝐴𝑘, 𝔾𝑚)ℓ𝑛 → 0.

Passing to the inverse limit using that Pic(𝐴𝑘)/ℓ𝑛 Pic(𝐴𝑘) = NS(𝐴𝑘)/ℓ𝑛 NS(𝐴𝑘) yields

0 → NS(𝐴𝑘) ⊗ ℤℓ(1) → 𝐻2(𝐴𝑘, ℤℓ(1)) → 𝑇ℓ𝐻2(𝐴𝑘, 𝔾𝑚) → 0.

In other words, a polarisation ℒ induces a symplectic form 𝐸ℒ,ℓ on 𝑇ℓ(𝐴).
We have that 𝐸ℒ,ℓ = − ̂𝑒ℓ [Mil91, §16].

See also [Mil91, Proposition 16.6] for a characterisation of when a morphism 𝜆 ∶ 𝐴 → 𝐴 is a polarisation, ie
comes from an ample line bundle ℒ. This is exactly when 𝑒𝜆 is skew-symmetric (in characteristic different
from 2) on 𝑇ℓ(𝐴).

ex:weilpolarisation Example 4.1.1 (Polarisation and pairings). If 𝑓 ∶ 𝐴 → 𝐵 we have theWeil-Cartier pairing 𝑒𝑓 ∶ Ker 𝑓 ×Ker ̂𝑓 → 𝔾𝑚.
If 𝐵 has a polarisation ℒ, we have an isogeny 𝛷ℒ ∘ 𝑓 ∶ 𝐴 → 𝐵 → �̂�, and the Weil-Cartier pairing gives a pairing on
𝑒ℒ,𝑓 ∶ 𝑓 −1(𝐾(ℒ)) × 𝛷−1

ℒ Ker ̂𝑓 → 𝔾𝑚.
If 𝑃 ∈ Ker 𝑓 and 𝑄 ∈ 𝛷−1

ℒ Ker ̂𝑓, then by compatibility of the Weil-Cartier pairing with isogenies Equation (4.3),
𝑒ℒ,𝑓(𝑃, 𝑄) = 𝑒𝑓(𝑃, 𝛷ℒ(𝑄)). Also if ℒ = ℒ0

𝑛, 𝛷ℒ = 𝛷𝑛
ℒ0

, so if 𝑄 ∈ 𝛷−1
ℒ0

Ker ̂𝑓, 𝑒ℒ,𝑓(𝑃, 𝑄) = 𝑒ℒ0,𝑓(𝑃, 𝑄)𝑛.

4.1.2 Weil’s reciprocity and alternative definitions of the Weil pairing
subsec:weilreciprocity

Let (𝐴, ℒ) be a (separably) polarised abelian variety, and ℓ prime to 𝑝. By Section 4.1.1, we have a pairing 𝑒ℒℓ

on 𝐾(ℒℓ) which may be defined as follow. Let 𝛩 be a divisor corresponding to ℒ (the pairing 𝑒ℒ only depends
on the isomorphism class of ℒ, hence any divisor will do. In fact it only depends on 𝛷ℒ, hence on the algebraic
equivalence class). For a 0-cycle 𝑍 = ∑ 𝑛𝑖(𝑃𝑖) we associate the divisor 𝐷𝑍 = ∑ 𝑛𝑖𝑡∗

𝑃𝑖
𝛩 (we call this 𝐷𝛩,𝑍 when

we want to make the dependency on 𝛩 explicit) (see also [Rob21, ??]). This divisor is of degree zero if 𝑍 is of degree
zero, and in this case it is principal whenever its realisation 𝑆(𝑍) = ∑ 𝑛𝑖𝑃𝑖 ∈ 𝐾(ℒ). In this case we let 𝑓𝑍 (or
𝑓𝛩,𝑍) be a function associated to 𝐷𝑍, this function 𝑓𝑍 is only defined up to a multiple, but evaluating it at a 0-cycle
𝑍′ (where this is well defined) does not depend on the representative 𝑓𝑍.

Now let 𝑃, 𝑄 ∈ 𝐾(ℒℓ), and let 𝑍𝑄 be the cycle (𝑄) − (0𝐴), 𝐷𝑄 = 𝑡∗
𝑄𝛩 − 𝛩 (this can be seen as a convenient

generalisation of the notation 𝐷𝑍 above applied to a cycle 𝑍 which is not linearly equivalent to 0: 𝐷𝑍 means 𝐷𝑍′

where 𝑍′ = 𝑍 − (𝑆(𝑍)) − (deg𝑍 − 1)(0𝐴)). Following the recipe in Section 4.1.1, and using that 𝛷ℒℓ = 𝛷ℒ ∘ [ℓ],
we have that [ℓ]∗𝐷𝑄 is principal. If 𝑔ℓ,𝑄 is a function representing this principal divisor, 𝑒ℒℓ(𝑃, 𝑄) = 𝑔ℓ,𝑄(𝑃 +
𝑥)/𝑔ℓ,𝑄(𝑥), for any point 𝑥 where this is well defined.

The divisor [ℓ]∗𝐷𝑄 corresponds to the cycle [ℓ]∗𝑍𝑄 = ∑𝑇∈𝐴[ℓ](𝑘)(𝑄0 + 𝑇) − (𝑇) where ℓ𝑄0 = 𝑄. We could
in principle compute the Weil pairing using this equation, but this would be costly. For elliptic curves or more
generally Jacobians of curves, and ℒ the principal polarisation given by the Theta divisor, there is an alternative
definition of the Weil pairing expressed in term of the divisor ℓ𝐷𝑄. The equivalence with the above definition rest
on Weil’s reciprocity for curves. For abelian varieties, we can use a version proved by Lang.
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4.1. The Weil pairing

First we introduce some notations: if 𝒫 is a divisor on 𝐴 × 𝐵, then to a point 𝑄 ∈ 𝐵 we may associate the
pullback of 𝒫 via the morphism 𝐴 → 𝐴 × 𝐵 given by Id×𝑄. We may then extend this construction to 0-cycles on
𝐵. We call 𝒫(𝑍) the divisor associate to a cycle. If 𝑍𝐵 is a cycle on 𝐵 of degree 0 such that its realisation 𝑆(𝑍𝐵) = 0,
then 𝒫(𝑍𝐵) is principal. If 𝑓𝑍𝐵

is a function representing it, and 𝑍𝐴 a cycle on 𝐴 of degree zero, the value 𝑓𝑍𝐵
(𝑍𝐴)

(if it is well defined, that is different from 0 and ∞) does not depend on the choice of 𝑓𝑍𝐵
, and we write this value as

𝒫(𝑍𝐵)(𝑍𝐴).
Let us give two examples: if 𝒫 is (a suitably normalised divisor representing) the Poincare line bundle on 𝐴 × 𝐴,

and 𝑄 ∈ 𝐴, 𝒫(𝑄) is simply the line bundle algebraically equivalent to 0 on 𝐴 represented by 𝑄. Thus if 𝒫ℒ is
the pullback of 𝒫 by the morphism 𝐴 × 𝐴 → 𝐴 × 𝐴 given by Id×𝛷ℒ, then if 𝑄 ∈ 𝐴, 𝒫ℒ(𝑄) is the line bundle
represented by 𝛷ℒ(𝑄), ie it is 𝑡∗

𝑄ℒ ⊗ ℒ−1. (By duality of 𝛷ℒ, and biduality of 𝐴, 𝒫ℒ is equal to its own transpose,
so the pullback is the same whether we pull back by 𝑄 × Id or Id×𝑄.) In particular, if 𝑍 is a cycle on 𝐴, 𝒫ℒ(𝑍) is
simply 𝐷𝛩,𝑍 from above, up to a change of 𝛩.

Theorem 4.1.2 (Lang’s reciprocity). If 𝒫 is a divisor on 𝐴 × 𝐵, 𝑍𝐴 and 𝑍𝐵 two cycles of degree 0 on 𝐴 and
𝐵 respectively such that 𝑆(𝑍𝐴) = 0𝐴, 𝑆(𝑍𝐵) = 0𝐵 (by analogy with divisors on elliptic curves we say that the
two cycles are linearly equivalent to zero) and no pair of points in the respective support is contained in 𝐷. Then
𝒫(𝑍𝐵)(𝑍𝐴) and 𝑡𝒫(𝑍𝐴)(𝑍𝐵) (where 𝑡𝒫 is just the transposition of the two projections) are well defined, and
𝒫(𝑍𝐵)(𝑍𝐴) = 𝒫(𝑍𝐴)(𝑍𝐵).

In particular, if we apply this to 𝒫ℒ on 𝐴 × 𝐴, we get that if 𝑍1 and 𝑍2 are two cycle linearly equivalent to zero,
then 𝑓𝛩,𝑍2

(𝑍1) = 𝑓𝑇ℎ𝑒𝑡𝑎,𝑍1
(𝑍2).

Proof. This is [Lan58, Theorem 5]. Thus the last assertion is valid up to a change of 𝛩, but the equality does not
depend on the linear equivalence class (as long as we use the same divisor on the LHS and RHS).

In [LR15, Proposition 4] we gave a slightly less streamlined proof based on Lang’s reciprocity for the Poincare
bundle applied to 𝑍′

1 = 𝛷ℒ(𝑍1) and 𝑍2.

Lang recover Weil’s reciprocity from this theorem in [Lan58, Corollary p.436]. It should be clear that the
alternative definition of the Weil and Tate pairing showed for elliptic curves using Weil’s reciprocity hold for abelian
variety using Lang’s reciprocity. In particular:

cor:pairingweil Corollary 4.1.3. Let (𝐴, ℒ) be a polarised abelian variety, 𝛩 a divisor representing ℒ and let 𝑃, 𝑄 ∈ 𝐴[ℓ]. Let 𝑍𝑃,
𝑍𝑄 be two cycles linearly equivalent to (𝑃) − (0) and (𝑄) − (0), and 𝐷𝑃, 𝐷𝑄 the corresponding divisors 𝐷𝛩,𝑍𝑃

,

𝐷𝛩,𝑍𝑄
. Then 𝑒ℒℓ(𝑃, 𝑄) =

𝑓𝛩,ℓ𝐷𝑃(𝑍𝑄)
𝑓𝛩,ℓ𝐷𝑄

(𝑍𝑃) .

Proof. This is proven in [Lan58, Theorem 6], see also [LR15, Theorem 2];
The result does not depend on the (algebraic class) of 𝛩, but once it is fixed the same one should be used for the

numerator and denominator (and similarly for 𝑍𝑃 and 𝑍𝑄).

We remark that if ℒ = ℒ𝑛
0 is the 𝑛-power of a principal line bundle, then for 𝑃, 𝑄 as above, 𝑒ℒℓ(𝑃, 𝑄) =

𝑒ℒℓ
0
(𝑃, 𝑄)𝑛. So we get a power of the standard Weil pairing associated to the principal polarisation ℒ0, and 𝑒ℒℓ is

non degenerate when restricted on 𝐴[ℓ] if ℓ is prime to 𝑛.
When 𝐴 is the Jacobian Jac(𝐶) of a curve, with the principal polarisation coming from the 𝛩 divisor, we can

compute the Weil pairing on 𝐴 by working with functions and divisors on the curve 𝐶. Indeed assume that 𝐶/𝑘 has
a rational point 𝑂 ∈ 𝐶(𝑘). Let 𝑓 be a function on 𝐶, with divisor ∑(𝑃𝑖) − ∑(𝑄𝑖). Then it induces a function on
Jac(𝐶) by letting for 𝑥 ∈ Jac(𝐶) not in 𝛩𝑃𝑖−𝑂, 𝑓 (𝑥) = 𝑓 (𝐷𝑥) where 𝐷𝑥 is the (unique) effective divisor of degree
𝑔 such that 𝐷𝑥 − 𝑔𝑂 represents 𝑥 (see [CE14, § 2.2]).

Then seen on Jac(𝐶),Div(𝑓 ) = ∑ 𝛩𝑃𝑖−𝑂 − ∑ 𝛩𝑄𝑖−𝑂. Thus we can construct functions associated to cycles via
𝛩 directly on the curve. In other words: if we have a divisor 𝐷 = ∑ 𝑛𝑖(𝑃𝑖) of degree 0 on the curve, it is principal
whenever its realisation [𝐷] ∈ 𝐽 in the Jacobian is trivial, hence whenever the cycle 𝑍𝐷 = ∑ 𝑛𝑖(𝑃𝑖 − 𝑂) is trivial
on 𝐽. If we let 𝑓𝐷 with divisor 𝐷, 𝐷′ another degree zero divisor on 𝐶, then by definition the extension of 𝑓𝐷 to the
Jacobian satisfy 𝑓𝐷(𝐷′) = 𝑓𝐷(𝑍𝐷′). Conversely, any degree zero cycle on 𝐽 is equivalent to a cycle coming from a
degree 0 divisor 𝐷 on 𝐶. So for pairings, it is enough to work with divisors and functions on curves.

In particular, both interpretations of the Weil pairing can be reformulated in terms of divisors on the curve, and
Weil’s reciprocity for curves is enough to show that they give the same definition. This is the usual setting looked
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at in cryptography. We argue however that restricting to curves provide less flexibility (even when working on
Jacobian), we will see for instance that the pairing induced by a small multiple 𝑛𝛩 of the theta divisor has the big
advantage that there is no point where the intermediate Miller steps are not well defined.

Lets record how to translate Corollary 4.1.3 to Jacobians:

prop:weiljacobian Proposition 4.1.4. Let 𝐽 = Jac(𝐶)/𝑘 be the Jacobian of a curve, and 𝑂 ∈ 𝐶(𝑘) be a rational point. The Weil pairing
𝑒ℓ ∶ 𝐽[ℓ] × 𝐽[ℓ] → 𝜇ℓ associated to its principal polarisation coming from the theta divisor 𝛩 may be defined by letting
𝐷𝑃 and 𝐷𝑄 be any divisors on 𝐶 linearly equivalent to (𝑃) − (𝑂) and (𝑄) − (𝑂) respectively, 𝑓ℓ𝐷𝑃

(resp. 𝑓ℓ𝐷𝑄
) a

function representing the principal divisor ℓ𝐷𝑃 (resp. ℓ𝐷𝑄), and setting

𝑒ℓ(𝑃, 𝑄) =
𝑓ℓ𝐷𝑃

(𝐷𝑄)
𝑓ℓ𝐷𝑄

(𝐷𝑃) .

4.1.3 Restricting the Weil pairing to subgroups
subsec:G1G2

For an elliptic curve 𝐸 over 𝔽𝑞, the Weil pairing is a pairing 𝑒ℓ ∶ 𝐸[ℓ] × 𝐸[ℓ] → 𝜇ℓ. It is customary in cryptography
to work in the setting where 𝐸(𝔽𝑞) has a rational point 𝑃 of ℓ-torsion, and the embedding degree 𝑑 such that
𝜇ℓ ⊂ 𝔽𝑞𝑑 satisfy 𝑑 > 1. Then 𝐸[ℓ] ⊂ 𝔽𝑞𝑑 .

We recall that the embedding degree 𝑑 is the smallest extension 𝔽𝑞𝑑 such that 𝜇ℓ(𝔽𝑞) ⊂ 𝔽𝑞𝑑 . This is the order of
𝜋 acting on a primitive ℓ-root of unity 𝜁, so this is the order of 𝑞 in ℤ/ℓℤ.

The Frobenius action on 𝐸[ℓ] has then two eigenvalues, 1 and 𝑞, and it is customary to define G1 and G2 as the
two corresponding eigencomponents. We have G1 = 𝐸[ℓ](𝔽𝑞) while G2 = {𝑄 ∈ 𝐸[ℓ] ∣ 𝜋(𝑄) = 𝑞𝑄} is exactly
the kernel of the trace of 𝜋, since ℓ ∣ 𝑞𝑑 − 1 by definition of the embedding degree. We have 𝐸[ℓ] = G1 ⊕ G2, and
since 𝑒ℓ is alternate we get that its restriction to G1 × G2 or to G2 × G1 is non degenerate. (The same hold when
replacingG2 by any supplementG3 ofG1, this as the benefit that ifG3 ∩G2 = 0, the trace induces an isomorphism
G3 ≃ G1, hence 𝑒ℓ restrict to a pairing of type II.)

For a principally polarised abelian variety 𝐴/𝔽𝑞, if we let G′
1 and G′

2 be the characteristic spaces of 𝐴[ℓ] related
to the eigenvalues 1 and 𝑞 (assuming they are not empty and that 𝑞 ≠ 1 mod ℓ, ie the embedding degree 𝑑 > 1,
so that G′

1 ≠ G′
2), then since 𝐴[ℓ] is its own Cartier dual (as a Galois module), G′

2 is the Cartier dual of G′
1, and

furthermore by writing 𝐴[ℓ] as a direct sum of indecomposable modules 𝐴[ℓ] = G′
1 ⊕ G′

2 ⊕ ⋯, we see that 𝑒ℓ
is non degenerate on G′

1 × G′
2 and on G′

2 × G′
1. Be careful that even if we let G1,G2 be the eigenvectors for the

eigenvalues 1 and 𝑞 respectively, then G2 is the Cartier dual of G1 but the Weil pairing may not be non degenerate
on G1 × G2.

We give below an elementary proof of this, not relying on Cartier duality (except of course for the existence of 𝑒ℓ
itself).

We start by a general lemma on symplectic decomposition.

lem:symplectic Lemma 4.1.5. Let 𝑀 be a symplectic matrix in a vector space 𝑉/𝑘. Let 𝜒𝑀 be its characteristic polynomial, since 𝑀
is symplectic 𝜒𝑀 is a reciprocal polynomial. Let 𝑄 be a reciprocal polynomial dividing 𝜒𝑀. Then denoting by 𝑉𝑄 the
characteristic space of 𝑄, we have that 𝑀 restricted to 𝑉𝑄 is symplectic.

In particular, if 𝑄1 is a prime factor of 𝜒𝑀, 𝑄2 its reciprocal polynomial, and 𝑄2 ≠ 𝑄1, then 𝑀 restricted to
𝑉𝑄1

⊕ 𝑉𝑄2
is symplectic.

Proof. (With help from Jérôme Plût.) Write 𝜒𝑀 = 𝑄𝑑𝑅 with 𝑅 prime to 𝑄. Then 𝑉𝑄 is the image of 𝑉 by 𝑅(𝑀). If
𝑣1 ∈ 𝑉𝑄, we want to find 𝑣2 = 𝑅(𝑀)𝑣′

2 such that ⟨𝑣1, 𝑣2⟩ ≠ 0 where ⟨𝑣1, 𝑣2⟩ = 𝑡𝑣1𝐽𝑣2 is the symplectic action.
But ⟨𝑣1, 𝑅(𝑀)𝑣′

2⟩ = ⟨𝑅(𝑀)𝑣1, 𝑣′
2⟩ where 𝑅(𝑀) = 𝑅(𝑀−1) is the symplectic transpose (where we use here that

𝑀 is symplectic). But since both 𝜒𝑀 and 𝑄 are reciprocal, 𝑅 too, so 𝑅(𝑀−1) = 𝑀𝑒𝑅(𝑀) where 𝑒 = deg𝑅. So
𝑀𝑒𝑅(𝑀)𝑣1 ≠ 0 since 𝑣1 ∈ 𝑉𝑄, so there do exist a 𝑣′

2.

lem:symplectic2 Lemma 4.1.6. If 𝑄 is an irreducible divisor of 𝜒𝑀 which is not a reciprocal polynomial, then its characteristic space
is isotropic. If 𝑄1, 𝑄2 are two distinct irreducible divisors of 𝜒𝑀 which are not reciprocal, then the 𝑄𝑖 characteristic
spaces are orthogonal.
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Proof. If 𝜒𝑀 = 𝑄𝑒𝑅 with 𝑅 prime to 𝑄, then Ker𝑄𝑒 = ℑ𝑅, so if 𝑥, 𝑦 are in Ker𝑄𝑒, (𝑥|𝑦) = (𝑅𝑢|𝑅𝑣) = (𝑢|�̃�𝑅𝑣)
where �̃� is the reciprocal of 𝑅 by the same reasoning as in the proof of Lemma 4.1.5. So the 𝑄 characteristic space
is isotopic whenever 𝑄𝑒 ∣ 𝑅, eg when 𝑄 is irreducible and not reciprocal. Likewise, the 𝑄1-characteristic space is
orthogonal to the 𝑄2-characteristic space if 𝑄2

𝑒2 ∣ 𝑅1.

By the same reasoning: if 𝑄1 and 𝑄2 are two distinct irreducibles divisors of 𝜒𝑀 such that 𝑄2 is the reciprocal
of 𝑄1, and we assume that 𝑀 ∣ 𝑄𝑖 is cyclic of minimal polynomial 𝑄𝑒

𝑖 , then the orthogonal of Ker𝑄𝑓
1 in Ker𝑄𝑒

2 is
given by Ker𝑄𝑒−𝑓

2 .

Corollary 4.1.7. Let 𝐴/𝔽𝑞 be a principally polarised abelian variety of dimension 𝑔 over a finite field 𝔽𝑞. Let ℓ be a
prime, 𝜒𝜋 be the characteristic polynomial of the Frobenius on 𝐴[ℓ], and assume that 𝐴[ℓ](𝔽𝑞) ≠ 0 and that the
embedding degree 𝑑 > 1. Let G′

1 and G′
2 be the characteristic spaces related to the eigenvalues 1 and 𝑞. Then the Weil

pairing 𝑒ℓ restricted to G′
1 × G′

2 and to G′
2 × G′

1 is non degenerate.

Proof. By Lemma 4.1.5 above, using the obvious adaptation to the case that 𝜋 is 𝑞-symplectic, we get that 𝑒ℓ is non
degenerate on G′

1 ⊕ G′
2. But G′

1 and G′
2 are isotropic by Lemma 4.1.6, so G′

1 ⊕ G′
2 is a symplectic decomposition

of G′
1 + G′

2, hence the Weil pairing is non degenerate on G′
1 × G′

2 and G′
2 × G′

1.
It is instructive, if a bit tedious, to try to prove the isotropy directly. First we show that 𝑒ℓ(G′

1,G′
1) = 1. Indeed,

if 𝑃 is an eigenvalue, then 𝑒ℓ(𝑃, 𝑄)𝜋 = 𝑒ℓ(𝑃, 𝜋(𝑄)), so 𝑒ℓ(𝑃, 𝑄)(𝜋−1)𝑘 = 𝑒ℓ(𝑃, (𝜋 − 1)𝑘𝑄) = 1 if 𝑄 ∈ G′
1 for

𝑘-big enough. So 𝑒ℓ(𝑃, 𝑄) is rational, but since 𝔽𝑞 ∩ 𝜇ℓ = 1 by our assumption (here we need that ℓ is prime), then
𝑒ℓ(𝑃, 𝑄) = 1 if 𝑄 ∈ G1. And then if 𝜋(𝑃′) = 𝑃′ + 𝑃, we also have 𝑒ℓ(𝑃′, 𝑄)𝜋 = 𝑒ℓ(𝑃′, 𝑄), and we conclude by
induction on an Jordan-Holder basis that 𝑒ℓ(G′

1,G′
1) = 1.

Likewise, if 𝑃 is an eigenvalue for 𝑞, 𝑒ℓ(𝑃, 𝑄)𝜋 = 𝑒ℓ(𝜋𝑃, 𝜋𝑄) = 𝑒ℓ(𝑞𝑃, 𝜋𝑄) = 𝑒ℓ(𝑃, 𝜋𝑄)𝑞 = 𝑒ℓ(𝑃, 𝜋𝑄)𝜋. So
𝑒ℓ(𝑃, 𝑄) = 𝑒ℓ(𝑃, 𝜋𝑄), hence if 𝑄 is also an eigenvalue for 𝑞,𝑒ℓ(𝑃, 𝑄) is rational so is equal to 1. We conclude as
above by double induction on 𝑃 and 𝑄 that 𝑒ℓ(G′

2,G′
2) = 1.

4.2 the tate pairing
sec:tate

The Tate pairing is derived from the Weil pairing using cup product and Galois cohomology (or étale cohomology
for abelian schemes). There are several different variants, the Tate-Lichtenbaum pairing [Lic69] which is better
suited for finite fields, and the Tate pairing [Tat57] which is better suited for number fields.

4.2.1 The Tate-Cartier pairing
subsec:tatecartier

Assume that 𝑘 is perfect for simplicity, and let 𝐺𝑘 be its absolute Galois group. We denote by 𝐻𝑖(𝑘, 𝑀) the Galois
cohomology 𝐻𝑖(𝐺𝑘, 𝑀) 3.Then byHilbert 90, 𝐻1(𝑘, 𝑘

∗
) = 0, so the long exact sequence associated to the Kummer

exact sequence 1 → 𝜇𝑛 → 𝑘
∗

→ 𝑘
∗

→ 1 yield 𝐻1(𝑘, 𝜇𝑛) ≃ 𝑘∗/𝑘∗,𝑛.
Let 𝑓 ∶ 𝐴 → 𝐵 be a separable isogeny of exponent 𝑛, with kernel 𝐾 and let 𝐾 be the kernel of the dual isogeny

̂𝑓. Then applying Galois cohomology we get a map 𝐻0(𝑘, 𝐵)/𝐻0(𝑘, 𝐴) → 𝐻1(𝑘, 𝐾), so we have a mapping
𝐵(𝑘)/𝐴(𝑘) × 𝐾(𝑘) = 𝐻0(𝑘, 𝐵)/𝐻0(𝑘, 𝐴) × 𝐻0(𝑘, 𝐾) → 𝐻1(𝑘, 𝐾) × 𝐻0(𝑘, 𝐾) → 𝐻1(𝑘, 𝐾 ⊗ 𝐾) → 𝐻1(𝑘, 𝜇𝑛) ≃
𝑘∗/𝑘∗,𝑛. Here we used the cup product to go to 𝐾 ⊗ 𝐾, followed by the Cartier-Weil pairing 𝑒𝑓, and the fact that
𝐻1(𝑘, 𝑘∗) = 0 by Hilbert 90 so that 𝐻1(𝑘, 𝜇𝑛) ≃ 𝑘∗/𝑘∗,𝑛.

We now specialize this to finite fields. So let 𝑘 = 𝔽𝑞 be a finite field. Since the Galois group is procyclic, Galois
cohomology is easy to describe. If 𝑀 is a finite 𝐺𝑘 module, then by the inflation-restriction sequence, there is
an extension 𝑘′/𝑘 such that 𝐻1(𝑘, 𝑀) = 𝐻1(Gal(𝑘′/𝑘), 𝑀) (it suffice to take 𝑘′ such that the restriction map
𝐻1(𝑘, 𝑀) → 𝐻1(𝑘′, 𝑀) in the inflation-restriction sequence 0 → 𝐻1(Gal(𝑘′/𝑘), 𝑀(𝑘′)) →𝑖𝑛𝑓 𝐻1(𝑘, 𝑀) →𝑟𝑒𝑠
𝐻1(𝑘′, 𝑀)Gal(𝑘′/𝑘 → 𝐻2(Gal(𝑘′/𝑘), 𝑀(𝑘′)) →𝑖𝑛𝑓 𝐻2(𝑘, 𝑀) is zero). Now 𝐺 is a cyclic group. It is convenient here

3We have 𝐻𝑖(𝐺𝑘, 𝑀) = 𝐻𝑖
𝑒𝑡(𝑘, 𝑀). So when looking at the Tate pairing for abelian schemes 𝐴/𝑆 the discussion would extend using

étale cohomology instead (or even flat cohomology to handle inseparable isogenies). We refer to [Mil06a] for more details.
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to use Tate’s cohomology groups. We recall that they are defined by: 𝐻1(𝐺, 𝑀) = 𝐻1(𝐺, 𝑀) and 𝐻0(𝐺, 𝑀) =
𝐻0(𝐺, 𝑀)/Tr, where Tr ∶ 𝐻0(𝐺, 𝑀) → 𝐻0(𝐺, 𝑀) sends 𝑎 to ∑𝑔∈𝐺 𝑔.𝑎. The group 𝐻0 allows to glue the long
exact sequence coming from homology with the long exact sequence coming from cohomology.

Since 𝐺 is cyclic, taking a generator 𝑔 we have an explicit description as 𝐻0(𝐺, 𝑀) = 𝑀𝐺/Tr and 𝐻1(𝐺, 𝑀) =
Tr0 /⟨𝑔 − 1⟩ where Tr0 = Ker Tr are the elements of trace 0 in 𝑀. Furthermore, since the Herbrandt quotient is 1,
both groups have the same cardinality. Increasing the field 𝑘′ if needed, wemay also assume thatTr = 0. Furthermore
we can take for 𝑔 the Frobenius 𝜎. In this case, 𝐻0(𝐺, 𝑀) = 𝑀𝐺 = 𝑀(𝑘) and 𝐻1(𝐺, 𝑀) = 𝑀/⟨𝜎 − 1⟩

Let 𝑀 be the Cartier dual of 𝑀, and assume that 𝑀 is of exponent 𝑛.Then we have 𝐻1(𝑘, 𝑀) ≃ 𝑀/⟨𝜎 −1⟩ while
𝐻0(𝑘, 𝑀) = 𝑀(𝑘) = Hom(𝑀, 𝑘

∗
)𝐺 = Hom(𝑀, 𝜇𝑛)𝐺 = Hom(𝑀, 𝜇𝑛)[𝜎 − 1] where 𝐺 acts by conjugation,

ie the rational maps 𝑓 ∶ 𝑀 → 𝜇𝑛 are precisely those that commute with the Frobenius: 𝜎𝑓 𝜎−1 = 𝑓. Since
𝐻1(𝑘, 𝜇𝑛) ≃ 𝜇𝑛/⟨𝜎 − 1⟩, we see that the application 𝐻1(𝑘, 𝑀) × 𝐻0(𝑘, 𝑀) → 𝐻1(𝑘, 𝜇𝑛) given by composing the
cup product with the Cartier duality is given by the (well defined) natural restriction 𝑀/⟨𝜎 −1⟩×Hom(𝑀, 𝜇𝑛)[𝜎 −
1] → 𝜇𝑛/⟨𝜎 − 1⟩ of the Cartier duality 𝑀 × 𝑀 → 𝜇𝑛. Explicitly we get a pairing as follow: if 𝑀 is of exponent 𝑛,
𝑓 ∈ 𝑀(𝑘) = Hom(𝑀, 𝑘∗)𝐺 and [𝑥] ∈ 𝐻1(𝑘, 𝑀) = 𝑀/⟨𝜎 −1⟩, we associate [𝑓 (𝑥)] ∈ 𝐻1(𝑘, 𝜇𝑛) = 𝜇𝑛/⟨𝜎 −1⟩.

As an example, the isomorphism 𝐻1(𝑘, 𝜇𝑛) ≃ 𝑘∗/𝑘∗,𝑛 can be described explicitly as follow. Let 𝑥 ∈ 𝔽∗
𝑞, and

𝑦 ∈ 𝔽𝑞 such that 𝑥 = 𝑦𝑛. Then 𝜎(𝑦)/𝑦 is an element of 𝜇𝑛, well defined from 𝑥 up to the action of 𝜎𝜁/𝜁 for
𝜁 ∈ 𝜇𝑛. The Cartier dual of 𝜇𝑛 is ℤ/𝑛ℤ, so the duality above shows that 𝑘∗/𝑘∗,𝑛 is dual to ℤ/𝑛ℤ: we recover

Kummer theory. If 𝜇𝑛 ⊂ 𝑘, then 𝐻1(𝑘, 𝜇𝑛) = 𝜇𝑛 and the identification above is simply 𝑥 ↦ 𝑥
𝑞−1

𝑛 . In other words
this is exactly the final exponentiation in the Tate pairing as used in cryptography.

When 𝜇𝑛(𝑘) ⊂ 𝑘∗, the pairing above is a duality (in particular is non degenerate): 𝐻0(𝑘, 𝑀) = 𝑀(𝑘) =
Hom(𝑀, 𝑘

∗
)𝐺 = Hom(𝑀, 𝑘∗)𝐺 = Hom(𝑀/⟨𝜎 − 1⟩, 𝑘∗) = Hom(𝐻1(𝑘, 𝑀), 𝑘∗). Alternatively, we may also see

the duality as follow: 𝑀 is dual to 𝑀 by definition, so 𝑀[𝜎 − 1] is dual to 𝑀/⟨𝜎 − 1⟩ (using that 𝜎 − 1 is trivial
on 𝜇𝑛). But the first element is 𝑀(𝑘) while the second is 𝐻1(𝑘, 𝑀).

Applying this to an isogeny yields the following.

prop:tatecartier Proposition 4.2.1 (Tate-Cartier pairing). Let 𝑓 ∶ 𝐴 → 𝐵 be a separable isogeny of abelian varieties of exponent
𝑛 over a finite field 𝑘 = 𝔽𝑞. Let 𝐾 be the kernel of 𝑓 and let 𝐾 be the kernel of the dual isogeny ̂𝑓. Then the pairing
𝑒𝑇,𝑓 ∶ 𝐵(𝑘)/𝐴(𝑘) × 𝐾(𝑘) → 𝐻1(𝑘, 𝜇𝑛), given via the identification 𝐻1(𝑘, 𝜇𝑛) ≃ 𝜇𝑛/(𝜋 − 1), by 𝑒𝑇,𝑓(𝑃, 𝑄) =
𝑒𝑓(𝜋(𝑃′) − 𝑃′, 𝑄) where 𝑃′ is any point in 𝐴(𝑘) such that 𝑓 (𝑃′) = 𝑃, is isomorphic to the canonical pairing
𝐾(𝑘)/⟨𝜎 − 1⟩ × 𝐾(𝑘) → 𝜇𝑛/⟨𝜎 − 1⟩ induced by Cartier duality.

In particular, if 𝜇𝑛(𝑘) ⊂ 𝑘∗ the Tate-Cartier pairing is non degenerate.

Proof. We have constructed a pairing 𝐻1(𝑘, 𝐾) × 𝐻0(𝑘, 𝐾) → 𝐻1(𝑘, 𝜇𝑛). But by Lang’s theorem [Lan56],
𝐻1(𝑘, 𝐴) = 0 when 𝑘 is a finite field (ie 𝐴 has no non trivial torsors, ie every torsor of 𝐴 over a finite field
𝔽𝑞 has a rational point over 𝔽𝑞), so by the long exact sequence of Galois-cohomology 𝐻1(𝑘, 𝐾) ≃ 𝐵(𝑘)/𝐴(𝑘). The
formula is then just an unraveling of the definition, using the fact that 𝑒𝑓 is induced by the Cartier pairing.

We recover [Bru11] in the case that 𝑛 ∣ 𝑞 − 1 so that 𝐻1(𝑘, 𝜇𝑛) = 𝜇𝑛. See also [Bru11, Remark p.2] for
a more direct proof due to Lenstra not needing cohomology: the Weil-Cartier pairing ker 𝑓 × ker ̂𝑓 → 𝔾𝑚
restricts to a non degenerate pairing ker 𝑓 /(𝜋 − 1) × ker ̂[𝜋 − 1] → 𝔾𝑚. But 𝜋 − 1 induces an isomorphism
𝐴[𝑓 ∘ (𝜋 − 1)]/(𝐴[𝑓 ] + 𝐴[𝜋 − 1]) ≃ 𝐴[𝑓 ]/(𝜋 − 1) = ker 𝑓 /(𝜋 − 1) and 𝑓 induces an isomorphism 𝐴[𝑓 ∘ (𝜋 −
1)]/(𝐴[𝑓 ] + 𝐴[𝜋 − 1]) ≃ 𝐵[𝜋 − 1]/𝑓 (𝐴[𝜋 − 1]) = 𝐵(𝑘)/𝑓 (𝐴(𝑘)), so 𝐵(𝑘)/𝑓 (𝐴(𝑘)) ≃ ker 𝑓 /(𝜋 − 1).

When 𝑛 = ℓ is prime, if the embedding degree is not one then 𝜇𝑛/⟨𝜎 − 1⟩ is trivial, so the general case of
Proposition 4.2.1 is not really useful. However the general case is useful when 𝑛 is not prime and 𝜇𝑛 is only partly
rational, to identify subgroups on which the Tate-Cartier pairing is non degenerate.

rem:tatevsweil Remark 4.2.2. • Both the Tate-Cartier and Weil-Cartier are equivariant under Galois, by construction.

• The Tate-Cartier pairing does not really depend on the isogeny (if everything is well defined): if 𝑓 ∶ 𝐴 → 𝐵,
𝑔 ∶ 𝐵 → 𝐶, then 𝑒𝑇,𝑔∘𝑓(𝑃, 𝑄) = 𝑒𝑇,𝑔(𝑃, 𝑄) if 𝑄 ∈ Ker ̂𝑔 ⊂ Ker ̂𝑔 ∘ 𝑓 and 𝑃 ∈ 𝐶(𝑘).
Indeed, if 𝑔 ∘ 𝑓 (𝑃0) = 𝑃, then 𝑒𝑇,𝑔∘𝑓(𝑃, 𝑄) = 𝑒𝑔∘𝑓(𝜋𝑃0 − 𝑃0, 𝑄) = 𝑒𝑔(𝑓 (𝜋𝑃0 − 𝑃0, 𝑄) = 𝑒𝑇,𝑔(𝑃, 𝑄) by
Equation (4.3).
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4.2. The Tate pairing

• We have the following compatibility of the Tate-Cartier pairing with endomorphisms: if 𝑓 ∶ 𝐴 → 𝐵,
𝑔 ∶ 𝐶 → 𝐷 and 𝛼1 ∶ 𝐴 → 𝐶, 𝛼2 ∶ 𝐶 → 𝐷 makes the diagram commute, then 𝑒𝑇,𝑔(𝛼2𝑃, 𝑄) = 𝑒𝑇,𝑓(𝑃, ̂𝛼2𝑄),
for 𝑃 ∈ 𝐴(𝑘) and 𝑄 ∈ ker ̂𝑔 such that ̂𝛼2𝑄 ∈ ker ̂𝑓.
Indeed, if 𝑓 (𝑃0) = 𝑃, then 𝑔(𝛼1(𝑃0) = 𝛼2(𝑃), so the LHS is given by 𝑒𝑔(𝜋𝛼1(𝑃0) − 𝛼1(𝑃0), 𝑄) while the
RHS is given by 𝑒𝑓(𝜋𝑃0 − 𝑃0, ̂𝛼2𝑄) so by compatibility of the Weil pairing with isogenies, both term are
equal to 𝑒𝑔∘𝛼1=𝛼2∘𝑓(𝜋𝑃0 − 𝑃0, 𝑄).
In particular, 𝑒𝑇,ℓ(𝛼𝑃, 𝑄) = 𝑒𝑇,ℓ(𝑃, ̂𝛼𝑄).

• There is an important difference between the Weil pairing and the Tate pairing: the Weil pairing is geometric,
in particular does not depends on the base field, so we may work over 𝑘. The Tate pairing is arithmetic,
changing the field will change the pairing, and it is trivial over 𝑘 (since 𝐻1(𝜇𝑛, 𝑘) = 1). For instance, if
𝑓 ∶ 𝐴 → 𝐵 is an isogeny of exponent ℓ with 𝜇ℓ ⊂ 𝔽𝑞, the reduced Tate-Cartier pairing 𝑒𝔽𝑞𝑚

𝑇,𝑓 (𝑃, 𝑄) over 𝔽𝑞𝑚

is equal to 𝑒𝔽𝑞
𝑇,𝑓(𝑃, 𝑄)𝑚 for 𝑃 ∈ 𝐵(𝑘) and 𝑄 ∈ Ker ̂𝑓 (𝑘).

Indeed, 𝑒𝑊,𝑓(𝜋𝑚𝑃0 − 𝑃0, 𝑄) = 𝑒𝑊,𝑓(𝜋𝑃0 − 𝑃0, 𝑄)1+𝑞+⋯+𝑞𝑚−1
and 1 + 𝑞 + ⋯ + 𝑞𝑚−1 = 𝑞 − 1 + ⋯ +

𝑞𝑚−1 − 1 + 𝑑 = 𝑑 mod ℓ.

• On the other handwehave seen that theTate pairing does not depend on the isogeny, for instance 𝑒𝑇,ℓ2(𝑃, 𝑄) =
𝑒𝑇,ℓ(𝑃, 𝑄) (if both terms are defined), while 𝑒𝑊,ℓ2(𝑃, 𝑄) = 𝑒𝑊(𝑃, 𝑄)ℓ (if both terms are defined). Using

the results above, we do have 𝑒
𝔽𝑞ℓ

𝑇,ℓ2(𝑃, 𝑄) = 𝑒𝔽𝑞
𝑇,ℓ(ℓ𝑃, 𝑄).

• The Weil pairing is alternate, so 𝑒ℓ(𝑃, 𝑃) = 1 (in characteristic different from 2). The Tate pairing may
satisfy 𝑒ℓ(𝑃, 𝑃) ≠ 1. One of the original motivation for the Tate pairing in cryptography [FR94] was for this
case: if 𝐸/𝔽𝑞 is an elliptic curve where 𝐸[ℓ](𝔽𝑞) = ⟨𝑃⟩ is of rank 1 and the embedding degree is 1, then
𝑒ℓ(𝑃, 𝑃) = 1 but 𝑒𝑇,ℓ(𝑃, 𝑃) ≠ 1 since the Tate pairing is non degenerate on 𝐸[ℓ](𝔽𝑞) × 𝐸[ℓ](𝔽𝑞) → 𝜇ℓ
since 𝜇ℓ ⊂ 𝔽𝑞 here (in this cryptographic setting, 𝐸(𝔽𝑞) has no points of ℓ2-torsion).

• If ℓ is prime, the final exponentiation in the Tate pairing kills any element in a subfield of 𝔽𝑞𝑑 (since no
subfield contains 𝜇ℓ by definition). For instance for elliptic curve, if 𝑑 = 2𝑑′ is even then points in 𝑄 ∈ G2
satisfy 𝜋𝑑′(𝑄) = −𝑄, hence 𝑥𝑄 ∈ 𝔽𝑑′

𝑞 . During Miller’s algorithm to compute the Tate pairing on G1 × G2
(see Section 4.2.3), the denominators involve 𝑥𝑄 − 𝑥𝑃 where 𝑄 ∈ G2 and 𝑃 ∈ G1, hence are in 𝔽𝑑′

𝑞 so are
killed by the final exponentiation. This is one of the reason Tate’s pairing is faster to compute than Weil’s
pairing for elliptic curves.

ex:tatepolarisation Example 4.2.3 (Tate-Cartier pairing and polarisations). If 𝑓 ∶ 𝐴 → 𝐵 is an isogeny, the Tate-Cartier pairing is
a pairing 𝑒𝑇,𝑓 on 𝐵(𝑘)/𝐴(𝑘) × Ker ̂𝑓 (𝑘). If 𝐵 has a polarisation ℒ, the isogeny 𝛷ℒ ∘ 𝑓 ∶ 𝐴 → 𝐵 → �̂� induce
a Tate-Cartier pairing on 𝑒𝑇,ℒ,𝑓 ∶ �̂�(𝑘)/𝐴(𝑘) × 𝛷−1

ℒ (Ker ̂𝑓 (𝑘)). By definition of the Tate-Cartier pairing, we
have, if 𝑃 ∈ 𝐵(𝑘), 𝑒𝑇,𝛷ℒ∘𝑓(𝛷ℒ(𝑃), 𝑄) = 𝑒ℒ,𝑓(𝜋(𝑃′) − 𝑃′, 𝑄) for any 𝑃′ such that 𝑓 (𝑃′) = 𝑃. So if we define a
pairing 𝑒𝑇,ℒ,𝑓 on 𝐵(𝑘)/𝐴(𝑘) × Ker ̂𝑓 as in Proposition 4.2.1 by simply replacing 𝑒𝑓 by 𝑒ℒ,𝑓 in the definition, then
we have 𝑒𝑇,ℒ,𝑓(𝑃, 𝑄) = 𝑒𝑇,𝛷ℒ∘𝑓(𝛷ℒ(𝑃), 𝑄). (In particular, if 𝑓 = [ℓ], then this is the pairing induced by 𝛷ℒℓ , ie
𝑒𝑇,ℒ,ℓ = 𝑒𝑇,𝛷ℒℓ

(𝛷ℒ(𝑃), 𝑄) = 𝑒ℒℓ(𝜋(𝑃′) − 𝑃′, 𝑄) where ℓ𝑃′ = 𝑃.)

If ℒ = ℒ0
𝑛, and 𝑄 ∈ 𝛷−1

ℒ0
(Ker ̂𝑓 (𝑘)), then by compatibility of theWeil-Cartier pairing with isogenies or the fact

that theTate pairing does not depends on the isogenyRemark 4.2.2, 𝑒𝑇,𝛷ℒ∘𝑓(𝛷ℒ(𝑃), 𝑄) = 𝑒𝑇,𝛷ℒ0
∘[𝑛]∘𝑓(𝛷ℒ(𝑃), 𝑄) =

𝑒𝑇,𝛷ℒ0
∘𝑓(𝛷ℒ0

(𝑃0), 𝑄) if 𝛷ℒ0
(𝑃0) = 𝛷ℒ(𝑃).

Since 𝛷ℒ(𝑃) = 𝑛𝛷ℒ0
(𝑃), we get that 𝑒𝑇,ℒ,𝑓(𝑃, 𝑄) = 𝑒𝑇,ℒ0,𝑓(𝑃, 𝑄)𝑛.

More generally, since 𝛷ℒ⊗ℳ = 𝛷ℒ + 𝛷ℳ, we have 𝑒𝑇,ℒ⊗ℳ,𝑓(𝑃, 𝑄) = 𝑒𝑇,ℒ,𝑓(𝑃, 𝑄)𝑒𝑇,ℳ,𝑓(𝑃, 𝑄) by Item 2.

Example 4.2.4. Let 𝐴/𝔽𝑞 be a polarised abelian variety, and let 𝑓 = 𝜋 − 1 where 𝜋 is the Frobenius. Then the
Weil-Cartier pairing is a pairing on 𝐴(𝔽𝑞) × 𝐴[ ̂𝜋 − 1]. The Tate-Cartier pairing is a pairing on 𝐴(𝔽𝑞)/(𝜋 −
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4. Pairings in abelian varieties

1)𝐴(𝔽𝑞) × 𝐴[ ̂𝜋 − 1](𝔽𝑞). Looking at the definition in Proposition 4.2.1, 𝜋(𝑃′) − 𝑃′ = 𝑃, so in this case the
Tate-Cartier pairing is equal to the Weil-Cartier pairing.

In [Gar02], the author applies this to an elliptic curve 𝐸/𝔽𝑞 such that 𝐸(𝔽𝑞) is a prime ℓ, and the trace 𝑎𝑞 = 2
(in particular the embedding degree is one). In this case, we get that ̂𝜋 − 1 = �̂� − 1, and using the principal
polarisation to go to 𝐸 we have that �̂� is the Verschiebung (see [EGM12, Proposition 7.34]). The condition on
the trace shows that 𝐸[�̂� − 1] = 𝐸(𝔽𝑞), so there is a non degenerate pairing on 𝐸(𝔽𝑞) × 𝐸(𝔽𝑞). Plugging the
formula for the Weil-Cartier pairing, the author recovers in this particular case the formula of the Tate pairing
from Proposition 4.2.5. See also [Sch05, § 6].

4.2.2 The Tate-Lichtenbaum pairing

Let 𝐴/𝔽𝑞 be an abelian variety, 𝑑 the embedding degree for 𝜇ℓ. One usually apply the Tate-Cartier pairing for the
isogeny [ℓ] ∶ 𝐴 → 𝐴, this yield a (reduced) pairing 𝑒𝑇,ℓ ∶ 𝐴(𝔽𝑞𝑑)/ℓ𝐴(𝔽𝑞𝑑) × 𝐴[ℓ](𝔽𝑞𝑑) → 𝜇ℓ.

If ℒ is a polarisation, plugging 𝑒ℒℓ instead of 𝑒ℓ in the definition of the Tate pairing (see Example 4.2.3) yield the
following definition:

prop:reducedtate Proposition 4.2.5 (Explicit versions of the Tate-Lichtenbaum pairing). The (reduced) Tate-Lichtenbaum pairing
𝑒𝑇,ℓ ∶ 𝐴(𝔽𝑞𝑑)/ℓ𝐴(𝔽𝑞𝑑) × 𝐴[ℓ](𝔽𝑞𝑑) → 𝜇ℓ may be computed for 𝑃 ∈ 𝐴(𝔽𝑞𝑑) and 𝑄 ∋ 𝐴[ℓ](𝔽𝑞𝑑) as 𝑒ℒℓ(𝜋𝑃′ −
𝑃′, 𝑄) where 𝑃′ is any point in 𝐴 such that ℓ𝑃′ = 𝑃.

Using the notations of Corollary 4.1.3, the non reduced Tate-Lichtenbaum pairing 𝐴(𝔽𝑞𝑑)/ℓ𝐴(𝔽𝑞𝑑)×𝐴[ℓ](𝔽𝑞𝑑) →
𝔽∗

𝑞𝑑/𝔽∗,ℓ
𝑞𝑑 is given by 𝑓𝛩,ℓ𝐷𝑃

(𝑍𝑄), hence the reduced Tate pairing as 𝑓𝛩,ℓ𝐷𝑃
(𝑍𝑄)(𝑞𝑘−1)/ℓ.

If 𝐴 = Jac(𝐶) is the Jacobian of a curve and ℒ is the polarisation coming from the theta divisor, then this time
using the notations of Proposition 4.1.4, the non reduced Tate pairing is also given by 𝑓ℓ𝐷𝑃

(𝐷𝑄).

Proof. The first equation is just the definition of the Tate-Cartier pairing applied to [ℓ]. It then suffices to plug the
definition of the Weil pairing to get the second equation, see for instance [LR15, Theorem 3]. This equation is the
one used algorithmically in practice.

Incidentally, to get the second equation it is easier to use the definition of the Weil pairing with the function 𝑔ℓ,𝑄
(see [LR15, Theorem 3]) rather than the definition in Corollary 4.1.3 using the functions 𝑓ℓ,𝑄, but using Weil-Lang’s
reciprocity we can also recover the formula for the Tate pairing using the second definition of the Weil pairing (see
[Bru11, Theorem 2.1]).

The case of Jacobians follow by the same reasoning as in Proposition 4.1.4.

4.2.3 Restricting the Tate-Lichtenbaum pairing to subgroups
subsec:tateg1g2

We can also restrict the Tate-Lichtenbaum pairing to subgroups, as for the Weil pairing. Let G1 and G2 be the
eigenvalue subgroups for 1 and 𝑞 respectively, and assume that they are not empty and that 𝑑 > 1. Then G1 is of
type (ℤ/ℓ)𝑟 as an 𝔽𝑞-module, hence by duality 𝐴 contains has a 𝐺2 of type 𝜇𝑟

ℓ . Let ̂𝑓 ∶ 𝐴 → �̂� = 𝐴/𝐺2 be the
corresponding isogeny, and let 𝑓 ∶ 𝐵 → 𝐴 be the dual of ̂𝑓.

Then the Tate-Cartier pairing yields a pairing 𝐴(𝔽𝑞𝑑)/𝐵(𝔽𝑞𝑑) × 𝐺2(𝔽𝑞𝑑) → 𝜇ℓ. We have 𝐴(𝔽𝑞𝑑)/𝐵(𝔽𝑞𝑑) ≃
𝐻1(𝔽𝑞𝑑,Ker 𝑓 ), with Ker 𝑓 the Cartier dual of 𝐺2, hence is of type (ℤ/ℓℤ)𝑟 over 𝔽𝑞. Hence 𝐻1(𝔽𝑞𝑑,Ker 𝑓 ) =
𝐻1(𝔽𝑞,Ker 𝑓 ) = Ker 𝑓 (𝔽𝑞). So 𝐴(𝔽𝑞𝑑)/𝐵(𝔽𝑞𝑑) ≃ 𝐴(𝔽𝑞)/𝐵(𝔽𝑞) ≃ 𝐴(𝔽𝑞)/ℓ𝐴(𝔽𝑞) since 𝐴(𝔽𝑞)/𝐵(𝔽𝑞) is a
quotient of 𝐴(𝔽𝑞)/ℓ𝐴(𝔽𝑞) and since 𝐴(𝔽𝑞)/ℓ𝐴(𝔽𝑞) ≃ 𝐻1(𝑘, 𝐴[ℓ]) it has cardinal ℎ1(𝑘, 𝐴[ℓ]) = ℎ0(𝑘, 𝐴[ℓ]) =
#𝐴[ℓ](𝑘) = ℓ𝑟 (using that the Herbrandt quotient is one).

We thus get a pairing 𝐴(𝔽𝑞)/ℓ𝐴(𝔽𝑞) × 𝐺2(𝔽𝑞𝑑) → 𝜇ℓ. If 𝐴(𝔽𝑞) does not contains a point of ℓ2-torsion, then
G1 → 𝐴(𝔽𝑞)/ℓ𝐴(𝔽𝑞) is an isomorphism since it is injective and the LHS has the same cardinal as the RHS.

Looking at the quotient 𝐴 → 𝐶 = 𝐴/𝐺1 instead, we get a pairing 𝐴(𝔽𝑞𝑑)/𝐶(𝔽𝑞𝑑) × 𝐺1 → 𝜇ℓ. Whenever
G2 → 𝐴(𝔽𝑞𝑑)/𝐶(𝔽𝑞𝑑) is a monomorphism (eg if 𝐴(𝔽𝑞𝑑) does not contain a point of ℓ2-torsion), then it is an
isomorphism (by cardinality consideration).
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4.2. The Tate pairing

4.2.4 The Tate pairing

There is a related pairing, called the Tate pairing, with values in 𝐻2(𝑘, 𝔾𝑚): byHilbert 90, we have that 𝐻2(𝑘, 𝜇𝑛) ≃
𝐻2(𝑘, 𝔾𝑚)[𝑛] ≃ Br(𝑘)[𝑛] where Br(𝑘) is the Brauer group. If 𝑓 ∶ 𝐴 → 𝐵 is a separable isogeny of exponent
𝑛 as above, with kernel 𝐾 and dual kernel 𝐾, Galois cohomology yield exact sequences 𝐻0(𝑘, 𝐵)/𝐻0(𝑘, 𝐴) →
𝐻1(𝑘, 𝐾) → 𝐻1(𝑘, 𝐴)[𝑓 ], and 𝐻0(𝑘, 𝐴)/𝐻0(𝑘, �̂�) → 𝐻1(𝑘, 𝐾) → 𝐻1(𝑘, �̂�)[ ̂𝑓 ], where 𝐻1(𝑘, 𝐴) is the kernel of
𝐻1(𝑘, 𝐴) → 𝐻1(𝑘, 𝐵).

Given a point 𝑃 ∈ 𝐵(𝑘)/𝐴(𝑘) we then have a 1-cocycle 𝐹𝑃 ∶ Gal(𝑘) → 𝐾. Likewise, given 𝜉 ∈ 𝐻1(𝑘, �̂�)[ ̂𝑓 ], we
can lift it to a 1-cocycle 𝐹𝜉 ∶ Gal(𝑘) → 𝐾. The cup product of 𝐹𝑃 and 𝐹𝜉 gives an element of 𝐻2(𝑘, 𝐾 × 𝐾), and
composing with the Cartier-Weil pairing gives a 2-cocycle Gal(𝑘) × Gal(𝑘) → 𝜇𝑛, (𝜎, 𝜏) ↦ 𝑒𝑚(𝐹𝑃(𝜎), 𝐹𝜉(𝜏)𝜎).
This defines a pairing 𝐵(𝑘)/𝐴(𝑘) × 𝐻1(𝑘, �̂�)[ ̂𝑓 ] → Br(𝑘)[𝑛], the Tate pairing.

This pairing is not interesting for finite fields since Br(𝑘) = 0, but it is for 𝑝-adic local fields. Indeed, if 𝐾 is such
a field, Br(𝐾) = ℚ/ℤ, so 𝐻2(𝐾, 𝜇𝑛) ≃ ℤ/𝑛ℤ. Taking for the isogeny the multiplication by [𝑛], Tate proves in
[Tat57] that 𝐴(𝐾)/𝑛𝐴(𝐾) × 𝐻1(𝐾, 𝐴)[𝑛] → ℤ/𝑛ℤ is non degenerates, and that these pairings glue to form a
pairing 𝐴(𝐾) × 𝐻1(𝐾, 𝐴) → Br(𝐾) ≃ ℚ/ℤ.

In [FR94], Frey and Rück show how reducing the Tate pairing on ℚ𝑞 modulo 𝑝 recover the Tate-Lichtenbaum
pairing 𝐴(𝑘)/ℓ𝐴(𝑘) × 𝐴[𝑛]0 → 𝜇ℓ where 𝐴[𝑛]0 = G2 is the trace zero subgroup. They thus deduce that this
induced pairing is non degenerate from the non degeneracy of the Tate pairing on ℚ𝑞. This recovers Section 4.2.3.

Alternative proofs of the non degeneracy of the Tate-Lichtenbaum (or related) pairings are [Heß04; Sch05].
However they only give the formula of Proposition 4.2.5 in the case of Jacobians either by relating it to the
Lichtenbaum pairing in [FR94] or using Weil’s reciprocity in [Heß04; Sch05] (but unlike [FR94] these do not deal
with restricting the Tate pairing to subgroups).
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Planned topics

5.1 moduli spaces from the analytic point of view

5.1.1 Siegel spaces

Explicit description of Siegel spaces [BL04, §8], [Rob10, §2.5]. Modular forms [BGH+08; CS17].
Satake compactification. as a particular case of the Baily Borel compactification [BB66] of Hermitian symmetric

spaces [Mil05].
Interpretation of the Siegel operator in term of this boundary.
Toroidal compactifications. Interpretation of the Fourier-Jacobi coefficients. Note: semi abelian variety of toric

rank 1, extension of 𝐴 = a point on 𝐴 = 𝐻1(𝐴, 𝔾𝑚)
Analytic theta functions as modular forms [Igu72a; Igu66; Igu72b].

5.1.2 Hilbert spaces

Hilbert moduli space [BL04, §9.2]. Hilbert modular forms [Van12; BGH+08].
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5. Moduli spaces of abelian varieties

5.1.3 Shimura varieties

PEL Shimura varieties [Mil05], Deligne torus, how to recover the previous examples as special cases of Shimura
varieties [Kie20].

5.2 moduli spaces from the algebraic point of view

5.2.1 Algebraic stacks of abelian varieties

Global construction by Mumford [MFK94], construction via Artin’s representability theorem (cf the introduction
of [FC90]).

Compactifications [FC90] minimal and toroidal over ℤ. Toroidal compactification = smooth proper stack over
ℤ, so we get irreductibility of 𝒜𝑔 ⊗ℤ 𝔽𝑝 by the same argument as in Remark 3.2.11.

Modular forms from an algebraic point of view (section of the Hodge bundle) [Kat73], algebraic Koecher
principle and Fourier expansions (ie the 𝑞-expansion principle to get the ring of definition of a modular form),
[Kat73, §1.12], [FC90, Chapter V].

Kodaira-Spencer, Gauss-Manin connection.

5.2.2 The structure of the moduli space

The structure of the moduli space [Mum70b; Jon93a]: 𝒜𝑔,𝑑, 𝒜𝑔,𝛿, the geometric fibres of 𝒜𝑔,𝛿 → ℤ are irreducible.
Local coordinates [Jon93a].

5.2.3 Stratifications of the moduli space

Stratification via the 𝑝-rank: [NO80]. The stratification of 𝑝-rank 𝑉𝑓 is of dimension 𝑔(𝑔 + 1)/2 − 𝑔 + 𝑓, the generic
point of each irreducible composant is ordinary.

Refinement viaNewton polygon: [Oor01b] (this solves a conjecture byGrothendieck on the possible deformations
of a BT-group). Application to density of Hecke orbits [CO09].

Via a finer invariant of 𝐴[𝑝]: [Oor01a]. This gives a purely algebraic proof (compared to [FC90] of the geometric
irreductibility of 𝒜𝑔 ⊗ℤ 𝔽𝑝.

5.3 modular space of level 𝛤0(𝑝)

The construction of [DR73] for modular curves (which extends readily to 𝒜𝑔). Modular interpretation of the stack
of generalised elliptic curves using Drinfeld’s structure [KM85; Čes17].

Genus 2: [CN90]. Decomposition of 𝛤0(𝑝)⊗ℤ𝔽𝑝
: [Jon91; Yu04a].

5.3.1 Hilbert-Blumenthal algebraic stacks

Construction and properties: [Rap78; Cha90], compactification, we get a smooth proper stack.

Current draft version
A lot of this is essentially copy-pasted from [KPR20].

5.4 siegel moduli space
sec:siegelC

If 𝐴/ℂ is a principally polarised complex abelian variety, by Section 2.1 we have 𝐴 = ℂ𝑔/(ℤ𝑔 ⊕ 𝛺ℤ𝑔) with 𝛺 in
the Siegel space ℌ𝑔 and the polarisation is given by (ℑ𝛺)−1. Here the lattice is given by a symplectic basis, and
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5.5. Hilbert moduli space

acting by 𝛾 = (𝑎 𝑐
𝑏 𝑑) ∈ Sp2𝑔(ℤ) changes 𝛺 by (𝑎𝛺 + 𝑏)(𝑐𝛺 + 𝑑)−1. This describe the Siegel moduli space as

the orbifold 𝒜𝑔,ℂ = ℌ𝑔/ Sp2𝑔(ℤ) (see [Rob10, p. 2.5] for the case of polarisations of type 𝛿).
A modular function is a function on this orbifold. More generally a modular form 𝑓 is a function 𝑓 ∶ ℌ𝑔 → 𝑉

satisfying some (automorphic) transformation formula under the action of Sp2𝑔(ℤ). Typically a scalar modular
form of weight 𝑘 takes values in ℂ and satisfy 𝑓 (𝛾 ⋅ 𝛺) = det(𝑎𝛺 + 𝑏)𝑘𝑓 (𝛺). We will need in [Rob21, ??]
more general modular forms (called vectorial modular form) where the transformation formula is given by a
representation 𝜌 ∶ Gl𝑔 → 𝑉. In fact 𝑔 should be defined on some compactification of H𝑔, (if 𝑔 = 1 this is the cusp
at infinity), but by Koecher principle this is automatic if 𝑔 ≥ 2. Like in 𝑔 = 1, we can also look at Siegel modular
forms for a congruence subgroup 𝛤 of 𝛤(1) ≔ Sp2𝑔(ℤ). In this will be particularly interested in the standard level
subgroups 𝛤(𝑛) and 𝛤0(𝑛) which encode principally polarised abelian varieties with a symplectic basis of 𝐴[𝑛] or
a kernel of an 𝑛-isogeny respectively. Thus 𝒜𝑔,𝛤0(𝑛),ℂ = ℌ𝑔/𝛤0(𝑛) parametrize 𝑛-isogenies. There are several ways
to represent this: via the cover 𝒜𝑔,𝛤0(𝑛),ℂ → 𝒜𝑔,ℂ, via the modular correspondance 𝒜𝑔,𝛤0(𝑛),ℂ → 𝒜𝑔,ℂ × 𝒜𝑔,ℂ
given by 𝜏 ↦ (𝜏, 𝜏/𝑛), via modular polynomials which essentially give the birational version of these morphisms,
ie describe the extension ℂ(𝒜𝑔,𝛤0(𝑛),ℂ)/ℂ(𝒜𝑔,ℂ) which can also be seen as the image of the generic point by the
modular correspondance.

A Siegel modular form has Fourier coefficients indexed by positive semi-definite half-integral matrices. There
is a Siegel operator which gives a modular form for ℌ𝑔−1 and essentially comes from the restriction of 𝑓 on the
boundary given by the Satake compactification (if 𝑔 = 1 this is the value at the cusp). We can also look at the
canonical partial toroidal compactification (there are several extensions to full toroidal compactification) which
parametrizes on the boundary semi-abelian schemes of dimension 𝑔 with torus rank 1. To give such a semi-abelian
𝐴: 1 → 𝔾𝑚 → �̃� → 𝐵 → 0 is the same as to give 𝐵 (an abelian variety of dimension 𝑔 − 1) and an element of
Ext1(𝐵, 𝔾𝑚), ie a point in 𝑃 ∈ �̂� (this is not quite the same because there is an extra involution 𝑃 → ±𝑃 involved).
Restricting 𝑓 to this boundary gives its Fourier-Jacobi series decomposition (see the excellent survey [Van08, § 5,
8 and 11]).

5.5 hilbert moduli space
sec:hilbertC

If 𝐴 has real multiplication by a maximal totally real order 𝒪𝐾, then 𝛬 is an 𝒪𝐾 module, and we can write
𝛬 = 𝒪𝐾 ⊕ 𝑀 for some locally free rank 1 𝒪𝐾-module 𝑀. The existence of a polarisation shows that we can write
𝛬 = 𝐼 ⊕ 𝒪𝐾𝜏 where 𝜏 ∈ ℌ𝑔

1 and 𝐼 is a fractional ideal [BL04, § 9.2]. The polarisation is given by 𝐻𝜆(𝑧, 𝑤) =
∑ 𝜆𝑖

𝑧𝑖𝑤𝑖
𝜏𝑖

where 𝜆 ∈ 𝐾 is totally positive andwe denote by 𝜆𝑖 the 𝑔 embeddings of 𝐾 in ℝ.We have 𝛬⊗ℚ = 𝐾⊕𝐾𝜏,
so we can see the polarisation as given by 𝐸𝜆(𝑥 + 𝑦𝜏, 𝑥′ + 𝑦′𝜏′) = Tr𝐾/ℚ(𝜆(𝑥𝑦 − 𝑦𝑥′)) where 𝑥, 𝑦, 𝑥′, 𝑦′ ∈ 𝐾.
Since we want 𝐸𝜆(𝛬, 𝛬) ⊂ ℤ, we need to take 𝜆 ∈ 𝐼∗, the dual of 𝐼 for the trace. If 𝐼 ⊂ 𝒪𝐾, we can take 𝜆 = 1, the
orthogonal lattice is then given by 𝒪⋆

𝐾 ⊕ 𝐼⋆𝜏 (recall that for any ideal we have 𝐼𝐼⋆ = 𝑅(𝐼)∗ where 𝑅(𝐼) is its order),
so to get a principal polarisation we need 𝐼 = 𝒪⋆

𝐾 = 𝜕−1
𝐾 . More generally the polarisation types are indexed by the

narrow class group Cl+(𝒪𝐾), the ideal 𝐼 above giving a polarisation of type 𝐼∗.
Let us focus on the principally polarised case (ie polarisation of type 𝒪𝐾, ie 𝐼 = 𝒪∗

𝐾), we then have that the
Hilbert moduli space of principally polarised abelian varieties with real multiplication by 𝒪𝐾 is given by ℌ𝑔

1/𝛤
where 𝛤 ≔ Sl2(𝒪𝐾 ⊕ 𝜕−1

𝐾 ) with the notations of [BGH+08, Eq. 1.6]. (When 𝑔 = 2 see also [MR20, § 2.2 and § A.2]
for alternative descriptions of the Hilbert moduli surfaces where the quotient is given by ℌ𝑔

1/𝛤 with 𝛤 = Sl2(𝒪𝐾).)
We can then define Hilbert modular forms as functions 𝑓 on ℌ𝑔

1 satisfying a suitable automorphic transformation,
given by a representation of GL𝑔

1 (one for each embedding of 𝐾 in ℝ). So the weight of a Hilbert modular form is
given by a 𝑔-tuple ofweights (𝑘1, … , 𝑘𝑔) such that 𝑓 (𝛾⋅𝜏) = ∏ det(𝑐𝑖𝜏𝑖+𝑑𝑖)𝑘𝑖𝑓 (𝜏). A Baily-Borel compactification
is given by adding a finite number of cusps ℙ1(𝐾)/𝛤. If 𝒪⋆

𝐾 is isomorphic to 𝒪𝐾 (ie if 𝒪𝐾 is Gorenstein), then this
set is in bijection withCl(𝐾) [BGH+08, Lemma 1.3]. Like in the Siegel case, a Hilbert modular form is automatically
holomorphic at the cusps if 𝑔 > 1. It has Fourier coefficients indexed by the totally positive elements of 𝒪𝐾 (and
eventually a constant coefficients). We refer to [BGH+08] for more details.

We also can define level subgroups 𝛤(𝐼) and 𝛤0(𝐼). We will be mainly interested in the case 𝐼 = (𝛽) with 𝛽 ≫ 0.
Indeed in this case the 𝛽-isogeny preserve the polarisation type, otherwise we have a modular correspondance
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5. Moduli spaces of abelian varieties

between Hilbert component of different polarisation type.
We have a canonical map ℌ𝑔

1 → ℌ𝑔 by forgetting the real multiplication structure, which is compatible with the
action of Sl2(𝒪𝐾 ⊕ 𝜕−1

𝐾 ) and Sp2𝑔(ℤ) respectively. Concretely if 𝛬 = 𝒪⋆
𝐾 ⊕ 𝜏𝒪𝐾, let (𝑒1, … , 𝑒𝑔) be a ℤ-basis of 𝜏,

and 𝑅𝒪𝐾
the matrix given by the 𝑔-embeddings of the 𝑒𝑖. Let (𝑓1, … , 𝑓𝑔) be the dual basis for the trace, this is a basis

for 𝒪⋆
𝐾 and we let 𝑅𝒪⋆

𝐾
be the matrix of the 𝑔-embeddings. Then we check that 𝑡𝑅𝒪𝐾

𝑅𝒪⋆
𝐾

= Id, so 𝛬 = ℤ𝑔 ⊕ 𝛺ℤ𝑔

with 𝛺 = 𝑡−1
𝑅𝒪𝐾

𝜏𝑅𝒪𝐾
.

The Galois action on 𝐾 permutes the 𝑔 embedding, and we say that a Hilbert modular form is symmetric if it is
invariant under these permutations. The image in Siegel space is called the Humbert variety (this is essentially the
quotient of the Hilbert space under the Galois action), and it is clear that the pullback of a Siegel modular form is
symmetric.

5.6 shimura varieties
sec:shimura

More generally we can define a Shimura variety of PEL type as Sh𝐾(𝐺, 𝑋+)(ℂ) = 𝐺(ℚ)+\(𝑋+ × 𝐺(A𝑓))/𝐾 =
𝐺(ℚ)+\(𝐺(ℝ)+ × 𝐺(A𝑓))/𝐾∞ × 𝐾 where 𝑋+ is the hermitian symmetric domain given by the orbit of 𝐺(ℝ)+
on a complex structure ℎ on 𝑉, (𝑉, 𝜓) is a faithful symplectic (𝐵, ⋆)-module, (𝐵, ⋆) a simple algebra with positive
involution which can appear as an endomorphism algebra of a principally polarised abelian variety (with the
Rosati involution), and 𝐺 reductive group such that 𝐺(ℚ) are (essentially) the 𝐵-symplectic automorphisms of 𝑉.
We refer to [Mil05] for more details on Shimura variety, and to [Kie20, § 2.2] for the modular interpretation of
Sh𝐾(𝐺, 𝑋+) as parametrizing abelian varieties with Polarisation, Endomorphisms and Level. We can then define
a Hecke correspondance and so modular polynomials in this general setting. The Siegel moduli correspond to
𝐵 = ℚ and 𝐺 = GSp2𝑔(ℚ) and the Hilbert case is 𝐵 = 𝐾 (𝐾 totally real), and 𝐺 = GL2(𝐾). We refer to [Kie20]
for more details.

5.7 siegel moduli space over ℤ
sec:siegelZ

Since we want to compute modular polynomials over finite field, we need integral models of the corresponding
Shimura varieties. First 𝒜𝑔 ≔ 𝒜𝑔, the moduli space of principally polarised abelian varieties is a smooth separated
Deligne-Mumford stack with affine diagonal of finite type over ℤ (so in practice a very “tame” moduli space). The
corresponding coarse moduli space is a quasi-projective scheme by the results of [MFK94]. Indeed Mumford shows
that 𝒜𝑔 can be constructed as a (stacky) quotient of a locally closed subscheme of a Hilbert scheme by the reductive
group PGL𝑛, so the coarse moduli space is the corresponding GIT quotient. Algebraicity of the stack 𝒜𝑔 can also
be shown directly using Artin criterion.

Integral toroidal (hence smooth) and Baily-Borel-Satake compactifications 𝒜𝑔 are constructed in [FC90] (here
a compactification is a dense open embedding into a proper stack). This shows as a corollary (using ZMT) that
the geometric fibers 𝒜𝑔 ⊗ 𝔽𝑝 are connected (hence irreducible) since 𝒜𝑔 ⊗ ℚ is (as shown by the analytic
compactifications of the Siegel moduli space). A purely algebraic proof of the irreducibility of the geometric fibers
is given in [Oor01a].

More generally, if we do not want to restrict to principally polarised abelian varieties1 , we can look at 𝒜𝛿
𝑔

[Mum70b], the stack of abelian varieties with a polarisation of type 𝛿, ie such that 𝐾(ℒ) ≃ ∏𝑔
𝑖=1 ℤ/𝛿𝑖ℤ × 𝜇𝛿𝑖

(after faithfully flat base change if needed). Their geometric fibers are irreducible (and non empty) by [Jon93b].
We also have 𝒜𝑑

𝑔 which parametrizes polarisation of degree 𝑑2 (unlike the 𝒜𝛿
𝑔 this includes non ordinary abelian

varieties). The ordinary points are dense in each geometric fiber [NO80], so the irreducible components of a
geometric fiber at 𝑥 ∈ Specℤ are given by the closure of the geometric fibers of 𝒜𝛿

𝑔 at 𝑥 for 𝛿 such that 𝑑 = ∏ 𝛿𝑖.
While 𝒜𝑑

𝑔 is only smooth over ℤ[1/𝑑] (because separably polarised abelian varieties lift), the 𝒜𝛿
𝑔 are smooth over

ℤ (essentially because ordinary abelian varieties lift).

1Even if we only want to explore the isogeny graph of principally polarised abelian varieties, it is sometime convenient to use intermediate
non principally polarised abelian varieties.
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5.7. Siegel moduli space over ℤ

For modular correspondances, we need to describe moduli with level subgroups. We stick to the principally
polarised case for simplicity. Let us first describe the moduli 𝒜𝑔,𝛤(𝑛): this is the algebraic stack of principally
polarised abelian variety with a level 𝑛 structure. If we define such a structure on 𝐴 as an isomorphism 𝐴[𝑛] ≃
(ℤ/𝑛ℤ)𝑔 × 𝜇𝑔

𝑛, this gives a smooth stack over ℤ with irreducible geometric fibers. (Smoothness over ℤ[1/𝑛]
comes from the fact that 𝐴[𝑛] is then étale hence lift, and over 𝑍𝑝 with 𝑝 ∣ 𝑛 this is because the level 𝑛 structure
impose that 𝐴 is ordinary.) A word of warning: the stack 𝒜𝑔,𝛤(𝑛) is often considered over ℤ[1/𝑛, 𝜁𝑛] so that the
level structure is 𝐴[𝑛] ≃ (ℤ/𝑛ℤ)2𝑔. The geometric fibers of this pullback are then defined over 𝑘(𝜁𝑛) (𝑘 = 𝔽𝑝
with 𝑝 ∤ 𝑛 or 𝑘 = ℚ), hence they decompose into 𝜙(𝑛) disjoint irreducible components over 𝑘. In characteristic
𝑝 ∣ 𝑛, the stack 𝒜𝑔,𝛤(𝑛) misses the non ordinary points, hence the forgetting map 𝒜𝑔,𝛤(𝑛) → 𝒜𝑔 is quasi-finite, and
it is only finite above ℤ[1/𝑛]. A convenient way to fix this is to consider the normalisation of 𝒜𝑔 in 𝒜𝑔,𝛤(𝑛)[1/𝑛]
(or simply in its generic point). The resulting stack is not smooth at non ordinary points however. This also allows
us to define compactifications of 𝒜𝑔,𝛤(𝑛) as normalisation of a compactification 𝒜𝑔 in 𝒜𝑔,𝛤(𝑛)[1/𝑛]. Looking at
the normalisation of 𝒜𝑔 in 𝒜𝑔,𝛤(𝑛)[1/𝑛] also allows to construct compactifications of 𝒜𝑔,𝛤(𝑛). If 𝑛 ≥ 3 the inertia
stack of 𝒜𝑔,𝛤(𝑛) is trivial, hence 𝒜𝑔,𝛤(𝑛) is a space, and in fact a quasi-projective scheme by [MFK94]. If 𝑛 ≤ 2, the
generic automorphisms are given by ℤ/2ℤ, and the map from 𝒜𝑔 to its coarse space factor through the quotient
by the generic automorphisms. The quotient 𝒜𝑔 → [𝒜𝑔/ ± 1] is a ℤ/2ℤ-gerbe, hence is still smooth. This shows
that if 𝐴 is a point of 𝒜𝑔 which only has generic automorphisms, there is an étale open 𝑈 around 𝐴 where this
holds, and the smooth quotient [𝑈/ ± 1] is a space, ie the coarse space of 𝒜𝑔 is smooth around 𝐴.

Anyway over ℤ[1/𝑛], the forgetful map 𝒜𝑔,𝛤(𝑛) → 𝒜𝑔 is finite étale representable. Moreover the finite group
𝛤(1)/𝛤(𝑛) = Sp2𝑔(ℤ/𝑛ℤ) acts on 𝒜𝑔,𝛤(𝑛) and 𝒜𝑔 is exactly the stack quotient by this action. Now if 𝛤 ⊂ Sp2𝑔(ℤ̂)
is a level subgroup containing 𝛤(𝑛), we can construct 𝒜𝑔,𝛤 as the stack quotient of 𝒜𝑔,𝛤(𝑛) by 𝛤/𝛤(𝑛). A 𝑇-point
of 𝒜𝑔,𝛤 ≔ [𝒜𝑔,𝑛/ ̃𝛤] then corresponds to an abelian scheme 𝐴/𝑇 which is étale-locally (since 𝐴[𝑛] is étale we just
need an étale cover rather than an fppf cover here) endowed with a level 𝑛 structure modulo the action of ̃𝛤 [DR73,
§IV.3.1]. The maps 𝒜𝑔,𝛤(𝑛) → 𝒜𝑔,𝛤 and 𝒜𝑔,𝛤 → 𝒜𝑔 are finite, étale, and representable [DR73, §IV.2, §IV.3]. As
for 𝒜𝑔,𝑛, we can extend 𝒜𝑔,𝛤 to ℤ by normalization. We can also check as in [DR73, §IV.3.6] that the definition
does not depend on the integer 𝑛 such that 𝛤(𝑛) ⊂ 𝛤. Indeed, if 𝑚 is another integer such that 𝛤(𝑚) ⊂ 𝛤, and we
define 𝒜 ′

𝑔,𝛤/ℤ[1/𝑚] ≔ [𝒜𝑔,𝑚/ ̃𝛤]. Then 𝒜𝑔,𝛤/ℤ[1/𝑛] and 𝒜 ′
𝑔,𝛤/ℤ[1/𝑚] are isomorphic over ℤ/[1/𝑛𝑚], and

since 𝒜 ′
𝑔,𝛤/ℤ[1/𝑚] is smooth, it coincides with the normalization 𝒜𝑔,𝛤/ℤ over ℤ[1/𝑚].

We apply this construction to 𝛤 = 𝛤0(ℓ) (ℓ prime for simplicity). We then have an algebraic modular correspon-
dance 𝒜𝑔,𝛤0(ℓ) → 𝒜𝑔 × 𝒜𝑔 [KPR20, Proposition 4.9] which we will study over ℤ[1/ℓ] since we restrict to étale
isogenies for simplicity.

We also have the following algebraic interpretation of Siegel modular forms: let 𝜋 ∶ 𝒳𝑔 → 𝒜𝑔 be the universal
abelian scheme, with unit section 𝜖. The vector bundle

ℋ = 𝜋∗𝛺1
𝒳𝑔/𝒜𝑔

= 𝜖∗𝛺1
𝒳𝑔/𝒜𝑔

over 𝒜𝑔, which is dual to Lie𝒳𝑔/𝒜𝑔
, is called the Hodge bundle. If 𝜌 is a representation of GL𝑔, a Siegel modular

form of weight 𝜌 is a section of 𝜌(ℋ); in particular, a scalar-valued modular form of weight 𝑘 is a section of 𝛬𝑔ℋ⊗𝑘.
In other words, a Siegel modular form 𝑓 can be seen as a map

(𝐴, 𝜔) ↦ 𝑓 (𝐴, 𝜔)

where 𝐴 is a point of 𝒜𝑔 and 𝜔 is a basis of differential forms on 𝐴, with the following property: if 𝜂∶ 𝐴 → 𝐴′ is an
isomorphism, and 𝑟 ∈ GL𝑔 is the matrix of 𝜂∗ in the bases 𝜔′, 𝜔, then 𝑓 (𝐴′, 𝜔) = 𝜌(𝑟)𝑓 (𝐴, 𝜔′). The link with
classical modular forms over ℂ is the following: if 𝜏 ∈ ℍ𝑔, then we let

𝑓 (𝜏) = 𝑓(ℂ𝑔/(ℤ𝑔 + 𝜏ℤ𝑔), (2𝜋𝑖 𝑑𝑧1, … , 2𝜋𝑖 𝑑𝑧𝑔)).

This choice of basis is made so that the 𝑞-expansion principle holds [FC90, p. 141]. The canonical line bundle
𝔥 = 𝛬𝑔ℋ is ample (it gives the Baily-Borel compactification), so modular forms give local coordinates on 𝒜𝑔.
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5. Moduli spaces of abelian varieties

5.8 hilbert moduli space over ℤ
sec:hilbertZ

We can apply the same method to Hilbert–Blumenthal stacks. [Rap78; Cha90] Let 𝐾 be a real number field of
dimension 𝑔, and let 𝒪𝐾 be its maximal order. An abelian scheme 𝐴 → 𝑆 has real multiplication by 𝒪𝐾 if it is
endowed with a morphism 𝜄 ∶ 𝒪𝐾 → End(𝐴) such that Lie(𝐴) is a locally free 𝒪𝐾 ⊗ 𝒪𝑆-module of rank 1. This
last condition can be checked on geometric fibers [Rap78, Rem. 1.2] and is automatic on fibers of characteristic
zero [Rap78, Prop. 1.4].

Warning: Rapoport defines a compactification of this moduli space in [Rap78], and state that it is smooth over
ℤ. However this “compactification” is not proper. A real compactification is constructed in [DP94] by enlarging
the moduli space (at primes dividing the discriminant 𝛥), however it is smooth only over ℤ[𝛥−1]. The Rapoport
moduli space is fiberwise dense inside the Deligne-Pappas moduli space.

We let ℋ𝑔 be the Rapoport stack of principally polarized abelian schemes with real multiplication by 𝒪𝐾. It is
algebraic and smooth of relative dimension 𝑔 over Specℤ [Rap78, Thm. 1.14]. Moreover, ℋ𝑔 is connected and its
generic fiber is geometrically connected [Rap78, Thm. 1.28]. Forgetting 𝜄 yields a map ℋ𝑔 → 𝒜𝑔, called the Hilbert
embedding, which is an Isom(𝒪𝐾, 𝒪𝐾) ≃ Gal(𝐾)-gerbe over its image, theHumbert stack.Themap from ℋ𝑔 → 𝒜𝑔
is finite over its image by [GD64, EGA IV.15.5.9], [DR73, Lem 1.19] (or by looking at the compactifications of
[Rap78], [FC90]).

One can define the stack ℋ𝑔,𝑛 → ℤ[1/𝑛] of RM abelian schemes with a level 𝑛 structure in the usual way. The
map ℋ𝑔,𝑛 → ℋ𝑔 is étale over ℤ[1/𝑛] [Rap78, Thm. 1.22], its generic fiber is connected, and geometrically has
𝜙(𝑛) components defined over ℚ(𝜁𝑛) [Rap78, Thm. 1.28]. If 𝛽 is a totally positive prime of 𝒪𝐾, this allows us
to construct, in a similar fashion to 𝒜𝑔(ℓ), the stack ℋ𝑔(𝛽) = ℋ𝑔,𝛤0(𝛽) of RM abelian schemes endowed with a
subgroup 𝐾 which is maximal isotropic for the 𝛽-pairing. We have a map

𝛷𝛽 = (𝛷𝛽,1, 𝛷𝛽,2) ∶ ℋ𝑔(𝛽) → ℋ𝑔 × ℋ𝑔

given by forgetting the extra structure and taking the isogeny respectively. The condition on 𝛽 ensures that 𝛷𝛽,2
sends ℋ𝑔(𝛽) to ℋ𝑔.

If 𝐴 has real multiplication, there is always a polarization compatible with 𝜄 ∶ 𝒪𝐾 → End(𝐴) [Rap78, Proposition
1.10]. In fact the possible compatible polarizations form a projective 𝒪𝐾-module 𝑃 of rank 1 with positivity. The
stack ℋpol

𝑔 of polarized abelian schemes with real multiplication is algebraic and smooth of relative dimension 𝑔 over
Specℤ [Rap78, Théorème 1.14]. Isomorphisms classes of polarization modules 𝑃 as above are indexed narrow class
group Cl+(ℤ𝐾). Therefore ℋpol

𝑔 decomposes as ℋpol
𝑔 = ∐𝑃∈Cl+(ℤ𝐾) ℋpol,𝑃

𝑔 where ℋpol,𝑃
𝑔 is the open substack of

abelian schemes with real multiplication and polarization type 𝑃 [Cha90, §1], [Rap78, Preuve du thm. 1.28]. Over ℂ,
the analytification of ℋpol,𝑃

𝑔 is given by ℍ𝑔
1/ Sl2(𝒪𝐾 ⊕ 𝑃∨), where a point (𝑡1, … , 𝑡𝑔) ∈ ℍ𝑔

1 represents the abelian
variety ℂ𝑔/(𝛴(𝑃∨) ⊕ Diag(𝑡1, … , 𝑡𝑔)𝛴(𝒪𝐾)), where 𝛴∶ 𝐾 → ℝ𝑔 is the collection of the 𝑔 real embeddings of 𝐾.
For any 𝜆 ∈ 𝑃 the corresponding hermitian form of the polarization is given by 𝐻𝜆(𝑧, 𝑤) = ∑𝑔

𝑖=1 𝜆𝑖𝑧𝑖𝑤𝑖/ℑ𝑡𝑖.

Then ℋ𝑔 = ℋpol,𝒪𝐾
𝑔 is the substack which corresponds to principally polarizable abelian schemes, ℋ𝑔,𝑛 ⊗ℚ(𝜁𝑛)

is geometrically connected.
We can also construct ℋpol

𝑔,𝛤0(𝐼) for any ideal 𝐼 of 𝒪𝐾, but in this case the corresponding 𝛷𝛽,2 isogeny map would

map ℋpol
𝑔,𝛤0(𝐼)

𝑃
to ℋpol

𝑔
𝐼⊗𝑃

[Kie20, §3.4].

5.9 algebraic modular forms
subsec:mf-ZZ

5.9.1 Siegel modular forms

Let 𝜋 ∶ 𝒳𝑔 → 𝒜𝑔 be the universal abelian variety. The vector bundle

ℋ = 𝜋∗𝛺1
𝒳𝑔/𝒜𝑔
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5.10. The Kodaira-Spencer isomorphism

over 𝒜𝑔, which is dual to Lie𝒳𝑔/𝒜𝑔
, is called the Hodge bundle. If 𝜌 is a representation of GL𝑔, a Siegel modular

form of weight 𝜌 is a section of 𝜌(ℋ); in particular, a scalar-valued modular form of weight 𝑘 is a section of 𝛬𝑔ℋ⊗𝑘.
In other words, a Siegel modular form 𝑓 can be seen as a map

(𝐴, 𝜔) ↦ 𝑓 (𝐴, 𝜔)

where 𝐴 is a point of 𝒜𝑔 and 𝜔 is a basis of differential forms on 𝐴, with the following property: if 𝜂∶ 𝐴 → 𝐴′ is an
isomorphism, and 𝑟 ∈ GL𝑔 is the matrix of 𝜂∗ in the bases 𝜔′, 𝜔, then 𝑓 (𝐴′, 𝜔) = 𝜌(𝑟)𝑓 (𝐴, 𝜔′). The link with
classical modular forms over ℂ is the following: if 𝜏 ∈ ℍ𝑔, then we let

𝑓 (𝜏) = 𝑓(ℂ𝑔/(ℤ𝑔 + 𝜏ℤ𝑔), (2𝜋𝑖 𝑑𝑧1, … , 2𝜋𝑖 𝑑𝑧𝑔)).

This choice of basis is made so that the 𝑞-expansion principle holds [FC90, p. 141]. The canonical line bundle
𝔥 = 𝛬𝑔ℋ is ample, so modular forms give local coordinates on 𝒜𝑔.

The canonical line bundle 𝔥 = 𝛬𝑔ℋ is ample, and can be used to construct the Satake-Baily-Borel compact-
ification 𝒜∗

𝑔 of 𝒜𝑔 over ℤ. The stack 𝒜∗
𝑔 is normal but not smooth, one can also construct smooth toroidal

compactifications 𝒜𝑔 over ℤ. If 𝑔 > 1, the Koecher principle is still valid over ℤ, and a scalar modular form defined
over 𝒜𝑔 extends to 𝒜∗

𝑔 and 𝒜𝑔. The boundary components have interpretations in terms of the Fourier coefficients,
in term of the Siegel operator or the Fourier-Jacobi development respectively. Finally the 𝑞-expansion principle
give a convenient way to find the ring of definition of a modular form. For all this and much more, we refer to
[FC90, Ch. V].

Let 𝑗 be a modular function, that is a section of 𝒪𝒜𝑔
. Then if 𝐴/𝑘 is in the open of definition of 𝑗, one can

evaluate 𝑗 at every deformation 𝐴𝜖 of 𝐴. If 𝑡𝜖 is the tangent vector at 𝐴 to 𝒜𝑔 corresponding to 𝐴𝜖, writing
𝑗(𝐴𝜖) = 𝑗(𝐴) + 𝑑𝑗(𝜖)𝜖 defines an application 𝑑𝑗 ∶ Sym2 𝑇0𝐴

𝐴 → 𝑘 (where we used the Kodaira-Spencer
isomorphism). More generally this holds for abelian schemes, so we see that 𝑑𝑗 is a section of Sym2 ℋ, in other
words a modular form of weight Sym2.

5.9.2 Hilbert modular forms

For the algebraic interpretation of Hilbert modular forms as sections of the Hodge bungle on ℋ𝑔, the Koecher
principle and the 𝑞-expansion principle for Hilbert modular forms, we refer to [Cha90, §4] and [Rap78, Thm. 6.7].

More precisely, the Hilbert Hodge bundle 𝔥 = 𝜋∗𝛺1
𝒳𝑔/ℋ𝑔

is a locally free ℤ𝐾 ⊗ ℋ𝑔-module, and Hilbert
modular forms of weight 𝜒 are sections of the line bundle 𝔥𝜒 where the weights are given by 𝜒 ∈ 𝐺ℤ𝐾

=
𝑅𝑒𝑠ℤ𝐾/ℤ 𝔾𝑚,ℤ𝐾

× ℤ𝐾 [AG05, Defs. 5.1 and 5.4], [Rap78, §6]. If 𝐾′ is the normal closure of 𝐾, it splits ℤ𝐾, and
a choice of trivialization of ℤ𝐾 ⊗ 𝐾′ induce a splitting of the torus 𝐺𝐾′, hence a basis of 𝑔 characters 𝜒1, … , 𝜒𝑔.
An Hilbert modular form of weight 𝜒𝑎1

1 … 𝜒𝑎𝑔
𝑔 corresponds to a form of weight (𝑎1, … 𝑎𝑔) in the notations of

Section 5.5 [AG05, p. 2].

5.10 the kodaira-spencer isomorphism

The Kodaira-Spencer morphism was first introduced in [KS58]; we refer to [FC90, §III.9] and [And17, §1.3] for
more details.

Let 𝑝∶ 𝐴 → 𝑆 be a proper abelian scheme, and assume for simplicity that 𝑆 is smooth. Then, using the Gauss-
Manin connection

∇∶ 𝑅1𝑝∗𝛺𝐴/𝑆 → 𝑅1𝑝∗𝛺𝐴/𝑆 ⊗ 𝛺1
𝑆,

one can define the Kodaira–Spencer morphism

𝜅∶ 𝑇𝑆 → 𝑅1𝑝∗𝑇𝐴/𝑆,

where 𝑇𝐴/𝑆 is the dual of 𝛺1
𝐴/𝑆. {{ Note that 𝑆 smooth is enough for our purpose since we will apply this to 𝒜𝑔, or rather to

an étale presentation 𝑆 of 𝒜𝑔). }}
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5. Moduli spaces of abelian varieties

Recall that Lie𝑆 𝐴 = 𝑝∗𝑇𝐴/𝑆 is the dual of 𝑝∗𝛺1
𝐴/𝑆, and is canonically identified with 𝑠∗𝑇𝐴𝑆

where 𝑠 ∶ 𝑆 → 𝐴 is
the zero section [EGM12, Prop. 3.15]. By the projection formula [FGI+05, Thm. 8.3.2], [Stacks, Tag 0943], we have

𝑅1𝑝∗𝑇𝐴/𝑆 = Lie𝑆(𝐴) ⊗𝒪𝑆
𝑅1𝑝∗𝒪𝐴.

Moreover, 𝑅1𝑝∗𝒪𝐴 is naturally isomorphic to Lie𝑆(𝐴∨), where 𝐴∨ → 𝑆 is the dual of 𝐴. Therefore, we can also
write the Kodaira–Spencer map as

𝜅∶ 𝑇𝑆 → 𝑅1𝑝∗𝑇𝐴/𝑆 ≃ Lie𝑆(𝐴) ⊗𝒪𝑆
Lie𝑆(𝐴∨).

The Kodaira-Spencer map 𝜅 is invariant by duality. A polarization 𝐴 → 𝐴∨ induces another version of the
Kodaira–Spencer map:

𝜅∶ 𝑇𝑆 → Sym2 Lie𝑆(𝐴) = HomSym(𝛺1
𝐴/𝑆, 𝛺1 ∨

𝐴∨/𝑆) = HomSym(Lie𝑆(𝐴)∨, Lie𝑆(𝐴∨)).

If we apply this construction to the universal abelian scheme 𝒳𝑔 → 𝒜𝑔 (or rather, the pullback of 𝒳𝑔 to an étale
presentation 𝑆 of 𝒜𝑔), the Kodaira–Spencer map is an isomorphism [And17, §2.1.1]. Its analytification can be
described explicitly.

prop:analytic_kodaira Proposition 5.10.1. Let 𝑉 be the trivial vector bundle ℂ𝑔 on ℍ𝑔, identified with the tangent space at 0 of the
universal abelian variety 𝐴(𝜏) over ℍ𝑔. Then the pullback of the Kodaira–Spencer map 𝜅∶ 𝑇𝒜𝑔

→ Sym2 Lie𝑆 𝒳𝑔 by
ℍ𝑔 → 𝒜an

𝑔 is an isomorphism 𝑇ℍ𝑔
≃ Sym2𝑉 given by

𝜅(
1 + 𝛿𝑗𝑘

2𝜋𝑖
𝜕

𝜕𝜏𝑗𝑘
) =

1
(2𝜋𝑖)2

𝜕
𝜕𝑧𝑗

⊗
𝜕

𝜕𝑧𝑘
.

for each 1 ≤ 𝑗, 𝑘 ≤ 𝑔, where 𝛿𝑗𝑘 is the Kronecker symbol.

Proof. The fact that the pullback is an isomorphism is [And17, §2.2]. The identification itself can be derived by
looking at the deformation of a section 𝑠 of the line bundle on 𝒳𝑔 giving the principal polarization. {{ Precisely, if
(𝐴, ℒ) is a principally polarized abelian variety, and 𝑠 a non zero section of ℒ, each deformation (𝐴𝜖, ℒ𝜖) gives a deformation
𝑠𝜖. }} On ℍ𝑔 × ℂ𝑔 → ℍ𝑔, we can take the theta function 𝜃 as a section, and its deformation along 𝜏 is given by the
heat equation [Cv00, p. 9]:

2𝜋𝑖(1 + 𝛿𝑗𝑘)
𝜕𝜃

𝜕𝜏𝑗𝑘
=

𝜕2𝜃
𝜕𝑧𝑗𝜕𝑧𝑘

.

When identifying the tangent space at 𝜏 with the symmetric matrices, the action of Sym2 at a matrix 𝑈 on the
tangent space is given by 𝑀 ↦ 𝑀𝑈𝑀𝑡. It is then easy to check that this action is indeed compatible with the action
of Sp2𝑔(ℤ) on 𝜏 and 𝑈. From Proposition 5.10.1, we recover that derivatives of Siegel modular invariants have
weight Sym2.

To sum up, if 𝑥 ∶ Spec 𝑘 → 𝒜𝑔 is a point represented by a principally polarized abelian variety 𝐴/𝑘, we have a
canonical isomorphism 𝑇𝑥𝒜𝑔 ≃ Sym2(𝑇0(𝐴)).

In the Hilbert case, the Kodaira–Spencer isomorphism is as follows.

prop:kodaira_hilbert Proposition 5.10.2. Let 𝐴 → 𝑆 be an abelian scheme in ℋ𝑔. Then we have canonical isomorphisms

𝑇𝐴(ℋ𝑔) ≃ Homℤ𝐾⊗𝒪𝑆
(Lie(𝐴)∨, Lie(𝐴∨)) = Lie(𝐴∨) ⊗ℤ𝐾⊗𝒪𝑆

Lie(𝐴) ⊗ℤ𝐾
ℤ∨

𝐾.

Proof. Combine [Rap78, Prop. 1.6] with [Rap78, Prop. 1.9].

Remark 5.10.3. By the above Propositions of [Rap78], the functor of formal deformations of RM abelian schemes
with or without polarization are the same; in other words, all deformations which preserve the real multiplication
automatically preserve the polarization. By contrast for an abelian scheme with a separable polarization, the formal
functor of deformations (without polarization) is represented by 𝑊(𝑘)[[[𝑡11, … , 𝑡𝑔𝑔]][Oor71b, Thm. 2.2.1] and
the one with polarization by 𝑊(𝑘)[[[𝑡11, … , 𝑡𝑔𝑔]]/(𝑡𝑖𝑗 − 𝑡𝑗𝑖) [Oor71b, Thm. 2.3.3 and Rem. p. 288].
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5.10. The Kodaira-Spencer isomorphism

Proposition 5.10.2 shows that for Hilbert–Blumenthal stacks, the deformation map is actually represented by an
element of ℤ𝐾 ⊗ 𝒪𝑆 rather than by a matrix in 𝒪𝑆. The action of the Hilbert embedding on tangent spaces is also
easy to describe.

prop:ks_embedding Proposition 5.10.4. Let 𝐴 be a 𝑘-point of ℋ𝑔. Then the map 𝑇𝐴(ℋ𝑔) → 𝑇𝐴(𝒜𝑔) induced by the forgetful functor
fits in the commutative diagram

𝑇𝐴(ℋ𝑔) 𝑇𝐴(𝒜𝑔)

Homℤ𝐾⊗𝒪𝑘
(Lie(𝐴)∨, Lie(𝐴∨)) HomSym(Lie(𝐴)∨, Lie(𝐴∨)).

where the vertical arrows are the Kodaira–Spencer isomorphisms. {{ As a reformulation: the forgetful functor ℋ𝑔 →
𝒜𝑔 induces the following map on tangent spaces. If 𝐴 → 𝑘 represents the geometric point Spec 𝑘 → ℋ𝑔, then 𝑇𝐴,ℋ𝑔

→
𝑇𝐴,𝒜𝑔

is given by the natural map Lie(𝐴) ⊗ℤ𝐾⊗𝒪𝑘
Lie(𝐴) ⊗ℤ𝐾

ℤ∨
𝐾 ≃ Homℤ𝐾⊗𝒪𝑘

(Lie(𝐴)∨, Lie(𝐴∨)) → Sym2 Lie(𝐴) ≃
HomSym(Lie(𝐴)∨, Lie(𝐴∨)). }}

Proof. Thebottomarrow iswell-defined:Lie(𝐴) is a projectiveℤ𝐾⊗𝒪𝑘-sheaf of rank 1, so its image inHom𝒪𝑘
(Lie(𝐴)∨, Lie(𝐴∨))

obtained by forgetting the ℤ𝐾-structure is automatically symmetric. We omit the proof of commutativity.

Combining Proposition 5.10.4 with the analytic description of the Kodaira–Spencer in the Siegel case (Propo-
sition 5.10.1) and the analytic description of the forgetful map (Section 5.5), we obtain the following analytic
description of the Kodaira–Spencer isomorphism in the Hilbert case.

Corollary 5.10.5. The pullback of 𝜅∶ 𝑇ℋ𝑔
→ Sym2 𝐿𝑖𝑒𝑆𝑋𝑔 by ℍ𝑔

1 → ℋan
𝑔 is given by

𝜅(
1
𝜋𝑖

𝜕
𝜕𝑡𝑗

) =
1

(2𝜋𝑖)2
𝜕

𝜕𝑧𝑗
⊗

𝜕
𝜕𝑧𝑗

for every 1 ≤ 𝑗 ≤ 𝑔.
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6.1 Equations for the moduli 63
6.2 Equations for the universal abelian scheme 63
6.3 Theta as modular forms 63

Planned topics

6.1 equations for the moduli

Explicit structure of moduli spaces with level structure via Mumford’s theory of algebraic theta functions [Mum66;
Mum67a; Mum67b; Mum69; Mum91; Kem89a].

6.2 equations for the universal abelian scheme

Equations for abelian varieties [Mum66; Kem89a; Kem89b; Kem90], equations for Kummer varieties [Kem92]
relation between projective normality of Kummer varieties and surjectivity of the multiplication map [Koi76;
Kem88].

6.3 theta as modular forms

Algebraic interpretation of theta as modular forms. Determinant (line) bundle [Mor85, Appendice 2], [FC90,
Theorem 5.1]. Improved bounds via analytic methods [Kou00] or algebraic methods [Pol00; MR08]. Applications
to Riemann’s functional equation [Mor90; Can20; Can16].

Curiously, I have not seen a direct proof that the canonical line bundle ℒ constructed by Mumford for embedding
the moduli spaces of abelian variety with a level (𝑛, 2𝑛) structure satisfy ℒ2 = ℋ. (Analytic interpretation: 𝜃
constants of level 𝑛 are analyticmodular forms of level 𝛤(𝑛, 2𝑛)).This is easily derived from [Can16,Theorem 4.2.1],
but should be simpler to prove directly.

63

[ Draft Version: Tuesday March 7, 2023 at 18:13 ]



[ Draft Version: Tuesday March 7, 2023 at 18:13 ]
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7.3 Teichmuller modular forms. 65
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7.4 The Torelli morphism 65

Planned topics

7.1 compactification

Deligne-Mumford: construction of ℳ𝑔 [DM69]. Semistable curves, compact curves.

7.2 the torelli morphism

The torelli morphism ℳ𝑔 → 𝒜𝑔 is an injection. Cf [Zur09] for the construction.
On algebraic stack, its restriction to ℳ𝑔 ∖ ℋ𝑔 is unramified, and also its restriction on ℋ𝑔 is unramified [VA09].

Unramified locus on the coarse space: [OS79; Ric20; Lan20]
Extension to compact curves, and to the compactifications ℳ𝑔 → 𝒜𝑔 (warning: Torelli is no longer injective)

[MO11].

7.3 teichmuller modular forms.

Current draft version

7.4 the torelli morphism

The link between modular forms and covariants comes from the Torelli morphism

𝜏𝑔 ∶ ℳ𝑔 → 𝒜𝑔

where ℳ𝑔 denotes the moduli stack of smooth curves of genus 𝑔. Let ℂ𝑔 → ℳ𝑔 denote the universal curve; then
the pullback 𝜏∗

𝑔ℋ of the Hodge bundle by the Torelli morphism is 𝜋∗𝛺1ℂ𝑔/ℳ𝑔, with both having canonical action
by GL𝑔. In other words a Siegel modular form of weight 𝜌 induces a Teichmuller modular form of weight 𝜌.

The isomorphism 𝑇0 Jac𝐶 ≃ 𝐻1(𝐶, 𝑂𝐶) ≃ 𝐻0(𝐶, 𝛺𝐶) for a curve 𝐶 shows that the pullback 𝜏∗
𝑔ℋ of ℋ by the

Torelli morphism 𝜏𝑔 ∶ ℳ𝑔 → 𝒜𝑔 is indeed given by the bundle 𝜋∗𝛺1ℂ𝑔/ℳ𝑔, with both having canonical action
by Gl𝑔. In other words a Siegel modular form of weight 𝜌 induces a Teichmuller modular form of weight 𝜌.
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7. Moduli space of curves

The Torelli morphism is radicial on ℳ𝑔, and unramified when restricted to ℳ𝑔 ∖ ℋ𝑔 and to ℋ𝑔, where ℋ𝑔 is
the locus of hyperelliptic curves. If ℳ𝑔 is the moduli space of stable curves of genus 𝑔, then the Torelli morphisms
extends to morphisms (no longer injective) ℳ∗

𝑔 → 𝒜𝑔 and ℳ𝑔 → 𝒜𝑔, where ℳ∗
𝑔 denotes the locus of stable curves.
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contents
Planned topics 67
8.1 Moduli of elliptic curves 67
8.2 Moduli of curves of genus 2 and abelian surfaces 67

8.2.1 Moduli of hyperelliptic curves of genus 2 67
8.2.2 Moduli of abelian surfaces 67
8.2.3 Real multiplications 67
8.2.4 Examples of Hilbert surface 68

Current draft version 68
8.3 Covariants of hyperelliptic curves of genus 2 68

8.3.1 Covariants 68
8.3.2 Algebraic interpretation 69
8.3.3 Arithmetic invariants 69
8.3.4 The case of characteristic 2 70
8.3.5 Covariants and modular forms 71
8.3.6 Absolute invariants 72

Planned topics

8.1 moduli of elliptic curves

8.2 moduli of curves of genus 2 and abelian surfaces
sec:ag2

8.2.1 Moduli of hyperelliptic curves of genus 2

The coarse moduli of M2 is (Projℤ[𝐽2, 𝐽4, 𝐽6, 𝐽8, 𝐽10])𝐽10
≃ ℤ[𝑦1, 𝑦2, 𝑦3, 𝑦4]𝜇5 [Igu60]. Smooth points, automor-

phisms.
Description of twists over a finite field [CQ05; CNP05].
Links between the 𝐽-invariants and the Igusa-Clebsh invariants 𝐼2, 𝐼4, 𝐼6, 𝐼10, link with modular forms. The

different type of curve equations: (long) Weierstrass equation, Artin-Schreier equation in characteristic two (type
(1, 1, 1), (3, 1), (5) and link with the 2-rank), Igusa’s universal normal form, absolute invariants.

8.2.2 Moduli of abelian surfaces

Description of A2 using the fact that all principally polarised abelian surface is a generalised Jacobian [Liu93].
Generators of modular forms over ℂ [Igu62], with levels [Igu64], and over ℤ [Igu79].

8.2.3 Real multiplications

Humbert varieties, generalised Humbert [Kan19b; Kan19a].
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8. Moduli spaces of small dimension

8.2.4 Examples of Hilbert surface

Over ℚ(√2), ℚ(√3), ℚ(√5), explicit invariants (Gundlach [Gun63; Gun65]).

Current draft version
For now, this draft version is essentially extracted from [KPR20; MR22].

8.3 covariants of hyperelliptic curves of genus 2

8.3.1 Covariants

def:cov Definition 8.3.1. Denote by 𝑘6[𝑥] the space of polynomials of degree at most 6. Let 𝜌∶ GL2(𝑘) → GL(𝑉) be a
finite-dimensional holomorphic representation of GL2(𝑘). A covariant, or polynomial covariant, of weight 𝜌 is a
map

𝐶∶ 𝑘6[𝑥] → 𝑉

which is polynomial in the coefficients, and such that the following transformation rule holds: for every 𝑟 ∈ GL2(𝑘)
and 𝑊 ∈ 𝑘6[𝑥],

𝐶(det−2 Sym6(𝑟) 𝑊) = 𝜌(𝑟) 𝐶(𝑊).

If dim𝑉 ≥ 2, then 𝐶 is said to be vector-valued, and otherwise scalar-valued. A fractional covariant is a map
satisfying the same transformation rule which is only required to have a fractional expression in terms of the
coefficients.

In characteristic 0, let 𝑓 and 𝑔 be binary forms of degrees 𝑛 and 𝑚. To compute covariants of sextic forms, Clebsh
introduced [Cle72] the Ueberschiebung operation defined by :

(𝑓 𝑔)𝑘 =
(𝑚 − 𝑘)!(𝑛 − 𝑘)!

𝑚!𝑛! (
𝜕𝑓
𝜕𝑥

𝜕𝑔
𝜕𝑦 −

𝜕𝑓
𝜕𝑦

𝜕𝑔
𝜕𝑥)

𝑘

where in the binomial expression (
𝜕𝑓
𝜕𝑥)

𝑟
(

𝜕𝑓
𝜕𝑦)

𝑠
means

𝜕𝑟+𝑠𝑓
𝜕𝑥𝑟𝜕𝑦𝑠 .

Using the Ueberschiebung, Clebsh showed that the algebra of scalar covariants is generated by fives covariants
denoted 𝐴, 𝐵, 𝐶, 𝐷 and 𝑅 of respective degrees 2, 4, 6, 10 and 15 [Cle72]. Since 𝑅2 admits a polynomial expression
in function of 𝐴, 𝐵, 𝐶 and 𝐷 then these four invariants suffice to characterize the linear equivalence classification
of sextic forms. They are called Clebsh invariants.

Now let’s consider a hyperelliptic model a of genus 2 curves 𝒞 : 𝑦2 = 𝑓 (𝑥) = 𝑢0𝑥6 + 𝑢1𝑥5 + ... + 𝑢5𝑥 + 𝑢6 and
𝛼1, ⋯ , 𝛼6 the distinct roots of 𝑓. If we denote by (𝑖𝑗) the difference (𝛼𝜎(𝑖) − 𝛼𝜎(𝑗)) such that :

𝐼2 = 𝑢2
0 ∑

15
(12)2(34)2(56)2 ,

𝐼4 = 𝑢4
0 ∑

10
(12)2(23)2(31)2(45)2(56)2(64)2 ,

𝐼6 = 𝑢6
0 ∑

60
(12)2(23)2(31)2(45)2(56)2(64)2(14)2(25)2(36)2 ,

𝐼10 = 𝑢10
0 ∏

𝑖<𝑗
(𝛼𝑖 − 𝛼𝑗)2

where every 𝛼𝑖 appears in each expression 𝑚 times equal to the power of 𝑢0. Then J.Igusa has shown in [Igu60, p.
620] that 𝐼2, 𝐼4, 𝐼6 and 𝐼10 are homogenous invariants of degree 2, 4, 6 and 10 with integers coefficients . They are
called Igusa-Clebsh invariants because of the following relations with Clebsh invariants :
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8.3. Covariants of hyperelliptic curves of genus 2

𝐼2 = −120𝐴 ,
𝐼4 = −720𝐴2 + 6750𝐵 ,
𝐼6 = 8640𝐴3 − 108000𝐴𝐵 + 202500𝐶 ,

𝐼10 = −62208𝐴5 + 972000𝐴3𝐵 + 1620000𝐴2𝐶 − 3037500𝐴𝐵2 − 6075000𝐵𝐶 − 4556250𝐷.

8.3.2 Algebraic interpretation

Over ℤ[1/2], the moduli stack ℳ2 of hyperelliptic curves is identified with the moduli stack of nondegenerate
binary forms of degree 6. Let 𝑉 = ℤ𝑥 ⊕ ℤ𝑦, let 𝑋 = det−2 𝑉 ⊗ Sym6 𝑉, and let 𝑈 be the open locus determined
by the discriminant. Then 𝑈 → ℳ2 is naturally identified with the Hodge frame bundle on ℳ2: in other words, 𝑈 is
the moduli space of genus 2 hyperelliptic curves 𝜋 ∶ 𝐶 → 𝑆 endowed with a rigidification 𝒪⊕2

𝑆 ≃ 𝜋∗𝛺1
𝐶/𝑆. In this

identification, we send the binary form 𝑓 (𝑥, 𝑦) to the curve 𝑣2 = 𝑓 (𝑢, 1) with a basis of differential forms given by
(𝑢 𝑑𝑢/𝑣, 𝑑𝑢/𝑣) [CFv17, §4]. The natural action ofGL2 on the Hodge bundle corresponds to the action ofGL2 on 𝑈
that we describe in Definition 8.3.1. This shows why a Siegel modular form of weight 𝜌 pulls back to a fractional
covariant of weight 𝜌, at least over ℤ[1/2]. In fact, one can show, by considering suitable compactifications, that a
Siegel modular form pulls back to a polynomial covariant over any ring 𝑅 in which 2 is invertible. Using Igusa’s
universal form [Igu60, §2], one can also use binary forms of degree 6 to describe the moduli stack of genus 2 curves
even in characteristic two.

8.3.3 Arithmetic invariants
subsec:artinv

We present Igusa’s results [Igu60] about the construction of the moduli of genus 2 curves. In characteristic 0 the
knowledge of the quadruplet (𝐴, 𝐵, 𝐶, 𝐷) (equivalently 𝐼2𝑖’s) in the weighted projective space corresponds exactly
to a genus 2 curve in the coarse moduli space ℳ.

However those invariants have bad reduction in characteristic 2. In fact, the Clebsh invariants (𝐴, 𝐵, 𝐶, 𝐷) have
bad reduction in characteristic 2, 3, 5, and the Igusa-Clebsh invariants only have bad reduction in characteristic
2, 3 (their reduction is well defined, but they do not classify genus 2 curves anymore).

Igusa shows that hyperelliptic curves of genus 2 admit a universal normal form [Igu60, p. 617]

𝑋𝑌2 + (1 + 𝑎𝑋 + 𝑏𝑋2)𝑌 + 𝑋2(𝑐 + 𝑑𝑋 + 𝑋2) = 0

such that in characteristic different from 2, the Weierstrass points of the associated sextic form are the roots of the
equation :

(1 + 𝑎𝑋 + 𝑏𝑋2)2 − 4𝑋3(𝑐 + 𝑑𝑋 + 𝑋2) = 0.

Igusa defines the following integral arithmetical invariants:

𝐽2 = 2−3𝐼2, 𝐽4 = 2−53−1(4𝐽2
2 − 𝐼4),

𝐽6 = 2−63−2(8𝐽3
2 − 160𝐽2𝐽4 − 𝐼6),

𝐽8 = 2−2(𝐽2𝐽6 − 𝐽2
4), 𝐽10 = 2−12𝐼10.

as arithmetic invariants associated to the curves of equation :

𝑋𝑌2 + (1 + 𝑎𝑋 + 𝑏𝑋2)𝑌 + 𝑋2(𝑐 + 𝑑𝑋 + 𝑋2) = 0

[Igu60, p. 621]. So every 𝐽2𝑖 reduces well modulo 2, and 𝐽10 ≠ 0.
Indeed, 𝐽10 encode the fact that 𝒞 is smooth (for instance in characteristic different from 2, 𝐼10 is the discriminant),

so is invertible on ℳ, since a curve is smooth over its base. If we express 𝐽2𝑖, as polynomials in 𝑎, 𝑏, 𝑐, 𝑑, we get
a quantity that depends only on the bi-rational class of the genus 2 curves. In characteristic different from 2, it
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8. Moduli spaces of small dimension

is a consequence of the invariance property of 𝐽2𝑖, and in the characteristic 2, it is a consequence of the explicit
relations Equations (8.5) to (8.7).

Reciprocally Igusa shows that from the quintuplet (𝐽2, 𝐽4, 𝐽6, 𝐽8, 𝐽10), with 𝐽10 ≠ 0, one can construct a normal
form with arithmetic invariants those 𝐽2𝑖’s (possibly under a field extension) [Igu60, §3, §5]. For the characteristic
different from two this can be done algorithmically using the Igusa-Clebsh construction [Mes91] and in character-
istic 2 it is a consequence of the three relations from Section 8.3.3 and Equation (8.5) below. Also by considering
the relation 𝐽2𝐽6 − 𝐽2

4 − 4𝐽8 = 0 the invariant 𝐽8 can be disregarded in characteristic different from 2 (but it is
crucial in characteristic 2).

Let us consider the graded ring generated over ℤ by 𝐽2𝑖, 𝑖 = 1, 2, 3, 4, 5 and localized at 𝐽10. We denote by
ℛ the integral domain generated by its homogeneous elements of degree zero. Then Igusa shows [Igu60, §7]
that ℛ is generated over ℤ by the elements of the form 𝐽𝑒1

2 𝐽𝑒2
4 𝐽𝑒3

6 𝐽𝑒4
8 𝐽−𝑒5

10 with 𝑒𝑖 a non negative integers verifying
𝑒1 + 2𝑒2 + 3𝑒3 + 4𝑒4 = 5𝑒5.

In particular, if 𝑦1, 𝑦2, 𝑦3 and 𝑦4 are an independent variables with 4𝑦4 = 𝑦1𝑦3 − 𝑦2
2, then the correspondence :

𝐽𝑒1
2 𝐽𝑒2

4 𝐽𝑒3
6 𝐽𝑒4

8 𝐽−𝑒5
10 ⟼ 𝑦𝑒1

1 𝑦𝑒2
2 𝑦𝑒3

3 𝑦𝑒4
4

from ℛ to ℤ[𝑦1, 𝑦2, 𝑦3, 𝑦4]𝜇5 defines an isomorphism between ℛ and the elements of ℤ[𝑦1, 𝑦2, 𝑦3, 𝑦4] that are
invariant under the transformation 𝑦𝑖 → 𝜁 𝑖

5𝑦𝑖 for 𝑖 = 1, 2, 3, 4, where 𝜁5 is a primitive fifth root of unity.
By considering the condition 𝐽2𝐽6 − 𝐽2

4 − 4𝐽8 = 0, Igusa shows that the monoid of the powers of 𝑒𝑖’s appearing in
the elements of ℤ[𝑦1, 𝑦2, 𝑦3, 𝑦4]𝜇5 is generated by ten elements (only eight are needed in characteristics different
form 2) [Igu60, §7]. Therefore ℛ is generated by ten elements called 𝛾𝑖 in [GL12]:

𝛾1 = 𝐽5
2/𝐽10, 𝛾2 = 𝐽3

2𝐽4/𝐽10, 𝛾3 = 𝐽2
2𝐽6/𝐽10, 𝛾4 = 𝐽2𝐽8/𝐽10,

𝛾5 = 𝐽2𝐽6/𝐽10, 𝛾6 = 𝐽4𝐽2
8/𝐽2

10, 𝛾7 = 𝐽2
6𝐽8/𝐽2

10, 𝛾8 = 𝐽5
6/𝐽3

10,
𝛾9 = 𝐽6𝐽3

8/𝐽3
10, 𝛾10 = 𝐽5

8/𝐽4
10.

In summary, we have:

thm:igusa Theorem 8.3.2. Let 𝜇5 be the group of the fifth root of unity, the moduli space ℳ2 of the genus 2 curves is isomorphic
to Proj (ℤ[𝐽2, 𝐽4, 𝐽6, 𝐽8, 𝐽10])(𝐽10) = Spec (ℤ[𝑦1, 𝑦2, 𝑦3, 𝑦4]𝜇5) = Spec (ℤ[𝛾1, … , 𝛾10]) [Igu60, Theorem 2] (with
a weighted grading on the Proj). And the variety ℳ2 can be embedded as a subvariety of an affine space over ℤ of
dimension ten and not less than ten [Igu60, Theorem 6].

Corollary 8.3.3. Let 𝛾𝑖(𝒞) be the evaluation of 𝛾𝑖 at a representative model of 𝒞.

• If 𝒞 is a curve defined over a number field 𝕂, then 𝒞 has good reduction modulo a prime 𝔭 of 𝕂 if and only if :

𝑜𝑟𝑑𝔭 (𝛾𝑖(𝒞)) ≥ 0, 𝑖 = 1, ⋯ , 10.

• And if 𝒞1 and 𝒞2 are curves over 𝕜, then [Igu60, Corollary p.632] :

𝒞1 ≃ 𝒞2 ⟺ (𝛾1(𝒞1), ⋯ , 𝛾(𝒞1)) = (𝛾1(𝒞2), ⋯ , 𝛾(𝒞2))
⟺ (𝐽2(𝒞1) ∶ 𝐽4(𝒞1) ∶ 𝐽6(𝒞1) ∶ 𝐽8(𝒞1) ∶ 𝐽10(𝒞1)) = (𝐽2(𝒞2) ∶ 𝐽4(𝒞2) ∶ 𝐽6(𝒞2) ∶ 𝐽8(𝒞2) ∶ 𝐽10(𝒞2))

(with the weighted gradings).

8.3.4 The case of characteristic 2

In characteristic 2, a genus 2 curve can also be defined via an Artin-Schreier equation: 𝑦2 − 𝑦 = 𝑅(𝑥), where 𝑅 is
a rational function in 𝑥 with pole divisors. The isomorphism classes of these curves are in bijection with the orbits
of 𝑅(𝑥) under the double actions by the Artin-Schreier group AS(𝕜(𝑥)) and the linear projective group PGL2(𝕜)
[Igu60; GNP]. From the ramifications of the Weierstrass points one deduces three types (1, 1, 1), (3, 1), (5) of
birationnally equivalence classes defined by the following affine equations [Igu60, p. 618]:

𝑌2 − 𝑌 =
⎧{
⎨{⎩

𝛼𝑋 + 𝛽𝑋−1 + 𝛾(𝑋 − 1)−1, 𝛼𝛽𝛾 ≠ 0 (1, 1, 1)
𝑋3 + 𝛼𝑋 + 𝛽𝑋−1, 𝛽 ≠ 0 (3, 1)

𝑋5 + 𝛼𝑋3, (5)
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8.3. Covariants of hyperelliptic curves of genus 2

8.3.5 Covariants and modular forms

TODO: in these formula the 𝜒𝑖 are not normalised in the same way.

thm:siegel-structure Theorem 8.3.4 ([Igu62; Igu67]). The graded ℂ-algebra of scalar-valued even-weight Siegel modular forms in genus 2
is generated by four algebraically independent elements 𝜓4, 𝜓6, 𝜒10, and 𝜒12 of respective weights 4, 6, 10, 12, and 𝑞-
expansions

𝜓4(𝜏) = 1 + 240(𝑞1 + 𝑞3)
+ (240𝑞2

2 + 13440𝑞2 + 30240 + 13340𝑞−1
2 + 240𝑞−2

2 )𝑞1𝑞3 + 𝑂(𝑞2
1, 𝑞2

3),
𝜓6(𝜏) = 1 − 504(𝑞1 + 𝑞3)

+ (−504𝑞2
2 + 44352𝑞2 + 166320 + 44352𝑞−1

2 − 504𝑞−2
2 )𝑞1𝑞3 + 𝑂(𝑞2

1, 𝑞2
3),

𝜒10(𝜏) = (𝑞2 − 2 + 𝑞−1
2 )𝑞1𝑞3 + 𝑂(𝑞2

1, 𝑞2
3),

𝜒12(𝜏) = (𝑞2 + 10 + 𝑞−1
2 )𝑞1𝑞3 + 𝑂(𝑞2

1, 𝑞2
3).

The graded ℂ-algebra of scalar-valued Siegel modular forms in genus 2 is

ℂ[𝜓4, 𝜓6, 𝜒10, 𝜒12] ⊕ 𝜒35ℂ[𝜓4, 𝜓6, 𝜒10, 𝜒12]

where 𝜒35 is a modular form of weight 35 and 𝑞-expansion

𝜒35(𝜏) = 𝑞2
1𝑞2

3(𝑞1 − 𝑞3)(𝑞2 − 𝑞−1
2 ) + 𝑂(𝑞4

1, 𝑞4
3).

We can express these modular forms in term of theta constants. Let 𝒫 = {0, 1, 2, 3, 4, 6, 8, 9, 12, 15}, and define:

ℎ4 = ∑
𝑖∈𝒫

𝜃8
𝑖 , ℎ6 = ∑

60 𝑡𝑢𝑝𝑙𝑒𝑠 (𝑖,𝑗,𝑘)∈𝒫3

(𝜃𝑖𝜃𝑗𝜃𝑘)4

ℎ10 = ∏
𝑖∈𝒫

𝜃2
𝑖 , ℎ12 = ∑

15 𝑡𝑢𝑝𝑙𝑒𝑠 (𝑖,𝑗,𝑘,𝑙,𝑚,𝑛)∈𝒫6

(𝜃𝑖𝜃𝑗𝜃𝑘𝜃𝑙𝜃𝑚𝜃𝑛)4

and ℎ16 =
1
3(ℎ12ℎ4 − 2ℎ6ℎ10). These are modular forms of weight 𝑖, and we have:

ℎ4 = 22𝜓4, ℎ6 = 22𝜓6, ℎ10 = −214𝜒10 and ℎ12 = 2173𝜒12.

where 𝜓𝑘 are the Eisenstein series of weight 𝑘 ≥ 4 defined by:

𝜓𝑘(𝛺) = ∑
𝛾∈𝛤2

det (𝐶𝛺 + 𝐷)−𝑘

and 𝜒10, 𝜒12 are cusp forms, expressed in function of 𝜓𝑘 with 𝑘 ∈ {4, 6, 10, 12}.
Igusa covariants:

4 Cov(𝜓4) = 𝐼4,
4 Cov(𝜓6) = 𝐼′

6,
212 Cov(𝜒10) = 𝐼10,
215 Cov(𝜒12) = 𝐼2𝐼10,

2373−95−10 Cov(𝜒35) = 𝐼2
10𝑅.

A standard set of invariants used for computation of class or modular polynomials was 𝐼5
2/𝐼10, 𝐼3

2𝐼4/𝐼10, 𝐼2
2𝐼6/𝐼10,

the corresponding 𝑈 is 𝐼2 ≠ 0. To reduce the size of these polynomials, Streng introduced the absolute invariants
𝐼4𝐼′

6/𝐼10, 𝐼2𝐼2
4/𝐼10, 𝐼5

4/𝐼2
10 where 𝐼′

6 = 1/2(𝐼2𝐼4 − 3𝐼6). The corresponding 𝑈 is given by 𝐼4 ≠ 0. They correspond
(up to a constant) to the modular forms defined in terms of theta constants ℎ4, ℎ6, ℎ10, ℎ12.

Streng’s version of Igusa invariants in terms of modular forms:

𝑗1 = 2−8 𝜓4𝜓6
𝜒10

, 𝑗2 = 2−5 𝜓2
4𝜒12

𝜒2
10

, 𝑗3 = 2−14 𝜓5
4

𝜒2
10

.
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8. Moduli spaces of small dimension

8.3.6 Absolute invariants

In characteristic different from 2

One can define absolute invariants [CQ05, § 1], hence coordinates on the moduli space using the invariants 𝐽2𝑖’s.
Knowing that the invariant 𝐽10 defines the discriminant of the curve, so is not null, we obtain that:

• The class of genus 2 curves with a nonzero 𝐽2, is an open set of ℳ2 on which we have the tuple of absolute
invariants : (𝐽5

2/𝐽10, 𝐽3
2𝐽4/𝐽10, 𝐽2

2𝐽6/𝐽10).

• The genus 2 curves that annihilate in 𝐽2 with a nonzero 𝐽4, is a subspace of ℳ2 where coordinates can be
defined by : (0, 𝐽5

4/𝐽2
10, 𝐽4𝐽6/𝐽10).

• The others curves lie in set with coordinates defined by : (0, 0, 𝐽5
6/𝐽3

10).

Then the set of points of ℳ2 ⊗ 𝕜 is in bijection with the set of tuples defined previously, so in bijection with 𝔸3
𝕜.

In other words, these invariants (𝑘1, 𝑘2, 𝑘3) on the above stratification are optimal.

In characteristic 2

We recall that every hyperelliptic curves of genus 2 is birationally equivalent to one of the three following types
according to the number and the degree of the ramified Weierstrass points:

𝑌2 − 𝑌 =
⎧{
⎨{⎩

𝛼𝑋 + 𝛽𝑋−1 + 𝛾(𝑋 − 1)−1, (1, 1, 1)
𝑋3 + 𝛼𝑋 + 𝛽𝑋−1, (3, 1)

𝑋5 + 𝛼𝑋3, (5)

When 𝕜 has 𝑞 elements the number 𝕜-isomorphism classes of smooth projective curves of genus two defined over
𝕜 is given in the following table according to the type [GNP, Th 20]:

Type Number

(1,1,1) 𝑞3 − 𝑞2

(3,1) 𝑞2 − 𝑞
(5) 𝑞tab:table

Let’s consider the normal form equation :

𝑋𝑌2 + (1 + 𝑎𝑋 + 𝑏𝑋2)𝑌 + 𝑋2(𝑐 + 𝑑𝑋 + 𝑋2) = 0.

If 𝑎𝑏 is different from 0, we get three Weierstrass points; it corresponds to the type (1, 1, 1). After a technical
variable change in [Igu60, §3], one can obtain :sym_funct1

𝛼 = 𝑎𝑏−3, (8.1)

𝛽 = 𝑎−3𝑏𝜉−2 (𝑐 + 𝜉−2 + 𝑎(𝑐𝜉 + 𝑑 + 𝜉−1)1/2) , (8.2)

𝛾 = 𝑎−3𝑏𝜂−2 (𝑐 + 𝜂−2 + 𝑎(𝑐𝜂 + 𝑑 + 𝜂−1)1/2) (8.3)

in which 𝜉 + 𝜂 = 𝑎, 𝜂𝜉 = 𝑏;
But if 𝑎 or 𝑏 is nonzero and 𝑎𝑏 = 0, it corresponds the type (3, 1); and if 𝑎 ≠ 0 and 𝑏 = 0, one can transform :

𝑋𝑌2 + (1 + 𝑎𝑋 + 𝑏𝑋2)𝑌 + 𝑋2(𝑐 + 𝑑𝑋 + 𝑋2) = 0

into
𝑌2 − 𝑌 = 𝑋3 + 𝛼𝑋 + 𝛽𝑋−1
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8.3. Covariants of hyperelliptic curves of genus 2

withsym_funct2

𝛼 = 𝑎5/3 (𝑎−3𝑐 + (𝑎−5 + 𝑎−4𝑑)1/2) , 𝛽 = 𝑎−5/3 (𝑎−5 + 𝑎−3𝑐 + (𝑎−5 + 𝑎−4𝑑 + 𝑎−3𝑐)1/2) . (8.4)

If 𝑏 ≠ 0 and 𝑎 = 0, we obtain 𝛼, 𝛽 in terms of 𝑏, 𝑐, 𝑑 via a more complicated expressions for which we refer to Igusa.
The type (5) corresponds to 𝑎 = 𝑏 = 0 and the associated normal form 𝑋𝑌2 + 𝑌 + 𝑋2(𝑐 + 𝑑𝑋 + 𝑋2) = 0 can be
transformed into 𝑌2 − 𝑌 = 𝑋5 + 𝛼𝑋3 with 𝛼 = 𝑐.

The open set ℳ2[𝐽−1
2 ] ⊗ 𝕜 describes in ℳ ⊗ 𝕜, the curves birationaly equivalent to a curve of type (1, 1, 1).

It is characterized by the non vanishing of 𝐽2 modulo 2, and can be defined using the following three absolute
arithmetic invariants: 𝔞1 = 𝐽4/𝐽2

2 , 𝔞2 = 𝐽8/𝐽4
2 and 𝔞3 = 𝐽10/𝐽5

2 . Indeed one can recover these invariants from the
coefficients of the normal form using the following relation [Igu60, §3]:

⎧{
⎨{⎩

𝛼2 + 𝛽2 + 𝛾2 = 𝐽4/𝐽2
2 ,

𝛼2𝛽2𝛾2 = 𝐽10/𝐽5
2 ,

𝛼2𝛽2 + 𝛽2𝛾2 + 𝛾2𝛼2 = 𝐽8/𝐽4
2 + (𝐽4/𝐽2

2)3 + (𝐽4/𝐽2
2)4

(8.5) {abcd1}

And Igusa shows in [Igu60, §2] that birational invariants are given by the three standard symmetric invariants:
𝛼 + 𝛽 + 𝛾, 𝛼𝛽 + 𝛽𝛾 + 𝛾𝛼, 𝛼𝛽𝛾, they are also used by Cardona and al. in [GNP, §2]: Although they are ramified
over the symmetric invariants, there is one important advantage to the three invariants 𝔞1, 𝔞2, 𝔞3: they come from
modular functions over ℂ and are actually defined over ℤ. By contrast, the symmetric invariants do not lift to
modular forms (without characters) in characteristic 0. More precisely, it is proven in [MR22, Theorem 2.4] that
these invariants 𝔞1, 𝔞2, 𝔞3 describe ℳ[𝐽−1

2 ] over ℤ. In particular, over ℤ2 these invariants describe the open set
ℳ[𝐽−1

2 ] of ℳ that reduces to ℳ2[𝐽−1
2 ] ⊗ 𝕜 modulo 2, in other words of curves with good reduction modulo 2,

and whose reduction is of type (1, 1, 1).
The type (3, 1) is characterized by 𝐽2 = 0 and the non-vanishing of 𝐽6 over 𝕜 , this corresponds to a closed sub-

scheme of ℳ2[𝐽−1
6 ]⊗ 𝕜, hence a locally closed subscheme in ℳ2 ⊗𝕜, of curves birationally equivalent to that type.

Coordinates on this subscheme are defined using the following tuple of absolute invariants: (0, 𝐽8𝐽10/𝐽3
6 , 𝐽3

10/𝐽5
6).

Indeed from the equation (3, 1), one recovers this tuple using:

⎧{
⎨{⎩

𝛼6 = 𝐽3/4
8 /𝐽1

6 ,
𝛽6 = 𝐽3

10/𝐽5
6 ,

𝛼2𝛽2 = 𝐽1/4
8 𝐽10/𝐽2

6 .
(8.6) {abcd2}

And birational invariants are given by 𝛼3, 𝛼𝛽 [Igu60, §2].
The type (5) is characterized by 𝐽2 = 𝐽6 = 0. The corresponding closed subset of ℳ ⊗ 𝕜, can be defined using

the tuple (0, 0, 𝐽5
8/𝐽4

10) of invariants. And the following relation holds :

{ 𝛼10 = 𝐽5/4
8 /𝐽10. (8.7) {abcd3}

And 𝛼5 is a birational invariant [Igu60, §2].
From this discussion,we see that the invariants (𝔞1, 𝔞2, 𝔞3) = (𝐽4/𝐽2

2 , 𝐽8/𝐽4
2 , 𝐽10/𝐽5

2)when 𝐽2 ≠ 0, (0, 𝐽8𝐽10/𝐽3
6 , 𝐽3

10/𝐽5
6)

when 𝐽2 = 0, 𝐽6 ≠ 0, and (0, 0, 𝐽5
8/𝐽4

10) induces a bijection between the set of points of ℳ2 ⊗ 𝕜 and 𝔸3
𝕜, hence are

optimal. Indeed the above formula show how to recover 𝛼, 𝛽, 𝛾 from these invariants.
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Planned topics

9.1 the fundamental theorem of complex multiplication

[Mil06b; Mil07].

9.2 cm lifting

A CM abelian variety is defined over a number field in characteristic zero, and is 𝑝-isogenous to an abelian variety
defined over a finite field in characteristic 𝑝 (Grothendieck [Oor73], and [Yu04b] for an elementary proof).

Algorithmic survey: [ER13].

Current draft version
References for this e [Mil06b; Str10] See also [ER13] for algorithmic aspects.

9.3 cm fields and the shimura class group

Let 𝐾 be a CM field, 𝐾0 be its real subfield. So 𝐾0 is a totally real field of degree 𝑔 and 𝐾/𝐾0 is an imaginary
quadratic extension. There are 𝑔 real embeddings 𝜙1, … , 𝜙𝑔 of 𝐾0, which each split into 2 complex embedding
𝛷𝑖, 𝛷𝑖. A CM type 𝛷 is a choice of one among {𝛷𝑖, 𝛷𝑖} for each 𝑖. Two CM types are said to be equivalent if they
differ by an automorphism of 𝐾 (acting on the righ), in particular 𝛷 is equivalent to 𝛷. A CM pair (𝐾, 𝛷) is said
to be primitive if it is not an induced by a smaller CM field.

An abelian variety 𝐴/𝑘 (𝑘 of characteristic 0) has complex multiplication by 𝒪𝐾 with CM type 𝛷 if there is
an embedding 𝒪𝐾 → End(𝐴) such that the action of 𝒪𝐾 on 𝑇0𝐴 is diagonal induced by the CM type. If 𝐴 is
absolutely simple, (𝐾, 𝛷) is primitive.

A CM type 𝛷 induce the type trace Tr𝛷 and type norm 𝑁𝛷 (the trace and product respectively of the elements
of 𝛷). If 𝐾′/𝐾 is an extension, we will denote by 𝑁𝐾′,𝛷 or simply still 𝑁𝛷 the function 𝑁𝛷 ∘ 𝑁𝐾′/𝐾. The field
generated over ℚ by the type traces of 𝐾 is also a CM field, called the reflex CM field 𝐾𝑟, and the CM type 𝛷
induces a reflex CM type 𝛷𝑟 on 𝐾𝑟 (hence a reflex type norm and type trace). The CM pair (𝐾𝑟, 𝛷𝑟) is primitive,
and its reflex under 𝛷𝑟 is 𝐾 if (𝐾, 𝛷) is primitive. If we let 𝐿 a Galois closure of 𝐾, then 𝐾𝑟 may also be described
as the subfield invariant under all automorphisms of 𝐿 leaving 𝛷 invariant (when acting on the left). Even if 𝐾
is primitive, the reflex 𝐾𝑟 may be of different dimension. This does not happen if 𝑔 ≤ 2. Changing the CM type
conjugates 𝐾𝑟.
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9. Complex multiplication

The Shimura class group is given by

ℭ = {(𝔞, 𝑢) ∶ 𝔞 a fractional ideal of 𝒪𝐾, 𝔞𝔞 = 𝑢𝒪𝐾, and 𝑢 ∈ 𝐾0 totally positive}/ ∼ (9.1) {eq:shimuragroup}

The equivalence relation denoted ∼ above is the one induced by principal ideals, more precisely the equivalence
modulo the subgroup given by the (𝑣𝒪𝐾, 𝑣𝑣) with 𝑣 ∈ 𝐾∗ and 𝑣𝑣 ∈ 𝐾0 totally positive.

It fits into the exact sequence

1 ⟶ 𝒪+
𝐾0

/𝑁𝐾/𝐾0
(𝒪∗

𝐾)
𝑢↦(𝒪𝐾,𝑢)
−−−−−−→ ℭ (𝔞,𝛼)↦𝔞−−−−−→ Cl𝐾

𝑁𝐾/𝐾0−−−−→ Cl+𝐾0
⟶ 1, (9.2) {eq:exactshimura}

where 𝒪+
𝐾0

is the subgroup of totally positive units in 𝒪𝐾0
and Cl+𝐾0

is the narrow class group of 𝐾0.
The type norm gives a natural morphism Clℰ𝑟 → ℭ, 𝐼 ↦ (𝑁𝛷𝑟(𝐼), 𝑁ℰ𝑟/ℚ(𝐼)).

Example 9.3.1. In dimension 𝑔 = 2, there are two type of quartic primitive CM field: the Galoisian whose Galois
group is cyclic, and the non Galoisian whose Galoisian closure has the Dihedral group 𝐷4 of order 8 as Galois
group. There is also a non primitive case with Galois group ℤ/2ℤ × ℤ/2ℤ.

In the cyclic case there is only one equivalence class of CM type, and 𝐾 is its own reflex field. In the Dihedral
case there are two equivalence class, which both give the same reflex field 𝐾𝑟, and fit into the following diagram:

ℚ
𝐾0

𝐾

ℰ𝑟
0

ℰ𝑟∗

𝐿 = 𝐾ℰ𝑟

Let’s assume that the only roots of unity of 𝐾 are ±1 (this is always the case if 𝐾 is primitive, but in the bicyclic
case we would have the fourth-root of unity), so if we let 𝜖 be a fundamental unit, 𝑈𝐾 = ±1 × ⟨𝜖⟩. Let 𝜖0 be a
fundamental unit of 𝐾0, 𝑈𝐾0

= ±1 × ⟨𝜖0⟩, and 𝑈+
𝐾0

be the totally positive units of 𝐾0. We let #Cl𝐾0
= ℎ0 and

#Cl𝐾 = ℎ0ℎ1.
There are two cases: if 𝜖0 = 𝜖, then 𝑁𝐾/𝐾0

(𝜖) = 𝜖2
0 , so ⟨𝜖2⟩ = 𝑁𝐾/𝐾0

(𝑈𝐾), and 𝑈𝐾 = 𝑈𝐾0
. If 𝐾 is

primitive we are always in this case by [Str10, § II.3.3]. We then have two subcases: if 𝜖0 (or −𝜖0) is totally
positive (so 𝑁𝐾0/ℚ(𝜖0) = 1), then 𝑁𝐾/𝐾0

(𝑈𝐾) is of index 2 in 𝑈+
𝐾0

which is of index 2 in 𝑈𝐾0
. In this case,

#𝒪+
𝐾0

/𝑁𝐾/𝐾0
(𝒪∗

𝐾) = 2, #ℭ = ℎ1, #Cl+𝐾0
= 2ℎ0. So ℭ is represented by ℎ1/2 classes of Cl𝐾 with principal totally

positive norm, for each element (𝔞, 𝛼) there is a second one (𝔞, 𝛼𝜖0).
Otherwise 𝑁𝐾0/ℚ(𝜖0) = −1, 𝑁𝐾/𝐾0

(𝑈𝐾) = 𝑈+
𝐾0

is of index 4 in 𝑈𝐾0
. In this case, #𝒪+

𝐾0
/𝑁𝐾/𝐾0

(𝒪∗
𝐾) = 1,

#ℭ = ℎ0ℎ1, #Cl+𝐾0
= ℎ0. By multiplying with 𝜖0 if necessary, any principal ideal in 𝒪ℱ has a totally positive

generator, so ℭ is represented by the classes of Cl𝐾 with principal relative norm.
Finally if 𝜖0 = 𝜖2, then 𝑁𝐾/𝐾0

(𝜖) = −𝜖0 (so −𝜖0 is totally positive and 𝑁𝐾0/ℚ(𝜖0) = 1), and ⟨𝜖2
0⟩ is of index 2

in 𝑁𝐾/𝐾0
(𝑈𝐾) = 𝑈+

𝐾0
which is of index 2 in 𝑈𝐾0

which is of index 2 in 𝑈𝐾. In this case, #𝒪+
𝐾0

/𝑁𝐾/𝐾0
(𝒪∗

𝐾) = 1,
#ℭ = ℎ1/2, #Cl+𝐾0

= 2ℎ0. So ℭ is represented by ℎ1/2 classes of Cl𝐾 with principal totally positive norm.
Finally, in the primitive cases, then the image of 𝑁𝛷𝑟(Cl𝐾𝑟) in ℭ is of index a power of 2 [Str10, Theorem 2.2;

BGL11, Lemma 6.5].

9.4 abelian varieties with complex multiplication over a number field

The action of the Shimura class group on CM abelian varieties is summarized in [Str10, Theorem I.5.2].
Fix a CM type (𝐾, 𝛷). Let 𝔞 be a fractional 𝒪𝐾-ideal such that (𝔞𝑎𝑓𝐷𝐾/ℚ)−1 = (𝜉) with 𝜉 totally imaginary

positive. Then we have a polarisation 𝐸 on 𝐴 = ℂ𝑔/𝛷(𝔞) given by the ℝ-linear extension of 𝐸(𝛷(𝑥), 𝛷(𝑦)) =
Tr𝐾/ℚ(𝜉𝑥𝑦). Then (𝐴, 𝐸) is a principally polarised abelian variety with CM by 𝒪𝐾 and CM type 𝛷, it is simple if
and only if 𝛷 is primitive (in which case 𝐾 = End(𝐴) ⊗ ℚ), and every abelian varieties satisfying these conditions
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9.5. Abelian varieties with complex multiplication over finite fields

are of this form. Furthermore if 𝔞′ = 𝛾𝔞 and 𝜉 ′ = 𝛾𝛾−1𝜉 for 𝛾 ∈ 𝐾∗, then (𝐴′, 𝐸′) is isomorphic to (𝐴, 𝐸). The
converse is true if 𝛷 is primitive.

Letting 𝒜𝑔,𝛷 be the dimension 0 subspace of 𝒜𝑔 ⊗ℚ ℂ of principally polarised abelian varieties with CM by
(𝐾, 𝛷) we get that if 𝛷 is primitive, 𝒜𝑔,𝛷 is a torsor under the Shimura class group ℭ, where (𝔞, 𝑢) acts on (𝔟, 𝜉)
by (𝔞𝔟, 𝑢𝜉). In particular, (𝔞, 𝑢) ⋅ 𝐴 = 𝐴/𝐴[𝔞].

The main theorem of complex multiplication then states that evaluating a modular parameter 𝐽 on (𝔞, 𝜉) then
gives an abelian extension of ℰ𝑟, and the Galois action comes from the action of the type norm:

th:maincm0 Theorem 9.4.1 (Main Theorem of Complex Multiplication). Let 𝐴/ℂ be an abelian variety with primitive complex
multiplication by (𝐾, 𝛷) represented by (𝔞, 𝜉), and let 𝑃 ∈ 𝐴 be a point with annihilator 𝔟, 𝑃 = 𝛷(𝑥), 𝑥 ∈ 𝐾/𝔞. Let 𝐽
be a modular parameter for (𝐴, 𝑃) (by which I mean coordinates on the corresponding moduli space). Then ℰ𝑟(𝐽(𝐴)) is
a class field extension of ℰ𝑟 with corresponding ideal class group 𝐼ℰ𝑟(𝑏)/{𝐼 ∣ 𝑁𝛷(𝐼) = 𝜇𝒪ℰ𝑟, 𝜇𝜇 = 𝑁𝐾/ℚ(𝐼), 𝜇 = 1
mod ∗𝔟} where 𝐼ℰ𝑟(𝑏) are the invertible ideals of ℰ𝑟 prime to 𝑏 = 𝔟 ∩ ℤ. The Galois action represented by the class of
𝐼 on (𝔞, 𝜉 , 𝑥) is (𝑁𝛷(𝐼)−1𝔞, 𝑁𝐾/ℚ(𝐼)𝜉 , 𝑥 mod 𝑁𝛷(𝐼)−1𝔞).
Proof. This is [Str10, Theorem I.9.1 and Lemma 9.2]. The statement of the complex theorem of complex multiplica-
tion becomes more streamlined when switching to the adélic point of view of class field theory. See [Mil06b] for an
overview of different reformulations, and an extension of the main theorem stated over ℚ rather than over ℰ𝑟. See
also [Mil07] for a condensed proof.

In fact the main theorem of complex multiplication is a corollary of Shimura’s general reciprocity theorem that
gives the adélic Galois action on modular function of any level. See [Str] for a reformulation of Shimura’s reciprocity
expressed in terms of ideals. This is used by Streng to find class invariants giving smaller class polynomials than
𝐽.

Using that the action of complex conjugation is 𝐽(𝔞, 𝜉) = 𝐽(𝔞, 𝜉) by [Str10, Lemma 9.2], we obtain by setting
𝑏 = 1 in Theorem 9.4.1:

th:maincm Corollary 9.4.2. If 𝐴 ∈ 𝒜𝑔,𝛷, and 𝐽 are modular parameters, then ℌ = ℰ𝑟(𝐽(𝐴)) is an abelian extension of ℰ𝑟

corresponding to the class group 𝑁𝛷𝑟(Clℰ𝑟).
Moreover, the field ℌ0 = ℱ 𝑟(𝐽(𝐴)) is linearly disjoint from ℰ𝑟 over ℱ 𝑟 and we have ℌ = ℌ0ℰ𝑟. The extension

ℌ/ℱ 𝑟 is Galois, and ℌ0 is the real subfield of the CM field ℌ.
The moduli space 𝒜𝑔,𝛷 splits into 𝐾-irreducible components under the action of Gal(ℌ/𝐾). These components

correspond to the orbits of the action of 𝑁𝛷𝑟(Clℰ𝑟) in ℭ, and are defined over ℱ 𝑟. The action of 𝜎 ∈ Gal(ℱ 𝑟/ℚ)
sends an irreducible component of ℳ𝛷 to an irreducible component of ℳ𝜎𝛷. This describes the splitting of 𝒜𝑔,𝛷 into
ℚ-irreducible components.th:shimura1

Proof. This is [ER13, Theorem 1.3.1] which uses the references [Str10, Theorem I.9.1 and Chapter III]. The main
point is that by Theorem 9.4.1 the Galois action is given by the image of Cl(ℰ𝑟) in the Shimura class group by the
type norm.

This imply in particular that if 𝐴/𝐾′ has CM by (𝐾, 𝛷) (𝐾′ a number field), then 𝐴 is defined over an abelian
extension of ℰ𝑟.

9.5 abelian varieties with complex multiplication over finite fields
subsec:CMFq

If 𝐴/𝐿 (𝐿 a local field of characteristic 0 with maximal ideal 𝑚) has complex multiplication by (𝐾, 𝛷), it has
potential good reduction at 𝑚. Furthermore, by general theory [ST68] it acquires good reduction whenever it
acquires semi-stable reduction, so eg when adding the points of 𝑛 torsion (𝑛 ≥ 3 prime to 𝑝). By [ST68] there is an
extension 𝐿′/𝐿 with the same residue field 𝑘/𝑚 such that 𝐴𝐿′ has good reduction, and this does not depend on the
chosen 𝐿′. We refer to Section 3.1.3 for more details.

Assuming that 𝐴/𝐿 has good reduction at 𝑚, and writing 𝑘 = 𝒪𝐿/𝑚, by the theory of Néron models and rigidity,
End(𝐴𝐿) = End(𝐴) ⊂ End(𝐴𝑘), so 𝐴𝑘 has CM by 𝒪𝐾. Furthermore the reduction of 𝒪𝐾-isogenies behaves well
(ie is an equivalence of categories) by [Mil06b, Proposition 7.42] since they are given by 𝔞-multiplications (possibly
over finite extensions).

The Taniyama-Shimura formula describes the characteristic polynomial of the Frobenius.
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9. Complex multiplication

Theorem 9.5.1. Let 𝐴/𝐿 be an abelian variety with CM by (𝐾, 𝛷), 𝐿 a Galoisian number field, 𝔓 a prime of 𝒪𝐿
over which 𝐴 has good reduction. Let 𝔭 = 𝔓 ∩ 𝒪ℰ𝑟, 𝑝 = 𝔓 ∩ ℤ, and assume that 𝑝 is unramified in 𝒪𝐾 and 𝔓 is
unramified over 𝒪ℰ𝑟.

Then the action of the Frobenius 𝜋 ∈ 𝒪𝐾 acting on A𝔓/𝔽𝔓 is given by (𝜋𝔓) = 𝑁𝐿,𝛷(𝔓). Note that since the
endomorphisms of 𝐴 are defined over 𝐿, 𝐿 contains ℰ𝑟 by [Mil06b, Proposition 7.11]. We also have 𝜋𝔓𝜋𝔓 = 𝑝𝑓𝔓 =
𝑁𝐿/ℚ(𝔓), which determines 𝜋𝔓 up to roots of unity.

Furthermore the Artin symbol (𝔓
𝔭 ) corresponds to the action of the Frobenius 𝜋𝑞 of 𝔽𝑞 ≔ 𝔽𝔭 (ie 𝑞 = 𝑁ℰ𝑟/ℚ(𝔭))

on 𝐴𝔓. This Frobenius action is given by the action of the type norm 𝔞 = 𝑁𝛷(𝔭) in the Shimura class group (via the
𝔞-multiplication).

In particular if 𝔞 is of order 𝑛, then 𝐴𝔓 is defined over 𝔽𝑞𝑛, and 𝔞𝑛 = (𝜋𝑞𝑛).th:shimura2

Proof. See [Mil06b, Theorem 8.1 and Corollary 8.7] and also [ER13, Theorem 3.1.1] and the references cited
there.

We will mainly use this theorem when 𝛷 is primitive, taking 𝐿 = ℌ (this is a field of definition, not only a field
of moduli).

We say that 𝔭 is an ordinary prime (of degree 𝑛) if there exists 𝐿, 𝔓 as above such that 𝐴𝔓 is ordinary (and
𝔞 = 𝑁𝛷(𝔭) is of order 𝑛, ie 𝐴𝔓 is defined over 𝔽𝔭𝑛). Since the 𝑝-rank of an abelian variety over 𝔽𝑞 can be read off
from the Newton polygon of 𝜒𝜋 we can check this condition directly on 𝔞𝑛. This is in particular the case if 𝑝 splits
completely in 𝐾 [Sug14, Theorem 1.2]. See also [GL12] for refinements of this result when 𝐾 is a quartic CM field.

We also have by [Mil06b, Corollary 8.3] that ord𝑣(𝜋𝔓)/ ord𝑣(𝑝𝑓𝔓) = |𝛷 ∩ 𝐻𝑣|/|𝐻𝑣| where 𝑣 is a place of 𝐾
above 𝑝 and 𝐻𝑣 are the morphisms 𝐾 → 𝐿𝔓 which factor through 𝐾𝑣, hence is of cardinal 𝐾𝑣 ∶ ℚ𝑝. Hence if 𝑝
splits completely in 𝐾, #𝐻𝑣 = 1 and 𝛷 is given by the element of 𝐻𝑣 for the primes 𝑣 such that 𝑣 ∣ 𝜋𝒪𝐾.

If 𝐴 has CM by (𝐾, 𝛷) and 𝛷 is primitive, then 𝐴 is simple so End(𝐴) = 𝒪𝐾. In the ordinary case the reduction
then gives a bijection between abelian varieties with complex multiplication in ℂ and those in 𝔽𝔭𝑛. Indeed in
the ordinary case we have End(𝐴𝔓) = 𝒪𝐾 = End𝑘(𝐴) = End𝑘(𝐴) (in particular 𝐴𝔓 is absolutely simple) so
canonical lifts provide the reverse direction: 𝐴 is the canonical lift of 𝐴𝔓, and every abelian varieties over 𝔽𝔭𝑛 with
CM by 𝐾 is isogenous to 𝐴𝔓 hence is ordinary hence its canonical lift to characteristic zero belongs in 𝒜𝑔,𝛷.
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a.1 the proper base change theorem
sec:properbase

Let 𝑓 ∶ 𝑋 → 𝑌 be a proper map of noetherian schemes. The map 𝑓 is said to be cohomologically flat in dimension 𝑝
if 𝑅𝑝𝑓∗𝑂𝑋 commutes with base change (it suffice to test on each fibers) and is locally free (The original definition is
but [GD64, p. III.7.8.4] show that this is equivalent).

lem:properbase Lemma A.1.1 (Proper base change theorem). Let 𝑓 ∶ 𝑋 → 𝑌 be a proper map of noetherian schemes, 𝐹 a coherent
sheaf on 𝑋 flat over 𝑌. Then 𝐾 = 𝑅𝑓∗𝐹 is perfect and 𝐻𝑝(𝑋𝑦, 𝐹𝑦) = 𝐻𝑝(𝐾 ⊗𝐿

𝑂𝑌
𝜅(𝑦)).

(a) 𝜑𝑝(𝑦) ∶ 𝑅𝑝𝑓∗𝐹 ⊗𝑂𝑌
𝜅(𝑦) → 𝐻𝑝(𝑋𝑦, 𝐹𝑦) is surjective if and only if it is an isomorphism.

Then there is an open 𝑈 around 𝑦, such that (a) holds for 𝑈 and the formation of 𝑅𝑝𝑓∗𝐹 commutes with arbitrary
base change on 𝑈.

(b) In this case, The following are equivalent:
a) 𝜑𝑝−1(𝑦) is also surjective ie 𝑅𝑝−1𝑓∗𝐹 ⊗𝑂𝑌

𝜅(𝑦) → 𝐻𝑝−1(𝑋𝑦, 𝐹𝑦) is an isomorphism
b) 𝑅𝑝𝑓∗𝐹 is a free sheaf in a neighborhood of 𝑦.

By definition, 𝑓 is cohomologically flat in dimension 𝑝 at 𝑦 if we have (a)+(b). In this case 𝑦 ↦ dim𝑘(𝑦)𝐻𝑝(𝑋𝑦, 𝐹𝑦)
is a locally constant function around 𝑦. The converse is true if 𝑌 is reduced.
So if 𝑌 is reduced, 𝑦 ↦ dim𝑘(𝑦)𝐻𝑝(𝑋𝑦, 𝐹𝑦) is locally constant on 𝑆 ⇔ 𝐹 is cohomologically flat in dimension 𝑝.

As a corollary:

• If 𝑅𝑘𝑓∗(𝐹)𝑦 = (0) for 𝑘 > 𝑏, 𝐻𝑘(𝑋𝑦, 𝐹𝑦) = (0) for 𝑘 > 𝑏,

• If 𝐻𝑏+1(𝑋𝑦, 𝐹𝑦) = (0), then 𝑅𝑏+1𝑓∗𝐹𝑦 = 0 and 𝑅𝑏𝑓∗𝐹 ⊗𝑂 𝑌𝑘(𝑦) ≃ 𝐻𝑏(𝑋𝑦, 𝐹𝑦) is an isomorphism.

• Taking 𝑏 = 0 above yields that if 𝐻1(𝑋𝑦, 𝐹𝑦) = (0), then 𝑅1𝑓∗𝐹𝑦 = 0 and 𝑅0𝑓∗𝐹 ⊗𝑂𝑌
𝜅(𝑦) ≃ 𝐻0(𝑋𝑦, 𝐹𝑦)),

hence the formation of 𝑓∗𝐹 commutes with arbitrary base change (locally around 𝑦). Then 𝑓∗𝐹 is locally free
around 𝑦, ie 𝑓 is cohomologically flat in dimension 0 around 𝑦.

Proof. The proper base change theorem is developped in [GD64, §III.7.7, §III.7.8]. See also [Stacks, Tag 0E62],
[Har13, Chapter III]. A reformulation of Grothendieck’s base change theorem simplified by the language of derived
categories is in [FGI05, §8.3, Corollary 8.3.6.5]. An elementary proof, sufficient for what we need, can be found in
[Mum70a, §5] completed by [Ten13]. A summary of this criteria for cohomological flatness of dimension 0 is in
[MFK94, §0.5]1

1I cannot resist to cite Mumford here: “The first topic is a theorem in EGA 3, § 7, which is extremely useful, but which is unfortunately
buried there in a mass of generalizations”.
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A. Results from algebraic geometry

For the corollary, the first item is by recursion via (b ii). For the second item, if 𝐻𝑏+1(𝑋𝑦, 𝐹𝑦) = (0) then by
(a) and Nakayama (which we can apply since 𝑅𝑏+1𝑓∗𝐹 is coherent by Serre’s theorem), 𝑅𝑏+1𝑓∗𝐹𝑦 = 0, and the
conclusion follow by (b ii). The last item comes from the second, except for the final conclusion which comes from
applying (b i) to 𝐻−1(𝑋𝑦, 𝐹𝑦) = 0.

a.2 cohomological flatness in dimension 0
sec:cohflat

We recall that 𝑓 is cohomologically flat in dimension 0 if the formation of 𝑓∗𝑂𝑋 commutes with base change.
Indeed by Lemma A.1.1 (or [BLR12, Theorem 8.1.7]), 𝑓∗𝑂𝑋 is then automatically locally free, hence this is

coherent with the definition from Appendix A.1.
For instance an universal 𝑂-morphism is cohomologically flat in dimension 0. If the base 𝑆 is reduced, 𝑓 is

cohomologically flat if and only if 𝑠 ↦ dim𝑘(𝑠)(𝐻0(𝑋𝑠, 𝑂𝑋𝑠
) is locally constant on 𝑆 by Lemma A.1.1.

lem:cohflat Lemma A.2.1. Let 𝑓 ∶ 𝑋 → 𝑆 be proper flat of finite presentation. Let 𝑠 ∈ 𝑆 be a point such that 𝐻0(𝑋𝑠, 𝑂𝑋𝑠
) is an

étale algebra over 𝑘(𝑠) (for instance 𝑋𝑠 is geometrically reduced by [Stacks, Tag 0BUG]). Then 𝑓 is cohomologically flat
in dimension 0 over an open 𝑈 containing 𝑠.

If furthermore 𝑘(𝑠) = 𝐻0(𝑋𝑠, 𝑂𝑋𝑠
) (for instance 𝑋𝑠 is geometrically connected and geometrically reduced), then 𝑓

is an universal 𝑂-morphism over 𝑈 (by shrinking 𝑈 if necessary).
In particular, if 𝑓 has geometrically reduced fibers, 𝑓 is cohomologically flat in dimension 0, and in its Stein factorisation

𝑋 → 𝑋′ = Spec 𝑓∗𝑂𝑋 → 𝑆, 𝑋′ is finite étale over 𝑋. If furthermore the geometric fibers are connected, 𝑓 is an universal
𝑂-morphism. If 𝑓 is surjective, it suffices to check that the generic fibers are geometrically connected, then all geometric
fibers are connected.

Proof. The first statement is [GD64, Proposition III.7.8.6], an application of the proper base change theorem
Lemma A.1.1. The second statement then follows immediatly (see [GD64, Cor III.7.8.7]).

The remark in parenthesis in the second statement comes from the fact that a proper geometrically reduced
scheme of finite type 𝑋 over a field 𝑘 satisfy 𝐻0(𝑋, 𝑂𝑋) = 𝑘 if and only if it is geometrically connected [Stacks,
Tag 0F2D].

Finally the last statement is a corollary of the first, except for the fact that it suffices to check geometric connect-
edness of the generic fibers. By [GD64, p. IV.15.5.9], the number of geometrically connected components is lower
semi-continuous on 𝑆, so if it is equal to one on the generic fibers it is equal to one (by surjectivity) everywhere.

a.3 proper morphisms and connected fibers

We want to give fibral criterions for a map to be proper. For the next four lemmas, the proofs in [GD64] assume
that the base scheme 𝑆 (locally) noetherian. But these hold for general scheme if we assume 𝑓 ∶ 𝑋 → 𝑆 to be finitely
presented by the usual approximations techniques of [GD64, p. IV.8]. By Zariski connectedness theorem, there is a
link between being a proper morphisms and having geometrically connected fibers.

lemma:geomconnectedfiber Lemma A.3.1. If 𝑓 ∶ 𝑋 → 𝑆 a proper flat morphism of finite presentation, then it has proper fibers, and if furthermore
the generic fibers are geometrically connected all its fibers are, by semi-continuity [GD64, p. IV.15.5.4]2.

There is a converse:

lemma:converseproper Lemma A.3.2. If 𝑓 is flat (or even just universally submersive), separated of finite presentation, has proper and
geometrically connected fibers then it is proper [GD64, p. IV.15.7.10].

If 𝑆 is (the Spec of) a discrete valuation ring (in French the standard terminology is that 𝑆 is “un trait”), there is
an intermediate result:

lemma:serretate Lemma A.3.3. Let 𝑓 ∶ 𝑋 → 𝑆 be flat separated of finite type, 𝑆 the Spec of a dvr (discrete valuation ring). If the special
fiber is proper and the generic fiber is geometrically connected then 𝑓 is proper. Hence the special fiber is geometrically
connected by Lemma A.3.1.

2This is a corollary of Zariski connectedness theorem [GD64, p. III.4.3]
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A.4. Morphisms over an Henselian local ring

Proof. This is [ST68, Lemma 3]. In their Lemma they assume that 𝑓 is smooth but they only use that it is universally
open: If 𝑆 = Spec𝑅, since 𝑅 ↦ �̂� is fpqc, and since geometrical connectedness (of 𝑋𝜂𝑆

) ascend and properness (of
𝑋) descend, we may assume 𝑅 = �̂�. By [GD64, p. III.5.5.2], 𝑋 = 𝑌 ⨆ 𝑍 with 𝑌 proper and 𝑋𝑠 ⊂ 𝑌. Since 𝑋/𝑆 is
open, 𝑌 ∩ 𝑋𝐾 is not empty, but since 𝑋𝐾 is connected, 𝑍 ∩ 𝑋𝐾 = ∅ so 𝑋 = 𝑌 and 𝑋 is proper.

cor:lemmaserretate Corollary A.3.4. If 𝑓 ∶ 𝑋 → 𝑆 is flat separated, of finite presentation with geometrically connected generic fibers. If
the fiber at 𝑠 is proper, then 𝑓 proper at 𝑠 (which mean that it is proper above a neighborhood of 𝑠, [GD64, p. IV.15]).

Proof. Indeed since this is a topological condition we may assume that 𝑋 and 𝑆 are reduced. Since 𝑓 is separated,
it suffices to prove that 𝑓 is proper at 𝑠 at each irreducible component of 𝑋. We may assume that 𝑋 and 𝑆 are
irreducible, and by approximation that 𝑆 is Noetherian. So we reduce to 𝑆 and 𝑋 integral and 𝑓 dominant. By
[GD64, p. IV.15.7.1], it suffices to check the valuative criterion for 𝑆′ a dvr whose generic point 𝜂 maps to the
generic point of 𝑋, hence also to the generic point of 𝑆, and the closed point 𝑠′ of 𝑆′ maps to 𝑠. We are reduced to
Lemma A.3.3.

lemma:geomconnected Lemma A.3.5 ([GD64, p. IV.15.5.7]). Let 𝑓 ∶ 𝑋 → 𝑆 be a proper morphism of finite presentation, 𝑠 a point of 𝑆 and
assume that the fiber 𝑋𝑠 at 𝑠 is geometrically reduced, and 𝑓 is universally open at 𝑋𝑠. Then 𝑡 ↦ 𝑛(𝑡), the number of
geometrically connected components, is locally constant at 𝑠.

We can now state a fiberwise criterion for a smooth map to be proper:

prop:fiberwiseproper Proposition A.3.6. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism The following are equivalent:

(i) 𝑓 is proper, flat of finite presentation, with smooth and geometrically connected fibers (since a smooth map is by
definition a flat map, locally of finite presentation and with smooth fibers, equivalently 𝑓 is proper smooth of
finite presentation with geometrically connected fibers);

(i’) 𝑓 is proper, flat of finite presentation, with smooth fibers and geometrically connected generic fibers;

(i”) (If 𝑆 connected) 𝑓 is proper, flat of finite presentation, with smooth fibers and one geometrically connected fiber;

(ii) 𝑓 is flat of finite presentation, with fibers smooth, proper and geometrically connected;

(ii’) 𝑓 is flat of finite presentation, with fibers smooth and proper, and with geometrically connected generic fibers.

Proof. By definition, a smooth morphism is a flat morphism (locally of finite presentation), with smooth fibers.
(i) ⇒ (i’) is trivial, the converse holds because if 𝑓 is proper flat with geometrically connected generic fibers, then
all fibers are geometrically connected by semi-continuity of 𝑛(𝑡) [GD64, p. IV.15.5.4]. (i) ⇔ (i”) is Lemma A.3.5,
since a flat finitely presented morphism is universally open.

(i) ⇒ (ii) is trivial since a proper morphism has proper fibers, the converse is Lemma A.3.2, which use the
fact that a flat finitely presented morphism, with proper and geometrically connected fibers is proper by [GD64,
p. IV.15.7.10], using the local properness criteria.

(ii) ⇒ (ii’) is trivial, and (ii’) ⇒ (i) by Corollary A.3.4.

a.4 morphisms over an henselian local ring

Since an isogeny is an étale cover (ie an étale finite morphism), it is interesting to have conditions when two schemes
have the same étale covers (ie have the same fundamental étale group).

prop:etaleequivalence Proposition A.4.1. Let 𝑆 be the spectrum of a Henselian local ring with closed point 𝑠. Let 𝑋/𝑆 be proper. Then the
pair (𝑋, 𝑋𝑠) is 0-Henselian and 1-Henselian.

Proof. The pair (𝑋, 𝑋𝑠) is 0-Henselian means that closed and open subsets of 𝑋𝑠 lifts uniquely. This is proved
in [GD64, p. IV.18.5.19]. It is 1-Henselian means that the category of finite étale covers of 𝑋𝑠 is equivalent to
the category of finite étale covers of 𝑋. This is proved in [AGV72, Exposé XII, Corollary 5.5]. See also [Ryd10,
Proposition A.7] for equivalent conditions, and [Ryd10, Theorems A.11 and A.13].
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A. Results from algebraic geometry

Remark A.4.2. When 𝑓 ∶ 𝑋 → 𝑌 is a universal homeomorphism of schemes3 that is an integral, universally
injective and surjective morphism then there is an equivalence of category between étale spaces over 𝑋 and étale
spaces over 𝑌 [Stacks, Tag 05ZG] and [Ryd10, Theorem 5.21].

Example A.4.3. If 𝐴/𝑆 and 𝐵/𝑆 are abelian schemes over an Henselian local 𝑆 (with closed point 𝑠), étale isogenies
𝑔 ∶ 𝐴𝑠 → 𝐵𝑠 lift uniquely to 𝐴 → 𝐵. Of course in this case we can directly lift Ker 𝑔/𝑠 to Ker 𝑓 /𝑆 by the properties
of Henselian rings.

We will also need the structure theorem of quasi-finite morphisms over an Henselian local ring.

prop:henselpair Proposition A.4.4. Let (𝐴, 𝐼) be an henselian pair, 𝑆 = Spec𝐴, 𝑆0 = Spec𝐴/𝐼, 𝑋 → 𝑆 separated of finite type,
and 𝑋0 = 𝑋𝑆0

. Then open and closed subschemes of 𝑋0 which are proper lift to 𝑋. In particular, if 𝑋0 is proper over
𝑆0 then 𝑋 = 𝑌 ⨆ 𝑍 such that 𝑌/𝑆 is proper and contains 𝑋0 and all the closed subschemes 𝑋′ of 𝑋 that are proper
over 𝑆.

Proof. This is [Stacks, Tag 03GX]. See also [GD64, p. III.5.5.1] for a proof when (𝐴, 𝐼) is a noetherian 𝐼-adically
complete ring and [GD64, p. III.5.5.2] for the corollary.

cor:quasifinitestructure Corollary A.4.5. Let 𝑋 be quasi-finite and separated over a henselian local ring 𝐴. There is a unique decomposition
𝑋 = 𝑋𝑓 ∐ 𝑋𝜂 where 𝑋𝑓 is 𝐴-finite and 𝑋𝜂 has empty special fiber. The formation of the “finite part” 𝑋𝑓 is functorial
in 𝑋 and commutes with products, so it is an 𝐴-subgroup when 𝑋 is an 𝐴-group.

Proof. This is Proposition A.4.4, indeed the reduction 𝑋0 is quasi-finite over a field, hence finite. See also [Con+11,
L13, Theorem 4.10] for a beautiful direct proof using Zariski’s main theorem.

See [Con04] for an application to the classification of a quasi-finite étale separated scheme over a Dedekind
scheme.

3or even of algebraic spaces if we ask 𝑓 to be furthermore separated; this is automatic for schemes
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b.1 algebraic groups
sec:alggroup

Let 𝑘 be a field, 𝑘 an algebraic closure of 𝑘. We denote by 𝑘𝑠 the separable closure of 𝑘 in 𝑘. For our algorithmic
applications we are mainly interested in perfect fields, in which case 𝑘𝑠 = 𝑘.

A locally algebraic group 𝐺/𝑘 is a group scheme over 𝑘 which is locally of finite type. It is said to be algebraic
whenever 𝐺/𝑘 is of finite type (ie an algebraic group is a locally algebraic group that is quasi-compact).

Since the diagonal is the base change of the identity section, which by definition of a group scheme is a rational
point 0𝐺 over 𝑘, a group scheme 𝐺/𝑘 is always separated. Furthermore an algebraic group 𝐺 is quasi-projective
[Stacks, Tag 0B7F] hence is an AF-scheme.

An algebraic group scheme 𝐺/𝑘 over a perfect field 𝑘 (which mean a group scheme of finite type over 𝑘) is
smooth whenever 𝐺 is reduced [Stacks, Tag 047P]. In fact, for a general 𝑘, if 𝐺 has a geometrically reduced
point, it is smooth by [GD64, 15.6.10.(iii)]. Conversely, if 𝐺 is smooth it is of course geometrically reduced, and
punctually geometrically integral (so is geometrically integral whenever it is geometrically connected). And if 𝑘 if
of characteristic 0, 𝐺 is always smooth (Cartier, [Stacks, Tag 04TN]).

There exists a maximal smooth (or equivalently geometrically reduced) closed sub-scheme 𝐺† of 𝐺, it commutes
with separable base change. It is equal to the closure of 𝐺(𝑘𝑠) if 𝑘 = 𝑘𝑠 is separably closed and equal to 𝐺red if 𝑘 is
perfect [Gil14, Corollary 3.3.3].

lem:connectedcomponentgroup Lemma B.1.1. Let 𝐺/𝑘 be a group scheme locally of finite type. Then its connected neutral component 𝐺° is geomet-
rically irreducible and of finite type.

Proof. This is [DA70, Prop VIa.2.4] where the statement is more generally proved for a group scheme locally of
finite type over an Artinian ring see also [Stacks, Tag 0B7R]). Since the neutral point is rational, the fact that 𝐺° is
geometrically connected can also be seen from the fact that a connected scheme 𝑋/𝑘 with a point 𝑥 such that 𝑘 is
algebraically closed in 𝑘(𝑥) (in particular if 𝑥 is rational) is geometrically connected by [GD64, p. IV.4.5.14] or
[Stacks, Tag 04KV]. It is then geometrically irreducible by [Stacks, Tag 0B7Q].

lem:connectedetale Lemma B.1.2 (The connected-étale sequence). Let 𝐺/𝑘 be an algebraic group. The quotient 𝜋(𝐺) = 𝐺/𝐺° is an
étale finite group. The formation of 𝜋(𝐺) commutes with fields extension, and a morphism from 𝐺 to an étale finite
group factorizes through 𝜋(𝐺). The connected components of 𝐺 that are geometrically connected (for instance who
contains a rational point) correspond bijectively to 𝑘-points of 𝐺/𝐺°.
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B. Algebraic groups and group schemes

Proof. Since 𝐺° → 𝐺 is a flat and closed immersion by [Stacks, Tag 0B7R], it is open by [Stacks, Tag 025G] (since
it is locally of finite presentation), hence the quotient 𝜋(𝐺) = 𝐺/𝐺° (which exists by Appendix D) is a finite group
scheme over 𝑘.

The rest of the assertions are proved in [Liu02, Proposition 10.2.18 and Corollary 10.2.21]: For an algebraic
scheme 𝑋/𝑘, wemay define 𝜋0(𝑋), the largest finite étale quotient 𝑋 → 𝜋0(𝑋), as the largest finite étale subalgebra
of 𝛤(𝑋). If 𝑋/𝑘 is finite, we may describe it as follow: 𝑋 = Spec𝐴 where 𝐴 = ∏ 𝐴𝑖 is a product of Artinian local
rings, and 𝜋0(𝑋) = Spec𝐴𝑒𝑡, where 𝐴𝑒𝑡 = ∏ 𝐴𝑒𝑡

𝑖 , and 𝐴𝑒𝑡
𝑖 is the lift to 𝐴𝑖 of the separable closure of 𝑘 in the

residue field 𝑘𝑖 = 𝐴𝑖/𝑚𝑖. The morphism 𝑋 → 𝜋0(𝑋) is faithfully flat, its fiber 𝑋𝑓 (𝑥) corresponds to the connected
component of 𝑥. Its formation is functorial, commutes with field extension and product. For a group 𝐺, 𝜋0(𝐺)
coincide with the quotient 𝐺/𝐺° as above [Liu02, Corollary 10.2.21.b].

The connected components of 𝐺 that are geometrically connected correspond bijectively to 𝑘-points of 𝐺/𝐺°
[Liu02, Corollary 10.2.21.a]. See [use14] for an example where some connected components are not geometrically
connected. See also Section 3.3.1 for an extension to a more general base.

In summary:

Proposition B.1.3. Let 𝐺/𝑘 be a locally algebraic group.

• 𝐺/𝑘 is always separated and is quasi-projective (hence is an AF-scheme).

• 𝐺/𝑘 is smooth whenever it has a geometrically reduced point (hence a reduced point if 𝑘 is perfect). This is
always the case if 𝑘 is of characteristic zero.

• Its connected neutral component 𝐺° is a geometrically irreducible algebraic group.

Quotients of algebraic groups behave well:

prop:morphismgroups Proposition B.1.4. Let 𝐺/𝑘 be an algebraic group.

• If 𝐻 is a closed subgroup of 𝐺, the fppf quotient (that is the quotient as fppf sheaves) is represented by an algebraic
group: 𝑞 ∶ 𝐺 → 𝐺/𝐻 (so 𝑞 is fppf). The map 𝑞 is finite if and only if it is quasi-finite if and only if 𝐻 is finite.

If 𝐺 is smooth the quotient 𝐺/𝐻 too, and if both 𝐺 and 𝐻 are smooth the quotient is characterized by 𝐺/𝐻(𝑘) =
𝐺(𝑘)/𝐻(𝑘) and 𝑇𝑞 ∶ 𝔤 → 𝔤/𝔥 is surjective (where 𝔤 and 𝔥 are the Lie algebra of 𝐺 and 𝐻).

• If 𝐻 is a normal closed subgroup (if 𝐺 and 𝐻 are smooth this is equivalent to 𝐻(𝑘) normal in 𝐺(𝑘)), then 𝐺/𝐻
has a (unique) structure of group scheme making 𝑞 a morphism, and then 𝐻 = ker 𝑞. If 𝐺 is affine then 𝐺/𝐻
too.

• Let 𝑓 ∶ 𝐺 → 𝐺′ be a morphism of algebraic groups. The image 𝑓 (𝐺) is closed in 𝐺′, and is a closed immersion
if and only if ker 𝑓 = 1. In particular a monomorphism is a closed immersion, in other words a subgroup is
automatically closed.

If 𝐺′ is reduced, then 𝑓 is faithfully flat ⇔ 𝑓 is surjective ⇔ 𝑓 is dominant; and 𝑓 is flat ⇔ 𝑓 ∣ 𝐺° ∶ 𝐺° → 𝐺′° is
surjective. In particular, 𝑓 (𝐺) ≃ 𝐺/Ker 𝑓, and 𝐺 → 𝑓 (𝐺) ⊂ 𝐺′ is fppf. This is the case if 𝐺 and 𝐺′ are smooth,
𝑓 (𝐺) ≃ 𝐺/Ker 𝑓 is then a smooth subgroup of 𝐺′.

• If 𝐺 and 𝐺′ are connected, the map 𝑓 is an isogeny if it is a finite flat surjection, or equivalently is faithfully
flat with finite kernel. If 𝐺 and 𝐺′ are smooth, this is equivalent to 𝑓 is surjective and dim𝐺 = dim𝐺′, or 𝑓 is
surjective with finite kernel, or 𝑓 has finite kernel and dim𝐺 = dim𝐺′.

More generally, if 𝐺 and 𝐺′ are not necessarily connected, we say that 𝑓 is an isogeny if it is an isogeny on the
connected components.

Proof. These are essentially particular cases of [DA70, Exposés VIA et VIB]. See [Con+11, L13, Proposition 2.1]
and [Con14, p. 6].

To construct 𝐺/𝐻, we may also construct it as the coarse moduli of the stack quotient [𝐺/𝐻], this is then a
separated algebraic group space over a field 𝑘, hence a group scheme, see Appendix D.
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B.2. Structure of algebraic groups

The pullback of the projection map 𝑞 ∶ 𝐺 → 𝐺/𝐻 by itself is 𝐺 × 𝐻 → 𝐺 (this is a general fact about an fppf
groupoid quotient [𝑈/𝑅], see Appendix D). So if Ker 𝑓 is finite (or equivalently quasi-finite, ie Ker 𝑓 (𝑘) is finite
since we are over a field), 𝑞 is finite. The converse is immediate.

For the third item, if 𝑓 ∶ 𝐺 → 𝐺′ is a morphism and 𝐺′ is reduced, by generic flatness and transitivity 𝑓 is fppf if
it is surjective (and it is surjective if it is dominant since its image is closed). If 𝑓 is flat, then 𝑓 (𝐺°) is closed, open,
and connected, so has to contain 𝐺′°. Conversely if 𝑓 (𝐺°) = 𝐺′°, then 𝑓 |𝐺° is fppf over 𝐺′°, so flat over 𝐺′, hence 𝑓
is flat by transitivity. Moreover 𝐺/Ker 𝑓 → 𝑓 (𝐺) is an fppf monomorphism, so an isomorphism.

The part on isogenies is [Con+11, L13, p.4], see also [BLR12, Lemma 7.3.1].

b.2 structure of algebraic groups

b.2.1 The Chevalley decomposition

There are two important classes of algebraic group: affine groups and abelian variety.
An affine group automatically embeds into GL(𝑉) for a finite dimensional 𝑘-vector space 𝑉1. Be careful that the

usual terminology is to say that 𝐺 is an affine linear group (or simply linear group) if it is a smooth affine group.
If 𝐺 is affine but not smooth (so 𝑘 is of characteristic 𝑝 > 0), there is an 𝑛 such that 𝐺/𝐺[𝜋𝑛] is smooth (where
𝐺[𝜋𝑛] is the kernel of the Frobenius) [DA70, VIIA.8.3], [Gil14, Proposition 9.7.1].

These two classes are orthogonal to each other: there is no nonconstant morphism between an abelian variety 𝐴
and a connected affine algebraic group 𝐺 (since the image of 𝐴 is proper and affine, it is finite hence constant) and
conversely from 𝐺 to 𝐴 (since likewise the image of 𝐺 is proper and affine by Proposition B.1.4).

Theorem B.2.1 (Chevalley). If 𝐺/𝑘 is a connected algebraic group, there exists a smallest connected subgroup 𝐺1 of
𝐺 such that 𝐺/𝐺1 is an abelian variety and 𝐺1 embeds into GL𝑛 (but may not be smooth, hence not linear according
to our terminology).

If 𝑘 is perfect, 𝐺1 is smooth (so is linear) and its formation is compatible with extension of the base field. The
formation of the affine part and the abelian part is then functorial, and if 𝐺 → 𝐺′ is surjective (resp. an isogeny), then
so is the induced map on the affine and abelian parts.

Proof. See [BLR12,Theorem9.2.1], and [Con+11, L13Theorem2.6].The functoriality comes from the orthogonality
of these two classes. The last statement is [Con+11, L13, Proposition 2.8].

We now briefly detail the structure of linear groups. If 𝐺 is a linear group over a perfect field 𝑘, for every 𝑔 ∈ 𝐺(𝑘)
there is a canonical functorial Jordan decomposition 𝑔 = 𝑔𝑠𝑠𝑔𝑢 with 𝑔𝑠𝑠 and 𝑔𝑢 in 𝐺(𝑘) commutingwith each others,
such that for every linear representation 𝑗 ∶ 𝐺 → GL𝑁, 𝑗(𝑔) = 𝑗(𝑔𝑠𝑠)𝑗(𝑔𝑢) is the classical Jordan decomposition.
Over 𝑘, every 1-dimensional linear group is isomorphic to either 𝔾𝑚 or 𝔾𝑎. Using these as building block yield
two different type of algebraic groups.

b.2.2 Torus

A torus 𝑇/𝑘 is a linear group such that 𝑇𝑘 ≃ 𝔾𝑟
𝑚 (and the torus is split if the isomorphism descends to 𝑘).

Equivalently, 𝑇 is a torus when all its 𝑘-points 𝑇(𝑘) are semi-simple. A torus is completely determined by its lattice
of characters 𝑋∗(𝑇) = Hom𝑘𝑠

(𝑇𝑘𝑠
, 𝔾𝑚,𝑘𝑠

) together its Galois action. Indeed, if 𝑘 = 𝑘 the lattice of cocharacters
𝑋∗(𝑇) = Hom𝑘(𝔾𝑚,𝑘, 𝑇𝑘) is the ℤ-dual of 𝑋∗(𝑇) (via the canonical pairing 𝑋∗(𝑇) × 𝑋∗(𝑇) → End(𝔾𝑚) = ℤ,

and 𝑇(𝑘) ≃ 𝑋∗(𝑇) ⊗𝑍 𝑘
∗
, hence the quasi-inverse of 𝑋∗ is given by 𝑀 ↦ 𝑀∨ ⊗𝑍 𝔾𝑚. If 𝑘 is not algebraically

closed, and 𝑇 is a split torus, then the same map yields a quasi-inverse of 𝑋𝑘(𝑇) = Hom𝑘(𝑇, 𝔾𝑚).
In fact more generally [Mil12a, §9], a group 𝐺 is said to be diagonalisable if 𝐺 = 𝐷(𝑀) for a finitely generated

abelian group 𝑀. If 𝐺 where 𝐷(𝑀) is the algebraic group functorially defined by 𝐷(𝑀)(𝑅) = Hom(𝑀, 𝑅∗).
Then 𝑀 can be recovered from 𝐺 = 𝐷(𝑀) via 𝑀 = 𝑋(𝐺) = Hom(𝐺, 𝔾𝑚). For instance 𝔾𝑚 = 𝐷(ℤ), so a
split torus is of the form 𝐷(ℤ𝑟). A group is diagonalisable if and only if every finite dimensional representation is

1More generally an affine algebraic group scheme over a Dedekind ring is linear [Mil12b, Aside 9.4], see [Gro10] for other examples
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B. Algebraic groups and group schemes

diagonalisable. A group 𝐺 is said to be of multiplicative type if 𝐺𝑘𝑠
is diagonalisable. In this case 𝐺 → 𝑋∗(𝐺) =

Hom𝑘𝑠
(𝑇𝑘𝑠

, 𝔾𝑚,𝑘𝑠
) is an equivalence of category between groups of multiplicative type and the category of finitely

generated commutative groups equipped with a continuous action of Gal(𝑘). The quasi-inverse is given by, if
𝐾 ⊂ 𝑘𝑠, 𝐺(𝐾) = Hom(𝑋∗(𝐺), 𝑘𝑠

∗)Gal(𝑘). The torus then correspond to free ℤ-modules. We have the equivalences,
if 𝑝 is the characteristic of 𝑘: 𝐷(𝑀) is connected ⇔ the only torsion in 𝑀 is 𝑝-torsion; 𝐷(𝑀) is smooth ⇔ 𝑀 has no
𝑝-torsion; so a torus is exactly a smooth and connected algebraic group of multiplicative type. Every representation
of a group 𝐺 of multiplicative type is semi-simple: the simple objects correspond to an orbit 𝜉 of Gal(𝑘) acting
on 𝑋∗(𝐺), to such an orbit 𝜉 correspond a vector space 𝑉𝜉 such that 𝑉𝜉 ⊗ 𝑘𝑠 ≃ ⊕𝜒∈𝜉𝑉𝜒, and End(𝑉𝜉) = 𝑘𝜒 the
fixed subfield of 𝑘𝑠 by Gal(𝑘) leaving 𝜒 ∈ 𝜉 invariant.

We have the following rigidity result [Mil12a, pp. 9.9, 9.10]: an action of a connected algebraic group 𝐺 on a
multiplicative group 𝐻 is trivial, so every normal subgroup of multiplicative type of a connected algebraic group is
central. And if 𝐺 is a smooth connected algebraic group and 𝐻 is of multiplicative type, a morphism of scheme
𝐺 → 𝐻 is an homomorphism if it sends 1𝐺 to 1𝐻.

b.2.3 Unipotent groups

A connected affine algebraic group 𝑈 is unipotent if 𝑈𝑘 admits a finite composition series whose successive quotients
are 𝔾𝑎 (in fact for a general algebraic group 𝑈 such a condition imply that 𝑈 is affine)2. Equivalently (for a non
necessarily connected 𝑈), 𝑈 can be embedded into some 𝑘-group of strictly upper triangular matrices, or equiva-
lently each linear representation of 𝑈 has a fixed point [DA70, pp. XVII.3.5, XVII.4.11], [Gil14, Proposition 10.1.3].
If 𝑈 is linear, this is equivalent to the standard definition that 𝑔 = 𝑔𝑢 for all 𝑔 ∈ 𝑈(𝑘) [DA70, pp. XVII, 2.1].
An unipotent algebraic group is always split (meaning that we have a composition series over 𝑘 whose successive
quotients are 𝔾𝑎) over an inseparable extension of 𝑘, so is always 𝑘-split if 𝑘 is perfect [Gil14, Corollary 10.1.4].
More Details B.2.2. Stable by image or closed subgroup.

The 𝑘-split property is inherited by quotients [Bo, 15.4(i)], but is not inherited by smooth connected closed subgroups in
general when k is imperfect. Classic counterexample: 𝔾2

𝑎 over an arbitrary imperfect field.
In summary:
• 𝐺° the connected component is normal, and 𝐺/𝐺° is finite;
• If 𝐺 is connected, it has a normal affine subgroup 𝐺1 such that 𝐺/𝐺1 is an abelian variety;
• If 𝐺 is affine connected, it is linear, and has a largest solvable normal subgroup 𝑅(𝐺) (its radical). Then 𝐺/𝑅(𝐺) is

semi-simple.
• 𝐺 affine connected solvable has a largest normal unipotent subgroup 𝑅(𝐺)𝑢, and 𝐺/𝑅(𝐺)𝑢 is a torus.

b.2.4 The structure of commutative affine groups

Like abelian varieties and affine groups, torus and unipotent groups are orthogonal.

Lemma B.2.3 ([Con+11, L13, Lemma 2.15]). Let 𝑇/𝑘 be a torus and 𝑈/𝑘 a smooth connected unipotent group.
There are no nontrivial morphisms between 𝑇 and 𝑈.

Proposition B.2.4. Let 𝐺 be a commutative smooth connected affine 𝑘-group.
• There is a unique maximal tori 𝑇, and 𝑈 = 𝐺/𝑇 is unipotent, and the formation of 𝑇 and 𝑈 commutes with

field extension;

• If 𝑘 is perfect, 𝑈 ≃ 𝑅𝑢(𝐺) so the exact sequence 1 → 𝑇 → 𝐺 → 𝑈 → 1 splits uniquely as 𝐺 = 𝑇 × 𝑈;

• The formation of 𝑇 and 𝑈 is functorial, and if 𝐺 → 𝐺′ is surjective (resp. an isogeny), then so is 𝑇 → 𝑇′ and
𝑈 → 𝑈′. In particular if 𝐺 → 𝐺′ is an isogeny, 𝐺 is a torus (resp. is nilpotent) if and only if 𝐺′ is one.

Proof. This is [Con+11, L13, Proposition 2.16]. See also [Gil14, Theorem 10.2.2], [DG70, pp. IV.1.2.2, IV.3.3.1] for
the more general version with 𝐺 just commutative affine, and the torus 𝑇 replaced by a group of multiplicative
type.

2more generally a non necessarily connected algebraic group is unipotent when 𝑈𝑘 admits a finite composition series whose successive
quotients are subgroups of 𝔾𝑎 [DA70, p. XVII 1.3].
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B.3. Group schemes

b.2.5 The structure of reductive linear groups

For completude, we briefly detail some of the theory of reductive linear groups. This won’t be used in the text.
A linear connected group 𝐺 always contains a 𝑘-torus 𝑇 such that 𝑇𝑘 is maximal in 𝐺𝑘, and a torus 𝑇 is 𝑘-maximal

if and only if 𝑇𝐾 is 𝐾-maximal in 𝐺𝐾 for any extension 𝐾/𝑘. In particular the (reductive) rank of 𝐺 defined as the
dimension of a maximal torus does not depend on the base field [Con14, Appendix A]. A connected linear group
either contains a tori, or is unipotent [Con14, p. 14], so the reductive rank is 0 if and only if 𝐺 is unipotent.

If 𝑇 is a torus, then 𝑍𝐺(𝑇) is of finite index in 𝑁𝐺(𝑇) (they are both smooth group), and is connected if 𝐺 is
connected. The quotient 𝑊𝐺 = 𝑁𝐺(𝑇)/𝑍𝐺(𝑇) is then finite étale, this is the Weyl group of 𝑇. A Cartan subgroup
is 𝐶 = 𝑍𝐺(𝑇) for any maximal torus 𝑇, they commute with field extension and are conjugate over 𝑘. If 𝐺 is
connected and reductive then so is 𝑍𝐺(𝑇), hence if 𝑇 is maximal then 𝑇 = 𝑍𝐺(𝑇) [Con14, Theorem 1.1.19].

If 𝐺/𝑘 is an affine algebraic group, it is solvable (resp. 𝑘-solvable) if it admits a composition series whose successive
quotients are commutative affine algebraic groups (resp 𝔾𝑎 or 𝔾𝑚). If 𝐺 is solvable then so is 𝐺𝐾 for any field
extension, so 𝐺 is solvable if 𝐺(𝑘) is solvable. If 𝐺 is connected and solvable, every representation of 𝐺 can be
conjugated to have image inside the upper triangular matrices (Lie-Kolchin). Every connected solvable linear
algebraic group is a semidirect product of a torus with a unipotent group, 𝐺 = 𝑇⋉𝑈 [Bor12, 10.6(4)] or alternatively
an extension of a torus 𝑇 = 𝐺/𝑅𝑢(𝐺) by a unipotent subgroup 𝑈 = 𝑅𝑢(𝐺) [DA70, pp. XVII, 3.11].

Theorem B.2.5 ([Con14, Theorems 1.1.8 and 1.1.9]). Let 𝐺/𝑘 be a linear algebraic group over an algebraically closed
field 𝑘. The maximal connected solvable linear algebraic-subgroups of 𝐺 are all 𝐺(𝑘)-conjugate to each other, and these
are precisely the connected solvable linear algebraic groups 𝐵 that are parabolic (which mean that the quasi-projective
quotient scheme 𝐺/𝐵 is projective). A subgroup 𝑃 of 𝐺 is parabolic if and only if it contains a Borel subgroup 𝐵.

If 𝐺/𝑘 is connected and 𝑃 is parabolic, 𝑃 is connected and 𝑁𝐺𝑃 = 𝑃.

If 𝐺 is a linear group, it has a unipotent radical 𝑅𝑢(𝐺) (the unique maximal connected normal unipotent linear
algebraic subgroup of 𝐺), and a radical 𝑅(𝐺) (the maximal connected normal solvable subgroup of 𝐺). These
radicals commute with quotients, and normal subgroups (ie 𝑅(𝐻) = (𝐻 ∩ 𝑅(𝐺))°red).

We also have a split version 𝑅𝑢,𝑠(𝐺) and 𝑅𝑠(𝐺) of these radicals. The radicals 𝑅𝑢, 𝑅𝑢,𝑠 and 𝑅 commutes with
separable field extensions, so in particular 𝑅𝑢(𝐺𝑘) and 𝑅(𝐺𝑘) descend to 𝑘 if 𝑘 is perfect [Gil14, §11].

The linear group 𝐺 is said to be reductive (resp. pseudo-reductive) if 𝑅𝑢(𝐺𝑘) = 1 (resp. 𝑅𝑢(𝐺) = 1), and is semi-
simple if 𝑅(𝐺𝑘) = 1. And 𝐺 is pseudo-semi simple if it is pseudo-reductive with 𝐷(𝐺) = 𝐺. By compatibility with
quotients, 𝐺/𝑅𝑢(𝐺) (resp. 𝐺/𝑅(𝐺)) is always reductive (resp. semisimple), and by compatibility with separable
field extension, if 𝑘 is perfect then 𝐺 is reductive whenever it is pseudo-reductive. If 𝐺 is connected and has a
faithful semi-simple representation then it is reductive [Mil12a, p. 17.13], and conversely in characteristic zero
every then all representations of a connected reductive linear group are semi-simple [Con14, Remark 1.1.14].

If 𝐺 is connected and reductive, then 𝑅(𝐺) is the largest subtorus of 𝑍(𝐺) so is a central torus and 𝐺/𝑅(𝐺) is
semi-simple.We also have that 𝐷(𝐺) is semi-simple and the torus 𝐺/𝐷(𝐺) is isogenous to 𝑅(𝐺), so 𝐺 is canonically
an extension of a torus by a connected semi-simple group (and 𝐷(𝐷(𝐺)) = 𝐷(𝐺) since 𝐷(𝐺) is connected and
semi-simple). And 𝑍 × 𝐷(𝐺) → 𝐺 is an isogeny. See [Con14, Example 1.1.16] when 𝑘 = 𝑘 and [Mil12a, p. 17.28]
for the general case. A semisimple group is then central isogenous to a product of (Weil restriction) of simply
connected almost simple linear groups [Mil12a, p. 17.27].

We refer to [DA70; Mil12a; Mil17; Con14; CGP15; CP17] for the classification of (pseudo)-reductive groups, in
particular the classification of split reductive groups via root data (a generalisation of Dynkin diagrams used when
𝑘 = 𝑘). To study the structure of a general group, it helps to have a Levi subgroup. Over a perfect field 𝑘, a Levi
subgroup is a subgroup 𝐿 of 𝐺 such that 𝐿 → 𝐺/𝑅𝑢(𝐺) is an isomorphism. They always exist in characteristic zero
and are conjugated under 𝐺(𝑘) [Gil14, Definition 11.0.9].

b.3 group schemes
sec:appendixgroupschemes

In this section, if 𝑆 is a scheme, a group scheme 𝐺/𝑆 will always be assumed to be flat and locally of finite
presentation.

We have the following generalisation of Lemma B.1.1:
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B. Algebraic groups and group schemes

lem:lfpisfp Lemma B.3.1. Let 𝐺/𝑆 be a flat locally finitely presented group scheme with connected fibers. Then 𝐺/𝑆 is qcqs, that
is it is finitely presented.

Proof. This is [Sta19].

If 𝑆 is a regular scheme, and 𝑋/𝑆 is a Cohen-Macauley scheme, then “miracle flatness” give a fibral criterion for
𝑋/𝑆 to be flat over 𝑆 (namely that all fibers are of the same dimension if 𝑆 is connected). This can be strengthened
in the case of a group scheme 𝐺/𝑆, using the existence of a section 𝜖 ∶ 𝑆 → 𝐺: for a geometrically reduced group
scheme over a reduced base scheme, flatness is equivalent to the fact that the dimension of the fibers is locally
constant, see Proposition B.3.3.

The section 𝜖 also allows to check properness fibrally (compare with Proposition A.3.6).
For a group scheme 𝐺/𝑆 with section 𝜖, 𝐺°𝑠 denotes the identity component of 𝐺 at 𝜖(𝑠), and 𝐺° is the union of

all 𝐺°𝑠.

lem:connectedsection Lemma B.3.2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism of finite presentation, with a section 𝜖 ∶ 𝑆 → 𝑋. For 𝑠 ∈ 𝑆, let 𝑋0
𝑠

denote the connected composant of 𝜖(𝑠) in 𝑋𝑠.
Then if 𝑋 is separated and a fiber 𝑋𝑠 is proper over 𝑘(𝑠), then 𝑋 is proper over 𝑆 at the point 𝑠 (which means that

𝑋𝑈 it is proper over an open 𝑈 containing 𝑠).
Assume that 𝑋0

𝑠 is geometrically integral for all 𝑠. Then the following conditions are equivalent:

• 𝑠 → dim(𝑋0
𝑠 ) is locally constant;

• 𝑓red is flat on 𝑋0;

• (If 𝑆 is locally noetherian) 𝑓 is universally open on 𝑋0.

And in this case 𝑋0, the union of all 𝑋0
𝑠 is open in 𝑋.

Proof. The first statement is [GD64, p. IV.15.6.8]. The second statement is [GD64, p. IV.15.6.7]. See [GD64,
p. IV.15.6.6] for a more precise statement.

Combining Lemma B.3.2 with the results from Appendix B.1, we get

prop:fiberwiseflat Proposition B.3.3 ([GD64, p. IV.15.6.10.iii]). Let 𝑓 ∶ 𝐺 → 𝑆 be a group scheme of finite presentation.

• 𝐺/𝑆 is separated if and only if the unit section 𝜖 ∶ 𝑆 → 𝐺 is a closed immersion.

• If 𝐺/𝑆 is separated and 𝐺°𝑠 is proper over 𝑠 then 𝐺° is proper over 𝑆 at 𝑠.

• 𝐺∘
𝑠 (the connected component at the neutral point of the fiber) is always geometrically irreducible (in particular

geometrically connected) and dim𝐺∘
𝑠 = dim𝐺𝑠.

• 𝑓 is universally open on 𝐺°𝑠 if and only if 𝑧 ↦ dim(𝐺𝑧) is locally constant at 𝑠. In particular, if 𝐺/𝑆 is smooth
or flat, then 𝑧 ↦ dim(𝐺𝑧) is locally constant (so constant if 𝑆 is connected).

• If 𝐺𝑠 is geometrically reduced at a point, then 𝐺𝑠 is smooth over 𝑘(𝑠). If furthermore 𝑓 is universally open on
𝐺°𝑠 and 𝑂𝑆,𝑠 is reduced, then 𝑓 is smooth at all points of 𝐺°𝑠.

• In particular, if 𝑆 is reduced and 𝐺𝑠 is smooth (equivalently geometrically reduced) at all 𝑠 ∈ 𝑆 and the
dimension of the fibers is locally constant, then 𝐺° is open in 𝐺 and 𝐺°/𝑆 is smooth.

Proof. Thefirst statement is [BLR12, Lemma7.1.2], and the second [GD64, § 15.6.8].The rest is [GD64, § IV.15.6.10.iii],
using [GD64, § IV.15.6.6 and IV.15.6.4].

Under some conditions, a group scheme is quasi-projective:

prop:raynaudlocprojective Proposition B.3.4 (Raynaud). Let 𝐺/𝑆 be a smooth group scheme over a normal base 𝑆, with connected fibers. Let
𝑋 be an homogeneous space under 𝑋. Then 𝑋 is locally quasi-projective.

If 𝑆 is locally noetherian and regular of dimension 1, then 𝑋 is projective, and all line bundle ℒ which is ample on
the generic points of 𝑆 is 𝑆-ample.

Proof. This is the main result of [Ray70].
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B.4. Morphisms and isogeny of group schemes

b.4 morphisms and isogeny of group schemes
sec:appendixisogenies

Let 𝐺/𝑆 and 𝐺′/𝑆 be flat locally finitely presented group schemes. We will consider flat morphisms 𝑓 ∶ 𝐺 → 𝐺′,
since 𝐺 and 𝐺′ are flat over the base, the morphism 𝑓 is flat if and only if it is flat over each fiber.

If 𝑓 ∶ 𝐺 → 𝐺′ is a morphism, we let Ker 𝑓 → 𝐺 be the pullback of the zero section of 𝐺′. So it is closed if 𝐺′/𝑆
is separated. Then Ker 𝑓 → 𝑆 is the composition Ker 𝑓 → 𝐺 → 𝑆, so is proper if 𝐺 → 𝑆 is proper and 𝐺′/𝑆 is
separated of finite type. But Ker 𝑓 → 𝑆 is also the pullback of 𝐺 → 𝐺′ via the identity section 𝜖𝐺′ ∶ 𝑆 → 𝐺′, so it
is flat whenever 𝑓 is flat. If G → 𝑆 is proper and 𝐺′/𝑆 is separated of finite type, then 𝐺 → 𝐺′ is proper3, so we
recover that Ker 𝑓 → 𝑆 is proper in this case.

Conversely we may try to construct quotients of 𝐺 by finite flat subgroups.

lem:quasifiniteflat Lemma B.4.1. Let 𝐺/𝑆 be a separated flat group scheme. A (finitely presented) subgroup 𝐻 of 𝐺 is finite over 𝑆
whenever it is quasi-finite and proper. If 𝑆 is reduced, it is finite flat over 𝑆 ⇔ it is finite of locally constant rank
⇔ it is flat quasi-finite of locally constant rank ⇔ it is locally free of constant (finite) rank. It is also finite flat if it
is flat quasi-finite with a locally constant number of geometric points on its fibers, and conversely if the fibers are
geometrically reduced.

Proof. A proper quasi-finite 𝐻/𝑆 is finite by [GD64, p. IV.8.11.1] or [Stacks, Tag 02LS].4
It is well known that a finite module over a reduced base is flat if and only if its rank is locally constant. If 𝐻 is

locally finitely presented, quasi-finite and flat, and its rank is locally constant it is finite by [DR73, §II.1.19] (the
finitely presented condition allows us to use approximation to reduced to their noetherian base 𝑆). Likewise, if 𝐻 is
locally finitely presented, quasi-finite and flat, and the number of geometric points of its fibers is locally constant it
is finite by [GD64, p. IV.15.5.9.i], the converse is [GD64, p. IV.15.5.9.ii].

Note that in particular, if 𝐻 is the kernel of a finite étale separated isogeny 𝑓 ∶ 𝐺 → 𝐺′, this number of geometric
points is locally constant by [GD64, pp. IV.15.5.9.ii, IV.18.2.8].

prop:quotientbygroup Proposition B.4.2. Let 𝐺/𝑆 be a flat group scheme of finite presentation. If 𝐻/𝑆 is a subgroup of 𝐺, flat over 𝑆, then
𝐺/𝐻 exists as an algebraic space, and as a scheme if 𝐺 is an AF scheme. Furthermore 𝐺 → 𝐺/𝐻 is an fppf morphism,
𝐺/𝐻 is flat over 𝑆, and the construction of this quotient commutes with arbitrary base change. And if 𝐺/𝑆 is smooth,
𝐺/𝐻 too.

Proof. This is a particular case of the results of Appendix D. Indeed the stack quotient [𝐺/𝐻] has trivial inertial,
so is an algebraic space.

Since𝐺 → 𝐺/𝐻 is an fppf cover and𝐺 → 𝑆 if flat,𝐺/𝐻 → 𝑆 is flat. If𝐺/𝑆 is smooth, the fibers (𝐺/𝐻)𝑠 = 𝐺𝑠/𝐻𝑠
are smooth, so 𝐺/𝐻 is smooth over 𝑆 (since it is flat over 𝑆).

If 𝐻 is as in Proposition B.4.2, since 𝐻 → 𝑆 is the pullback of 𝐺 → 𝐺/𝐻, the properties of 𝐻 → 𝑆 reflect the
properties of 𝐺 → 𝐺/𝐻. But the converse is true: the pullback of 𝐺 → 𝐺/𝐻 by itself is 𝐺 ×𝑆 𝐻 → 𝐺, so is a
pullback of 𝐻 → 𝑆. By descent, 𝐺 → 𝐺/𝐻 has all properties of 𝐻 → 𝑆 that are stable by base change and fppf local
on the base. In particular, 𝐺 → 𝐺/𝐻 is proper if and only if 𝐻 → 𝑆 is proper.

3By the usual cancellation properties, if 𝑔, 𝑓 are separated of finite type and 𝑔 ∘ 𝑓 is proper, then 𝑓 is proper, and 𝑔 is proper if 𝑓 is
surjective.

4Grothendieck proved that a proper quasi-finite morphism locally of finite presentation is finite as a corollary of his version of ZMT
(Zariski’s main theorem) [GD64, p. IV.8.12], and Deligne extended this result to the case to 𝑓 quasi-finite universally closed separated locally
of finite type.
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c.4.1 Artin’s representability theorem 94

chap:stacks

References: [Stacks] (the canonical reference), [LM18; Ols16].

c.1 rings

Rings = locally presentable category, so equivalence with torsors on rings of finite presentation (by Diaconescu) =
classifying topos of rings. Zariski topos = classifying topos of local ring (internally in the topos).

Applied to topological spaces: an internal ring = sheaf (of rings), an internal local ring = a locally ringed space.
The functor of global sections from locally ringed space to rings has an adjoint (by the adjoint functor theorem

for presentable categories), which is fully faithful.
By the coyoneda lemma, there is an adjonction between presheafs on rings and locally ringed space. Schemes =

locus where this is an equivalence of category (point of view of [DG70]).

c.2 schemes

Schemes = Zariski locally affine = quotient of an affine by an open equivalence relation.
Three methods to see what it means to be covered by affine opens:

1. Can be seen via the embedding into locally ringed space (see the discussion above).

2. Purely functorialy: open immersion = finite presentation (this is functorial = commute with filtered limit) +
formally étale + monomorphism (or finite presentation + flat + monomorphism).

So can define an open immersion for a sheaf (in the Zariski topology) representable by affine space (we get
exactly the schemes with affine diagonal). Disgression on equivalence of representability via pullbacks and
representability of the diagonal (easy from the point of view of the internal logic of a category with pullbacks,
this is the same proof as in Set).

Bootstrap a second time to get schemes.

Trick to get schemes in one step: by pullback we need to explain when 𝐹 → Spec𝐴 is open, but since an
open immersion is a monomorphism we can cheat and say that it is so when its image coincide with the
union of the image of a bunch of open morphisms Spec𝐴𝑖 → Spec𝐴.

3. The Zariski topos has a subobject classifier 𝛺 (since it is a topos). We simply have 𝛺(𝐴) = {the set of ideals},
and a morphism 𝑋 → 𝑌 is an open immersion (resp. a closed immersion) if it is the pullback of 1 → 𝛺 (resp.
0 → 𝛺).
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C. Algebraic stacks

c.3 algebraic spaces

Algebraic spaces = étale locally affine = quotient of an affine scheme by an étale equivalence relation. Bootstrap:
fppf locally affine is already an algebraic space.

Explain why this is useful:

• fpqc descent of modules.

• fpqc descent of morphisms: fpqc = stable effective (regular) epimorphism soHom(⋅, 𝑋) is a sheaf in the fpqc
topology, ie if 𝑇′ → 𝑇 is fpqc to give a morphism from 𝑇 to 𝑋 is the same as giving a morphism from 𝑇′ to
𝑋 which satisfy gluing conditions.
This is also a descent morphism (by the monadic descent theorem [JT94; JT97; JT04]) so if 𝑇′ → 𝑇 is fpqc, to
give a morphism from 𝑋 to 𝑌 above 𝑇 is the same as giving a morphism from 𝑋𝑇′ to 𝑌𝑇′ above 𝑇′ satisfying
suitable compatibility conditions.
Application: construct morphism fppf locally (map from 𝐴 → 𝐴, the Torelli morphism, we can thus suppose
there is a base point).

• No fpqc descent of schemes

We can construct algebraic spaces étale or fppf locally! In some cases, algebraic spaces are automatically schemes:

ex:algspaceisscheme Example C.3.1. • A quasi-separated group algebraic space over a field is a quasi-projective scheme [Art69b]
(See also the proof of Corollary 2.3.5.)

• An abelian algebraic space is a scheme (Raynaud), cf Theorem 2.3.2. More generally, a proper commutative
group algebraic space, which is locally of finite presentation, flat and cohomologically flat in dimension 0 is a
scheme.

• A curve over a field (ie a proper algebraic space of dimension 1 over 𝑘) is a proper scheme.

c.4 algebraic stacks

Stacks (in groupoid) = internally a groupoid in the topos. Deligne-Mumford algebraic stack = stack with an étale
cover by an algebraic space = quotient by an étale groupoid (ie as an étale presentation) = the inertia is unramified.
Point of view of étendues [Pro96].

Artin algebraic stack = quotient by a smooth groupoid = quotient by an fppf groupoid = smooth or fppf cover by
an étale space. An algebraic stack with trivial inertia is an algebraic space.

Representability by schemes vs by algebraic spaces.
If 𝑓 ∶ 𝑋 → 𝑌 is representable, every notion that is fppf local on the base and stable by pullback behave well (even

étale local for DM stacks) [Stacks, Tag 03YJ]. For a more general morphism this still work for morphisms which
are smooth local on the source and target [Stacks, Tag 0CFY] (or even just étale local on the base and smooth local
on target for DM morphisms [Stacks, Tag 06F7]).

c.4.1 Artin’s representability theorem

Explain the results of [Art69b; Art74], extending the earlier Grothendieck-Murre result on representability of
unramified functors [Mur64].

Key aspect played by Artin’s approximation theorem: [Art69a], extended to general 𝐺-rings via the Neron-
Popescu desingularisation theorem [Pop85], [Stacks, Tag 07BX]. This allows to approximate versal deformations:
[CJ02]. For more aspects of Artin’s approximation, see this nice survey [Gui11].

The representability theorem uses several steps:

1. existence of formally versal deformations;
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C.4. Algebraic stacks

2. algebraization of formally versal deformations;

3. openness of formal versality; and

4. formal versality implies formal smoothness.

As we have seen in Section 3.4, step 1 is solved by Schlessinger’s criterion (for algebraic spaces) and Rim’s
extension (for algebraic stack) [Gro72, Exposé VI], cf [Stacks, Tag 06G7] for an excellent presentation. These
conditions are elegantly reinterpreted as homogeneity conditions in [HR19]. They also require that the Deformation
and Automorphism functors are coherent.

Step 2, algebraization is done by combining Grothendieck’s existence/algebraicity theorem [FGI05, §8.4], [Stacks,
Tag 087V], [Stacks, Tag 0886], [Stacks, Tag 0CYW] to get effectivity over the complete ring, and then Artin
approximation [CJ02] to descend to an Henselian ring. By standard approximation [GD64, §IV.8] we have a cover
which is (formally) versal at a point.

Step 3 ensures that the cover is formally versal in an open, so is formally smooth by Step 4. The functorial
criterion for finite presentation allows to check that we are of finite presentation, hence smooth, hence we have
found a smooth cover. Step 4 is automatic over a noetherian base by [GD64, p. IV.17.4.2], [Stacks, Tag 02HW]

Openness of formal versality is the hardest to check in practise, so several theories have been developed to
deal with it: generally by constructing nice obstruction theories. Cf Artin [Art69b; Art74], the approach by the
stack project [Stacks, Tag 07YF], see also [Hal13] for another approach and [HR19] for a comparison of all these
methods.

Good surveys are [Ray71] for algebraic space and [Alp15] for algebraic stacks.
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D COARSE MODUL I S PACES AND QUOT I ENTS

chap:coarsemodulisubsec:coarsemoduli

Planned topics

d.1 quotients

Description of quotients (Zariski quotients, geometric quotients, categorical quotients, GC quotients), quotients of
finite groups, quotients of groupoids (and equivalence relations).

Particular case of quotients of AF scheme is a scheme:
An affine finite scheme (AF scheme)means that every finite set of points is contained in an affine open subscheme.

See [Ryd13, Appendix B] for more on AF schemes.
This allows to construct quotient by a finite group by 𝐺 by gluing together the affine case (in which case the

quotient is simply given by taking the invariant sections) [Gro62, No 212, Theorem 5.1], [DA70, Exposés V et VIA],
[Ryd13, Theorems 4.1 and 4.4]. See also the surveys by Raynaud: [Ray67a; Ray67b].

Case of a finite group acting on an algebraic space. Deligne proved that a (good) quotient of a separated algebraic
space 𝑋 by a finite locally free group scheme 𝐺 acting on it always exist [Ryd13, Corollary 5.4].

Recover the construction of quotients of group schemes and abelian schemes as a special case (since algebraic
group spaces over a field and abelian algebraic spaces are schemes), so refer to this section from Propositions 2.3.15
and B.1.4 and Appendix B.4.

Summary of all quotient constructions and their properties (eg when the quotient is simply the fppf sheafication,
…).

d.2 coarse moduli space

Link with the construction of coarse moduli spaces (for a finite inertia) [KM97; Con05; Ryd13]. This allows to
construct quotients in algebraic spaces of fppf groupoids whose inertia is finite.

Note: also if the inertia of 𝒳 is flat (locally of finite presentation), the coarse moduli space is just the associated
fppf sheaf 𝑋 since 𝒳 → 𝑋 is a gerbe by [Stacks, Tag 06QB]. This is in particular the case for a quotient [𝐺/𝐻]
where 𝐻 is a flat subgroup scheme of 𝐺, since the inertia 𝐺 × 𝐺 ×𝐺 𝐻 ≃ 𝐻.

Quotients by linear reductive groups [MFK94; Ses77] (linearly reductive vs geometrically reductive) and the
stacky interpretation (good and adequate moduli spaces) [Alp13; Alp+14]. The étale local structure of separated
Deligne Mumford stacks [AOV08; Ols+06], étale local structure of tame stacks [AOV08], extension of Luna’s
theorem [Lun73] and the étale local structure to non finite inertia [Alp10; AHR20; AHR19].

Current draft version

d.3 coarse moduli spaces

Let 𝒳 be a Deligne-Mumford stack of finite type over a Noetherian base 𝑆 (from now on all our stacks will be
assumed to be of finite type over a Noetherian base). In our settings, 𝒳 will typically be a stack of abelian varieties
of PEL type. In this section we summarize well known result on the geometry of 𝒳 and its coarse moduli space.

By a point 𝑥 of 𝒳, we mean a point of the underlying topological space |𝒳|, and we implicitly take a representative
Spec 𝑘 → 𝒳 of 𝑥. A 𝑇-point of 𝒳 means a morphism 𝑇 → 𝒳. We denote by 𝐼𝒳 the inertia stack of 𝒳, and if 𝑥 is
a point of 𝒳, we usually denote 𝐼𝑥 the pullback of 𝐼𝒳 to 𝑥, this is simply the space Aut(𝑥) of automorphisms (or
stabilisers) of 𝑥. Since we assume 𝒳 separated, 𝐼𝑥 is in fact finite. The stabiliser 𝐼𝑥 does not really depend on the
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D. Coarse moduli spaces and quotients

representative chosen since 𝐼𝑥 is a pullback of the residual gerbe 𝐺𝑥 → 𝑘(𝜉) at 𝑥 through Spec 𝑘 → 𝑘(𝜉). We recall
that a map 𝑓 ∶ 𝒳 → 𝒴 is representable if and only if the induced map 𝐼𝒳 → 𝒳 ×𝒴 𝐼𝒴 is a monomorphism, and that
if 𝑓 is unramified, then its diagonal is étale, hence 𝐼𝒳 → 𝒳 ×𝒴 𝐼𝒴 is étale. So if 𝑓 is representable and unramified,
𝐼𝒳 → 𝒳 ×𝒴 𝐼𝒴 is an open immersion. Finally we identify open substacks of 𝒳 with the underlying open topological
spaces of |𝒳|.

A coarse moduli space 𝑋 of 𝒳 is an algebraic space 𝑋 with a map 𝜋 ∶ 𝒳 → 𝑋 such that 𝜋 is categorical and
induces a bijection 𝜋 ∶ 𝒳(𝑘) → 𝑋(𝑘) for any algebraically closed field 𝑘. A coarse moduli space always exists:

Theorem D.3.1 (Keel-Mori). Let 𝒳 be an Artin stack with finite inertia of finite type over a Noetherian base scheme
𝑆. Then there is a coarse moduli space 𝜋 ∶ 𝒳 → 𝑋, where 𝑋 is of finite type over 𝑆. The map 𝜋 is a GC quotient, is
proper, quasi-finite and separated if 𝒳 is separated over 𝑆, and the construction is stable by flat base change.

Proof. The original proof is in [KM97]. A proof relying on the language of stacks rather than groupoids is given in
[Con05] where the Noetherian hypothesis on 𝑆 is relaxed, and 𝒳 is assumed to be locally of finite presentation.
This last condition is relaxed in [Ryd13]. Since our 𝒳 is a separated Deligne-Mumford stack, then its inertia 𝐼𝑋 is
finite so the Keel-Mori theorem applies.

We recall the following terminology from [MFK94] (see also [KM97, Definition 1.8] and [Ryd13, Definitions 2.2
and 6.1]): a map 𝑞 ∶ 𝒳 → 𝑍 is topological if 𝑞 is a universal homeomorphism, and geometric if it is topological and
furthermore 𝒪𝑍 → 𝑞∗𝒪𝒳 is an isomorphism. A GC quotient is a geometric quotient that is also (uniformly) cate-
gorical, in particular it is a coarse moduli ([KM97, Definition 1.8] and [Ryd13, Definition 3.17 and Remark 3.18]).

Note that by Zarsiki Main Theorem, 𝑋 is characterised by the fact that 𝜋 ∶ 𝒳 → 𝑋 is proper quasi-finite such
that 𝒪𝑋 ≃ 𝜋⋆𝒪𝒳 on the étale site [Con05, §1].

When 𝒳 is separated Deligne-Mumford, we can describe the coarse moduli space 𝜋 ∶ 𝒳 → 𝑋 étale locally (since
it is stable by flat pullback), as follow:

th:localstruct Theorem D.3.2. Let 𝒳 be a separated Deligne-Mumford stack, 𝜋 ∶ 𝒳 → 𝑋 its coarce moduli. Let 𝑥 ∈ 𝑋(𝑘) a point
and 𝐼𝑥 be the stabilizer of any point in 𝒳 above 𝑥. Then étale-locally around 𝑥, there is an affine open 𝑈 and a finite
morphism 𝑉 → 𝑈 such that 𝒳𝑈 ≔ 𝒳𝑥𝑋𝑈 = [𝑉/𝐼𝑥] is a 𝐼𝑥-gerbe, and 𝑈 = 𝑉/𝐼𝑥.

Proof. See [AV02, Lemma 2.2.3] which shows that 𝒳 is locally a quotient, and [Ols+06, Theorem 2.12] which
shows that we can take the quotient to be by 𝐼𝑥. If 𝑉 = Spec𝑅, then 𝑉/𝐼𝑥 is the affine scheme 𝑅𝐼𝑥. The fact that
𝑈 = Spec𝑅/𝐼𝑥 then follow easily from the theory of quotients on affine scheme, see for instance [Ryd13, §4] or
[DR73, §I.8.2.2].

cor:hensellocal Corollary D.3.3. Let 𝒳 be a separated Deligne-Mumford stack, and 𝑥 ∈ 𝒳(𝑘) a point. Let 𝑂𝒳,𝑥 be the strict Hensel
ring of 𝒳 at 𝑥, then

𝑂𝑋,𝑥 = 𝑂𝐼𝑥
𝒳,𝑥 (D.1) {eq:stricthensel}

Proof. This is an immediate application of Theorem D.3.2. See also [DR73, §I.8.2.1], which states that the kernel of
the action of 𝐼𝑥 acting on 𝑂𝒳,𝑥 is exactly given by the automorphisms of 𝑥 that can be extended to Spec𝑂𝒳,𝑥 →
𝒳.

cor:genericiso Corollary D.3.4. Let 𝒳 be a separated Deligne-Mumford stack. Then the set 𝑈 of points 𝑥 such that 𝐼𝑥 is trivial is an
open substack (which may be empty), and 𝜋 ∶ 𝑈 → 𝜋(𝑈) is an isomorphism.

cor:normal Corollary D.3.5. Let 𝒳 be a normal separated Deligne-Mumford stack. Then its coarce moduli space is normal.

We will apply the Keel-Mori theorem to get the coarse moduli space 𝒜𝑔,𝑛 of 𝒜𝑔,𝑛. Mumford constructed 𝒜𝑔,𝑛
directly in [MFK94] using Geometric Invariant Theory and proved that it is a quasi-projective variety, so in
particular a scheme (and not just an algebraic space).

Some care must be taken that the formation of coarse moduli spaces do commute with flat base change, but
not with arbitrary base change. In particular the coarse moduli 𝒜𝑔,𝑛,𝑝 of 𝒜𝑔,𝑛,𝑝 ≔ 𝒜𝑔,𝑛 ⊗ 𝔽𝑝 is not equal to
𝒜𝑔,𝑛 ⊗ 𝔽𝑝.

In practice, this is not really a problem for two reasons. First the two spaces are topologically homeomorphic.
Indeed let 𝑇 → 𝑆 be a morphism of algebraic spaces, 𝒳𝑇 the base change of 𝒳 to 𝑇 and X𝑇 the coarse moduli space

98

[ Draft Version: Tuesday March 7, 2023 at 18:13 ]



D.4. The local structure of tame stacks

of 𝒳𝑇. Then the natural map X𝑇 → 𝑋𝑇 is an adequate homeomorphism in the sense of [Alp+14], and in particular
is a universal homeomorphism [Alp+14, Main Theorem].

d.4 the local structure of tame stacks

Furthermore, [AOV08] shows that there is an open set of tame points where the formation of the coarse moduli
space commutes with arbitrary pullback. We recall [AOV08] that an Artin stack 𝒳 with finite inertia is said to be
tame if the map 𝜋 ∶ 𝒳 → 𝑋 is cohomologically affine (see [Alp13]). And a finite fppf group scheme 𝐺/𝑆 is said
to be linearly reductive if 𝐵𝐺 → 𝑆 is tame ([AOV08, Definition 2.4], [Alp13, Definition 12.1]). In [AOV08], it is
shown that a finite fppf group scheme 𝐺/𝑆 is linearly reductive if and only if its geometric fibers are geometrically
reductive, if and only if its geometric fibers are locally (in the fppf topology) a split extension of a constant tame
group by a group of multiplicative type.

A characterisation and the local structure of tame stacks is given by

th:localstruct_tame Theorem D.4.1. Let 𝒳 be a tame Artin stack with finite inertia. The stack 𝒳 is tame if every geometric point 𝑥 ∈ 𝒳(𝑘)
has a linearly reductive stabiliser 𝐼𝑥 → Spec 𝑘. Furthermore if 𝒳 is tame, then the formation of its coarse moduli space
commutes with arbitrary base change.

Conversely if a point 𝑥 ∈ 𝒳(𝑘) has linearly reductive stabiliser 𝐼𝑥, there exist an étale morphism 𝑈 → 𝑋 with 𝑈
affine and whose image contains 𝑥, and a finite morphism 𝑉 → 𝑈 such that 𝒳𝑈 ≃ [𝑉/𝐼𝑥] as algebraic stacks. In
particular there is an open tame substack of 𝒳 containing 𝑥. Furthermore, the image of 𝑈 in 𝑋 is Cohen-Macauley.

Proof. The étale local structure of a tame stack 𝒳 is the main result of [AOV08]. Note that by contrast to Theo-
rem D.3.2, this applies to Artin stack with finite inertia and not only to separated Deligne-Mumford stacks, but
only at points with linearly reductive stabilizers. See the references in Remark D.5.2 for a generalisation to adequate
moduli spaces.

Hochster-Roberts theorem [MFK94, Appendix 1.E] then shows that 𝑈 = 𝑉/𝐼𝑥 is Cohen-Macauley, so its image
in 𝑋 is Cohen-Macauley since this notion is local for the syntomic, hence étale, topology.

In particular, if 𝒳 = 𝒜𝑔, then since 𝒜𝑔 = [𝒜𝑔,𝑛/ Sp(𝑛, ℤ)] is a Sp(𝑛, ℤ) gerbe and 𝒜𝑔,𝑛 has trivial inertia for
𝑛 ≥ 3, this shows that there is a 𝑝0 such that 𝒜𝑔 is tame at every abelian variety defined over a field of characteristic
𝑝 > 𝑝0.

d.5 étale slices

We need one last result on when an étale map between algebraic stacks induce an étale map on their coarse moduli
spaces.

th:strongetale Theorem D.5.1. Let 𝑓 ∶ 𝒳 → 𝒴 be a representable and unramified morphism of algebraic stacks with finite inertia.
Then the set of points where 𝑓 is stabilizer preserving (meaning that the monomorphism on inertia 𝐼𝑥 → 𝐼𝑓 (𝑥) induced
by 𝑓 is an isomorphism) is an open 𝒰, and the canonical morphism 𝐼𝒰 → 𝐼𝒴 ×𝒴 𝒰 is an isomorphism.

If 𝑓 is étale and 𝒰 = 𝒳, that is if 𝑓 is stabilizer preserving at every point, then the induced map 𝑓0 ∶ 𝑋 → 𝑌 is étale,
and even strongly étale (meaning that 𝒳 = 𝑋 ×𝑌 𝒴).

Proof. If 𝒳 and 𝒴 are separated Deligne-Mumford stack, the fact that the induced map is étale comes from
Corollary D.3.3. The general case is in [Ryd13, Proposition 6.5 and Theorem 6.10]. In loc. cit. stabilizer preserving
is called fixed point reflecting, but we have prefered to use the terminology of [Stacks]. The fact that 𝑓0 is strongly
étale comes from the cartesian diagram in [Ryd13, Theorem 6.10], see also [AHR19, Theorem 3.14] where this is
proved more generally for adequate moduli spaces.

rem:adequate_moduli Remark D.5.2. In [MFK94] and [Ses77], Mumford and Seshadri study quotients of schemes by (linearly) reductive
groups. This has been generalised in the context of stacks by Alper, which introduces the notion of good moduli
spaces in [Alp13] (this includes GIT quotients by linearly reductive groups), and the notion of adequate moduli
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space in [Alp+14] (this includes GIT quotients by geometrically reductive groups). In particular if 𝒳 is an Artin
stack with finite inertia, its coarse moduli is adequate [Alp+14, Proposition 8.2.1].

Most of the results of this section can be extended to good and adequate moduli spaces. For instance adequate
moduli spaces are stable by flat base change [Alp+14], while good moduli spaces are stable by arbitrary base change
[Alp13]. Alper defines in [Alp13, §7] a tame moduli spaces 𝜋 ∶ 𝒳 → 𝑋 as a good moduli which induces a bijection
on geometric points. This extends the notion of tame spaces from [AOV08].

The local structure and characterisation of Theorem D.4.1 is still valid for good moduli spaces, but much more
difficult to prove: see [AHR20, Theorem 1.2] and [AHR19, Theorem 1.1 and Proposition 13.4].

Finally Luna’s étale slice theorem [Lun73] can be used to study the local structure of the quotient of a scheme
by a linearly reductive group scheme. See also the generalisation to stacks and the relative setting in [AHR20,
Theorem 1.1] and [AHR19, Theorem 19.4], and the generalisation of Luna’s fundamental lemma in [AHR19,
Theorem 3.14].

The coarse moduli of principally polarised abelian varieties is constructed by Mumford as a quotient of a
locally closed subscheme of the Hilbert scheme by the reductive group PGL𝑛 (and its coarse moduli space as
the corresponding GIT quotient). Over ℤ[1/2], the coarse moduli of hyperelliptic curves can be constructed
as the quotient of the open subvariety of ℙ2𝑔+2 given by the discriminant by PGL2 (since the map from stack
of hyprelliptic curves to its coarse space factorize through [ℙ2𝑔+2/PGL2]). One can then use Luna’s étale slice
theorem to study the local structure of these spaces.
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