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Abstract

Wepresent an algorithm solving the following problem: given two genus 2 curves
over a field 𝑘 with isogenous Jacobians, compute such an isogeny explicitly. This
isogeny can be either an ℓ-isogeny or, in the real multiplication case, an isogeny with
cyclic kernel; we require that 𝑘 have large enough characteristic and that the curves be
sufficiently generic. Our algorithm uses modular equations for these isogeny types,
and makes essential use of an explicit Kodaira–Spencer isomorphism in genus 2.

1 Introduction
We are interested in the following version of the isogeny problem: given two isogenous
abelian varieties, compute an isogeny between them explicitly.

Let us start with some motivation. The isogeny problem in the case of elliptic curves
was solved by Elkies [Elk98]. Given two ℓ-isogenous elliptic curves, where ℓ is a prime,
his algorithm uses modular polynomials of level ℓ to compute rational fractions defining
this isogeny. Elkies’s algorithm is used to speed up Schoof ’s point counting algorithm for
elliptic curves over finite fields [Sch85]: replacing kernels of endomorphisms by kernels of
isogenies yields smaller subgroups of the elliptic curve, and therefore smaller polynomial
computations, while giving the same amount of information on the Frobenius. This
improvement is at the heart of the well-known SEA point counting algorithm [Sch95].

The situation for point counting in genus 2 is different, as the existing complexity
estimates and records only use kernels of endomorphisms [GKS11; GS12]. One can
therefore ask whether the idea of using isogenies generalizes. Modular polynomials have
now been computed in genus 2: the smallest ones are known both for ℓ-isogenies [Mil15]
and, in the real multiplication case, cyclic 𝛽-isogenies [MR17; Mar18]. This opened the
way for Atkin-style methods in point counting [BGL+16], but isogeny computations
remain the missing ingredient to generalize Elkies’s method in genus 2. The object of
this paper is precisely to fill this gap.

We now present our main result in the case of ℓ-isogenies. For any field 𝑘, we denote
by A2(𝑘) the coarse moduli space of principally polarized abelian surfaces over 𝑘, and
we denote by 𝑗 = (𝑗1, 𝑗2, 𝑗3) the Igusa invariants as introduced by Streng (see §2.2). We
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also denote by Ψℓ,𝑖 for 1 ≤ 𝑖 ≤ 3 the modular equations of level ℓ in Igusa invariants
(see §2.6). Recall that if 𝒞 is a hyperelliptic curve of genus 2 over a field 𝑘, then its
Jacobian Jac(𝒞) is a principally polarized abelian surface which is birational to the
symmetric square 𝒞2,sym; the points of 𝒞2,sym over 𝑘 are the Galois-invariant unordered
pairs {𝑃, 𝑄} where 𝑃, 𝑄 ∈ 𝒞(𝑘).

{thm:main}
Theorem 1.1. Let ℓ be a prime, and let 𝑘 be a field such that char 𝑘 = 0 or char 𝑘 > 8ℓ+7.
Let 𝑈 ⊂ A2(𝑘) be the open set consisting of abelian surfaces 𝐴 such that Aut�̄�(𝐴) ≃ {±1}
and 𝑗3(𝐴) ≠ 0. Assume that there is an algorithm to evaluate derivatives of modular
equations of level ℓ at a given point of 𝑈 × 𝑈 over 𝑘 using 𝐶ev(ℓ) operations in 𝑘.

Let 𝐴, 𝐴′ ∈ 𝑈, and let 𝑗(𝐴), 𝑗(𝐴′) be their Igusa invariants. Assume that 𝐴 and 𝐴′

are ℓ-isogenous, and that the subvariety of 𝔸3 × 𝔸3 cut out by the modular equations Ψℓ,𝑖
for 1 ≤ 𝑖 ≤ 3 is normal at (𝑗(𝐴), 𝑗(𝐴′)). Then, given 𝑗(𝐴) and 𝑗(𝐴′), we can compute

1. a field extension 𝑘′/𝑘 of degree dividing 8,

2. hyperelliptic curve equations 𝒞, 𝒞 ′ over 𝑘′ whose Jacobians are isomorphic to 𝐴, 𝐴′

respectively,

3. a point 𝑃 ∈ 𝒞(𝑘′),

4. rational fractions 𝑠, 𝑝, 𝑞, 𝑟 ∈ 𝑘′(𝑢, 𝑣),

such that (𝑠, 𝑝, 𝑞, 𝑟) equals the compositum

𝒞 Jac(𝒞) Jac(𝒞 ′) 𝒞 ′2,sym 𝔸4𝑄↦[𝑄−𝑃] 𝜑 ∼ 𝑚

where 𝜑 is an ℓ-isogeny and 𝑚 is the rational map given by

{(𝑥1, 𝑦1), (𝑥2, 𝑦2)} ↦ (𝑥1 + 𝑥2, 𝑥1𝑥2, 𝑦1𝑦2,
𝑦2 − 𝑦1
𝑥2 − 𝑥1

).

The cost of the algorithm is 𝑂(𝐶ev(ℓ)) + 𝑂(ℓ) elementary operations and 𝑂(1) square
roots in 𝑘′.

In other words, given sufficiently generic genus 2 curves 𝒞, 𝒞 ′ whose Jacobians are
ℓ-isogenous, obtained for instance by computing roots of modular equations of level ℓ,
we compute rational fractions that determine an ℓ-isogeny completely. We also obtain a
similar result in the case of 𝛽-isogenies in the real multiplication case: see Theorem 6.3.
In a follow-up paper, the first author will design evaluation algorithms for genus 2
modular equations and their derivatives, thereby obtaining estimates on 𝐶ev(ℓ). Possible
applications of our results to the point counting problem are a major goal for future work.

Let us describe the outline of our algorithm in the case of ℓ-isogenies from a geometric
point of view, in any dimension 𝑔. The central object is the map

𝛷ℓ = (𝛷ℓ,1, 𝛷ℓ,2) ∶ 𝒜𝑔(ℓ) → 𝒜𝑔 × 𝒜𝑔

where 𝒜𝑔(ℓ) denotes the stack of principally polarized abelian schemes of dimension 𝑔
with an ℓ-kernel, and 𝒜𝑔 denotes the stack of principally polarized abelian schemes of
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dimension 𝑔; this map is given by (𝐴, 𝐾) ↦ (𝐴, 𝐴/𝐾). Both 𝛷ℓ,1 and 𝛷ℓ,2 are étale
maps. Let 𝜑∶ 𝐴 → 𝐴′ be an ℓ-isogeny, so that (𝐴, 𝐴′) lies in the image of 𝛷ℓ. Denote
by 𝑇𝐴(𝒜𝑔) the tangent space of 𝒜𝑔 at 𝐴, and denote by 𝑇0(𝐴) the tangent space of 𝐴 at
its neutral point. Then there is a close relation between two maps:

• the deformation map 𝒟(𝜑)∶ 𝑇𝐴(𝒜𝑔) → 𝑇𝐴′(𝒜𝑔) defined as

𝒟(𝜑) ≔ 𝑑𝛷ℓ,2 ∘ 𝑑𝛷ℓ,1
−1;

• the tangent map 𝑑𝜑∶ 𝑇0(𝐴) → 𝑇0(𝐴′).

This relation stems from a canonical isomorphism, called the Kodaira–Spencer isomor-
phism, between 𝑇𝐴(𝒜𝑔) and Sym2 𝑇0(𝐴). Therefore, in any dimension 𝑔, an isogeny
algorithm could run as follows.

{step:defo}
1. Compute the deformationmap by differentiating certain modular equations giving

a local model of 𝒜𝑔(ℓ) and 𝒜𝑔.
{step:tangent}

2. Compute 𝑑𝜑 from the deformation map using an explicit version of the Kodaira–
Spencer isomorphism, that is, an explicit way to map a pair (𝐴, 𝑤) where 𝑤 is an
element of Sym2 𝑇0(𝐴) to the corresponding point of 𝑇𝐴(𝒜𝑔) in the local model
of 𝒜𝑔.

{step:formal}
3. Finally, attempt to reconstruct 𝜑 itself by solving a differential system in the formal

group of 𝐴 and performing a multivariate rational reconstruction. In this last step,
the characteristic of 𝑘 should be large with respect to ℓ, hence the condition on the
characteristic inTheorem 1.1. Otherwise, a standard solution is to use étaleness
of the modular correspondence to lift the isogeny in characteristic 0, as in [JL06],
and to control the precision losses when reconstructing the isogeny.
More Details 1.2. This last step is more standard, and is similar to the methods of [CE15;
CMS+19]; this is where the hypothesis on char 𝑘 appears. The whole method, when applied
to elliptic curves, is a reformulation of Elkies’s algorithm.

As explained, in genus 2, if ℓ does not satisfy char 𝑘 > 8ℓ + 7, the standard solution is to use
étaleness of the modular correspondance to lift the isogeny in characteristic 0, as in [JL06].
To get a bound on complexity, one would need to control the loss of 𝑝-adic precision when
reconstructing the isogeny. Provided the precision loss is small enough (as is the case in
dimension 1), the complexity of the isogeny reconstruction is the same, except that we need
to call the algorithm evaluating modular polynomials 𝑂(log log𝑝 ℓ) times rather than just
once in order to compute the lift. Since we are mainly interested with ℓ small with respect to
char 𝑘 (for instance for applications to point counting), we leave that as an open question.

In practice, working with stacks would involve adding an additional level structure
and keeping track of automorphisms, which is not computationally convenient. Therefore,
in order to make everything explicit in the case 𝑔 = 2, we choose to replace the stack 𝒜2
by its coarse moduli scheme A2. We even work up to birationality, by considering the
birational map from A2 to 𝔸3 defined by the three Igusa invariants (𝑗1, 𝑗2, 𝑗3). These
reductions have the drawback of introducing singularities; this is the reason for restricting
to the open set 𝑈 inTheorem 1.1. When the genericity conditions ofTheorem 1.1 are not
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satisfied, one can still compute the isogeny by working at the level of stacks, or choosing
other models, for instance when 𝐴 or 𝐴′ is a product of elliptic curves.

In the genus 2 setting, the local model of 𝒜𝑔(ℓ) that we use in Step 1 is given by
modular equations in Igusa invariants; in order to compute the deformation map, it is
enough to evaluate modular equations and their derivatives at (𝐴, 𝐴′). In Step 2, we
choose to encode a basis of 𝑇0(𝐴) in the choice of a hyperelliptic curve equation. Then,
the explicit Kodaira–Spencer isomorphism is simply an expression for certain Siegel
modular forms, namely derivatives of Igusa invariants, in terms of the coefficients of
the curve (see Theorem 3.14). In Step 3, we take advantage of the fact that the curve 𝒞
embeds in its Jacobian to compute with power series in one variable only.

This paper is organized as follows. In Sections 2 and 3, we work over ℂ: Section 2 is
devoted to the necessary background on modular forms and isogenies, while Section 3
is devoted to the explicit Kodaira–Spencer isomorphism and the computation of the
tangent map. In Section 4, we call upon the language of algebraic stacks to show that the
calculations over ℂ remain in fact valid over any base. We present the computation of
the isogeny from its tangent map in Section 5, focusing on the large characteristic case
which is sufficient for applications to point counting, and we sum up the algorithm in
Section 6. Finally, in Appendix A, we present variants in the algorithm in the case of real
multiplication by ℚ(√5) and compute an example of cyclic isogeny of degree 11.

Acknowledgement. The authors were supported by the ANR grant CIAO (French
Agence Nationale de la Recherche).

2 Background onmodular forms and isogenies
{sec:mf}

We present the basic facts about Siegel and Hilbert modular only in the genus 2 case.
References for this section are [van08] for Siegel modular forms, and [Bru08] for Hilbert
modular forms, where the general case is treated.

We write 4 × 4 matrices in block notation using 2 × 2 blocks. We write 𝑚𝑡 for the
transpose of a matrix 𝑚, and use the notations

𝑚−𝑡 = (𝑚−1)𝑡, Diag(𝑥, 𝑦) = (𝑥 0
0 𝑦) .

2.1 Siegel modular forms
{subsec:siegel}

The Siegel threefold. Denote by ℍ2 the set of complex symmetric 2 × 2 matrices with
positive definite imaginary part. For every 𝜏 ∈ ℍ2, the quotient

𝐴(𝜏) = ℂ2/Λ(𝜏) where Λ(𝜏) = ℤ2 ⊕ 𝜏ℤ2

is naturally endowed with the structure of a principally polarized abelian surface over ℂ.
A basis of differential forms on 𝐴(𝜏) is given by

𝜔(𝜏) = (2𝜋𝑖 𝑑𝑧1, 2𝜋𝑖 𝑑𝑧2)
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where 𝑧1, 𝑧2 are the coordinates on ℂ2. Recall that the symplectic group Sp4(ℤ) acts
on ℍ2 in the following way:

∀𝛾 = (𝑎 𝑏
𝑐 𝑑) ∈ Sp4(ℤ), ∀𝜏 ∈ ℍ2, 𝛾𝜏 = (𝑎𝜏 + 𝑏)(𝑐𝜏 + 𝑑)−1.

{prop:H2-isom}
Proposition 2.1 ([BL04, Rem. 8.1.4]). Let 𝜏 ∈ ℍ2, and let 𝛾 ∈ Sp4(ℤ) with blocks
𝑎, 𝑏, 𝑐, 𝑑. Then there is an isomorphism

𝜂𝛾,𝜏 ∶ 𝐴(𝜏) → 𝐴(𝛾𝜏), 𝑧 ↦ (𝑐𝜏 + 𝑑)−𝑡𝑧.
{thm:siegel-unif}

Theorem2.2 ([BL04, Prop. 8.1.3]). Let𝐴 be a principally polarized abelian surface overℂ.
Then there exists 𝜏 ∈ ℍ2 such that 𝐴 is isomorphic to 𝐴(𝜏), and 𝜏 is uniquely determined
up to action of Sp4(ℤ).

The quotient space A2(ℂ) = Sp4(ℤ)\ℍ2 is the set of complex points of the coarse
moduli space A2 alluded to in the introduction.

More Details 2.3. Theorem 2.2 shows that 𝒜2(ℂ) is a moduli space for principally polarized
abelian surfaces over ℂ. More generally, 𝒜2 is a moduli space over ℤ for principally polarized
abelian varieties, either in the coarse sense or as a stack [van08, §10]. Hence, most of the computa-
tions that we make in the paper have an algebraic meaning; in order to prove that they are valid
over any field, it is enough to do so over ℂ, since 𝒜2 is smooth as a stack over ℤ. Alternatively, we
can use a lifting argument to characteristic zero. We refer to Section 4 for much more details.

Siegel modular forms. Let 𝜌∶ GL2(ℂ) → GL(𝑉) be a finite-dimensional holomor-
phic representation of GL2(ℂ). We can assume that 𝜌 is irreducible. A Siegel modular
form of weight 𝜌 is a holomorphic map 𝑓 ∶ ℍ2 → 𝑉 satisfying the transformation rule

∀𝛾 = (𝑎 𝑏
𝑐 𝑑) ∈ Sp4(ℤ), ∀𝜏 ∈ ℍ2, 𝑓 (𝛾𝜏) = 𝜌(𝑐𝜏 + 𝑑)𝑓 (𝜏).

We say that 𝑓 is scalar-valued if dim𝑉 = 1, and vector-valued otherwise. A modular
function is only required to be meromorphic instead of holomorphic.

If 𝐴 is a principally polarized abelian surface over ℂ endowed with a basis 𝜔 of
Ω1(𝐴) (the space of global differential forms on 𝐴), and if if 𝑓 is a Siegel modular form
of weight 𝜌, then it makes sense to evaluate 𝑓 on the pair (𝐴, 𝜔). We refer to §4 for a
geometric interpretation of this fact. To compute this quantity, choose 𝜏 ∈ ℍ2 and an
isomorphism 𝜂∶ 𝐴 → 𝐴(𝜏) as in Theorem 2.2. Let 𝑟 ∈ GL2(ℂ) be the matrix of the
pullback map 𝜂∗ ∶ Ω1(𝐴(𝜏)) → Ω1(𝐴) in the bases 𝜔(𝜏), 𝜔. Then

𝑓 (𝐴, 𝜔) = 𝜌(𝑟)𝑓 (𝜏).

We can check using Proposition 2.1 that 𝑓 (𝐴, 𝜔) does not depend on the choice of 𝜏
and 𝜂.

More Details 2.4. There is no need to enforce the holomorphy condition at the cusps: Koecher’s
principle asserts that it is automatically satisfied. Since every irreducible representation ofGL1(ℂ)
is 1-dimensional, only scalar-valued modular forms occur in genus 1; this is no longer the case in
genus 2.
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From a geometric point of view, scalar Siegel modular forms are sections of certain algebraic
line bundles on 𝒜2. These line bundles can be realized as certain powers, depending on the
weight 𝜌, of the Hodge line bundle. More generally, the fibre of the Hodge vector bundle over the
isomorphism class of an abelian surface𝐴 can be identified with the dual of the vector spaceΩ1(𝐴)
of differential forms on 𝐴. As a consequence, if 𝑓 is a Siegel modular form of weight 𝜌, and 𝜔
is a basis of Ω1(𝐴), then the quantity 𝑓 (𝐴, 𝜔) has an algebraic meaning. See [van08, §10] and
Section 4.4 for more details.

2.2 An explicit view on Siegel modular forms in genus 2
{subsec:siegel-g2}

Classificationofweights. Finite-dimensional holomorphic representations ofGL2(ℂ)
are well known. Let 𝑛 ≥ 0 be an integer. We denote by Sym𝑛 the 𝑛-th symmetric power
of the standard representation of GL2(ℂ) on ℂ2. Explicitly, Sym𝑛 is a representation
on the vector space ℂ𝑛[𝑥] of polynomials of degree at most 𝑛, with

Sym𝑛 ((𝑎 𝑏
𝑐 𝑑)) 𝑊(𝑥) = (𝑏𝑥 + 𝑑)𝑛𝑊 (

𝑎𝑥 + 𝑐
𝑏𝑥 + 𝑑) .

We take (𝑥𝑛, … , 𝑥, 1) as the standard basis of ℂ𝑛[𝑥], so that we can write an endomor-
phism of ℂ𝑛[𝑥] as a matrix; in particular we have

Sym2 (𝑎 𝑏
𝑐 𝑑) = ⎛⎜⎜⎜

⎝

𝑎2 𝑎𝑏 𝑏2

2𝑎𝑐 𝑎𝑑 + 𝑏𝑐 2𝑏𝑑
𝑐2 𝑐𝑑 𝑑2

⎞⎟⎟⎟
⎠

.

{prop:irr-rep}
Proposition2.5. The irreducible finite-dimensional holomorphic representations ofGL2(ℂ)
are exactly the representations det𝑘 Sym𝑛, for 𝑘 ∈ ℤ and 𝑛 ∈ ℕ.

Proof. Since SL2(ℂ) is a simply connected Lie group, there is an equivalence between
holomorphic finite-dimensional representations of SL2(ℂ) and representations of its Lie
algebra 𝔰𝔩2(ℂ) [Bou72, Ch. III, §6.1,Th. 1]. By [Bou75, Ch. VIII, §1.3,Th. 1], irreducible
representations of 𝔰𝔩2(ℂ) are classified by their higher weight; on the Lie group side, this
shows that the holomorphic finite-dimensional irreducible representations of SL2(ℂ)
are exactly the representations Sym𝑛 for 𝑛 ∈ ℕ. The case of GL2(ℂ) follows easily.

The weight of a scalar-valued Siegel modular form 𝑓 is of the form det𝑘 for some
𝑘 ∈ ℤ, and in fact 𝑘 ≥ 0. We also say that 𝑓 is a scalar-valued Siegel modular form
of weight 𝑘. Writing Sym𝑛 as a representation on ℂ𝑛[𝑥] allows us to multiply Siegel
modular forms; hence, they naturally generate a graded ℂ-algebra.

Fourier expansions. Let 𝑓 be a Siegel modular form on ℍ2 of any weight, with un-
derlying vector space 𝑉. If 𝑠 ∈ ℳ2(ℤ) is symmetric, then 𝑓 (𝜏 + 𝑠) = 𝑓 (𝜏) for every
𝜏 ∈ ℍ2. Hence, if we write

𝜏 = (𝜏1 𝜏2
𝜏2 𝜏3

) and 𝑞𝑗 = exp(2𝜋𝑖𝜏𝑗) for 1 ≤ 𝑗 ≤ 3,
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then 𝑓 has a Fourier expansion of the form

𝑓 (𝜏) = ∑
𝑛1,𝑛2,𝑛3∈ℤ

𝑐𝑓(𝑛1, 𝑛2, 𝑛3) 𝑞𝑛1
1 𝑞𝑛2

2 𝑞𝑛3
3 .

TheFourier coefficients 𝑐𝑓(𝑛1, 𝑛2, 𝑛3) belong to𝑉, and can be nonzero onlywhen𝑛1 ≥ 0,
𝑛3 ≥ 0, and 𝑛2

2 ≤ 4𝑛1𝑛3. Note that 𝑛2 can still be negative.
When computing with 𝑞-expansions, we consider them as elements of the power

series ring ℂ(𝑞2)[[𝑞1, 𝑞3]]. Writing the beginning of a 𝑞-expansion means computing
modulo an ideal of the form (𝑞𝜈

1, 𝑞𝜈
3) for some precision 𝜈 ≥ 0.

Structure of scalar-valued forms. The full graded ℂ-algebra of Siegel modular forms
in genus 2 is not finitely generated [van08, §25], but the subalgebra of scalar-valued
modular forms is. {thm:siegel-structure}
Theorem 2.6 ([Igu62; Igu67]). The graded ℂ-algebra of scalar-valued even-weight Siegel
modular forms in genus 2 is generated by four algebraically independent elements𝜓4, 𝜓6, 𝜒10,
and 𝜒12 of respective weights 4, 6, 10, 12, and 𝑞-expansions

𝜓4(𝜏) = 1 + 240(𝑞1 + 𝑞3)
+ (240𝑞2

2 + 13440𝑞2 + 30240 + 13340𝑞−1
2 + 240𝑞−2

2 )𝑞1𝑞3 + 𝑂(𝑞2
1, 𝑞2

3),
𝜓6(𝜏) = 1 − 504(𝑞1 + 𝑞3)

+ (−504𝑞2
2 + 44352𝑞2 + 166320 + 44352𝑞−1

2 − 504𝑞−2
2 )𝑞1𝑞3 + 𝑂(𝑞2

1, 𝑞2
3),

𝜒10(𝜏) = (𝑞2 − 2 + 𝑞−1
2 )𝑞1𝑞3 + 𝑂(𝑞2

1, 𝑞2
3),

𝜒12(𝜏) = (𝑞2 + 10 + 𝑞−1
2 )𝑞1𝑞3 + 𝑂(𝑞2

1, 𝑞2
3).

The graded ℂ-algebra of scalar-valued Siegel modular forms in genus 2 is

ℂ[𝜓4, 𝜓6, 𝜒10, 𝜒12] ⊕ 𝜒35ℂ[𝜓4, 𝜓6, 𝜒10, 𝜒12]

where 𝜒35 is a modular form of weight 35 and 𝑞-expansion

𝜒35(𝜏) = 𝑞2
1𝑞2

3(𝑞1 − 𝑞3)(𝑞2 − 𝑞−1
2 ) + 𝑂(𝑞4

1, 𝑞4
3).

The 𝑞-expansions inTheorem 2.6 are easily computed from expressions in terms of
theta functions, and their coefficients are integers. We warn the reader that different
normalizations appear in the literature: our 𝜒10 is −4 times the modular form 𝜒10
appearing in Igusa’s papers, our 𝜒12 is 12 times Igusa’s 𝜒12, and our 𝜒35 is 4𝑖 times
Igusa’s 𝜒35.

The equality 𝜒10(𝜏) = 0 occurs exactly when 𝐴(𝜏) is isomorphic to a product
of elliptic curves with the product polarization; otherwise, 𝐴(𝜏) is isomorphic to the
Jacobian of a hyperelliptic curve.

Following Streng [Str10, §2.1] and our choice of normalizations, we define the Igusa
invariants to be

𝑗1 = 2−8 𝜓4𝜓6
𝜒10

, 𝑗2 = 2−5 𝜓2
4𝜒12

𝜒2
10

, 𝑗3 = 2−14 𝜓5
4

𝜒2
10

.

They are Siegel modular functions of trivial weight, i.e. weight det0.
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{prop:igusa-birational}
Proposition 2.7. Igusa invariants define a birational map A2(ℂ) → ℂ3.

Proof. By the theorem of Baily and Borel [BB66, Thm. 10.11], scalar-valued Siegel mod-
ular forms of sufficiently high even weight realize a projective embedding of A2(ℂ).
Therefore, by Theorem 2.6, Igusa invariants generate the function field of A2(ℂ).

{rem:invariants_bielliptic}
Remark 2.8. Proposition 2.7 shows that generically, giving (𝑗1, 𝑗2, 𝑗3) in ℂ uniquely
specifies an isomorphism class of principally polarized abelian surfaces over ℂ. This
correspondence only holds on an open set: Igusa invariants are not defined on products
of elliptic curves, and do not represent a unique isomorphism class when 𝜓4 = 0. If one
wants to consider these points nonetheless, it is best to make another choice of invariants:
for instance one could use

ℎ1 =
𝜓2

6
𝜓3

4
, ℎ2 =

𝜒12

𝜓3
4

, ℎ3 =
𝜒10𝜓6

𝜓4
4

which are generically well-defined on products of elliptic curves. See [Liu93, Thm. 1.V]
for an interpretation of these invariants in terms of 𝑗(𝐸1) + 𝑗(𝐸2) and 𝑗(𝐸1)𝑗(𝐸2) when
evaluated on a product 𝐸1 × 𝐸2.

Examples of vector-valued forms. Derivatives of Igusa invariants are modular func-
tion themselves; as explained in the introduction, this property stems from the existence
of the Kodaira–Spencer isomorphism.

{prop:mf-derivative}
Proposition 2.9. Let 𝑓 be a Siegel modular function of trivial weight. Then

𝑑𝑓
𝑑𝜏 ∶=

𝜕𝑓
𝜕𝜏1

𝑥2 +
𝜕𝑓

𝜕𝜏2
𝑥 +

𝜕𝑓
𝜕𝜏3

is a Siegel modular function of weight Sym2.

Proof. Differentiate the relation 𝑓 (𝛾𝜏) = 𝑓 (𝜏) with respect to 𝜏.

MoreDetails 2.10. Proposition 2.9 has an algebraic interpretation. For every principally polarized
abelian surface 𝐴, the Kodaira–Spencer map is a canonical isomorphism between the vector space
Sym2(Ω1(𝐴)) and the tangent space of 𝒜2 at 𝐴 [And17, p. 1.4.1], Section 4.3. Therefore, the
derivative of an invariant is naturally a meromorphic section of the vector bundle on 𝒜2 defining
modular forms of weight Sym2.

We will use another vector-valued modular form in the sequel.
{ex:f86}

Example 2.11. Following Ibukiyama [Ibu12], let 𝐸8 ⊂ ℝ8 denote the lattice of half-
integer vectors 𝑣 = (𝑣1, … , 𝑣8) subject to the conditions

8
∑
𝑘=1

𝑣𝑘 ∈ 2ℤ and ∀ 1 ≤ 𝑘, 𝑙 ≤ 8, 𝑣𝑘 − 𝑣𝑙 ∈ ℤ.
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Set 𝑎 = (2, 1, 𝑖, 𝑖, 𝑖, 𝑖, 𝑖, 0) and 𝑏 = (1, −1, 𝑖, 𝑖, 1, −1, −𝑖, 𝑖), where 𝑖2 = −1. Define

𝑓8,6(𝜏) =
1

111456000

6
∑
𝑗=0

(
6
𝑗)Θ𝑗(𝜏) 𝑥𝑗

where, using the notation ⟨𝑣, 𝑤⟩ =
8

∑
𝑘=1

𝑣𝑘𝑤𝑘,

Θ𝑗(𝜏) = ∑
𝑣,𝑣′∈𝐸8

⟨𝑣, 𝑎⟩𝑗 ⋅ ⟨𝑣′, 𝑎⟩6−𝑗 ⋅ ∣⟨𝑣, 𝑎⟩ ⟨𝑣′, 𝑎⟩
⟨𝑣, 𝑏⟩ ⟨𝑣′, 𝑏⟩∣

4

⋅ exp(𝑖𝜋(⟨𝑣, 𝑣⟩𝜏1 + 2⟨𝑣, 𝑣′⟩𝜏2 + ⟨𝑣′, 𝑣′⟩𝜏3)).

Then 𝑓8,6 is a nonzero Siegel modular form of weight det8 Sym6. This definition provides
an explicit, but slow, method to compute the first coefficients of the 𝑞-expansion; using
the expression of 𝑓8,6 in terms of theta series [CFv17] would be faster. We have

𝑓8,6(𝜏) = ((4𝑞2
2 − 16𝑞2 + 24 − 16𝑞−1

2 + 4𝑞−2
2 )𝑞2

1𝑞3 + ⋯) 𝑥6

+ ((12𝑞2
2 − 24𝑞2 + 24𝑞−1

2 − 12𝑞−2
2 )𝑞2

1𝑞3 + ⋯) 𝑥5

+ ((−𝑞2 + 2 − 𝑞−1
2 )𝑞1𝑞3 + ⋯) 𝑥4

+ ((−2𝑞2 + 2𝑞−1
2 )𝑞1𝑞3 + ⋯) 𝑥3

+ ((−𝑞2 + 2 − 𝑞−1
2 )𝑞1𝑞3 + ⋯) 𝑥2

+ ((12𝑞2
2 − 24𝑞2 + 24𝑞−1

2 − 12𝑞−2
2 )𝑞1𝑞2

3 + ⋯) 𝑥
+ ((4𝑞2

2 − 16𝑞2 + 24 − 16𝑞−1
2 + 4𝑞−2

2 )𝑞1𝑞2
3 + ⋯) .

2.3 Hilbert modular forms
{subsec:hilbert}

In the context of Hilbert surfaces and abelian surfaces with real multiplication, we
consistently use the following notation:

𝐾 a real quadratic number field (embedded in ℝ)
Δ the discriminant of 𝐾, so that 𝐾 = ℚ(√Δ)

ℤ𝐾 the ring of integers in 𝐾
ℤ∨

𝐾 the trace dual of ℤ𝐾, in other words ℤ∨
𝐾 = 1/√Δ ℤ𝐾

𝑥 ↦ ̅𝑥 real conjugation in 𝐾
Σ the embedding 𝑥 ↦ (𝑥, ̅𝑥) from 𝐾 to ℝ2.

Finally, we denote

Γ𝐾 = SL2(ℤ𝐾 ⊕ ℤ∨
𝐾) = {(𝑎 𝑏

𝑐 𝑑) ∈ SL2(𝐾) | 𝑎, 𝑑 ∈ ℤ𝐾, 𝑏 ∈ (ℤ∨
𝐾)−1, 𝑐 ∈ ℤ∨

𝐾} .

A principally polarized abelian surface 𝐴 over ℂ has real multiplication by ℤ𝐾 if it is
endowed with an embedding

𝜄 ∶ ℤ𝐾 ↪ Endsym(𝐴),
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where Endsym(𝐴) denotes the set of endomorphisms of 𝐴 that are invariant under the
Rosati involution.

Hilbert surfaces. Denote byℍ1 the complex upper half plane. For every 𝑡 = (𝑡1, 𝑡2) ∈
ℍ2

1, the quotient

𝐴𝐾(𝑡) = ℂ2/Λ𝐾(𝑡) where Λ𝐾(𝑡) = Σ(ℤ∨
𝐾) ⊕ Diag(𝑡1, 𝑡2) Σ(ℤ𝐾)

is naturally endowed with the structure of a principally polarized abelian surface over ℂ,
and has a real multiplication embedding 𝜄𝐾(𝑡) given by multiplication via Σ. It is also
endowed with the basis of differential forms

𝜔𝐾(𝑡) = (2𝜋𝑖 𝑑𝑧1, 2𝜋𝑖 𝑑𝑧2).

The involution 𝜎 of ℍ2
1 given by 𝜎((𝑡1, 𝑡2)) = (𝑡2, 𝑡1) exchanges the two differential

forms in the basis, and exchanges the real multiplication embedding with its conjugate.
The embedding Σ induces a map Γ𝐾 ↪ SL2(ℝ)2. Through this embedding, the

group Γ𝐾 acts on ℍ2
1 by the usual action of SL2(ℝ) on ℍ1 on each coordinate.

{thm:hilbert-unif}
Theorem 2.12 ([BL04, §9.2]). Let (𝐴, 𝜄) be a principally polarized abelian surface over ℂ
with real multiplication by ℤ𝐾. Then there exists 𝑡 ∈ ℍ2

1 such that (𝐴, 𝜄) is isomorphic
to (𝐴𝐾(𝑡), 𝜄𝐾(𝑡)), and 𝑡 is uniquely determined up to action of Γ𝐾.

ThequotientH2(ℂ) = Γ𝐾\ℍ2
1 is the set of complex points of an algebraic varietyH2

called a Hilbert surface.

Hilbert modular forms. Let 𝑘1, 𝑘2 ∈ ℤ. A Hilbert modular form of weight (𝑘1, 𝑘2) is
a holomorphic function 𝑓 ∶ ℍ2

1 → ℂ satisfying the transformation rule

∀𝛾 = (𝑎 𝑏
𝑐 𝑑) ∈ Γ𝐾, ∀𝑡 ∈ ℍ2

1, 𝑓 (𝛾𝑡) = (𝑐 𝑡1 + 𝑑)𝑘1(𝑐 𝑡2 + ̅𝑑)𝑘2𝑓 (𝑡).

Wesay that 𝑓 is symmetric if 𝑓 ∘𝜎 = 𝑓. If 𝑓 is nonzero and symmetric, then its weight (𝑘1, 𝑘2)
is automatically parallel, meaning 𝑘1 = 𝑘2. A Hilbert modular function is only required
to be meromorphic instead of holomorphic.

All irreducible representations of GL1(ℂ)2 are 1-dimensional, so there is no need
to consider vector-valued forms. The analogue of Proposition 2.9 for Hilbert modular
forms is the following.

{prop:mf-hilbert-derivative}
Proposition 2.13. Let 𝑓 be a Hilbert modular function of weight (0, 0). Then the partial
derivatives 𝜕𝑓 /𝜕𝑡1 and 𝜕𝑓 /𝜕𝑡2 are Hilbert modular functions of weight (2, 0) and (0, 2)
respectively.

Proof. Differentiate the relation 𝑓 (𝛾𝑡) = 𝑓 (𝑡).

Let (𝐴, 𝜄) be a principally polarized abelian surface over ℂ with real multiplication
by ℤ𝐾. As in the Siegel case, we would like to evaluate Hilbert modular forms when a
basis of differential forms on 𝐴 is given; this is possible if we restrict to bases of Ω1(𝐴)
which behave well with respect to the real multiplication embedding.
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More Details 2.14. From a geometric point of view, we have two line bundles ℒ1 and ℒ2 on 𝒜2,𝐾
whose fibres over the isomorphism class of (𝐴, 𝜄) are given by

{𝜔 ∈ Ω1(𝐴) | ∀𝛽 ∈ ℤ𝐾, 𝜄(𝛽)∗𝜔 = 𝛽𝜔 (resp. ̅𝛽𝜔)}∨ .

Hilbert modular forms of weight (𝑘1, 𝑘2) are holomorphic sections of the line bundle ℒ𝑘1
1 ⊗

ℒ𝑘2
2 [van88, p. X.3], More Details 4.35.

{def:hilbert-normalized}
Definition 2.15. Let 𝜔 be a basis of Ω1(𝐴). We say that (𝐴, 𝜄, 𝜔) isHilbert-normalized
if for every 𝛼 ∈ ℤ𝐾, the matrix of 𝜄(𝛼)∗ ∶ Ω1(𝐴) → Ω1(𝐴) in the basis 𝜔 is Diag(𝛼, ̅𝛼).

If (𝐴, 𝜄, 𝜔) is Hilbert-normalized and 𝑓 is a Hilbert modular form of weight (𝑘1, 𝑘2),
then the quantity 𝑓 (𝐴, 𝜄, 𝜔) is computed as follows. Choose 𝑡 ∈ ℍ2

1 and an isomor-
phism 𝜂∶ (𝐴, 𝜄) → (𝐴𝐾(𝑡), 𝜄𝐾(𝑡)) as in Theorem 2.12, and let 𝑟 ∈ GL2(ℂ) be matrix
of 𝜂∗ in the bases 𝜔(𝑡), 𝜔. Then 𝑟 is diagonal, 𝑟 = Diag(𝑟1, 𝑟2), and

𝑓 (𝐴, 𝜄, 𝜔) = 𝑟𝑘1
1 𝑟𝑘2

2 𝑓 (𝑡).

2.4 The Hilbert embedding
{subsec:hilbert-siegel}

Forgetting the real multiplication structure yields a map H2(ℂ) → A2(ℂ) from the
Hilbert surface to the Siegel threefold. In fact, this forgetful map comes from a linear
map

𝐻∶ ℍ2
1 → ℍ2

called theHilbert embedding, whichwe now describe explicitly. Let (𝑒1, 𝑒2) be theℤ-basis
of ℤ𝐾 given by 𝑒1 = 1 and

𝑒2 =
1 − √Δ

2 if Δ = 1 mod 4, 𝑒2 = √Δ otherwise.

Set 𝑅 = (𝑒1 𝑒2
̅𝑒1 ̅𝑒2

), and define

𝐻∶ ℍ2
1 → ℍ2, 𝑡 = (𝑡1, 𝑡2) ↦ 𝑅𝑡 Diag(𝑡1, 𝑡2) 𝑅.

{prop:hilbert-embedding}
Proposition 2.16. For every 𝑡 ∈ ℍ2

1, left multiplication by 𝑅𝑡 on ℂ2 induces an isomor-
phism 𝐴𝐾(𝑡) → 𝐴(𝐻(𝑡)).

Proof. Bydefinition,Σ(ℤ𝐾) = 𝑅 ℤ2, and sinceℤ∨
𝐾 is the trace dual ofℤ𝐾, we haveΣ(ℤ∨

𝐾) =
𝑅−𝑡 ℤ2. Then a direct computation shows that

∀𝑡 ∈ ℍ2
1, Λ(𝐻(𝑡)) = 𝑅𝑡 Λ𝐾(𝑡).

TheHilbert embedding is compatible with the actions of the modular groups.

Proposition 2.17 ([LY11, Prop. 3.1]). {prop:hilbert-embedding-action}

11



1. Under 𝐻, the action of Γ𝐾 on ℍ2
1 is transformed into the action of Sp4(ℤ) on ℍ2

by means of the morphism

(𝑎 𝑏
𝑐 𝑑) ↦ (𝑅𝑡 0

0 𝑅−1) (𝑎∗ 𝑏∗

𝑐∗ 𝑑∗) (𝑅−𝑡 0
0 𝑅)

where we write 𝑥∗ = Diag(𝑥, ̅𝑥) for 𝑥 ∈ 𝐾.

2. Define

𝑀𝜎 =
⎛⎜⎜⎜⎜⎜⎜
⎝

1 0
𝛿 −1 (0)

(0) 1 𝛿
0 −1

⎞⎟⎟⎟⎟⎟⎟
⎠

where 𝛿 = 1 if Δ = 1 mod 4, and 𝛿 = 0 otherwise. Then we have

∀𝑡 ∈ ℍ2
1, 𝐻(𝜎(𝑡)) = 𝑀𝜎𝐻(𝑡).

Moreover, pulling back a Siegel modular form via the Hilbert embedding gives a
Hilbert modular form.

{prop:mf-pullback}
Proposition 2.18. Let 𝑘 ∈ ℤ, 𝑛 ∈ ℕ, and let 𝑓 ∶ ℍ2 → ℂ𝑛[𝑥] be a Siegel modular form
of weight 𝜌 = det𝑘 Sym𝑛. Define the functions 𝑔𝑖 ∶ ℍ2

1 → ℂ for 0 ≤ 𝑖 ≤ 𝑛 by

∀𝑡 ∈ ℍ2
1,

𝑛
∑
𝑖=0

𝑔𝑖(𝑡) 𝑥𝑖 = 𝜌(𝑅)𝑓(𝐻(𝑡)).

Then each 𝑔𝑖 is a Hilbert modular form of weight (𝑘 + 𝑖, 𝑘 + 𝑛 − 𝑖).

Proof. It is straightforward to check the transformation rule using Proposition 2.17.
The heart of the computation is that on diagonal matrices Diag(𝑟1, 𝑟2), the representa-
tion det𝑘 Sym𝑛 splits: the coefficient before 𝑥𝑖 is multiplied by (𝑟1𝑟2)𝑘 𝑟𝑖

1 𝑟𝑛−𝑖
2 .

{cor:scalar-pullback}
Corollary 2.19. If 𝑓 is a scalar-valued Siegel modular form of weight det𝑘, then 𝐻∗𝑓 ∶
𝑡 ↦ 𝑓(𝐻(𝑡)) is a symmetric Hilbert modular form of weight (𝑘, 𝑘).

Proof. Since det(𝑅)𝑘 is a nonzero constant, by Proposition 2.18, the function 𝐻∗𝑓 is a
Hilbert modular form of weight (𝑘, 𝑘). Moreover det(𝑀𝜎) = 1, so 𝐻∗𝑓 is symmetric by
Proposition 2.17.

The image of the Hilbert embedding in A2(ℂ) is called a Humbert surface. It can be
described by an equation in terms of Igusa invariants, which grows quickly in size with
the discriminant Δ, but can be computed in small cases [Gru10].

{prop:igusa-hilbert}
Proposition 2.20. Igusa invariants generate the field of symmetric Hilbert modular func-
tions of weight (0, 0). They define a birational map from A2,𝐾(ℂ) to the closed subset of
ℂ3 cut out by the Humbert equation.

Proof. The image of 𝐻 in A2(ℂ) is not contained in the codimension 1 subset where
Igusa invariants are not a local isomorphism to 𝔸3.

To ease notation, we also write 𝑗𝑘 for the pullback 𝐻∗𝑗𝑘, for each 1 ≤ 𝑘 ≤ 3.
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2.5 Isogenies between abelian surfaces
{subsec:isogenies}

Let 𝑘 be a field, and let 𝐴 be a principally polarized abelian surface over 𝑘. Denote its dual
by 𝐴∨ and its principal polarization by 𝜋∶ 𝐴 → 𝐴∨. Recall that for every line bundle ℒ
on 𝐴, there is a morphism 𝜙ℒ ∶ 𝐴 → 𝐴∨ defined by 𝜙ℒ(𝑥) = 𝑇∗

𝑥ℒ ⊗ ℒ−1, where 𝑇𝑥
denotes translation by 𝑥 on 𝐴. Finally, let NS(𝐴) denote the Néron–Severi group of 𝐴,
consisting of line bundles up to algebraic equivalence.

{thm:NS-End}
Theorem 2.21 ([Mil86a, Prop. 14.2]). For every 𝜉 ∈ Endsym(𝐴), there is a unique
symmetric line bundleℒ𝜉

𝐴 such that𝜙ℒ𝜉
𝐴

= 𝜋∘𝜉. This association induces an isomorphism
of groups

(Endsym(𝐴), +) ≃ (NS(𝐴), ⊗).

Under this isomorphism, line bundles giving rise to polarizations correspond to totally
positive elements in Endsym(𝐴).

In this notation, ℒ1
𝐴 is the line bundle associated with the principal polarization 𝜋.

We will consider two different isogeny types that we now define.
{def:beta-isog}

Definition 2.22. Let 𝑘 be a field.

1. Let ℓ ∈ ℕ be a prime, and let𝐴, 𝐴′ be principally polarized abelian surfaces over 𝑘.
An isogeny 𝜑∶ 𝐴 → 𝐴′ is called an ℓ-isogeny if

𝜑∗ℒ1
𝐴′ = ℒℓ

𝐴.

2. Let𝐾 be a real quadratic field, and let 𝛽 ∈ ℤ𝐾 be a totally positive prime. Let (𝐴, 𝜄)
and (𝐴′, 𝜄′) be principally polarized abelian surfaces over 𝑘with real multiplication
by ℤ𝐾. An isogeny 𝜑∶ 𝐴 → 𝐴′ is called a 𝛽-isogeny if

𝜑∗ℒ1
𝐴′ = ℒ 𝜄(𝛽)

𝐴

and
∀𝛼 ∈ ℤ𝐾, 𝜑 ∘ 𝜄(𝛼) = 𝜄′(𝛼) ∘ 𝜑.

For a generic principally polarized abelian surface, ℓ-isogenies are the simplest kind of
isogenies that occur. They have degree ℓ2. If we restrict to abelian surfaces with real mul-
tiplication by ℤ𝐾, then 𝛽-isogenies are smaller: their degree is only 𝑁𝐾/ℚ(𝛽) [DJR+17,
Prop. 2.1].

Both ℓ- and 𝛽-isogenies are easily described over ℂ. For 𝑡 = (𝑡1, 𝑡2) ∈ ℍ2
1, write

𝑡/𝛽 ∶= (𝑡1/𝛽, 𝑡2/ ̅𝛽).

The following well-known statement is a consequence of Theorems 2.2 and 2.12, using
the facts that the kernel of an ℓ-isogeny is a maximal isotropic subgroup of the ℓ-torsion,
and the kernel of a 𝛽-isogeny is a cyclic subgroup of the 𝛽-torsion.

Proposition 2.23. {prop:complex-isog}
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1. For every 𝜏 ∈ ℍ2, the identity map on ℂ2 induces an ℓ-isogeny

𝐴(𝜏) → 𝐴(𝜏/ℓ).

Let 𝐴, 𝐴′ be principally polarized abelian surfaces over ℂ, and let 𝜑∶ 𝐴 → 𝐴′ be
an ℓ-isogeny. Then there exists 𝜏 ∈ ℍ2 such that there is a commutative diagram

𝐴 𝐴′

𝐴(𝜏) 𝐴(𝜏/ℓ).

𝜑

∼ ∼

𝑧↦𝑧

2. For every 𝑡 ∈ ℍ2
1, the identity map on ℂ2 induces a 𝛽-isogeny

(𝐴𝐾(𝑡), 𝜄𝐾(𝑡)) → (𝐴𝐾(𝑡/𝛽), 𝜄𝐾(𝑡/𝛽)).

Let (𝐴, 𝜄), (𝐴′, 𝜄′) be principally polarized abelian surfaces over ℂ with real mul-
tiplication by ℤ𝐾, and let 𝜑∶ (𝐴, 𝜄) → (𝐴′, 𝜄′) be a 𝛽-isogeny. Then there exists
𝑡 ∈ ℍ2

1 such that there is a commutative diagram

(𝐴, 𝜄) (𝐴′, 𝜄′)

(𝐴𝐾(𝑡), 𝜄𝐾(𝑡)) (𝐴𝐾(𝑡/𝛽), 𝜄𝐾(𝑡/𝛽)).

𝜑

∼ ∼

𝑧↦𝑧

2.6 Modular equations
{subsec:modpol}

Modular equations encode the presence of an isogeny between principally polarized
abelian surfaces, as the classical modular polynomial does for elliptic curves. To define
them, we use the fact that the extension of the field ℂ(𝑗1(𝜏), 𝑗2(𝜏), 𝑗3(𝜏)) constructed
by adjoining 𝑗1(𝜏/ℓ), 𝑗1(𝜏/ℓ), and 𝑗3(𝜏/ℓ) is finite and generated by 𝑗1(𝜏/ℓ). A similar
statement holds for Igusa invariants at 𝑡/𝛽 in the Hilbert case [MR17, Prop. 4.11].

Definition 2.24. {def:modeq}

1. Let ℓ ∈ ℕ be a prime. We call the Siegel modular equations of level ℓ the data of
the three polynomials Ψℓ,1, Ψℓ,2, Ψℓ,3 ∈ ℂ(𝐽1, 𝐽2, 𝐽3)[𝐽′

1] defined as follows:

• Ψℓ,1 is the monic minimal polynomial of the function 𝑗1(𝜏/ℓ) over the field
ℂ(𝑗1(𝜏), 𝑗2(𝜏), 𝑗3(𝜏)).

• For 𝑖 ∈ {2, 3}, we have the following equality of meromorphic functions:

𝑗𝑖(𝜏/ℓ) = Ψℓ,𝑖(𝑗1(𝜏), 𝑗2(𝜏), 𝑗3(𝜏), 𝑗1(𝜏/ℓ)).

2. Let 𝐾 be a real quadratic field, and let 𝛽 ∈ ℤ𝐾 be a totally positive prime. We
call the Hilbert modular equations of level 𝛽 the data of the three polynomials
Ψ𝛽,1, Ψ𝛽,2, Ψ𝛽,3 defined as follows:
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• Ψ𝛽,1 is the monic minimal polynomial of the function 𝑗1(𝑡/𝛽) over the field
ℂ(𝑗1(𝑡), 𝑗2(𝑡), 𝑗3(𝑡)).

• For 𝑖 ∈ {2, 3}, we have the following equality of meromorphic functions:

𝑗𝑖(𝑡/𝛽) = Ψ𝛽,𝑖(𝑗1(𝑡), 𝑗2(𝑡), 𝑗3(𝑡), 𝑗1(𝑡/𝛽)).

In the Hilbert case, since Igusa invariants are symmetric by Corollary 2.19, the
modular equations encode 𝛽- and ̅𝛽-isogenies simulaneously [MR17, Ex. 4.17]. It would
be better to consider modular equations with non-symmetric invariants; however, we
know of no good choice of such invariants in general.

As explained in the introduction, modular equations really are equations for the
image of a map defined at the level of algebraic stacks. As a consequence, they have
coefficients in ℚ. Since Igusa invariants have poles on A2 andH2, modular equations in
genus 2 have denominators [MR17, Rem. 4.20]. If we multiply by these denominators,
then we may consider modular polynomials as elements of ℂ[𝐽1, 𝐽2, 𝐽3, 𝐽′

1, 𝐽′
2, 𝐽′

3] that
vanish on the Igusa invariants of isogenous Jacobians: this is what we do in the sequel.

From a practical point of view, modular equations in genus 2 are very large. This
is especially true for Siegel modular equations of level ℓ. The degree of Ψℓ,1 in 𝐽′

1 is
ℓ3+ℓ2+ℓ+1, and its degree in 𝐽1, 𝐽2, 𝐽3 has the same order ofmagnitude, notmentioning
the height of the coefficients. The situation is less desperate for Hilbert modular equations
of level 𝛽: the degree ofΨ𝛽,1 in 𝐽′

1 is 2𝑁𝐾/ℚ(𝛽)+2 [MR17, Ex. 4.17]. Modular equations
have been computed for ℓ = 2 and 3 in the Siegel case, up to 𝑁(𝛽) = 41 in the Hilbert
case with 𝐾 = ℚ(√5) using Gundlach invariants, and even up to 𝑁(𝛽) = 97 for
𝐾 = ℚ(√2) using theta constants as invariants [Mil].

3 Explicit Kodaira–Spencer over ℂ
{sec:cov}

A nonsingular hyperelliptic equation 𝒞 ∶ 𝑣2 = 𝐸𝒞(𝑢) over ℂ naturally encodes a basis
of differential forms 𝜔(𝒞) on the principally polarized abelian surface Jac(𝒞) (§3.1). If 𝑓
is a Siegel modular function, this gives rise to a map

Cov(𝑓 ) ∶ 𝒞 ↦ 𝑓(Jac(𝒞), 𝜔(𝒞)).

Then,Cov(𝑓 ) is a covariant of the curve, and has an expression in terms of the coefficients.
We give an algorithm to obtain this expression from the 𝑞-expansion of 𝑓 (§3.2), and apply
it to the derivatives of Igusa invariants (§3.3). The result is the explicit Kodaira–Spencer
isomorphism. This allows us to compute the deformation map and the tangent map of a
given ℓ-isogeny over ℂ (§3.4). Finally, we adapt these methods to the Hilbert case (§3.5).

3.1 Hyperelliptic equations
{subsec:hyperelliptic}

Let 𝒞 be a nonsingular hyperelliptic equation of genus 2 over ℂ:

𝒞 ∶ 𝑣2 = 𝐸𝒞(𝑢),
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with deg𝐸𝒞 ∈ {5, 6}. Then 𝒞 is naturally endowed with the basis of differential forms

𝜔(𝒞) = (
𝑢 𝑑𝑢

𝑣 ,
𝑑𝑢
𝑣 ).

Recall that the Jacobian Jac(𝒞) is a principally polarized abelian surface overℂ [Mil86b,
Thm. 1.1 and Summary 6.11]. Choose a base point 𝑃 on 𝒞. This gives an embedding

𝜂𝑃 ∶ 𝒞 ↪ Jac(𝒞), 𝑄 ↦ [𝑄 − 𝑃].
{prop:etaP-diff}

Proposition 3.1 ([Mil86b, Prop. 2.2]). The map

𝜂∗
𝑃 ∶ Ω1(Jac(𝒞)) → Ω1(𝒞)

is an isomorphism and is independent of 𝑃.

By Proposition 3.1, we can see 𝜔(𝒞) as a basis of differential forms on Jac(𝒞). This
basis depends on the particular hyperelliptic equation chosen.

{lem:hyperell-isomorphism}
Lemma 3.2. Let 𝒞 be a genus 2 hyperelliptic equation over ℂ, and let

𝑟 = (𝑎 𝑏
𝑐 𝑑) ∈ GL2(ℂ).

Let 𝐸𝒞′ be the image of 𝐸𝒞 by det−2 Sym6(𝑟), and let 𝒞 ′ be the curve with equation
𝑦′ 2 = 𝐸𝒞′(𝑥′). Let 𝜂∶ 𝒞 ′ → 𝒞 be the isomorphism defined by

𝜂(𝑥′, 𝑦′) = (
𝑎𝑥′ + 𝑐
𝑏𝑥′ + 𝑑,

(det 𝑟) 𝑦′

(𝑏𝑥′ + 𝑑)3 ) .

Then the matrix of 𝜂∗ ∶ Ω1(𝒞) → Ω1(𝒞 ′) in the bases 𝜔(𝒞), 𝜔(𝒞 ′) is 𝑟.

Proof. Write (𝑥, 𝑦) = 𝜂(𝑥′, 𝑦′). A simple calculation shows that

𝑑𝑥
𝑦 = (𝑏𝑥′ + 𝑑)

𝑑𝑥′

𝑦′ and
𝑥 𝑑𝑥

𝑦 = (𝑎𝑥′ + 𝑐)
𝑑𝑥′

𝑦′ ,

so the result follows.
{cor:hyperell-rep}

Corollary 3.3. Let𝐴 be a principally polarized abelian surface overℂ that is not a product
of two elliptic curves, and let𝜔 be a basis ofΩ1(𝐴). Then there exists a unique hyperelliptic
curve equation 𝒞 of genus 2 over ℂ such that

(Jac(𝒞), 𝜔(𝒞)) ≃ (𝐴, 𝜔).

Proof. By Torelli’s theorem, there is a curve equation 𝒞0 overℂ such that𝐴 is isomorphic
to Jac(𝒞0). Then 𝜔 differs from 𝜔(𝒞0) by a linear transformation in GL2(ℂ). By
Lemma 3.2, we can make a suitable change of variables to find the correct 𝒞. It is unique
because every isomorphismbetween hyperelliptic curves comes from such amatrix 𝑟.
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Definition 3.4. The bases of differential forms chosen in §2 allows us to define particular
curve equations attached to a point of ℍ2 or ℍ2

1.

1. Let 𝜏 ∈ ℍ2, and assume that 𝜒10(𝜏) ≠ 0. Then, by Corollary 3.3, there exists a
unique hyperelliptic equation 𝒞(𝜏) over ℂ such that

(Jac(𝒞(𝜏)), 𝜔(𝒞(𝜏))) ≃ (𝐴(𝜏), 𝜔(𝜏)).

We call 𝒞(𝜏) the standard curve attached to 𝜏. We define the meromorphic
functions 𝑎𝑖(𝜏) for 0 ≤ 𝑖 ≤ 6 to be the coefficients of 𝒞(𝜏):

𝒞(𝜏) ∶ 𝑦2 =
6

∑
𝑖=0

𝑎𝑖(𝜏)𝑥𝑖.

2. Let 𝑡 ∈ ℍ2
1, and assume that 𝜒10(𝐻(𝑡)) ≠ 0, where 𝐻 is the Hilbert embedding.

Then, by Corollary 3.3, there exists a unique hyperelliptic equation 𝒞𝐾(𝑡) over ℂ
such that

(Jac(𝒞𝐾(𝑡)), 𝜔(𝒞𝐾(𝑡))) ≃ (𝐴𝐾(𝑡), 𝜔𝐾(𝑡)).

We call 𝒞𝐾(𝑡) the standard curve attached to 𝑡.
{prop:curve-siegel-mf}

Proposition3.5. The function𝜏 ↦ 𝒞(𝜏) is a Siegelmodular function ofweightdet−2 Sym6

which has no poles on the open set {𝜒10 ≠ 0}.

Proof. Over ℂ, the Torelli map is biholomorphic, so this function is meromorphic. By
Corollary 3.3, it is defined everywhere on {𝜒10 ≠ 0}. Combining Proposition 2.1 with
Lemma 3.2 shows the transformation rule.

Finally, for 𝑡 ∈ ℍ2
1, we can relate the standard curves 𝒞𝐾(𝑡) and 𝒞(𝐻(𝑡)).

{prop:hilb-standard-curve}
Proposition 3.6. For every 𝑡 ∈ ℍ2

1, we have

𝒞𝐾(𝑡) = det−2 Sym6(𝑅) 𝒞(𝐻(𝑡)).

Proof. Use Proposition 2.16 and Lemma 3.2.

3.2 Covariants
{subsec:cov}

If 𝑓 is a Siegel modular form, then we have a map

Cov(𝑓 ) ∶ 𝒞 ↦ 𝑓(Jac(𝒞), 𝜔(𝒞)).

We show that Cov(𝑓 ) is a covariant of the curve equation. A recent reference for covari-
ants is Mestre’s article [Mes91].

{def:cov}
Definition 3.7. Denote by ℂ6[𝑥] the space of polynomials of degree at most 6. Let
𝜌∶ GL2(ℂ) → GL(𝑉) be a finite-dimensional holomorphic representation of GL2(ℂ).
A covariant, or polynomial covariant, of weight 𝜌 is a map

𝐶∶ ℂ6[𝑥] → 𝑉
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which is polynomial in the coefficients, and such that the following transformation rule
holds: for every 𝑟 ∈ GL2(ℂ) and 𝑊 ∈ ℂ6[𝑥],

𝐶(det−2 Sym6(𝑟) 𝑊) = 𝜌(𝑟) 𝐶(𝑊).

If dim𝑉 ≥ 2, then𝐶 is said to be vector-valued, and otherwise scalar-valued. A fractional
covariant is a map satisfying the same transformation rule which is only required to have
a fractional expression in terms of the coefficients.

It is enough to consider covariants of weight det𝑘 Sym𝑛 for 𝑘 ∈ ℤ, 𝑛 ∈ ℕ. What
we call a vector-valued covariant of weight det𝑘 Sym𝑛 is in Mestre’s paper a covariant of
order 𝑛 and degree 𝑘 + 𝑛/2; what we call a scalar-valued covariant of weight det𝑘 is in
Mestre’s paper an invariant of degree 𝑘. The reason for this change of terminology is the
following.

{prop:siegel-cov-weight}
Proposition 3.8. If 𝑓 be a Siegel modular function of weight 𝜌, then Cov(𝑓 ) is a fractional
covariant of weight 𝜌. Conversely, if 𝐹 is a fractional covariant of weight 𝜌, then the
meromorphic function 𝜏 ↦ 𝐹(𝒞(𝜏)) is a Siegel modular function of weight 𝜌. These
operations are inverse of each other.

Proof. If 𝑓 is a Siegel modular function, then Cov(𝑓 ) is well defined on a Zariski open
set of ℂ6[𝑥] and is algebraic, so must have a fractional expression in terms of the
coefficients. We let the reader check the transformation rules (use Lemma 3.2 and
Proposition 3.5).

Proposition 3.8 gives a bijection between Siegel modular functions and fractional
covariants, but we need more. The following theorem establishes a relation between
Siegel modular forms and polynomial covariants, and was first proved in [CFv17, §4].

{thm:siegel-cov}
Theorem 3.9. Let 𝑓 be a holomorphic Siegel modular form. Then Cov(𝑓 ) is a polynomial
covariant. Moreover, if 𝑓 is a cusp form, then Cov(𝑓 /𝜒10) is also a polynomial covariant.

Proof. Themain difficulty is that nonsingular hyperelliptic equations only form a codi-
mension 1 subset of all degree 6 polynomials: if 𝑓 is a Siegel modular form, then the proof
of Proposition 3.8 only shows that Cov(𝑓 ) is a polynomial divided by some power of the
discriminant. However, one can show that 𝑓 extends to the so-called toroidal compactifi-
cation of A2(ℂ), and this shows that Cov(𝑓 ) is well defined on all curve equations with
at most one node. Since this set has codimension 2, the result follows.

Unlike for Siegel modular forms, the graded ℂ-algebra generated by polynomial
covariants is finitely generated.

{thm:cov-structure}
Theorem 3.10 ([Cle72, p. 296]). The graded ℂ-algebra of covariants is generated by 26
elements defined over ℚ. The number of generators of weight det𝑘 Sym𝑛 is indicated in the
following table:
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𝑛 \ 𝑘 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 15
0 1 1 1 1 1
2 1 1 1 1 1 1
4 1 1 1 1 1
6 1 1 1 2
8 1 1 1
10 1
12 1

We only need to manipulate a small subset of these generators. Take our scalar
generators of even weight to be the Igusa–Clebsch invariants 𝐼2, 𝐼4, 𝐼6, 𝐼10, in Mestre’s
notation 𝐴′, 𝐵′, 𝐶′, 𝐷′ [Mes91], and set

𝐼′
6 ∶= (𝐼2𝐼4 − 3𝐼6)/2.

Denote the generator of weight det15 by 𝑅, and denote by 𝑦1, 𝑦2, 𝑦3 the generators
of weights det2 Sym2, det4 Sym2, and det6 Sym2 respectively. Finally, the generator
of weight det−2 Sym6, denoted by 𝑋, is the degree 6 polynomial itself. Note that when
computing these covariants as described in [Mes91, §1], the integers𝑚 and 𝑛 on page 315
should be the orders of 𝑓 and 𝑔, and not their degrees. To help the reader check their
computations, we mention that the coefficient of 𝑎5

1𝑎10
4 in 𝑅 is 2−23−65−10.

3.3 From 𝑞-expansions to covariants
{subsec:identification}

We now explain how to compute the polynomial covariant associated with a Siegel
modular form whose 𝑞-expansion is known up to a certain precision. The works of Igusa
already provide the answer in the case of scalar covariants.

{thm:scalar-identification}
Theorem 3.11. We have

4 Cov(𝜓4) = 𝐼4,
4 Cov(𝜓6) = 𝐼′

6,
212 Cov(𝜒10) = 𝐼10,
215 Cov(𝜒12) = 𝐼2𝐼10,

2373−95−10 Cov(𝜒35) = 𝐼2
10𝑅.

Proof. By [Igu62, p. 848], there exists a constant 𝜆 ∈ ℂ× such that these relations
hold up to a factor 𝜆𝑘, for 𝑘 ∈ {4, 6, 10, 12, 35} respectively. Note that Igusa’s covari-
ant 𝐸 is −2539510𝑅. Then, Thomae’s formulæ ([Mum84, Thm. IIIa.8.1] and [Tho70,
pp. 216–217]), which relate theta constants with the values of path integrals on the
associated hyperelliptic curve, imply that 𝜆 = 1.

Therefore, the Igusa invariants satisfy

Cov(𝑗1) =
𝐼4𝐼′

6
𝐼10

, Cov(𝑗2) =
𝐼2𝐼2

4
𝐼10

, Cov(𝑗3) =
𝐼5
4

𝐼2
10

.
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Let us compute the 𝑞-expansion of the standard curve𝒞(𝜏). Recall the Siegelmodular
form 𝑓8,6 of weight det8 Sym6 introduced in Example 2.11.

{prop:f86}
Proposition 3.12. We have Cov(𝑓8,6/𝜒10) = 𝑋. In other words, for every 𝜏 ∈ ℍ2 such
that 𝜒10(𝜏) ≠ 0, we have

𝒞(𝜏) =
𝑓8,6(𝜏)
𝜒10(𝜏) .

Proof. Since 𝑓8,6 is a cusp form, by Theorem 3.9, Cov(𝑓8,6/𝜒10) is a nonzero polyno-
mial covariant of weight det−2 Sym6. By Theorem 3.10, this space of covariants is of
dimension 1 and generated by 𝑋, so the relation holds up to a factor 𝜆 ∈ ℂ×. This yields
𝑞-expansions for the coefficients 𝑎𝑖(𝜏) of 𝒞(𝜏) up to a factor 𝜆. Then, the relations from
Theorem 3.11 imply 𝜆4 = 𝜆6 = 𝜆35 = 1, hence 𝜆 = 1.

Given a Siegel modular form 𝑓 of weight 𝜌 whose 𝑞-expansion can be computed, the
following algorithm recovers the expression of Cov(𝑓 ) as a polynomial.

{alg:qexp-to-cov}
Algorithm 3.13. 1. Compute a basis ℬ of the vector space of polynomial covariants

of weight 𝜌 usingTheorem 3.10.
{step:qexp}

2. Choose a precision 𝜈 and compute the 𝑞-expansion of 𝑓 modulo (𝑞𝜈
1, 𝑞𝜈

3).

3. For every 𝐵 ∈ ℬ, compute the 𝑞-expansion of the Siegel modular function 𝜏 ↦
𝐵(𝒞(𝜏)) using Proposition 3.12.

4. Do linear algebra; if the matrix does not have full rank, go back to step 2 with a
larger 𝜈.

Sturm-type bounds [BP17] provide a theoretical limit for the precision 𝜈 that we
need to consider; for the examples given in this article, 𝜈 = 3 is enough.

We now apply Algorithm 3.13 to derivatives of Igusa invariants. Recall from Proposi-
tion 2.9 that for 1 ≤ 𝑘 ≤ 3, the partial derivative

𝑑𝑗𝑘
𝑑𝜏 ∶=

𝜕𝑗𝑘
𝜕𝜏1

𝑥2 +
𝜕𝑗𝑘
𝜕𝜏2

𝑥 +
𝜕𝑗𝑘
𝜕𝜏3

is a Siegel modular function of weight Sym2.
{thm:vector-identification}

Theorem 3.14. We have

1
2𝜋𝑖 Cov(

𝑑𝑗1
𝑑𝜏 ) =

1
𝐼10

(
153
8 𝐼2

2𝐼4𝑦1 −
135
2 𝐼2𝐼6𝑦1 +

135
2 𝐼2

4𝑦1 +
46575

4 𝐼2𝐼4𝑦2

− 30375 𝐼6𝑦2 + 1366875 𝐼4𝑦3),
1

2𝜋𝑖 Cov(
𝑑𝑗2
𝑑𝜏 ) =

1
𝐼10

(90 𝐼2
2𝐼4𝑦1 + 900 𝐼2

2𝑦1 + 40500 𝐼2𝐼4𝑦2),

1
2𝜋𝑖 Cov(

𝑑𝑗3
𝑑𝜏 ) =

1
𝐼2
10

(225 𝐼2𝐼4
4𝑦1 + 101250 𝐼4

4𝑦2).
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Proof. Let 1 ≤ 𝑘 ≤ 3. The function 𝜒2
10𝑗𝑘 has no poles on A2(ℂ). Therefore, the Siegel

modular function
𝑓𝑘 = 𝜒3

10
𝑑𝑗𝑘
𝑑𝜏

is holomorphic on A2(ℂ). Its 𝑞-expansion can be computed from the 𝑞-expansion of 𝑗𝑘
by formal differentiation. Since

1
2𝜋𝑖

𝜕
𝜕𝜏𝑖

= 𝑞𝑖
𝜕

𝜕𝑞𝑖

for 1 ≤ 𝑖 ≤ 3, we check that 𝑓𝑘 is a cusp form. Therefore, byTheorem 3.9, Cov(𝑓𝑘/𝜒10)
is a polynomial covariant of weight det20 Sym2. Looking at the table inTheorem 3.10,
we find that a basis of this space of covariants is given by covariants of the form 𝐼𝑦
where 𝑦 ∈ {𝑦1, 𝑦2, 𝑦3} and 𝐼 is a scalar-valued covariant of the appropriate even weight.
Algorithm 3.13 succeeds with 𝜈 = 3; the computations were done using Pari/GP [The19].

{rem:vector-identification-numcheck}
Remark 3.15. Theorems 3.11 and 3.14 can be checked numerically. Computing big
period matrices of hyperelliptic curves [MN19] provides pairs (𝜏, 𝒞(𝜏)) with 𝜏 ∈ ℍ2.
We can evaluate Igusa invariants at a given 𝜏 to high precision using their expression in
terms of theta functions [Dup11]. Therefore we can also evaluate their derivatives nu-
merically with high precision and compute the associated covariant using floating-point
linear algebra. The computations were done using the libraries hcperiods [Mol18] and
cmh [ET14]; they provide a nice consistency check toTheorem 3.14. Another consistency
check is that we can recover the relations fromTheorem 3.11.

{rem:derivatives-other-invariants}
Remark 3.16. FromTheorem 3.14, we can easily obtain similar formulæ for derivatives
of other invariants, or even invariants for abelian surfaces with extra structure such as
theta constants. For instance, taking the invariants ℎ1, ℎ2, ℎ3 defined in Remark 2.8, we
obtain

1
2𝜋𝑖 Cov(

𝑑ℎ1

𝑑𝜏 ) =
1
𝐼4
4

(−
297
8 𝑦1𝐼2

4𝐼3
2 + −

54675
4 𝑦2𝐼2

4𝐼2
2 +

1701
8 𝑦1𝐼6𝐼4𝐼2

2 +
135
2 𝑦1𝐼3

4𝐼2

+ 1366875𝑦3𝐼2
4𝐼2 +

346275
4 𝑦2𝐼6𝐼4𝐼2 −

1215
4 𝑦1𝐼2

6𝐼2 + −
405
2 𝑦1𝐼6𝐼2

4

− 4100625𝑦3𝐼6𝐼4 −
273375

2 𝑦2𝐼2
6),

1
2𝜋𝑖 Cov(

𝑑ℎ2

𝑑𝜏 ) =
1
𝐼4
4

(−135𝑦1𝐼10𝐼2
2 − 60750𝑦2𝐼10𝐼2 + 900𝑦1𝐼10𝐼4),

1
2𝜋𝑖 Cov(

𝑑ℎ3

𝑑𝜏 ) =
1
𝐼5
4

(−
747
8 𝑦1𝐼10𝐼4𝐼2

2 −
155925

4 𝑦2𝐼10𝐼4𝐼2 + 270𝑦1𝐼10𝐼6𝐼2 +
135
2 𝑦1𝐼10𝐼2

4

+ 1366875𝑦3𝐼10𝐼4 + 121500𝑦2𝐼10𝐼6).

3.4 Deformation matrix and action on tangent spaces
{subsec:norm-matrix}

Let 𝒞, 𝒞 ′ be equations of genus 2 hyperelliptic curves over ℂ, let 𝐴, 𝐴′ be their Jacobians,
and let 𝜑∶ 𝐴 → 𝐴′ be an ℓ-isogeny. The choice of curve equations encodes a choice of
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bases of Ω1(𝐴) and Ω1(𝐴′), or equivalently, by taking dual bases, a choice of bases of
the tangent spaces 𝑇0(𝐴) and 𝑇0(𝐴′). By an abuse of notation, we identify the tangent
map 𝑑𝜑∶ 𝑇0(𝐴) → 𝑇0(𝐴′) with its matrix written in these bases. Let us show how to
compute 𝑑𝜑 from the data of the curve equations and modular equations of level ℓ.

Definition 3.17. It is convenient to introduce matrix notations. {def:djdtau}

• For 𝜏 ∈ ℍ2, we define

𝐷𝜏𝐽(𝜏) = (
1

2𝜋𝑖
𝜕𝑗𝑘
𝜕𝜏𝑙

(𝜏))
1≤𝑘,𝑙≤3

⋅ ⎛⎜⎜⎜
⎝

2 0 0
0 1 0
0 0 2

⎞⎟⎟⎟
⎠

.

In other words, if we set

𝑣1 = (2 0
0 0) , 𝑣2 = (0 1

1 0) , 𝑣3 = (0 0
0 2) ,

then the 𝑙-th column of 𝐷𝜏𝐽(𝜏) contains (up to 2𝜋𝑖) the derivatives of Igusa
invariants at 𝜏 in the direction 𝑣𝑙. We can check that for 𝑟 ∈ GL2(ℂ), the 𝑙-th
column of 𝐷𝜏𝐽(𝜏) Sym2(𝑟) contains the derivatives of Igusa invariants at 𝜏 in the
direction 𝑟 𝑣𝑙 𝑟𝑡.
Let (𝐴, 𝜔) be a principally polarized abelian surface over ℂ with a basis of dif-
ferential forms, let 𝜂∶ 𝐴 → 𝐴(𝜏) be an isomorphism for some 𝜏 ∈ ℍ2, and let 𝑟
be the matrix of 𝜂∗ in the bases 𝜔(𝜏), 𝜔. Then the fact that derivatives of Igusa
invariants have weight Sym2 translates as

𝐷𝜏𝐽(𝐴, 𝜔) = 𝐷𝜏𝐽(𝜏) Sym2(𝑟𝑡).

We denote by
𝒞 ↦ 𝐷𝜏𝐽(𝒞)

the associated fractional covariant; Theorem 3.14 expresses the entries of this
matrix up to a constant in terms of the coefficients of 𝒞.

• Consider the Siegel modular equations Ψℓ,1, Ψℓ,2, Ψℓ,3 of level ℓ as elements of the
ring ℚ[𝐽1, 𝐽2, 𝐽3, 𝐽′

1, 𝐽′
2, 𝐽′

3]. We define

𝐷Ψℓ,𝐿 = (
𝜕Ψℓ,𝑛
𝜕𝐽𝑘

)
1≤𝑛,𝑘≤3

and 𝐷Ψℓ,𝑅 = (
𝜕Ψℓ,𝑛
𝜕𝐽′

𝑘
)

1≤𝑛,𝑘≤3
.

{def:generic}
Definition 3.18. Let 𝜑 be an ℓ-isogeny as above, write 𝑗 as a shorthand for the Igusa
invariants (𝑗1, 𝑗2, 𝑗3) of 𝐴, and 𝑗′ for the invariants (𝑗′1, 𝑗′2, 𝑗′3) of 𝐴′. We say that the
isogeny 𝜑 is generic if the 3 × 3 matrices 𝐷Ψℓ,𝐿(𝑗, 𝑗′), 𝐷Ψℓ,𝑅(𝑗, 𝑗′), 𝐷𝜏𝐽(𝒞) and 𝐷𝜏𝐽(𝒞 ′)
are invertible. In this case, we define the deformation matrix 𝒟(𝜑) of 𝜑 as

𝒟(𝜑) = −𝐷𝜏𝐽(𝒞 ′)−1 ⋅ 𝐷Ψℓ,𝑅(𝑗, 𝑗′)−1 ⋅ 𝐷Ψℓ,𝐿(𝑗, 𝑗′) ⋅ 𝐷𝜏𝐽(𝒞).
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In Section 4, we will interpret 𝒟(𝜑) as the matrix of the deformation map in the
bases of 𝑇𝐴(𝒜2) and 𝑇𝐴′(𝒜2) associated with 𝜔(𝒞), 𝜔(𝒞 ′) via the Kodaira–Spencer
isomorphism. Let us relate the deformation matrix 𝒟(𝜑) with the tangent matrix 𝑑𝜑.

{prop:norm-matrix}
Proposition 3.19. Assume that 𝜑 is generic. Then we have

Sym2(𝑑𝜑) = ℓ 𝒟(𝜑).

Proof. By Proposition 2.23, we can find 𝜏 ∈ ℍ2 and isomorphisms 𝜂, 𝜂′ such that there
is a commutative diagram

𝐴 𝐴′

𝐴(𝜏) 𝐴(𝜏/ℓ).

𝜑

𝜂 𝜂′

𝑧 ↦𝑧

Let 𝑟 be the matrix of 𝜂∗ in the bases 𝜔(𝜏), 𝜔(𝒞), and define 𝑟′ similarly. Then we have
𝑑𝜑 = 𝑟′𝑡𝑟−𝑡. By the definition of modular equations, we have

Ψℓ,𝑛(𝑗1(𝜏), 𝑗2(𝜏), 𝑗3(𝜏), 𝑗1(𝜏/ℓ), 𝑗2(𝜏/ℓ), 𝑗3(𝜏/ℓ)) = 0 for 1 ≤ 𝑛 ≤ 3.

We differentiate with respect to 𝜏1, 𝜏2, 𝜏3 and obtain

𝐷Ψℓ,𝐿(𝑗, 𝑗′) ⋅ 𝐷𝜏𝐽(𝜏) +
1
ℓ 𝐷Ψℓ,𝑅(𝑗, 𝑗′) ⋅ 𝐷𝜏𝐽(𝜏/ℓ) = 0.

We rewrite this relation as

−ℓ 𝐷Ψℓ,𝐿(𝑗, 𝑗′) ⋅ 𝐷𝜏𝐽(𝒞) ⋅ Sym2(𝑟𝑡) = 𝐷Ψℓ,𝑅(𝑗, 𝑗′) ⋅ 𝐷𝜏𝐽(𝒞 ′) ⋅ Sym2(𝑟′𝑡),

and the result follows.

Once we compute 𝒟(𝜑), the matrix 𝑑𝜑 itself is easily computed up to sign.

3.5 Explicit Kodaira–Spencer in the Hilbert case
{subsec:explicit-hilbert}

Wenow explain how to recover the tangentmatrix in theHilbert case, in the same spirit as
the Siegel case. An important difference is that we have to restrict to Hilbert-normalized
bases of differential forms (recall Definition 2.15), so not all curve equations will do.
For the moment, assume that we have a 𝛽-isogeny 𝜑∶ (𝐴, 𝜄) → (𝐴′, 𝜄′) between abelian
surfaces with real multiplication by ℤ𝐾, and we are given curve equations 𝒞, 𝒞 ′ such that
the associated bases 𝜔(𝒞) and 𝜔(𝒞 ′) are Hilbert-normalized. We address the question
of constructing 𝒞, 𝒞 ′ in §3.6.

Definition 3.20. {def:djdt-matrix}

• For 𝑡 ∈ ℍ2
1, we define

𝐷𝑡𝐽(𝑡) = (
1
𝜋𝑖

𝜕𝑗𝑘
𝜕𝑡𝑙

(𝑡))
1≤𝑘≤3,1≤𝑙≤2

.

If 𝒞 is a curve equation such that𝜔(𝒞) is Hilbert-normalized, we denote by𝐷𝑡𝐽(𝒞)
the value of this modular form on 𝒞.
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• We define the 3 × 3 matrices 𝐷Ψ𝛽,𝐿 and 𝐷Ψ𝛽,𝑅 in the case of Hilbert modular
equations of level 𝛽 as in Definition 3.17.

• Write 𝑗 as a shorthand for the Igusa invariants (𝑗1, 𝑗2, 𝑗3) of 𝐴, and 𝑗′ for the
invariants (𝑗′1, 𝑗′2, 𝑗′3) of𝐴′. We say that the isogeny𝜑 is generic if the denominators
of modular equations do not vanish at 𝑗 and the 3 × 2 matrices

𝐷Ψ𝛽,𝐿(𝑗, 𝑗′) ⋅ 𝐷𝑡𝐽(𝒞) and 𝐷Ψ𝛽,𝑅(𝑗, 𝑗′) ⋅ 𝐷𝑡𝐽(𝒞 ′)

have rank 2.
{prop:djdt-transformation}

Lemma 3.21. Let (𝐴, 𝜄, 𝜔) be Hilbert-normalized, and let 𝑡 ∈ ℍ2
1 such that there is an

isomorphism 𝜂∶ (𝐴, 𝜄) → (𝐴𝐾(𝑡), 𝜄𝐾(𝑡)). Let 𝑟 be the matrix of 𝜂∗ in the bases 𝜔𝐾(𝑡), 𝜔.
Then we have

𝐷𝑡𝐽(𝐴, 𝜔) = 𝐷𝑡𝐽(𝑡) ⋅ 𝑟2.

Proof. By Proposition 2.13, derivatives of Igusa with respect to 𝑡1 and 𝑡2 are Hilbert
modular functions of weight (2, 0) and (0, 2) respectively.

{prop:djdt-djdtau}
Proposition 3.22. Let (𝐴, 𝜄, 𝜔) be Hilbert-normalized. Then we have

𝐷𝑡𝐽(𝐴, 𝜔) = 𝐷𝜏𝐽(𝐴, 𝜔) ⋅ 𝑇 where 𝑇 = ⎛⎜⎜⎜
⎝

1 0
0 0
0 1

⎞⎟⎟⎟
⎠

.

Proof. Let 𝑡, 𝜂, 𝑟 as in Lemma 3.21, and write 𝜏 = 𝐻(𝑡). By the expression of the Hilbert
embedding, 𝐷𝑡𝐽(𝑡) contains the derivatives of Igusa invariants at 𝜏 in the directions

1
𝜋𝑖𝑅

𝑡 (1 0
0 0) 𝑅 and

1
𝜋𝑖𝑅

𝑡 (0 0
0 1) 𝑅.

Hence we have
𝐷𝑡𝐽(𝑡) = 𝐷𝜏𝐽(𝜏) ⋅ Sym2(𝑅𝑡) ⋅ 𝑇.

By Proposition 2.16, we have an isomorphism 𝜁 ∶ 𝐴𝐾(𝑡) → 𝐴(𝜏) such that the matrix
of 𝜁∗ in the bases 𝜔(𝜏), 𝜔𝐾(𝑡) is 𝑅. Therefore

𝐷𝑡𝐽(𝐴, 𝜔) = 𝐷𝑡𝐽(𝑡)𝑟2, 𝐷𝜏𝐽(𝐴, 𝜔) = 𝐷𝜏𝐽(𝜏) Sym2((𝑟𝑅)𝑡).

The result follows.

It is natural that the matrix 𝑅 defining the Hilbert embedding does not appear in
Proposition 3.22: evaluating derivatives of Igusa invariants on (𝐴, 𝜔) has an intrinsic
meaning in terms of the Kodaira–Spencer isomorphism, and the choice of Hilbert
embedding does not matter.

{prop:norm-matrix-hilbert}
Proposition 3.23. Let 𝜑∶ 𝐴 → 𝐴′ be a 𝛽-isogeny and let 𝒞, 𝒞 ′ be Hilbert-normalized
curve equations as above. Then the tangent matrix 𝑑𝜑 is diagonal, and we have

𝐷Ψ𝛽,𝐿(𝑗, 𝑗′) ⋅ 𝐷𝑡𝐽(𝒞) = −𝐷Ψ𝛽,𝑅(𝑗, 𝑗′) ⋅ 𝐷𝑡𝐽(𝒞 ′) ⋅ Diag(1/𝛽, 1/ ̅𝛽) ⋅ (𝑑𝜑)2.
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Proof. By Proposition 2.23, we can find 𝑡 ∈ ℍ2
1 and isomorphisms 𝜂, 𝜂′ such that there

is a commutative diagram

(𝐴, 𝜄) (𝐴′, 𝜄′)

(𝐴𝐾(𝑡), 𝜄𝐾(𝑡)) (𝐴𝐾(𝑡/𝛽), 𝜄𝐾(𝑡/𝛽)).

𝜑

𝜂 𝜂′

𝑧↦𝑧

Let 𝑟 be the matrix of 𝜂∗ in the bases 𝜔𝐾(𝑡), 𝜔, and define 𝑟′ similarly; they are diagonal.
We have 𝑑𝜑 = 𝑟′𝑡𝑟−𝑡 = 𝑟′𝑟−1. Differentiating the modular equations, we obtain

𝐷Ψ𝛽,𝐿(𝑗, 𝑗′) ⋅ 𝐷𝑡𝐽(𝑡) + 𝐷Ψ𝛽,𝑅(𝑗, 𝑗′) ⋅ 𝐷𝑡𝐽(𝑡/𝛽) ⋅ Diag(1/𝛽, 1/ ̅𝛽) = 0.

By Lemma 3.21, we have

𝐷𝑡𝐽(𝑡) = 𝐷𝑡𝐽(𝒞) ⋅ 𝑟2, 𝐷𝑡𝐽(𝑡/𝛽) = 𝐷𝑡𝐽(𝒞 ′) ⋅ 𝑟′2

and the result follows.

This relation allows us to compute (𝑑𝜑)2 from derivatives of modular equations
when𝜑 is generic. In contrast with the Siegel case, the knowledge of (𝑑𝜑)2 does not allow
us to recover the diagonal matrix 𝑑𝜑 up to sign, as we have to perform two uncorrelated
root extractions: we obtain two possible candidates.

3.6 Constructing Hilbert-normalized curves
{subsec:curves}

Let (𝐴, 𝜄) is an abelian surface over ℂ with real multiplication by ℤ𝐾. Given the Igusa
invariants (𝑗1, 𝑗2, 𝑗3) of 𝐴, we would like to construct a curve equation 𝒞 such that
(𝐴, 𝜄, 𝜔(𝒞)) is Hilbert-normalized. Our method is to compute a first curve equation
using Mestre’s algorithm [Mes91], and then look for a suitable homographic change of
variables. However, we are missing some information, as the two pairs (𝐴, 𝜄) and (𝐴, ̅𝜄),
where ̅𝜄 denotes the real conjugate of 𝜄, have the same Igusa invariants. The best we can
hope for is to compute an equation 𝒞 such that either (𝐴, 𝜄, 𝜔(𝒞)) or (𝐴, ̅𝜄, 𝜔(𝒞)) is
Hilbert-normalized. In this case, we say that 𝒞 is potentially Hilbert-normalized. This
uncertainty is a consequence of our using symmetric invariants on the Hilbert surface.

{prop:tangent-humbert}
Proposition3.24. Let𝒞 be a hyperelliptic curve equation of genus 2 overℂ such that Jac(𝒞)
has real multiplication by ℤ𝐾. Denote its Igusa invariants by (𝑗1, 𝑗2, 𝑗3). Then the curve 𝒞
is potentially Hilbert-normalized if and only if the two columns of the 3 × 2 matrix

𝐷𝜏𝐽(𝒞) ⋅ 𝑇 where 𝑇 = ⎛⎜⎜⎜
⎝

1 0
0 0
0 1

⎞⎟⎟⎟
⎠

define tangent vectors to the Humbert surface at (𝑗1, 𝑗2, 𝑗3).
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Proof. Let 𝑡 ∈ ℍ2
1 such that there is an isomorphism 𝜂∶ Jac(𝒞) → 𝐴𝐾(𝑡), and write

𝜏 = 𝐻(𝑡). Let 𝑟 ∈ GL2(ℂ) be thematrix of 𝜂∗ in the bases𝜔𝐾(𝑡), 𝜔. Then the columns
of 𝐷𝜏𝐽(𝒞) ⋅ 𝑇 contain, up to 𝜋𝑖, the derivatives of Igusa invariants at 𝜏 in the directions

𝑅𝑡𝑟 (1 0
0 0) 𝑟𝑡𝑅 and 𝑅𝑡𝑟 (0 0

0 1) 𝑟𝑡𝑅.

These directions are tangent to the Humbert surface if and only if 𝑟 is is either diagonal
or anti-diagonal.

Assume that the equation of the Humbert surface for 𝐾 in terms of Igusa invariants is
given: this precomputation depends only on 𝐾. Given Igusa invariants (𝑗1, 𝑗2, 𝑗3) on the
Humbert surface, the algorithm to reconstruct a potentially Hilbert-normalized curve
equation runs as follows.

{algo:hilb-curve-2}
Algorithm 3.25. 1. Construct any curve equation𝒞0 with Igusa invariants (𝑗1, 𝑗2, 𝑗3)

using Mestre’s algorithm.
{step:tangent-humbert}

2. Find 𝑟 ∈ GL2(ℂ) such that the two columns of the matrix

𝐷𝜏𝐽(𝒞0) ⋅ Sym2(𝑟𝑡) ⋅ 𝑇

are tangent to the Humbert surface at (𝑗1, 𝑗2, 𝑗3).

3. Output det−2 Sym6(𝑟)𝒞0.

In step 2, if 𝑎, 𝑏, 𝑐, 𝑑 denote the entries of 𝑟, we only have to solve a quadratic equation
in 𝑎, 𝑐, and a quadratic equation in 𝑏, 𝑑. Therefore Algorithm 3.25 costs 𝑂𝐾(1) square
roots and field operations.

In practice, when computing a 𝛽-isogeny 𝜑∶ 𝐴 → 𝐴′ in the Hilbert case, we are only
given the Igusa invariants of 𝐴 and 𝐴′. Constructing potentially Hilbert-normalized
curves is then equivalent to making a choice of real multiplication embedding for each
abelian surface. If these embeddings are incompatible via 𝜑, we obtain antidiagonal
matrices when computing the tangent matrix; in this case, we apply the change of vari-
ables 𝑥 ↦ 1/𝑥 on one of the curve equations to make them compatible. Even if they
are compatible, 𝜑 will be either a 𝛽- or a ̅𝛽-isogeny depending on the choices of real
multiplication embeddings. Therefore we really obtain four candidates for the tangent
matrix, among which only one is correct.

4 Moduli spaces and the deformationmap
{sec:moduli}

In this section, we use the language of algebraic stacks to show how to compute the
deformation map of a given isogeny 𝜑, and to show its relation with the tangent map 𝑑𝜑,
for abelian schemes of any dimension over any base.

We start by recallingwell-known and general facts about separatedDeligne–Mumford
stacks and their coarse moduli spaces (§4.1). Then we recall the properties of several
moduli stacks for principally polarized abelian schemes of dimension 𝑔, namely 𝒜𝑔
(abelian schemes with no extra structure),𝒜𝑔,𝑛 (abelian schemes with a level 𝑛 structure),
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𝒜𝑔(ℓ) (abelian schemes endowed with the kernel of an ℓ-isogeny), and their coarse
moduli schemes A𝑔, A𝑔,𝑛, A𝑔(ℓ) (§4.2). In particular, we have a map at the level of
algebraic stacks,

𝛷ℓ = (𝛷ℓ,1, 𝛷ℓ,2) ∶ 𝒜𝑔(ℓ) → 𝒜𝑔 × 𝒜𝑔

sending (𝐴, 𝐾) to (𝐴, 𝐴/𝐾) such that both 𝛷ℓ,1 and 𝛷ℓ,2 are étale. Therefore, for an
ℓ-isogeny 𝜑 seen as a point of 𝒜𝑔(ℓ), the deformation map

𝒟(𝜑) = 𝑑𝛷ℓ,2(𝜑) ∘ 𝑑𝛷ℓ,1(𝜑)−1

is well-defined at the level of stacks. However, the induced maps at the level of coarse
spaces,

(𝚽ℓ,1, 𝚽ℓ,2) ∶ A𝑔(ℓ) → A𝑔 × A𝑔

are not étale everywhere, so that we can only recover the deformation map on an open
set of the coarse spaces (see Corollary 4.12). In the genus 2 case, when we work with the
modular polynomials Ψℓ,𝑖 from Section 2.6, this phenomenon worsens; still, we can give
precise conditions on the isogeny that ensure genericity in the sense of Definition 3.18
(see Proposition 4.16). We also extend these results to the Hilbert case.

After that, we give the general relation between the tangent map and the deformation
map of a given ℓ- or 𝛽-isogeny (§4.3). Finally we show that in dimension 2, the relations
between modular forms and covariants given in Proposition 3.12 hold over ℤ and not
only over ℂ (§4.4). This allows us to give an explicit version of the Kodaira–Spencer
isomorphism over any base (§4.5), that we could use for instance to construct explicit
families of abelian surfaces with real multiplication.

In summary, this section explains the relationship between the fine moduli space
𝒜𝑔(ℓ) and its coarse moduli space A𝑔(ℓ), and the geometric meaning of the genericity
conditions of Theorem 1.1; moreover it gives a purely algebraic, rather than analytic,
interpretation of the results of Section 3. Another way to extend the results of Section 3
over any base would be to lift the isogeny to characteristic zero (in the case of fields),
then interpolate between fibers using rigidity; however, we find that the moduli-theoretic
approach is superior as it provides more geometric insight.

More Details 4.1. We give more details on the standard lifting arguments to extend the results of
Section 3 to other fields than ℂ. Let 𝜑 be an ℓ-isogeny defined over a field 𝑘 of characteristic prime
to ℓ or zero. Since 𝒜𝑔(ℓ) is of finite type, we may assume that 𝑘 has finite transcendance degree
over its prime field. Then, we may embed 𝑘 in ℂ if char 𝑘 = 0; otherwise, we lift 𝜑 to the Witt
ring 𝑊(𝑘) by smoothness of 𝒜𝑔(ℓ) over ℤ[1/ℓ], and embed 𝑊(𝑘) in ℂ. This technique alone,
however is not possible if we want to apply it to an abelian scheme. A workaround would be to use
rigidity and interpolate between fibers, at least if the base scheme is reduced, or combine lifting
and rigidity for a general connected scheme. But at this point it is easier to work with stacks.

4.1 Coarse moduli spaces
{subsec:coarse}

In this paper, we always assume stacks to be of finite type over a Noetherian base scheme.
Let 𝒳 be a separated Deligne–Mumford stack over 𝑆; we recall that an Artin stack is
Deligne–Mumford if and only if its diagonal is unramified [The18, Tag 06N3]. Here we
summarize well-known results on the geometry of 𝒳 and its coarse moduli space.
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By a point 𝑥 of 𝒳, we mean a point of the underlying topological space |𝒳|, and we
implicitly take a representative Spec 𝑘 → 𝒳 of 𝑥. For any scheme 𝑇, a 𝑇-point of 𝒳 is
a morphism 𝑇 → 𝒳. We denote by 𝐼𝒳 the inertia stack of 𝒳, and if 𝑥 is a point of 𝒳,
we denote by 𝐼𝑥 the pullback of 𝐼𝒳 to 𝑥; this pullback is simply the space Aut(𝑥) of
automorphisms, or stabilizers, of 𝑥. Since we assume 𝒳 separated, 𝐼𝑥 is in fact finite. The
stabilizer 𝐼𝑥 does not depend on the representative chosen since 𝐼𝑥 is the pullback of the
residual gerbe 𝐺𝑥 → 𝑘(𝜉) at 𝑥 through Spec 𝑘 → Spec 𝑘(𝜉): see [LM00, Ch. 11], [The18,
Tag 06ML]. We identify open substacks of 𝒳 with the underlying open topological spaces
of |𝒳| [The18, Tag 06FJ].

We recall that a map 𝑓 ∶ 𝒳 → 𝒴 is representable if and only if the induced map
𝐼𝒳 → 𝒳 ×𝒴 𝐼𝒴 is a monomorphism [The18, Tag 04YY]. Also, if 𝑓 is unramified, then its
diagonal is étale by [The18, Tag 0CIS] and [Ryd11]; hence the map 𝐼𝒳 → 𝒳 ×𝒴 𝐼𝒴 is étale.
Therefore, if 𝑓 is representable and unramified, then the map 𝐼𝒳 → 𝒳 ×𝒴 𝐼𝒴 is an open
immersion.

A coarse moduli space 𝑋 of 𝒳 is an algebraic space 𝑋 endowed with a map 𝜋 ∶ 𝒳 → 𝑋
such that𝜋 is categorical and induces a bijection𝜋 ∶ 𝒳(𝑘) → 𝑋(𝑘) for every algebraically
closed field 𝑘. We also use the following terminology from [MFK94] (see also [KM97,
Def. 1.8] and [Ryd13, Defs. 2.2 and 6.1]): a map 𝑞 ∶ 𝒳 → 𝑍 is topological if 𝑞 is a universal
homeomorphism, and geometric if it is topological and furthermore 𝒪𝑍 → 𝑞∗𝒪𝒳 is an
isomorphism. A GC quotient is a geometric quotient that is also (uniformly) categorical;
in particular, its image is a coarse moduli space ([KM97, Def. 1.8] and [Ryd13, Def. 3.17
and Rem. 3.18]).

{th:coarsemoduli}
Theorem 4.2. Let 𝒳 → 𝑆 be a separated Deligne–Mumford stack.

{th:keelmori}
(i) (Keel–Mori). There exists a coarse moduli space 𝜋 ∶ 𝒳 → 𝑋, where 𝑋 is of finite type

over 𝑆. The map 𝜋 is a GC quotient, is proper, quasi-finite and separated; moreover
the construction is stable under flat base change. {th:localstruct}

(ii) Let 𝑥 ∈ 𝑋(𝑘) be a point, and let 𝐼𝑥 be the stabilizer of any point in 𝒳 above 𝑥. Then
étale-locally around 𝑥, 𝒳 is a quotient stack by 𝐼𝑥 and 𝑋 is a geometric quotient
by 𝐼𝑥. More precisely, there is an affine scheme 𝑈, an étale morphism 𝑈 → 𝑋 whose
image contains 𝑥, and a finite morphism 𝑉 → 𝑈 with an action of 𝐼𝑥 on 𝑉 such that
𝒳𝑈 ≔ 𝒳 ×𝑋 𝑈 = [𝑉/𝐼𝑥] is an 𝐼𝑥-quotient stack, and 𝑈 = 𝑉/𝐼𝑥.

Proof. Theorem 4.2.(i) is valid for Artin stacks with finite inertia; the original proof is
in [KM97], and reformulations of the proof using the language of stacks rather than
groupoids are given in [Con05], [Ryd13] and [The18, Tag 0DUK]. {{ A proof relying on
the language of stacks rather than groupoids is given in [Con05] where the Noetherian hypothesis
on 𝑆 is relaxed, and 𝒳 is assumed to be locally of finite presentation. This last condition is relaxed
in [Ryd13]. }} Since 𝒳 is a separated Deligne–Mumford stack, its inertia 𝐼𝒳 is finite, so the
Keel–Mori theorem applies.

For Theorem 4.2.(ii), see [AV02, Lem. 2.2.3] which shows that 𝒳 is locally a quotient,
and [Ols06, Thm. 2.12] which shows that we can take the quotient to be a quotient by 𝐼𝑥.
If 𝑉 = Spec𝑅, then 𝑉/𝐼𝑥 is the affine scheme Spec𝑅𝐼𝑥 . The fact that 𝑈 = (Spec𝑅)/𝐼𝑥
then follows easily from the theory of quotients of affine schemes: see for instance [Ryd13,
§4] or [DR73, §I.8.2.2]. See also [The18, Tag 0DU0] for extensions of this result in the
case of quasi-DM stacks, and [AHR19; AHR20] for a far reaching generalization.
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By Zarsiki’s main theorem, the coarse moduli space 𝑋 is characterized by the fact
that 𝜋 ∶ 𝒳 → 𝑋 is proper and quasi-finite, and 𝒪𝑋 ≃ 𝜋⋆𝒪𝒳 on the étale site [Con05,
§1].

The formation of coarse moduli spaces is not stable under base change in general.
This causes problems when reducing coarse moduli spaces, defined for instance over ℤ,
modulo a prime 𝑝, as the morphism Spec𝔽𝑝 → Specℤ is not flat. Coarse moduli spaces
have better properties in the case of tame stacks.

The stack 𝒳 is said to be tame [AOV08] if the map 𝜋 ∶ 𝒳 → 𝑋 is cohomologically
affine; in particular it is a good moduli space in the sense of [Alp13]. A finite fppf
group scheme 𝐺/𝑆 is linearly reductive if 𝐵𝐺 → 𝑆 is tame ([MFK94], [AOV08, Def. 2.4],
[Alp13, Def. 12.1]). In [AOV08], it is shown that 𝐺/𝑆 is linearly reductive if and only
if its geometric fibers are geometrically reductive, if and only if its geometric fibers are
locally (in the fppf topology) a split extension of a constant tame group by a group of
multiplicative type. If 𝑥 ∈ 𝒳(𝑘) is a geometric point of 𝒳, we say that 𝑥 is a tame point
of 𝒳 if 𝑥 has a linearly reductive stabilizer.

{th:tame}
Theorem 4.3. Let 𝒳 → 𝑆 be a separated Deligne–Mumford stack, and let 𝜋∶ 𝒳 → 𝑋 be
its coarse moduli space.

{th:globalstruct_tame}
(i) If every geometric point of 𝒳 is tame, then 𝒳 is tame. If 𝒳 is tame, then the formation

of its coarse space commutes with arbitrary base change. {th:localstruct_tame}
(ii) More generally, if 𝑥 ∈ 𝒳(𝑘) is tame, then there is an open tame substack 𝒰 of 𝒳

containing 𝑥. Furthermore, the image of 𝒰 in 𝑋 is Cohen–Macaulay. {th:adequate}
(iii) The map 𝜋∶ 𝒳 → 𝑋 is always an adequate moduli space in the sense of [Alp14].

In particular, if 𝑇 → 𝑆 is a morphism of algebraic spaces, 𝒳𝑇 denotes the base
change of 𝒳 to 𝑇 and X𝑇 denotes the coarse moduli space of 𝒳𝑇, then the natural
map X𝑇 → 𝑋 ×𝑆 𝑇 is an universal homeomorphism.

Proof. Theorems 4.3.(i) and 4.3.(ii) are proved in the case of Artin stacks with finite
inertia in [AOV08]. The openness of tame points is the main result of this paper [AOV08,
Thm. 3.2, Prop. 3.6]. Since we restrict to separated Deligne–Mumford stacks, it also
follows fromTheorem 4.2.(ii). Formation of the coarse moduli space commutes with
pullbacks in the tame case by [AOV08, Cor. 3.3].

If 𝑥 is a tame point of 𝒳, then by the local structure theorem, étale-locally around 𝑥,
there is an open substack of the form 𝒰 = [𝑉/𝐼𝑥], and 𝐼𝑥 is linearly reductive. By the
Hochster–Roberts theorem [MFK94, Appendix 1.E], the affine scheme 𝑉/𝐼𝑥 is Cohen–
Macaulay. Being Cohen–Macaulay is a local notion for the étale topology, so the image
of 𝒰 in 𝑋 is also Cohen–Macaulay.

Finally, Theorem 4.3.(iii) is proved in [Alp14], which shows that the coarse moduli
space of an Artin stack with finite inertia is always an adequate moduli space. The natural
map X𝑇 → 𝑋 ×𝑆 𝑇 is then an adequate homeomorphism in the sense of [Alp14], and in
particular is a universal homeomorphism [Alp14, MainTheorem].

Corollary 4.4. Let 𝒳 be a separated Deligne–Mumford stack. {cor:Ix}
{cor:genericiso}

(i) The set 𝒰 of points 𝑥 such that 𝐼𝑥 is trivial is an open substack of 𝒳 (which may be
empty), and 𝜋 ∶ 𝒰 → 𝜋(𝒰) is an isomorphism.
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{cor:normal}{cor:hensellocal}
(ii) Let 𝑥 ∈ 𝒳(𝑘) be a point, and let 𝑂𝒳,𝑥 be the strict Hensel ring of 𝒳 at 𝑥. Then

𝑂𝑋,𝑥 = 𝑂𝐼𝑥
𝒳,𝑥. (1) {{eq:stricthensel}}{{eq:stricthensel}}

In particular, if 𝒳 is a normal, then its coarse moduli space is normal.

Proof. These two statements are immediate consequences of Theorem 4.2.(ii). For
Corollary 4.4.(ii), see also [DR73, §I.8.2.1] which states that the kernel of the action
of 𝐼𝑥 acting on 𝑂𝒳,𝑥 is exactly the set of automorphisms of 𝑥 that can be extended to
Spec𝑂𝒳,𝑥 → 𝒳.

Finally, we know when an étale map between algebraic stacks induces an étale map
on their coarse moduli spaces.

{th:strongetale}
Theorem 4.5 (Luna’s fundamental lemma). Let 𝑓 ∶ 𝒳 → 𝒴 be a representable and unram-
ified morphism of separated Deligne–Mumford stacks. Then the set of points where 𝑓 is
stabilizer preserving, meaning that the monomorphism on inertia 𝐼𝑥 → 𝐼𝑓 (𝑥) induced by 𝑓
is an isomorphism, is an open substack 𝒰 of 𝒳. The morphism 𝐼𝒰 → 𝐼𝒴 ×𝒴 𝒰 induced by 𝑓
is an isomorphism.

If 𝑓 is étale and 𝒰 = 𝒳, that is if 𝑓 is stabilizer preserving at every point, then the
induced map on coarse spaces 𝑓0 ∶ 𝑋 → 𝑌 is étale, and even strongly étale; in other words
𝒳 = 𝑋 ×𝑌 𝒴.

Proof. The fact that 𝒰 is open is [The18, Tag 0DUA], [Ryd13, Prop. 3.5]. Since 𝒳 and 𝒴
are separated Deligne–Mumford stacks, the induced map is étale by Corollary 4.4.(ii).

The general case of Artin stacks with finite inertia is treated in [Ryd13, Prop. 6.5 and
Thm. 6.10]. In this reference, stabilizer preserving is called fixed point reflecting, but we
prefer to use the terminology of the Stacks project [The18, Tag 0DU6]. The fact that 𝑓0 is
strongly étale comes from the cartesian diagram in [Ryd13,Thm. 6.10]. See also [AHR19,
Thm. 3.14] where this is proved in a more general setting.

Remark 4.6. If 𝑓 ∶ 𝒳 → 𝒴 is proper (resp. finite), then the induced map 𝑓0 ∶ 𝑋 → 𝑌 is
proper (resp. finite), because the maps from 𝒳 and 𝒴 to their coarse moduli spaces are
proper quasi-finite [The18, Tag 02LS], [Gro64, EGA IV.8.11.1]).

Remark 4.7. If 𝑥 is a tame smooth 𝑘-point of 𝒳, then by Luna’s étale slice theorem
([Lun73], [AHR20,Thm 1.1 andThm 2.1], [AHR19,Thm 19.4]), the étale local structure
of Theorem 4.2.(ii) takes a particularly nice form. Indeed, taking an étale local presen-
tation 𝒳𝑈 = [𝑉/𝐼𝑥] as inTheorem 4.2.(ii), then (possibly after an étale extension of 𝑘
and after shrinking 𝑉) there is a strongly étale morphism [𝑉/𝐼𝑥] → [𝑇𝑥𝒳/𝐼𝑥] which
sends 𝑥 to 0, where 𝐼𝑥 acts via its natural linear action on 𝑇𝑥𝒳. In particular, étale locally
around 𝑥 the map 𝜋 ∶ 𝒳 → 𝑋 is given by [𝑇𝑥𝒳/𝐼𝑥] → 𝑇𝑥𝒳/𝐼𝑥.

{rem:adequate_moduli}
More Details 4.8. The definition and characterization of a tame stack given inTheorem 4.3 is also
valid for an Artin stack with finite inertia [AOV08], meaning that 𝒳 is tame if its coarse moduli
space 𝒳 → 𝑋 is a good moduli space (hence always a tame moduli space in the sense of [Alp13]
since
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In fact this is true more generally for good moduli spaces [Alp13]. The local structure and
characterization of Theorem 4.3.(ii) is also still valid for good moduli spaces, but much more
difficult to prove: see [AHR20, Theorem 1.2] and [AHR19, Theorem 1.1 and Proposition 13.4].

In [MFK94] and [Ses77], Mumford and Seshadri study quotients of schemes by (linearly)
reductive groups. This has been generalised in the context of stacks by Alper, which introduces
the notion of good moduli spaces in [Alp13] (this includes GIT quotients by linearly reductive
groups), and the notion of adequate moduli space in [Alp14] (this includes GIT quotients by
geometrically reductive groups). In particular if 𝒳 is an Artin stack with finite inertia, its coarse
moduli is adequate [Alp14, Proposition 8.2.1].

Most of the results of this section can be extended to good and adequate moduli spaces. For
instance adequate moduli spaces are stable by flat base change [Alp14], while good moduli spaces
are stable by arbitrary base change [Alp13]. Alper defines in [Alp13, §7] a tame moduli spaces
𝜋 ∶ 𝒳 → 𝑋 as a good moduli which induces a bijection on geometric points. This extends the
notion of tame spaces from [AOV08].

The local structure and characterization of Theorem 4.3.(ii) is still valid for good moduli
spaces, but much more difficult to prove: see [AHR20, Theorem 1.2] and [AHR19, Theorem 1.1
and Proposition 13.4].

Finally Luna’s étale slice theorem [Lun73], which use Luna’s fundamental lemma as a building
block, can be used to study the local structure of the quotient of a scheme by a linearly reductive
group scheme. See also the generalization to stacks and the relative setting in [AHR20,Theorem1.1]
and [AHR19, Theorem 19.4], and the generalization of Luna’s fundamental lemma in [AHR19,
Theorem 3.14].

The coarse moduli of principally polarized abelian varieties is constructed by Mumford as a
quotient of a locally closed subscheme of the Hilbert scheme by the reductive group PGL𝑛 (and
its coarse moduli space as the corresponding GIT quotient). Over ℤ[1/2], the coarse moduli
of hyperelliptic curves can be constructed as the quotient of the open subvariety of ℙ2𝑔+2 given
by the discriminant by PGL2 (since the map from stack of hyprelliptic curves to its coarse space
factorize through [ℙ2𝑔+2/PGL2]). One can then use Luna’s étale slice theorem to study the local
structure of these spaces.

4.2 Moduli stacks of abelian varieties
{subsec:moduliav}

In this section, we apply the general results gathered in §4.1 to the case of moduli spaces
of abelian schemes. This allows us to investigate the properties of the map 𝛷ℓ on coarse
moduli spaces in the Siegel case, and its analogue 𝛷𝛽 in the Hilbert case.

4.2.1 Siegel stacks
{subsec:moduliav-siegel}

Recall that we denote by 𝒜𝑔 the moduli stack of principally polarized abelian varieties,
and by 𝒜𝑔,𝑛 the moduli stack of principally polarized abelian varieties with a level 𝑛
symplectic structure; here we mean a level (ℤ/𝑛ℤ)2𝑔 structure as in [FC90] rather than
a (ℤ/𝑛ℤ)𝑔 × 𝜇𝑔

𝑛 structure as in [Mum71; de 93], so that 𝒜𝑔,𝑛 is defined over ℤ[1/𝑛]
rather than over ℤ. Both 𝒜𝑔 and 𝒜𝑔,𝑛 are separated Deligne–Mumford stacks, and
moreover𝒜𝑔,𝑛 is smooth overℤ[1/𝑛]with𝜙(𝑛) geometrically irreducible fibers [FC90].

We denote by A𝑔, A𝑔,𝑛 their corresponding coarse moduli spaces. By Mumford’s
Geometric Invariant Theory [MFK94], they are quasi-projective schemes. {{ Note that
the Keel-Mori theorem only show that A𝑔,𝑛 is an algebraic space. Instead, Mumford constructs in
[MFK94, §VII.2] A𝑔,𝑛 as a GIT quotient by PGL of a subscheme of an Hilbert scheme. }} We can

31



extend A𝑔,𝑛 over ℤ by taking the normalization of A𝑔 in A𝑔,𝑛/ℤ[1/𝑛], as in [Mum71;
DR73; de 93]. Over ℂ, the analytification of 𝒜𝑔 is the Siegel space ℍ𝑔/ Sp2𝑔(ℤ) seen as
an orbifold.

If 𝑛 ≥ 3, then the inertia of the stack 𝒜𝑔,𝑛 is trivial. Therefore 𝒜𝑔,𝑛 is isomorphic
to A𝑔,𝑛 by Corollary 4.4.(i), and A𝑔,𝑛 is smooth over ℤ[1/𝑛]. This shows in particular
that there is a 𝑝0 such that 𝒜𝑔 is tame at every abelian variety defined over a field of
characteristic 𝑝 ≥ 𝑝0. {{ Indeed, 𝒜𝑔 = [𝒜𝑔,𝑛/ Sp𝑔(ℤ/𝑛ℤ)] is a Sp𝑔(ℤ/𝑛ℤ) quotient stack,
and for 𝑝 large enough, it is prime to # Sp𝑔(ℤ/𝑛ℤ). }}

If 𝑛 ≤ 2, then the generic automorphism group on 𝒜𝑔,𝑛 is 𝜇2. We can rigidify 𝒜𝑔,𝑛
by 𝜇2 in such a way that 𝒜𝑔,𝑛 → [𝒜𝑔,𝑛/𝜇2] is a 𝜇2-gerbe [AOV08, Appendix A]. The
map 𝒜𝑔,𝑛 → A𝑔,𝑛 factors through [𝒜𝑔,𝑛/𝜇2], so the coarse moduli space of [𝒜𝑔,𝑛/𝜇2]
is still A𝑔,𝑛. By Theorem 4.2.(ii) or Theorem 4.3.(ii), there exists an affine étale open
scheme 𝑈 above A𝑔,𝑛 whose image is dense and contains all points with only generic
automorphisms. Then [𝒜𝑔,𝑛/𝜇2] → A𝑔,𝑛 becomes an isomorphism over 𝑈 by Corol-
lary 4.4.(i). Since [𝒜𝑔,𝑛/𝜇2] is smooth, the image of 𝑈 in A𝑔,𝑛 is also smooth by étale
descent.

We now proceed to construct the moduli stack 𝒜𝑔(ℓ) parametrizing ℓ-isogenies.
If Γ is a level subgroup of Sp2𝑔(ℤ̂), and 𝑛 is an integer such that the level subgroup
Γ(𝑛) is contained in Γ, we define 𝒜𝑔,Γ/ℤ[1/𝑛] as the quotient stack [𝒜𝑔,𝑛/Γ̃] where Γ̃
is the image of Γ in Sp2𝑔(ℤ/𝑛ℤ). A 𝑇-point of [𝒜𝑔,𝑛/Γ̃] corresponds to an abelian
scheme 𝐴/𝑇 which is étale-locally endowed with a level 𝑛 structure modulo the action
of Γ̃ [DR73, §IV.3.1]. The maps 𝒜𝑔,𝑛 → 𝒜𝑔,Γ and 𝒜𝑔,Γ → 𝒜𝑔 are finite, étale, and
representable [DR73, §IV.2, §IV.3]. We can extend 𝒜𝑔,Γ to ℤ by normalization, as we
did for A𝑔,𝑛. We can check as in [DR73, §IV.3.6] that the definition does not depend on
the integer 𝑛 such that Γ(𝑛) ⊂ Γ.

Proof Details. Indeed, choose another integer𝑚 such that Γ(𝑚) ⊂ Γ, and define𝒜 ′
𝑔,Γ/ℤ[1/𝑚] ≔

[𝒜𝑔,𝑚/Γ̃]. Then𝒜𝑔,Γ/ℤ[1/𝑛] and𝒜 ′
𝑔,Γ/ℤ[1/𝑚] are isomorphic overℤ/[1/𝑛𝑚], and since𝒜 ′

𝑔,Γ/ℤ[1/𝑚]
is smooth, it coincides with the normalization 𝒜𝑔,Γ/ℤ over ℤ[1/𝑚].

Assume that Γ is of level ℓ. Then fixing an integer 𝑛 ≥ 3 as above, we get that 𝒜𝑔,𝑛ℓ is an
étale presentation of both 𝒜𝑔,Γ and 𝒜𝑔 over ℤ[1/𝑛ℓ]. Hence the natural map 𝒜𝑔,Γ → 𝒜𝑔 is étale
over ℤ[1/𝑛ℓ], and it is obviously representable since 𝐼𝒜𝑔,Γ/𝒜𝑔

= 0. Letting 𝑚 ≥ 3 be an integer
coprime to 𝑛 and reasoning over ℤ[1/𝑚ℓ], this show that 𝒜𝑔,Γ → 𝒜𝑔 is representable and étale
over ℤ[1/ℓ].

We apply this construction to Γ = Γ0(ℓ), the standard level subgroup encoding
ℓ-isogenies, and we denote by 𝒜𝑔(ℓ) ≔ 𝒜𝑔,Γ0(ℓ) the resulting stack. The stack 𝒜𝑔(ℓ) is
smooth over ℤ[1/ℓ]. We denote by

𝛷ℓ = (𝛷ℓ,1, 𝛷ℓ,2) ∶ 𝒜𝑔(ℓ) → 𝒜𝑔 × 𝒜𝑔

the map (𝐴, 𝐾) ↦ (𝐴, 𝐴/𝐾).

Proposition 4.9. 1. The maps 𝛷ℓ,1 and 𝛷ℓ,2 are finite, étale and representable.

2. Let 𝑥 ∈ 𝒜𝑔(ℓ)(𝑘) be a point represented by (𝐴, 𝐾), and let 𝐾′ ⊂ 𝐴/𝐾 be the kernel
of the contragredient isogeny. Then 𝛷ℓ,1 is stabilizer preserving at 𝑥 if and only if all
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automorphisms of 𝐴 stabilize 𝐾, and 𝛷ℓ,2 is stabilizer preserving at 𝑥 if and only if
all automorphisms of 𝐴/𝐾 stabilize 𝐾′.

Proof. The automorphisms of 𝑥 in 𝒜𝑔(ℓ) are exactly the automorphisms of 𝐴 stabiliz-
ing 𝐾. In particular 𝛷ℓ,1 induces a monomorphism of the automorphism groups, so is
representable; it is stabilizer preserving if and only if all automorphisms of 𝐴 stabilize 𝐾.

If 𝛼 is an automorphism of (𝐴, 𝐾), then 𝛼 descends to 𝐴′ = 𝐴/𝐾, so 𝛷ℓ,2 is repre-
sentable as well. An automorphism of 𝐴′ comes from an automorphism of 𝐴 if and only
if it stabilizes 𝐾′, hence the condition for 𝛷ℓ,2 to be stabilizer preserving.

Finally, the map𝛷ℓ,1 is finite étale because it is of the form𝒜𝑔,Γ → 𝒜𝑔 for Γ = Γ0(ℓ).
Denote by 𝜋1 ∶ 𝒳𝑔 → 𝒜𝑔 the universal abelian scheme, and by 𝜋ℓ ∶ 𝒳𝑔(ℓ) → 𝒜𝑔(ℓ)
the universal abelian scheme with a Γ0(ℓ)-level structure. Then the universal isogeny
𝑓 ∶ 𝒳𝑔(ℓ) → 𝒳𝑔 ×𝒜𝑔

𝒜𝑔(ℓ) is separable over ℤ[1/ℓ]. If we let 𝑠1 ∶ 𝒜𝑔 → 𝒳𝑔 and
𝑠ℓ ∶ 𝒜𝑔(ℓ) → 𝒳𝑔(ℓ) be the zero sections, then we have

𝛷ℓ,2 = 𝛷ℓ,1 ∘ 𝜋1 ×𝒜𝑔
𝒜𝑔(ℓ) ∘ 𝑓 ∘ 𝑠ℓ.

Therefore 𝛷ℓ,2 ∶ 𝒜𝑔(ℓ) → 𝒜𝑔 is finite étale as well.

The map 𝛷ℓ induces a map 𝚽ℓ ∶ A𝑔(ℓ) → A2
𝑔 on the coarse moduli spaces. This map

is not injective, but the same reasoning as in [DR73, §VI.6] shows that it is generically
radicial, and even a birational isomorphism. The open subscheme 𝑈 of A𝑔(ℓ) where 𝚽ℓ
is an embedding is dense in every fiber of characteristic 𝑝 ∤ ℓ.

{prop:moduli_normal}
Proposition 4.10. Let Ψ0 denote the schematic image of 𝚽ℓ. Then A𝑔(ℓ) is the normal-
ization of Ψ0. If 𝑥0 lies in the image, then 𝚽ℓ ∶ A𝑔(ℓ) → Ψ0 induces a local isomorphism
around 𝑥0 if and only if 𝑥0 is normal in Ψ0.

Proof. The map A𝑔(ℓ) → Ψ0 is separated quasi-finite, and birational by the discus-
sion above. Since A𝑔(ℓ) is normal by Corollary 4.4.(ii), we deduce that A𝑔(ℓ) is the
normalization of Ψ0 by Zariski’s main theorem [Gro64, Cor. IV.8.12.11].

If 𝚽ℓ induces a local isomorphism at 𝑥0, then 𝑥0 is normal since A𝑔(ℓ) is normal.
In fact it suffices to ask that 𝚽ℓ ∶ A𝑔(ℓ) → Ψ0 is étale at 𝑥, because normality is a
local notion in the smooth topology [The18, Tag 034F]. The converse also follows from
Zariski’s main theorem [Gro64, Cor. IV.8.12.10 and Cor. IV.8.12.12]: there exists an open
neighborhood 𝑈 of 𝑥0 in Ψ0 such that the map 𝚽−1

ℓ (𝑈) → 𝑈 is an isomorphism.

If 𝑥 is a point of 𝒜𝑔(ℓ) or 𝒜𝑔, we abuse notation by also calling 𝑥 its reduction to the
associated coarse moduli space.

{prop:defo1}
Proposition 4.11. Let 𝑥 be a 𝑘-point of 𝒜𝑔(ℓ).

1. Assume that 𝛷ℓ,1 is stabilizer preserving at 𝑥. Then:
• The map 𝚽ℓ,1 is strongly étale at 𝑥, and the point 𝑥 is smooth in A𝑔(ℓ) if and
only if 𝚽ℓ,1(𝑥) is smooth in A𝑔.

• The point 𝑥0 = 𝚽ℓ(𝑥) is normal in Ψ0 if and only if the projection 𝑝1 ∶ Ψ0 →
A𝑔 is étale at 𝑥0.
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• If𝚽ℓ,1(𝑥) is represented by an abelian variety𝐴 defined over 𝑘, then the isogeny
𝜑∶ 𝐴 → 𝐴′ representing 𝑥 is also defined over 𝑘.

2. Assume that 𝚽ℓ,1(𝑥) only has generic automorphisms. Then 𝛷ℓ,1 is stabilizer
preserving at 𝑥, the point 𝑥 is smooth in A𝑔(ℓ), and the map 𝒜𝑔(ℓ) → A𝑔(ℓ)
(resp. 𝒜𝑔 → A𝑔) is étale at 𝑥 (resp. at 𝛷ℓ,1(𝑥)).

Proof. The first part of Item 1 comes fromTheorem 4.5: in this case, the map 𝚽ℓ,1 is étale
at 𝑥, and 𝛷ℓ,1 is étale-locally around 𝑥 the pullback of 𝚽ℓ,1 by the map 𝒜𝑔(ℓ) → A𝑔(ℓ).

For the second part, we know that 𝚽ℓ,1 = 𝑝1 ∘ 𝚽ℓ is étale at 𝑥, and we have seen in
Proposition 4.10 that 𝚽ℓ is étale at 𝑥 if and only if 𝑥0 is normal in Ψ0. Therefore 𝑥0 is
normal in Ψ0 if and only if 𝑝1 is étale at 𝑥0.

The final part of Item 1 comes from [DR73, §VI.3.1]. Indeed, if (𝐴, 𝐾) repre-
sents 𝑥 over 𝑘, the obstruction for (𝐴, 𝐾) to descend over 𝑘 is given by an element in
𝐻2(Spec 𝑘,Aut(𝑥)) in the sense of Giraud. But this obstruction vanishes since 𝚽ℓ,1(𝑥)
is represented by 𝐴/𝑘, and the automorphism groups of 𝑥 and 𝚽ℓ,1(𝑥) are equal. The set
of isomorphism classes over 𝑘 is then canonically given by 𝐻1(Spec 𝑘,Aut(𝑥)).

If 𝑦 = 𝛷ℓ,1(𝑥) only has generic automorphisms, then 𝑥 too, so 𝛷ℓ,1 is stabilizer
preserving at 𝑥. The rigidification 𝒜𝑔 → [𝒜𝑔/𝜇2] is étale (it is a 𝜇2-gerbe) and
[𝒜𝑔/𝜇2] → A𝑔 is an isomorphism above 𝑦 by Corollary 4.4.(i). Therefore 𝒜𝑔 → A𝑔
is étale at 𝑦, and 𝑦 is smooth in A𝑔. By the same reasoning, the map 𝒜𝑔(ℓ) → A𝑔(ℓ) is
étale at 𝑥.

Proposition 4.11 also holds for 𝚽ℓ,2 in place of 𝚽ℓ,1.
{cor:criteria}

Corollary 4.12. Let 𝑥 be a 𝑘-point of 𝒜𝑔(ℓ) such that both 𝚽ℓ,1(𝑥) and 𝚽ℓ,2(𝑥) only
have generic automorphisms. Then 𝑥 is a smooth 𝑘-point of A𝑔(ℓ), the points 𝚽ℓ,1(𝑥)
and 𝚽ℓ,2(𝑥) are both smooth 𝑘-points of A𝑔, and we have a commutative diagram

𝑇𝛷ℓ,1(𝑥)(𝒜𝑔) 𝑇𝑥(𝒜𝑔(ℓ)) 𝑇𝛷ℓ,2(𝑥)(𝒜𝑔)

𝑇𝚽ℓ,1(𝑥)(A𝑔) 𝑇𝑥(A𝑔(ℓ)) 𝑇𝚽ℓ,2(𝑥)(A𝑔)

𝑑𝛷ℓ,2𝑑𝛷ℓ,1

𝑑𝚽ℓ,2𝑑𝚽ℓ,1

where the vertical arrows are isomorphisms induced by the maps 𝒜𝑔(ℓ) → A𝑔(ℓ) and
𝒜𝑔 → A𝑔. In particular, the deformation map of the isogeny 𝜑 representing 𝑥 is given by
𝒟(𝜑) = 𝑑𝚽ℓ,2(𝑥) ∘ 𝑑𝚽ℓ,1

−1(𝑥).
Furthermore, let Ψ0 ⊂ A𝑔 × A𝑔 be the image of 𝚽ℓ, denote by 𝑝1, 𝑝2 ∶ Ψ0 → A𝑔 the

two projections, and let 𝑥0 = 𝚽ℓ(𝑥). If Ψ0 is normal at 𝑥0, then the deformation map
𝒟(𝜑) is given by 𝑑𝑝2(𝑥0) ∘ 𝑑𝑝1(𝑥0)−1.

Proof. For the first part, apply Proposition 4.11 for both 𝛷ℓ,1 and 𝛷ℓ,2. For the second
part, if Ψ0 is normal at 𝑦, then 𝚽ℓ ∶ A𝑔(ℓ) → Ψ0 is an isomorphism around 𝑥0 by
Proposition 4.10.
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{rem:stabpreserving}
Remark 4.13. Let 𝑥 be a 𝑘-point of 𝒜𝑔(ℓ) such that both 𝛷ℓ,1 and 𝛷ℓ,2 are stabilizer
preserving at 𝑥. Let 𝑦1 = 𝚽ℓ,1(𝑥), 𝑦2 = 𝚽ℓ,2(𝑥), and let 𝑦′

1, 𝑦′
2 be lifts of 𝑦1, 𝑦2 to 𝒜𝑔.

Let 𝐺 = 𝐼𝑥 be the common automorphism group of these objects. Even if 𝐺 contains
non-generic automorphisms, strong étaleness still allows us to compute the deformation
map by looking at the coarse spaces, as follows.

Indeed, suppose that 𝑥 is smooth in A𝑔(ℓ) (equivalently, by Proposition 4.11, 𝑦1, or
𝑦2, is smooth in A𝑔). Then, the same reasoning as in Corollary 4.12 holds for 𝑥, except
that in the commutative diagram the vertical maps are not isomorphisms, since the maps
to the coarse moduli spaces are not étale at 𝑥 and its images. From strong étaleness, the
maps on the bottom are isomorphisms, and it remains to explain how to recover the
maps on the top from them.

Let 𝐵1 be the completed local ring of 𝒜𝑔 at 𝑦′
1. Then by Corollary 4.4.(ii), the

completed local ring of A𝑔 at 𝑦1 is 𝐵𝐺
1 . Therefore, given 𝑚 = 𝑔(𝑔 + 1)/2 uniformizers

𝑢′
1, … , 𝑢′

𝑚 of 𝒜𝑔 at 𝑦′
1, we obtain 𝑔(𝑔 + 1)/2 uniformizers of A𝑔 at 𝑦1 as 𝐺-invariant

polynomials in 𝑢′
1, … , 𝑢′

𝑚. Knowing these polynomials and proceeding in the same way
at 𝑦2 allows us to recover the deformation map at the level of stacks up to an action of
non-generic elements of 𝐺, which amounts to changing the lifts 𝑦′

1 and 𝑦′
2.

In practice, it may be more convenient to work at the level of stacks to recover the
deformation map directly, rather than using 𝐺-invariants uniformizers on A𝑔. Algo-
rithmically, the choice depends on the degree of the field extension one has to take to
add enough level structure to rigidify the stack. For instance, if 𝑔 = 2 and 𝑘 is a finite
field, we only need an extension of degree at most 6 to get the 2-torsion, whereas over a
number field this could take an extension of degree up to 720.

More Details 4.14. We can also invoke Luna’s étale slice theorem as follow. ByTheorem 4.2.(ii),
there is a strongly étale representable affine morphism [𝑉/𝐺] → 𝒜𝑔, which is a pullback of the
étale 𝑉/𝐺 → A𝑔, and a 𝑣 ∈ 𝑉 whose image is 𝑦′

1. If 𝐺 contains non generic automorphisms, then
they won’t extend to the strict Hensel ring of 𝒜𝑔 at 𝑦′

1 (see Corollary 4.4.(ii)), and so they will not
be automorphisms of the deformations at 𝑦′

1, hence they will act on the deformation map.
If 𝑥 is tame, so 𝐺 is linearly reductive, by Luna’s étale slice theorem ([Lun73], [AHR20, The-

orem 1.1 and Theorem 2.1], [AHR19, Theorem 19.4]), which can be seen as a refinement of
Theorem 4.2.(ii) and Corollary 4.4.(ii), then (possibly after an étale extension of 𝑘 and after shrink-
ing 𝑉) there is a strongly étale morphism [𝑉/𝐺] → [𝑇𝑦′

1
𝒜𝑔/𝐺] which sends 𝑣 to 0, with the

natural linear action of 𝐺 on 𝑇𝑦′
1
𝒜𝑔.

In particular, étale locally around 𝑦′
1 the map 𝜋 ∶ 𝒜𝑔 → A𝑔 is given by [𝑇𝑦′

1
𝒜𝑔/𝐺]− >

𝑇𝑦′
1
𝒜𝑔/𝐺, and if 𝑥 is smooth in A𝑔(ℓ), so that 𝑦1 is smooth in A𝑔, then 𝑇𝑦1

𝒜𝑔 = 𝑇0(𝑇𝑦′
1
𝒜𝑔/𝐺).

So given𝑚 = 𝑔(𝑔+1)/2 uniformizers𝑢′
1, … , 𝑢′

𝑚 at 𝑦′
1, we get that the 𝑔(𝑔+1)/2 uniformizers

𝑢1, … , 𝑢𝑚 are 𝐺-invariants polynomials in 𝑢1, … , 𝑢𝑚. Passing to the completions, we recover
as above the maps 𝐴 → 𝐵 on the top, and 𝐴𝐺 → 𝐵𝐺. Up to an automorphism of 𝐵𝐺, the map
𝐴𝐺 → 𝐵𝐺 is determined by its degree one part 𝑑𝚽ℓ,1(𝑥), and so this determines the degree one
part 𝑑𝛷ℓ,1(𝑥) of 𝐴 → 𝐵 (since the automorphisms only change higher degree elements).

Remark 4.15. Let 𝑘 be a field. Then Proposition 4.11 and Corollary 4.12 also apply to
the map A𝑔(ℓ)(𝑘) → A(𝑘)

𝑔 × A(𝑘)
𝑔 , where A𝑔(ℓ)(𝑘) and A(𝑘)

𝑔 are the coarse moduli space
of 𝒜𝑔(ℓ) ⊗ 𝑘 and 𝒜𝑔 ⊗ 𝑘 respectively. In practice this does not change the results much,
since at points 𝑥 with generic automorphisms, we know thatA(𝑘)

𝑔 is isomorphic toA𝑔 ⊗𝑘

35



locally around 𝑥 byTheorem 4.3.(ii). Moreover, if the characteristic of 𝑘 is large enough,
then all points above 𝑘 are tame, so A(𝑘)

𝑔 = A𝑔 ⊗ 𝑘 byTheorem 4.3.(i).
Now assume that we are in the situation of Remark 4.13, with 𝑥 a 𝑘-point of 𝒜𝑔(ℓ)

such that both 𝛷ℓ,1 and 𝛷ℓ,2 are stabilizer preserving at 𝑥. Assume furthermore that 𝑥
is a tame point, and that the characteristic of 𝑘 is 𝑝. Let 𝑥0 = 𝚽ℓ(𝑥). If 𝚽ℓ is étale at 𝑥,
or equivalently 𝑥0 is normal in Ψ0, then 𝚽ℓ is étale above lifts in characteristic 0 of 𝑥.
The converse is also true: if 𝑥0 is not normal, then it must come from a singular point in
characteristic zero. Indeed, normality is equivalent to the conditions 𝑆2 and 𝑅1; since
Ψ0 ⊗ 𝑘 is reduced, so is 𝑆1 and 𝑅0, it suffices to check normality at lifts of characteristic
zero. This generalizes the remark of [Sch95, p. 248].

4.2.2 Birational invariants for abelian surfaces

In the case 𝑔 = 2, the structure of the coarse moduli space A2 and the possible automor-
phism groups have been worked out explicitly.

Recall that the Jacobian locus, denoted byM2, is the open locus in A2 consisting of
Jacobians of hyperelliptic curves. Igusa showed in [Igu60] that

M2 = Proj[𝐽2, 𝐽4, 𝐽6, 𝐽8, 𝐽10]/(𝐽2𝐽6 − 𝐽2
4 − 4𝐽8)(𝐽10),

and that there is only one singular point ofM2 over ℤ, given by the hyperelliptic curve
𝒞0 ∶ 𝑦2 = 𝑥5 − 1, which corresponds to the point 𝐽2 = 𝐽4 = 𝐽6 = 𝐽8 = 0. Over ℂ, in
[Igu62], Igusa shows that A2 has also in its singular locus two projective lines which
represent products of elliptic curves, one of which being isomorphic to 𝑦2 = 𝑥3 − 1 or to
𝑦2 = 𝑥4 − 1. Finally, the structure of A2 over ℤ is described in [Igu79], but the singular
locus is not determined.

The possible (reduced) groups of automorphisms of genus 2 curves over an alge-
braic closure are determined in [Igu60, §VIII]; see also [Liu93, §4.1]. We restrict to a
characteristic different from 2. Define 𝒞0 ∶ 𝑦2 = 𝑥5 − 1 and 𝒞1 ∶ 𝑦2 = 𝑥5 − 𝑥. Then
every curve 𝒞 not isomorphic to 𝒞0 or 𝒞1 satisfies #Aut(𝒞) ∈ {2, 4, 6}. In characteristic
different from 5, we have Aut𝒞0 = ℤ/10ℤ and #Aut𝒞1 ∈ {6, 8}. In characteristic 5,
Aut𝒞1 is an extension of PGL2(𝔽5), which has cardinality 120, by ℤ/2ℤ. In particular
we see that in characteristic 0 and 𝑝 > 5 all curves have a tame automorphism group.

From [Igu60; Str10; GL12], the covariants 𝐼2, 𝐼4, 𝐼′
6, 𝐼10 are defined over ℤ. They are

zero modulo 2, and 𝐼2, 𝐼4, 𝐼′
6 are all polynomials in 𝐽2 modulo 3. Therefore the Igusa

invariants 𝑗1, 𝑗2, 𝑗3 have bad reduction modulo 2 and do not generate the function field
ofM2 modulo 3. Over ℤ[1/6] however, they are birational invariants, and determine
an isomorphism from 𝑈 = {𝐼4 ≠ 0} ⊂ M2 to {𝑗3 ≠ 0} ⊂ 𝔸3. Every point with 𝐼4 = 0
maps to (𝑗1, 𝑗2, 𝑗3) = (0, 0, 0).

The modular polynomials Ψℓ,𝑖 from §2.6 are equations for the image Ψ0 ⊂ A𝑔 × A𝑔
of 𝚽ℓ intersected with 𝑈 × 𝑈 in 𝔸3 × 𝔸3 via 𝑗1, 𝑗2, 𝑗3.

{prop:defomatrix}
Proposition 4.16. Let Ψ1 denote the normalization of the variety cut out by the modular
polynomials Ψℓ,𝑖. Let 𝜑∶ 𝐴 → 𝐴′ be an ℓ-isogeny over a field 𝑘 of caracteristic 𝑝 > 5 or
𝑧𝑒𝑟𝑜, and let 𝑥 be the 𝑘-point ofΨ1 corresponding to𝜑. Assume that𝐴 and𝐴′ are Jacobians
with no extra automorphisms and that 𝐴, 𝐴′ ∈ 𝑈. Then the deformation map 𝒟(𝜑) of 𝜑
is given by 𝑑𝑝2(𝑥) ∘ 𝑑𝑝1(𝑥)−1, where 𝑝1, 𝑝2 denotes the projections Ψ1 ⊗ 𝑘 → 𝔸3

𝑘 .
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Proof. By assumption, the Igusa invariants induce an isomorphism between the tangent
spaces 𝑇𝐴(A𝑔) and 𝑇𝑗(𝐴)(𝔸3

𝑘), and similarly for 𝐴′. Since 𝐴 and 𝐴′ have no extra
automorphisms, 𝛷ℓ,1 and 𝛷ℓ,2 are automatically stabilizer preserving. The normaliza-
tion Ψ1 is isomorphic to the preimage of 𝑈 × 𝑈 in the coarse moduli space A𝑔(ℓ) by
the discussion before Proposition 4.11. Since 𝜑 is a tame point, by Theorem 4.3.(ii),
Ψ1 ⊗ 𝑘 is still the coarse moduli space of 𝒜𝑔,Γ0(ℓ) ⊗ 𝑘 locally around 𝜑, so we conclude
by Proposition 4.11.

Remark 4.17. We summarize different incarnations of the deformation map.

• At the level of stacks, the two projections𝛷ℓ,1, 𝛷ℓ,2 ∶ 𝒜𝑔(ℓ) → 𝒜𝑔 are always étale
and we can always compute the deformation map at an isogeny 𝜑 as 𝑑𝛷ℓ,2(𝜑) ∘
𝑑𝛷ℓ,1(𝜑)−1.

• At the level of the coarse moduli spaceA𝑔(ℓ), we can still compute the deformation
map at the points where 𝛷ℓ,1 and 𝛷ℓ,2 are stabilizer preserving. If this is not the
case, wemust add a level structure that kills the automorphisms that do not stabilize
the kernel of the isogeny.

• We may then replace A𝑔(ℓ) by its birational image in A2
𝑔. We recover the deforma-

tion map at points 𝑥 ∈ A2
𝑔 where there is a local isomorphism 𝛷−1

ℓ (𝑈) → 𝑈 for
some open set 𝑈 containing 𝑥. If this is not the case, we may instead recoverA𝑔(ℓ)
from its birational image by computing the normalization. It is usually enough
to compute the normalization once and for all over ℤ, since byTheorem 4.3 the
formation of A𝑔(ℓ) commutes with arbitrary base change at tame points.

• Finally, when 𝑔 = 2, we can use the birational morphism from A2 to 𝔸3 given by
the three Igusa invariants. Modular polynomials are usually given in this form.
With Streng’s version of Igusa invariants, they can be used as long as 𝐼4 ≠ 0,
i.e. 𝑗3 ≠ 0. Otherwise, one has to compute the modular polynomials for another
set of invariants which are defined at 𝐴 and 𝐴′.

As we go down the list, modular equations become algorithmically more tractable, at
the expense of introducing more exceptions; but if we find such an exception, we can
always spend more computation time if needed in order to recover the deformation map.

4.2.3 Hilbert–Blumenthal stacks

We now briefly describe Hilbert–Blumenthal stacks, and refer to [Rap78; Cha90] for
more details. Let 𝐾 be a real number field of dimension 𝑔, and let ℤ𝐾 be its maximal
order. We say that an abelian scheme 𝐴 → 𝑆 has real multiplication by ℤ𝐾 (or, for short,
is RM) if it is endowed with a morphism 𝜄 ∶ ℤ𝐾 → End(𝐴) such that Lie(𝐴) is a locally
free ℤ𝐾 ⊗ 𝒪𝑆-module of rank 1. This last condition can be checked on geometric fibers
[Rap78, Rem. 1.2] and is automatic on fibers of characteristic zero [Rap78, Prop. 1.4].

We let ℋ𝑔 be the stack of principally polarized abelian schemes with real multiplica-
tion by ℤ𝐾. It is algebraic and smooth of relative dimension 𝑔 over Specℤ [Rap78,
Thm. 1.14]. Moreover, ℋ𝑔 is connected and its generic fiber is geometrically con-
nected [Rap78, Thm. 1.28]. Forgetting the real multiplication embedding 𝜄 yields a
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map ℋ𝑔 → 𝒜𝑔, called the Hilbert embedding, which is an Isom(ℤ𝐾, ℤ𝐾) ≃ Gal(𝐾)-
gerbe over its image, the Humbert stack. We described the analytification of ℋ𝑔 and
the Hilbert embedding in Section 2. The map from ℋ𝑔 → 𝒜𝑔 is finite by [Gro64, EGA
IV.15.5.9], [DR73, Lem 1.19] (or by looking at the compactifications of [Rap78], [FC90]).

One can define the stack ℋ𝑔,𝑛 → ℤ[1/𝑛] of RM abelian schemes with a level 𝑛
structure in the usual way. Themapℋ𝑔,𝑛 → ℋ𝑔 is étale overℤ[1/𝑛] [Rap78,Thm. 1.22],
its generic fiber is connected, and geometrically has 𝜙(𝑛) components defined over
ℚ(𝜁𝑛) [Rap78, Thm. 1.28]. If 𝛽 is a totally positive prime of ℤ𝐾, this allows us to
construct, in a similar fashion to 𝒜𝑔(ℓ), the stack ℋ𝑔(𝛽) = ℋ𝑔,Γ0(𝛽) of RM abelian
schemes endowed with a subgroup 𝐾 which is maximal isotropic for the 𝛽-pairing. We
have a map

𝛷𝛽 = (𝛷𝛽,1, 𝛷𝛽,2) ∶ ℋ𝑔(𝛽) → ℋ𝑔 × ℋ𝑔

given by forgetting the extra structure and taking the isogeny respectively. The condition
on 𝛽 ensures that 𝛷𝛽,2 sends ℋ𝑔(𝛽) to ℋ𝑔.

The methods of Section 4.2.1 also apply to compute the Hilbert deformation map.
We have the following analogue of Corollary 4.12, with a similar proof.

{prop:hilbert-criteria}
Proposition 4.18. Let 𝑥 be a 𝑘-point of ℋ𝑔(𝛽) such that 𝛷𝛽,1(𝑥) and 𝛷𝛽,2(𝑥) only have
generic automorphisms. Then 𝑥 maps to a smooth point of the coarse moduli spaceH𝑔(𝛽),
both 𝛷𝛽,1(𝑥) and 𝛷𝛽,2(𝑥) map to smooth points of the coarse moduli spaceH𝑔, and we
have a commutative diagram

𝑇𝛷𝛽,1(𝑥)(ℋ𝑔) 𝑇𝑥(ℋ𝑔(𝛽)) 𝑇𝛷𝛽,2(𝑥)(ℋ𝑔)

𝑇𝚽𝛽,1(𝑥)(H𝑔) 𝑇𝑥(H𝑔(𝛽)) 𝑇𝚽𝛽,2(𝑥)(H𝑔)

𝑑𝛷𝛽,2𝑑𝛷𝛽,1

𝑑𝚽𝛽,2𝑑𝚽𝛽,1

where the vertical arrows are isomorphisms induced by the maps 𝒜𝑔(ℓ) → A𝑔(ℓ) and
𝒜𝑔 → A𝑔, and 𝚽𝛽,𝑖 is the map induced by 𝛷𝛽,𝑖 at the level of coarse spaces. In particular,
the deformation map of the isogeny 𝜑 representing 𝑥 is given by 𝒟(𝜑) = 𝑑𝚽𝛽,2(𝑥) ∘
𝑑𝚽𝛽,1

−1(𝑥).

Corollary 4.19. Let 𝑥 be a 𝑘-point of ℋ𝑔(𝛽) such that both 𝑥1 = 𝛷𝛽,1(𝑥) and 𝑥2 =
𝛷𝛽,2(𝑥) only have generic automorphisms. Assume furthermore that (𝑥1, 𝑥2) does not lie
in 𝛷𝛽(ℋ𝑔(𝛽)): this means that the corresponding abelian varieties are 𝛽-isogenous but
not 𝛽-isogenous.

LetΨ𝛽 ⊂ H𝑔×H𝑔 be the image of𝚽𝛽. LetΨ𝛽,𝛽 ⊂ A𝑔×A𝑔 be the image ofΨ𝛽, and let
𝑦 = (𝑦1, 𝑦2) the image of (𝑥1, 𝑥2) by the forgetful morphismH𝑔 ×H𝑔 → A𝑔 ×A𝑔. Denote
by 𝑝1, 𝑝2 ∶ Ψ𝛽,𝛽 → A𝑔 the two projections. If Ψ𝛽,𝛽 is normal at 𝑦, then the deformation
map 𝒟(𝜑) is given by 𝑑𝑝2(𝑦) ∘ 𝑑𝑝1(𝑦)−1.

Proof. Themap ℋ𝑔 → 𝒜𝑔 is finite étale, and under our assumptions the maps ℋ𝑔 → H𝑔
and 𝒜𝑔 → A𝑔 are étale at 𝑥1 and 𝑥2 (resp. at their images 𝑦1, 𝑦2 in 𝒜𝑔). Therefore the
mapH𝑔 ×H𝑔 → A𝑔 ×A𝑔 is étale at 𝑥′ = (𝑥1, 𝑥2). Furthermore the pullback of Ψ𝛽,𝛽 by
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H𝑔 ×H𝑔 → A𝑔 ×A𝑔 is Ψ𝛽 ∪ Ψ𝛽 ⊂ H𝑔 ×H𝑔, so the map Ψ𝛽 ∪ Ψ𝛽 → Ψ𝛽,𝛽 is étale at 𝑥′.
Since 𝛷𝛽 is finite, its image Ψ𝛽 ⊂ H𝑔 × H𝑔 is closed. By our assumption on 𝑥, there is
an open subscheme containing 𝑥 which does not intersect Ψ𝛽, so the map Ψ𝛽 → Ψ𝛽,𝛽 is
étale at 𝑥′. In particular, Ψ𝛽 is normal at 𝑥′ if and only if Ψ𝛽,𝛽 is normal at 𝑥. The same
proof as in Corollary 4.12 shows that the projections maps Ψ𝛽 → H𝑔 are étale at 𝑥′, and
can be used to compute the deformation matrix. SinceH𝑔 → A𝑔 is étale at 𝑥1 and 𝑥2,
the projections 𝑝1 and 𝑝2 are also étale at 𝑦, and can be used to compute the deformation
matrix as well.

More Details 4.20. If 𝐴 has real multiplication, there is always a polarization compatible with
𝜄 ∶ ℤ𝐾 → End(𝐴) [Rap78, Proposition 1.10]. In fact the possible compatible polarizations form a
projective ℤ𝐾-module 𝑃 of rank 1 with positivity. The stack ℋpol

𝑔 of polarized abelian schemes
with real multiplication is algebraic and smooth of relative dimension 𝑔 over Specℤ [Rap78,
Théorème 1.14]. Isomorphisms classes of polarization modules 𝑃 as above are indexed narrow
class group Cl+(ℤ𝐾). Therefore ℋpol

𝑔 decomposes as ℋpol
𝑔 = ∐𝑃∈Cl+(ℤ𝐾) ℋpol,𝑃

𝑔 where ℋpol,𝑃
𝑔 is

the open substack of abelian schemes with real multiplication and polarization type 𝑃 [Cha90, §1],
[Rap78, Preuve du thm. 1.28]. Over ℂ, the analytification of ℋpol,𝑃

𝑔 is given by ℍ𝑔
1/ Sl2(ℤ𝐾 ⊕𝑃∨),

where a point (𝑡1, … , 𝑡𝑔) ∈ ℍ𝑔
1 represents the abelian varietyℂ𝑔/(Σ(𝑃∨)⊕Diag(𝑡1, … , 𝑡𝑔)Σ(ℤ𝐾)),

whereΣ∶ 𝐾 → ℝ𝑔 is the collection of the 𝑔 real embeddings of𝐾. For any𝜆 ∈ 𝑃 the corresponding
hermitian form of the polarization is given by 𝐻𝜆(𝑧, 𝑤) = ∑𝑔

𝑖=1 𝜆𝑖𝑧𝑖𝑤𝑖/ℑ𝑡𝑖.
Then ℋ𝑔 = ℋpol,ℤ𝐾

𝑔 is the substack which corresponds to principally polarizable abelian
schemes, ℋ𝑔,𝑛 ⊗ ℚ(𝜁𝑛) is geometrically connected.

We can also construct ℋpol
𝑔,Γ0(𝐼) for any ideal 𝐼 of ℤ𝐾, but in this case the corresponding 𝛷𝛽,2

isogeny map would map ℋpol
𝑔,Γ0(𝐼)

𝑃
to ℋpol

𝑔
𝐼⊗𝑃

[Kie20, §3.4].
Note that the deformation map is represented by an element of ℤ𝐾 ⊗ 𝒪𝑆 instead of a 𝑔(𝑔 +

1)/2 × 𝑔(𝑔 + 1)/2 𝒪𝑆-matrix.

4.3 The deformation and tangent maps
{subsec:defo}

In this section, we present the Kodaira–Spencer isomorphism, which for a principally
polarized abelian variety 𝐴 identifies 𝑇𝐴(𝒜𝑔) with Sym2(𝑇0(𝐴)). This yields a relation
between the deformation and tangent maps of a given ℓ-isogeny (Proposition 4.24). We
also present an analogous result in the Hilbert case.

More Details 4.21. Let 𝑓 ∶ 𝐴 → 𝐵 be a rational ℓ-isogeny between two principally polarized
abelian varieties defined over a field 𝑘, of character prime to ℓ. So (the isomorphism classes of) 𝐴
and 𝐵 are points in 𝒜𝑔(𝑘) and 𝑓 is a point in 𝒜𝑔(ℓ)(𝑘). A deformation of 𝐴 is an abelian scheme
𝒜 over 𝑘[𝜖] such that 𝒜𝑘 = 𝐴. In particular this is a point of 𝒜𝑔(𝑘[𝜖]) above 𝐴 ∈ 𝒜𝑔(𝑘), or in
other words 𝒜 is given by a choice of tangent vector 𝜏𝐴 above 𝐴 in 𝒜𝑔.

Given such a deformation scheme, by étaleness of 𝒜𝑔(ℓ) → 𝒜𝑔 over ℤ[1/ℓ], there is a unique
lift of 𝑓 to an isogeny 𝑓 ∶ 𝒜 → ℬ where ℬ is a deformation of 𝐵. Explicitly ℬ is the quotient
scheme of the unique lift of Ker 𝑓 to 𝒜. In particular ℬ corresponds to a tangent vecteur 𝜏𝐵 above
𝐵 in A𝑔. This gives a linear map Φ(𝑓 ) ∶ 𝑇A𝑔,𝐴 → 𝑇A𝑔,𝐵, 𝜏𝐴 ↦ 𝜏𝐵, Φ(𝑓 ) which is simply the
deformation map 𝐷𝚽ℓ,2

(𝑓 ) ∘ 𝐷−1
𝚽ℓ,1

(𝑓 ) of 𝑓.
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4.3.1 The Siegel case

TheKodaira-Spencer morphism was first introduced in [KS58]; we refer to [FC90, §III.9]
and [And17, §1.3] for more details.

Let 𝑝∶ 𝐴 → 𝑆 be a proper abelian scheme, and assume for simplicity that 𝑆 is smooth.
Then, using the Gauss-Manin connection

∇∶ 𝑅1𝑝∗Ω𝐴/𝑆 → 𝑅1𝑝∗Ω𝐴/𝑆 ⊗ Ω1
𝑆,

one can define the Kodaira–Spencer morphism

𝜅∶ 𝑇𝑆 → 𝑅1𝑝∗𝑇𝐴/𝑆,

where 𝑇𝐴/𝑆 is the dual of Ω1
𝐴/𝑆. {{ Note that 𝑆 smooth is enough for our purpose since we will

apply this to 𝒜𝑔, or rather to an étale presentation 𝑆 of 𝒜𝑔). }}
Recall that Lie𝑆 𝐴 = 𝑝∗𝑇𝐴/𝑆 is the dual of 𝑝∗Ω1

𝐴/𝑆, and is canonically identified
with 𝑠∗𝑇𝐴𝑆

where 𝑠 ∶ 𝑆 → 𝐴 is the zero section [MvE12, Prop. 3.15]. By the projection
formula [FGI+05, Thm. 8.3.2], [The18, Tag 0943], we have

𝑅1𝑝∗𝑇𝐴/𝑆 = Lie𝑆(𝐴) ⊗𝒪𝑆
𝑅1𝑝∗𝒪𝐴.

Moreover, 𝑅1𝑝∗𝒪𝐴 is naturally isomorphic to Lie𝑆(𝐴∨), where 𝐴∨ → 𝑆 is the dual of 𝐴.
Therefore, we can also write the Kodaira–Spencer map as

𝜅∶ 𝑇𝑆 → 𝑅1𝑝∗𝑇𝐴/𝑆 ≃ Lie𝑆(𝐴) ⊗𝒪𝑆
Lie𝑆(𝐴∨).

The Kodaira-Spencer map 𝜅 is invariant by duality. A polarization 𝐴 → 𝐴∨ induces
another version of the Kodaira–Spencer map:

𝜅∶ 𝑇𝑆 → Sym2 Lie𝑆(𝐴) = HomSym(Ω1
𝐴/𝑆, Ω1 ∨

𝐴∨/𝑆) = HomSym(Lie𝑆(𝐴)∨, Lie𝑆(𝐴∨)).

If we apply this construction to the universal abelian scheme 𝒳𝑔 → 𝒜𝑔 (or rather,
the pullback of 𝒳𝑔 to an étale presentation 𝑆 of 𝒜𝑔), the Kodaira–Spencer map is an
isomorphism [And17, §2.1.1]. Its analytification can be described explicitly.

{prop:analytic_kodaira}
Proposition 4.22. Let𝑉 be the trivial vector bundleℂ𝑔 onℍ𝑔, identified with the tangent
space at 0 of the universal abelian variety 𝐴(𝜏) over ℍ𝑔. Then the pullback of the Kodaira–
Spencer map 𝜅∶ 𝑇𝒜𝑔

→ Sym2 Lie𝑆 𝒳𝑔 by ℍ𝑔 → 𝒜𝑔
an is an isomorphism 𝑇ℍ𝑔

≃ Sym2𝑉
given by

𝜅(
1 + 𝛿𝑗𝑘

2𝜋𝑖
𝜕

𝜕𝜏𝑗𝑘
) =

1
(2𝜋𝑖)2

𝜕
𝜕𝑧𝑗

⊗
𝜕

𝜕𝑧𝑘
.

for each 1 ≤ 𝑗, 𝑘 ≤ 𝑔, where 𝛿𝑗𝑘 is the Kronecker symbol.

Proof. The fact that the pullback is an isomorphism is [And17, §2.2]. The identification
itself can be derived by looking at the deformation of a section 𝑠 of the line bundle
on 𝒳𝑔 giving the principal polarization. {{ Precisely, if (𝐴, ℒ) is a principally polarized abelian
variety, and 𝑠 a non zero section of ℒ, each deformation (𝐴𝜖, ℒ𝜖) gives a deformation 𝑠𝜖. }} On
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ℍ𝑔 × ℂ𝑔 → ℍ𝑔, we can take the theta function 𝜃 as a section, and its deformation
along 𝜏 is given by the heat equation [Cv00, p. 9]:

2𝜋𝑖(1 + 𝛿𝑗𝑘)
𝜕𝜃

𝜕𝜏𝑗𝑘
=

𝜕2𝜃
𝜕𝑧𝑗𝜕𝑧𝑘

.

When identifying the tangent space at 𝜏 with the symmetric matrices, the action
of Sym2 at a matrix 𝑈 on the tangent space is given by 𝑀 ↦ 𝑀𝑈𝑀𝑡. It is then easy
to check that this action is indeed compatible with the action of Sp2𝑔(ℤ) on 𝜏 and 𝑈.
From Proposition 4.22, we recover that derivatives of Siegel modular invariants have
weight Sym2 in the sense of §2; moreover the basis of differential forms 𝜔(𝜏) from §2.1
and the matrix 𝐷𝜏𝐽 defined in §3.4 are correctly normalized.

To sum up, if 𝑥 ∶ Spec 𝑘 → 𝒜𝑔 is a point represented by a principally polarized
abelian variety 𝐴/𝑘, we have a canonical isomorphism 𝑇𝑥𝒜𝑔 ≃ Sym2(𝑇0(𝐴)).

{def:siegel_defo_matrix}
Definition 4.23. Let 𝑘 be a field of characteristic distinct from ℓ, let 𝜑∶ 𝐴 → 𝐴′ be an
ℓ-isogeny representing a point of𝒜𝑔(ℓ)(𝑘), and fix bases of 𝑇0(𝐴) and 𝑇0(𝐵) as 𝑘-vector
spaces. We call the matrix of the tangent map 𝑑𝜑 in these bases the tangent matrix of 𝜑.

By functoriality, this choice of bases induces bases of 𝑇𝐴(𝒜𝑔) and 𝑇𝐴′(𝒜𝑔) over 𝑘.
We call the matrix of the deformation map 𝒟(𝜑) in these bases the deformation matrix
of 𝜑.

We still denote these matrices by 𝑑𝜑 and 𝒟(𝜑), but this abuse of notation should
cause no confusion.

We can now extend the relation that we gave in Proposition 3.19 between the tangent
and deformation matrices, as follows.

{prop:defo_siegel}
Proposition 4.24. Let 𝜑 be as in Definition 4.23, and let 𝑑𝜑 (resp. 𝒟(𝜑)) be its tangent
(resp. deformation) matrix. Then we have Sym2(𝑑𝜑) = ℓ𝒟(𝜑).

Proof. It suffices to prove it for the universal ℓ-isogeny

𝜑∶ 𝒳𝑔(ℓ) → 𝒳𝑔 ×𝒜𝑔
𝒜𝑔(ℓ)

over ℤ[1/ℓ]. All line bundles involved in the relation we have to prove are locally free
on smooth stacks, so are flat over ℤ; therefore, since ℤ → ℂ is injective, it suffices to
prove the relation over ℂ. By rigidity [MFK94, Prop. 6.1 andThm. 6.14], it suffices to
prove the relation on each fiber.

Hence we may assume that 𝜑∶ 𝐴 → 𝐴′ is an ℓ-isogeny over ℂ. We can find 𝜏 ∈ ℍ𝑔
such that𝐴 is isomorphic toℂ𝑔/(ℤ𝑔+𝜏ℤ𝑔) and𝐴′ is isomorphic toℂ𝑔/(ℤ𝑔+𝜏/ℓℤ𝑔),
with 𝜑 induced by the identity on ℂ𝑔. Then, the deformation map at 𝜑 is given by
𝜏 → 𝜏/ℓ, so the result follows.

More Details 4.25. • We give an alternative proof using modular polynomials. We may take
our basis such that 𝑑𝑓 = Id (we say that 𝑓 is a normalized isogeny). If 𝐴 correspond to the
abelian variety ℂ𝑔/(ℤ𝑔 + 𝜏ℤ𝑔), then since 𝑓 is normalized it is the identity on ℂ𝑔, so 𝐵 is
given by ℂ𝑔/(ℤ𝑔 + 𝜏/ℓℤ𝑔). Let 𝐴𝜖 be a deformation of 𝐴 over ℂ[𝜖] (where 𝜖2 = 0), and
𝐵𝜖 the deformation induced by 𝑓. Then taking 𝑗 a set of local uniformizers at 𝐴 and 𝐵 and
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Φℓ modular equations in these uniformizers, we have Φℓ(𝑗(𝐴𝜖), 𝑗(𝐵𝜖)) = 0. Thus we get a
relation involving 𝒟(𝑓 )(𝑡𝜖) where 𝑡𝜖 is the tangent vector corresponding to 𝐴𝜖. On the
other hand, differentiating the relation Φℓ(𝑗(𝜏), 𝑗(𝜏/ℓ)) = 0 shows that in the normalized
basis 𝒟(𝑓 ) = Id /ℓ. Alternatively, working on ℍ𝑔, we see directly that the deformation
map is given by 𝜏 → 𝜏/ℓ, so 𝒟(𝑓 ) = Id /ℓ.

• In the proof above, if we take 𝑓 to be given by 𝑧 ↦ ℓ𝑧 on ℂ𝑔, then 𝐵 = ℂ𝑔/(ℤ𝑔 + ℓ𝜏ℤ𝑔).
Then differentiating the relation Φℓ(𝑗(𝜏), 𝑗(ℓ𝜏)) = 0, shows that in a ℓ-normalized basis,
𝒟(𝑓 ) = ℓ Id. This is coherent with the fact that changing the tangent matrix 𝑑𝑓 by a factor ℓ
change Sym2 𝑑𝑓 by ℓ2.

• The multiplication by [𝑚] map is an 𝑚2-isogeny, and acts by 𝑚 on the tangent space.
Hence the deformation matrix is the identity, as expected from the fact that [𝑚] lift on any
deformation of 𝐴.

4.3.2 The Hilbert case

In the Hilbert case, the Kodaira–Spencer isomorphism is as follows.
{prop:kodaira_hilbert}

Proposition 4.26. Let 𝐴 → 𝑆 be an abelian scheme in ℋ𝑔. Then we have canonical
isomorphisms

𝑇𝐴(ℋ𝑔) ≃ Homℤ𝐾⊗𝒪𝑆
(Lie(𝐴)∨, Lie(𝐴∨)) = Lie(𝐴∨) ⊗ℤ𝐾⊗𝒪𝑆

Lie(𝐴) ⊗ℤ𝐾
ℤ∨

𝐾.

Proof. Combine [Rap78, Prop. 1.6] with [Rap78, Prop. 1.9].

More Details 4.27. By the above Propositions of [Rap78], the functor of formal deformations of
RM abelian schemes with or without polarization are the same; in other words, all deformations
which preserve the real multiplication automatically preserve the polarization. By contrast for an
abelian scheme with a separable polarization, the formal functor of deformations (without polar-
ization) is represented by 𝑊(𝑘)[[[𝑡11, … , 𝑡𝑔𝑔]][Oor71, Thm. 2.2.1] and the one with polarization
by 𝑊(𝑘)[[[𝑡11, … , 𝑡𝑔𝑔]]/(𝑡𝑖𝑗 − 𝑡𝑗𝑖) [Oor71, Thm. 2.3.3 and Rem. p. 288].

Proposition 4.26 shows that for Hilbert–Blumenthal stacks, the deformation map is
actually represented by an element of ℤ𝐾 ⊗ 𝒪𝑆 rather than a matrix in 𝒪𝑆. The action
of the Hilbert embedding on tangent spaces is also easy to describe.

{prop:ks_embedding}
Proposition 4.28. Let 𝐴 be a 𝑘-point of ℋ𝑔. Then the map 𝑇𝐴(ℋ𝑔) → 𝑇𝐴(𝒜𝑔) induced
by the forgetful functor fits in the commutative diagram

𝑇𝐴(ℋ𝑔) 𝑇𝐴(𝒜𝑔)

Homℤ𝐾⊗𝒪𝑘
(Lie(𝐴)∨, Lie(𝐴∨)) HomSym(Lie(𝐴)∨, Lie(𝐴∨)).

where the vertical arrows are theKodaira–Spencer isomorphisms. {{ As a reformulation: the for-
getful functor ℋ𝑔 → 𝒜𝑔 induces the following map on tangent spaces. If 𝐴 → 𝑘 represents the geomet-
ric point Spec 𝑘 → ℋ𝑔, then 𝑇𝐴,ℋ𝑔

→ 𝑇𝐴,𝒜𝑔
is given by the natural map Lie(𝐴)⊗ℤ𝐾⊗𝑘 Lie(𝐴)⊗ℤ𝐾

ℤ∨
𝐾 ≃ Homℤ𝐾⊗𝑘(Lie(𝐴)∨, Lie(𝐴∨)) → Sym2 Lie(𝐴) ≃ HomSym(Lie(𝐴)∨, Lie(𝐴∨)). }}
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Proof. The bottom arrow is well-defined: Lie(𝐴) is a projective ℤ𝐾 ⊗𝒪𝑘-sheaf of rank 1,
so its image in Hom𝒪𝑘

(Lie(𝐴)∨, Lie(𝐴∨)) obtained by forgetting the ℤ𝐾-structure is
automatically symmetric. We omit the proof of commutativity.

Combining Proposition 4.28 with the analytic description of the Kodaira–Spencer in
the Siegel case (Proposition 4.22) and the analytic description of the forgetful map (§2.4),
we obtain the following analytic description of the Kodaira–Spencer isomorphism in the
Hilbert case.

Corollary 4.29. The pullback of 𝜅∶ 𝑇ℋ𝑔
→ Sym2 𝐿𝑖𝑒𝑆𝑋𝑔 by ℍ𝑔

1 → ℋ𝑔
an is given by

𝜅(
1
𝜋𝑖

𝜕
𝜕𝑡𝑗

) =
1

(2𝜋𝑖)2
𝜕

𝜕𝑧𝑗
⊗

𝜕
𝜕𝑧𝑗

for every 1 ≤ 𝑗 ≤ 𝑔.

This result provides an algebraic interpretation of Proposition 3.22: in genus 2, the
part of 𝑇𝐴(𝒜2) that comes from the Hilbert space corresponds to the span of 𝑑𝑧1 ⊗ 𝑑𝑧1
and 𝑑𝑧2 ⊗ 𝑑𝑧2.

We obtain the analogue of Proposition 4.24 in the Hilbert case by a similar proof; in
this statement, we see 𝒟(𝜑) as an element of a ℤ𝐾 ⊗ 𝒪𝑆-module.

{prop:defo_hilbert}
Proposition 4.30. Let 𝜑∶ 𝐴 → 𝐴′ be a 𝛽-isogeny. Then Sym2(𝑑𝜑) = 𝛽𝒟(𝜑).

Proof Details. The forgetting map ℋ𝑔 to 𝒜𝑔 is given over ℂ by Proposition 2.16 and the action on
the tangent space at the periodmatrices and on the tangent spaceℂ𝑔 at 0 of the corresponding com-
plex abelian varieties is compatible with the Sym2 action by the same proof as in Proposition 3.22.
The conclusion then follows from Proposition 4.22 and ??

{rem:hilbert_tangent}{rem:trivialization}
Remark 4.31. We give an algebraic interpretation of the notion of Hilbert-normalized
bases from §2.3, and the reduction to diagonal matrices that we used in §3.5 to compute
the tangent matrix in the Hilbert case.

Let 𝑘 be a field, and let𝐴 be an abelian variety representing a 𝑘-point ofℋ𝑔. ThenLie(𝐴)
is a free ℤ𝐾 ⊗ 𝑘-module of rank 1, and any choice of basis 𝑣 induces an isomorphism
with ℤ𝐾 ⊗ 𝑘 itself. Provided that char 𝑘 ∤ Discr(𝐾), and up to taking an étale extension
of 𝑘, we may assume that 𝑘 splits ℤ𝐾:

ℤ𝐾 ⊗ 𝑘 = ⊕𝑔
𝑖=1𝑘𝜎𝑖

where 𝑘𝜎𝑖 ≃ 𝑘 has a ℤ𝐾-module structure induced by the 𝑖-th embedding 𝜎𝑖 ∶ ℤ𝐾 → 𝑘.
We fixed such a trivialization in §2.3 in the case 𝑘 = ℂ. Then, 𝑣 induces a basis of Lie(𝐴)
as a 𝑘-vector space on which ℤ𝐾 acts diagonally, in other words a Hilbert-normalized
basis of Lie(𝐴). With such choices of trivializations, the deformation map as given by a
𝑔 × 𝑔 matrix in the basis (𝑣1 ⊗ 𝑣1, … , 𝑣𝑔 ⊗ 𝑣𝑔) of the tangent spaces to ℋ𝑔.

Let us discuss, as a generalization of §3.6, the construction of Hilbert-normalized
basis when only the Humbert equation is given. Assume that 𝑘 splits ℤ𝐾 and fix a
trivialization; let (𝑣1, … , 𝑣𝑔) be a Hilbert-normalized basis of Lie(𝐴), let (𝑤1, … , 𝑤𝑔)
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be another 𝑘-basis and let 𝑀 be the base-change matrix. Then 𝑤1 ⊗ 𝑤1, … , 𝑤𝑔 ⊗ 𝑤𝑔
are tangent to the Humbert variety if and only if they are in the image of the map

Homℤ𝐾⊗𝒪𝑘
(Lie(𝐴)∨, Lie(𝐴∨)) → HomSym(Lie(𝐴)∨, Lie(𝐴∨)).

Via the trivialization, the left hand side is isomorphic to ⊕𝑔
𝑖=1 Hom𝑘(𝑘𝜎𝑖, 𝑘𝜎𝑖). So 𝑤1 ⊗

𝑤1, … , 𝑤𝑔 ⊗ 𝑤𝑔 are tangent to the Humbert variety if and only if 𝑀 is diagonal up to a
permutation. When Gal(𝐾/ℚ) is not the full symmetric group 𝔖𝑔, this is not enough
in general to ensure that the basis (𝑤1, … , 𝑤𝑔) is potentially Hilbert-normalized. This
issue does not appear in genus 2.

As a final remark, assume that 𝜑∶ 𝐴 → 𝐴′ is an isogeny compatible with the real
multiplication, and assume that we are given bases of Lie(𝐴) and Lie(𝐴′) as ℤ𝐾 ⊗ 𝑘-
modules (whichwe assume is étale for simplicity). Then, knowing Sym2(𝑑𝜑), the number
of possibilities for 𝑑𝜑 is 2𝑠 where 𝑠 is the number of connected components of the étale
algebra ℤ𝐾 ⊗ 𝑘. For instance, if 𝑔 = 2 and 𝑘 = 𝔽𝑝 there are 2 or 4 possibilities according
to whether 𝑝 is inert or split in ℤ𝐾.

MoreDetails 4.32. Thus the results of this section allows to recover purely algebraically the results
of Propositions 3.22 and 3.24 and extend them to all dimension 𝑔.

When 𝑘 = ℂ, the trivialization of ℤ𝐾 ⊗ ℂ is given by a numerotation of the 𝑔 embeddings of
ℤ𝐾 into ℝ, and the analytic description of ℋ𝑔 shows that on 𝑇0𝐴 we may take 𝑣𝑖 = 𝑑𝑧𝑖.

The discussion above of Hilbert-normalized can be detailed as follow. If 𝑥 ∈ ℋ𝑔 represents an
abelian variety 𝐴/𝑘 with real multiplication, but we are only given the image of 𝑥 in 𝒜𝑔, then we
only have Lie(𝐴) as a 𝑘-module. Likewise, the tangent equations of the Humbert moduli in 𝒜𝑔 at
𝐴 only allows us to recover 𝑇ℋ𝑔

(𝐴) as a 𝑘-vector space. The choice of an ℤ𝐾 module structure on
Lie𝐴 then essentially corresponds to a choice of a preimage of 𝐴 in ℋ𝑔 [Rap78, Prop. 1.4]; there
are Gal(𝐾) possibilities. As we saw above, the generalization of Proposition 3.24 only gives that
if 𝑤1 ⊗ 𝑤1, … , 𝑤𝑔 ⊗ 𝑤𝑔 are tangent to the Humbert variety, then the action of ℤ𝐾 on the 𝑤𝑖 is
diagonal. But when Gal(𝐾) is not the full symmetric group 𝔖𝑛 then this is not enough to get that
the action is induced by the given trivialization, even up to Galois conjugation, so (𝑤1, … , 𝑤𝑔)
may not be potentially Hilbert-normalized. To treat this case, the explicit action of ℤ𝐾 on Lie(𝐴)
is required.

Likewise, if 𝑓 ∶ 𝐴 → 𝐵 be an isogeny compatible with real multiplication between abelian
varieties with real multiplication, then seeing Sym2 Lie𝐴 and Sym2 Lie𝐵 only as 𝑂𝑘-modules,
there are a priori 2𝑔 possibilities for 𝑑𝑓 (since by the discussion above, eventually taking an étale
extension of 𝑘, we can assume 𝑑𝑓 diagonal since 𝑓 is compatible with the real multiplication). Here
again the ℤ𝐾-action is important to get the 2𝑠 possibilities of Remark 4.31.

4.4 Modular forms and covariants
{subsec:mf-ZZ}

In this section, we give an algebraic interpretation of modular forms and covariants
over ℤ, as well as a completely algebraic proof of Theorem 3.9. This yields an explicit
version of the Kodaira–Spencer isomorphism in themodel ofA𝑔 given by Igusa invariants
overℤ[1/2] and not only overℂ. {{ Indeed, to apply the results of Sections 4.2 and 4.3, we need
to describe models of 𝒜𝑔 andA𝑔, and give an explicit version of the Kodaira-Spencer isomorphism
on these models. But there is a canonical model on 𝒜𝑔, given by the Hodge line bundle, whose
sections are modular form. So in this section, we reinterpret the results of Section 3 to show that
they still hold over ℤ. }}
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Let 𝜋 ∶ 𝒳𝑔 → 𝒜𝑔 be the universal abelian variety. The vector bundle

ℎ = 𝜋∗Ω1
𝒳𝑔/𝒜𝑔

over 𝒜𝑔, which is dual to Lie𝒳𝑔/𝒜𝑔
, is called the Hodge bundle. If 𝜌 is a representation of

GL𝑔, a Siegel modular form of weight 𝜌 is a section of 𝜌(ℎ); in particular, a scalar-valued
modular form of weight 𝑘 is a section of Λ𝑔ℎ⊗𝑘. In other words, a Siegel modular form 𝑓
can be seen as a map

(𝐴, 𝜔) ↦ 𝑓 (𝐴, 𝜔)
where 𝐴 is a point of 𝒜𝑔 and 𝜔 is a basis of differential forms on 𝐴, with the following
property: if 𝜂∶ 𝐴 → 𝐴′ is an isomorphism, and 𝑟 ∈ GL𝑔 is the matrix of 𝜂∗ in the
bases 𝜔′, 𝜔, then 𝑓 (𝐴′, 𝜔) = 𝜌(𝑟)𝑓 (𝐴, 𝜔′). The link with classical modular forms
over ℂ is the following: if 𝜏 ∈ ℍ𝑔, then we define

𝑓 (𝜏) = 𝑓(ℂ𝑔/(ℤ𝑔 + 𝜏ℤ𝑔), (2𝜋𝑖 𝑑𝑧1, … , 2𝜋𝑖 𝑑𝑧𝑔)).

This choice of basis is made so that the 𝑞-expansion principle holds [FC90, p. 141]. We
already used it to define 𝑓 (𝐴, 𝜔) over ℂ in §2.1. The canonical line bundle ℎ = Λ𝑔ℎ is
ample, so modular forms give local coordinates on A𝑔.

The link between modular forms and covariants comes from the Torelli morphism

𝜏𝑔 ∶ ℳ𝑔 → 𝒜𝑔

where ℳ𝑔 denotes the moduli stack of smooth curves of genus 𝑔. Let 𝒞𝑔 → ℳ𝑔 denote
the universal curve; then the pullback 𝜏∗

𝑔ℎ of the Hodge bundle by the Torelli morphism
is 𝜋∗Ω1𝒞𝑔/ℳ𝑔, with both having canonical action by GL𝑔. In other words a Siegel
modular form of weight 𝜌 induces a Teichmuller modular form of weight 𝜌.

Now assume that 𝑔 = 2. Over ℤ[1/2], the moduli stack ℳ2 is identified with
the moduli stack of nondegenerate binary forms of degree 6. Let 𝑉 = ℤ𝑥 ⊕ ℤ𝑦, let
𝑋 = det−2 𝑉 ⊗ Sym6 𝑉, and let 𝑈 be the open locus determined by the discriminant.
Then 𝑈 → ℳ2 is naturally identified with the Hodge frame bundle on ℳ2: in other
words, 𝑈 is the moduli space of genus 2 hyperelliptic curves 𝜋 ∶ 𝐶 → 𝑆 endowed with a
rigidification 𝒪⊕2

𝑆 ≃ 𝜋∗Ω1
𝐶/𝑆. In this identification, we send the binary form 𝑓 (𝑥, 𝑦) to

the curve 𝑣2 = 𝑓 (𝑢, 1) with a basis of differential forms given by (𝑢 𝑑𝑢/𝑣, 𝑑𝑢/𝑣) [CFv17,
§4]. The natural action of GL2 on the Hodge bundle corresponds to the action of GL2
on 𝑈 that we describe in Section 3.2. This shows why a Siegel modular form of weight 𝜌
pulls back to a fractional covariant of weight 𝜌, at least over ℤ[1/2]. In fact, one can
show as in Theorem 3.9, by considering suitable compactifications, that a Siegel modular
form pulls back to a polynomial covariant over any ring 𝑅 in which 2 is invertible. Using
Igusa’s universal form [Igu60, §2], one can also use binary forms of degree 6 to describe
the moduli stack of genus 2 curves even in characteristic two.

More Details 4.33. The canonical line bundle ℎ = Λ𝑔ℎ is ample, and can be used to construct the
Satake-Baily-Borel compactification 𝒜𝑔

∗ of 𝒜𝑔 over ℤ. The stack 𝒜𝑔
∗ is normal but not smooth,

one can also construct smooth toroidal compactifications 𝒜𝑔 over ℤ. If 𝑔 > 1, the Koecher
principle is still valid over ℤ, and a scalar modular form defined over 𝒜𝑔 extends to 𝒜𝑔

∗ and 𝒜𝑔.
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The boundary components have interpretations in terms of the Fourier coefficients, in term of the
Siegel operator or the Fourier-Jacobi development respectively. Finally the 𝑞-expansion principle
give a convenient way to find the ring of definition of a modular form. For all this and much more,
we refer to [FC90, Ch. V].

Let 𝑗 be amodular function, that is a section of𝒪𝒜𝑔
. Then if𝐴/𝑘 is in the open of definition of 𝑗,

one can evaluate 𝑗 at every deformation𝐴𝜖 of𝐴. If 𝑡𝜖 is the tangent vector at𝐴 to𝒜𝑔 corresponding
to 𝐴𝜖, writing 𝑗(𝐴𝜖) = 𝑗(𝐴) + 𝑑𝑗(𝜖)𝜖 defines an application 𝑑𝑗 ∶ Sym2 𝑇0𝐴

𝐴 → 𝑘 (where we used
the Kodaira-Spencer isomorphism). More generally this holds for abelian schemes, so we see that
𝑑𝑗 is a section of Sym2 ℎ, in other words a modular form of weight Sym2.

So if 𝑗1, … , 𝑗𝑚 contains uniformizers of𝒜𝑔 at𝐴, we can use the 𝑑𝑗𝑖 to compute the deformation
matrix. This uniformizer condition explains the genericity condition on the ranks of 𝑑𝑗/𝑑𝜏 (resp.
𝑑𝑗/𝑑𝑡) of Definitions 3.18 and 3.20.

It remains to give an explicit version of the Kodaira-Spencer isomorphism when 𝑔 = 2, via
covariants of hyperelliptic curves. The isomorphism 𝑇0 Jac𝐶 ≃ 𝐻1(𝐶, 𝑂𝐶) ≃ 𝐻0(𝐶, Ω𝐶) for a
curve 𝐶 shows that the pullback 𝜏∗

𝑔ℎ of ℎ by the Torelli morphism 𝜏𝑔 ∶ ℳ𝑔 → 𝒜𝑔 is indeed given
by the bundle 𝜋∗Ω1𝒞𝑔/ℳ𝑔, with both having canonical action by Gl𝑔. The Torelli morphism
is radicial on ℳ𝑔, and unramified when restricted to ℳ𝑔 ℋ𝑔 and to ℋ𝑔, where ℋ𝑔 is the locus
of hyperelliptic curves. If ℳ𝑔 is the moduli space of stable curves of genus 𝑔, then the Torelli
morphisms extends to morphisms (no longer injective) ℳ∗

𝑔 → 𝒜𝑔 and ℳ𝑔 → 𝒜𝑔, where ℳ∗
𝑔

denotes the locus of stable curves.
If 𝑔 = 2, then the morphism ℳ∗

𝑔 → 𝒜𝑔 is surjective, as can be seen from the degenerations of
hyperelliptic curves of genus 2 studied in ([Liu93, Thm. 1]). Let 𝑈 be the open locus of 𝑋 defined
above, the action ofGl2 on ℳ2 is the one described in Section 3.2, which as explained there, differs
from the usual action when considering covariants, so that if we let 𝛼 ∶ 𝑈 → [𝑈/Gl2] ≃ ℳ2 be
the natural projection, then 𝛼∗Ω1𝒞2/ℳ2 is identified to 𝑉 with its natural Gl2 action. With the
standard action from [CFv17, §4], the pullback is identified to 𝑉 ⊗ det𝑉 instead.

ThenTheorem 3.9 can be interpreted as follow, a Siegel modular form on 𝒜𝑔 extends to 𝒜𝑔,
hence its restriction via the Torelli morphism gives a Teichmuller modular form on the stable
curves of genus 𝑔. If 𝑔 = 2, these curves describe a codimension > 1 of the space 𝑋 = Sym6 𝑉, so
by normality of 𝑋, 𝑓 induces a polynomial covariant. In particular a Siegel modular form defined
over a ring 𝑅 induces a polynomial covariant defined over 𝑅.

{prop:identification}
Proposition 4.34. The equality Cov(𝑓8,6) = Cov(𝜒10)𝑋 from Proposition 3.12 holds
over ℤ.

Proof. By the 𝑞-expansion principle, 𝑓8,6 is defined over ℤ[1/2, 1/3, 1/5, 1/43]; the co-
variants 𝐼10 and𝑋 are defined overℤ[1/2] since they have integral coefficients. Checking
the value of Cov(𝜒10)𝑋 on Igusa’s universal hyperelliptic curve as in [Igu60, §3] shows
that this covariant is even defined over ℤ. Since the Hodge bundle is without torsion, it
is enough to check equality over ℂ, which is the content of Proposition 3.12.

This suggests another, entirely algebraic proof of Proposition 3.12. By dimension
considerations, we have Cov(𝑓8,6) = 𝜆Cov(𝜒10)𝑋 for some 𝜆 ∈ ℚ×. We have seen
above that Cov(𝜒10)𝑋 is defined over ℤ and primitive; therefore, if we can show that
the Fourier coefficients of 𝑓8,6 are integers with gcd 1, we will have 𝜆 = ±1. In order to
obtain 𝜆 = 1, we can use Thomae’s formula on one curve, perform a certified numerical
evaluation over ℂ, or study degenerations from hyperelliptic curves to elliptic curves
using the formula from [Liu93, Thm. 1.II].
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As a consequence of Proposition 4.34, the identification of derivatives of Igusa in-
variants as explicit covariants (Theorem 3.14) still holds over ℤ[1/2].

For the algebraic interpretation of Hilbert modular forms as sections of the Hodge
bungle on ℋ𝑔, the Koecher principle and the 𝑞-expansion principle for Hilbert modular
forms, we refer to [Cha90, §4] and [Rap78, Thm. 6.7]. We can check that the relation
between derivatives of Igusa invariants on the Hilbert and Siegel sides (Proposition 3.22)
and the characterization of potentially Hilbert-normalized curves (Proposition 3.24) are
still valid over ℤ[1/2].

{details:hilbert}
More Details 4.35. More precisely, the Hilbert Hodge bundle ℎ = 𝜋∗Ω1

𝒳𝑔/ℋ𝑔
is a locally free

ℤ𝐾 ⊗ ℋ𝑔-module, and Hilbert modular forms of weight 𝜒 are sections of the line bundle ℎ𝜒 where
the weights are given by 𝜒 ∈ 𝐺ℤ𝐾

= 𝑅𝑒𝑠ℤ𝐾/ℤ 𝔾𝑚,ℤ𝐾
× ℤ𝐾 [AG05, Defs. 5.1 and 5.4], [Rap78,

§6]. If 𝐾′ is the normal closure of 𝐾, it splits ℤ𝐾, and a choice of trivialization of ℤ𝐾 ⊗ 𝐾′ induce
a splitting of the torus 𝐺𝐾′, hence a basis of 𝑔 characters 𝜒1, … , 𝜒𝑔. An Hilbert modular form
of weight 𝜒𝑎1

1 … 𝜒𝑎𝑔
𝑔 corresponds to a form of weight (𝑎1, … 𝑎𝑔) in the notations of Section 2.3

[AG05, p. 2]. Then the same reasoning as in Proposition 4.34 shows that Proposition A.4 is valid
over ℤ[1/2].

4.5 Computing the tangent map in dimension 2
{subsec:kodaira}

In this section, we work over a field 𝑘 of characteristic different from 2 and 3; this
restriction is not essential and comes from our choice of invariants. We have seen that
derivatives of Igusa invariants are defined over ℤ[1/2], and hence make sense over 𝑘.
We keep the matrix notations from §3.4.

{prop:tangent_siegel}
Proposition 4.36. Let 𝑈 be the open set of 𝒜2 over 𝑘 consisting of abelian surfaces 𝐴 such
that Aut(𝐴) = {±1} and 𝑗3(𝐴) ≠ 0. Let 𝜑∶ 𝐴 → 𝐴′ be an ℓ-isogeny over 𝑘. Assume
that 𝐴, 𝐴′ lie in 𝑈, and denote their Igusa invariants by 𝑗, 𝑗′. Assume further that the
subvariety of 𝔸3 × 𝔸3 cut out by modular equations is normal at (𝑗(𝐴), 𝑗(𝐴′)). Let 𝒞, 𝒞 ′

be hyperelliptic equations over 𝑘 whose Jacobians are isomorphic to 𝐴, 𝐴′ respectively. Then

1. The isogeny 𝜑 is generic in the sense of Definition 3.18, in other words the 3 × 3
matrices

𝐷Ψℓ,𝐿(𝑗, 𝑗′), 𝐷Ψℓ,𝑅(𝑗, 𝑗′), 𝐷𝜏𝐽(𝒞) and 𝐷𝜏𝐽(𝒞 ′)

are invertible.

2. Let 𝑑𝜑 be the tangent matrix of 𝜑 with respect to 𝒞, 𝒞 ′. Then

Sym2(𝑑𝜑) = −ℓ𝐷𝜏𝐽(𝒞 ′)−1 ⋅ 𝐷Ψℓ,𝑅(𝑗, 𝑗′)−1 ⋅ 𝐷Ψℓ,𝐿(𝑗, 𝑗′) ⋅ 𝐷𝜏𝐽(𝒞).

Proof. By Corollary 4.12, both 𝐴 and 𝐴′ are smooth points of A𝑔, and the deformation
map 𝒟(𝜑) is 𝑑𝚽ℓ,2(𝜑) ∘ 𝑑𝚽ℓ,1(𝜑)−1. Since 𝐴 has generic automorphisms, 𝐴 is not a
product of elliptic curves; moreover 𝑗3(𝐴) ≠ 0, so the birational map (𝑗1, 𝑗2, 𝑗3) ∶ A𝑔 →
𝔸3 is well-defined and étale at 𝐴. The map 𝒜𝑔 → A𝑔 is also étale at 𝐴, so the Igusa
invariants are local uniformizers around 𝐴 in 𝒜𝑔. This shows that 𝜑 is generic in the
sense of Definition 3.18. We obtain the expression of Sym2(𝑑𝜑) by Proposition 4.24.
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If𝐴 lies in the open set𝑈 defined in Proposition 4.36 and 𝒞 is a hyperelliptic equation
for 𝐴, then giving an element of 𝑇𝐴(𝒜𝑔) is equivalent to giving one of the following:

1. A deformation 𝒞𝜖 of 𝒞 over 𝑘[𝜖]/(𝜖2),

2. The Igusa invariants 𝑗1(𝒞𝜖), 𝑗2(𝒞𝜖), 𝑗3(𝒞𝜖) in 𝑘[𝜖]/(𝜖2),

3. If (𝑤1, 𝑤2) = (𝑥 𝑑𝑥/𝑦, 𝑑𝑥/𝑦) is the canonical basis of differential forms on 𝒞, a
vector 𝑣 = 𝛼𝑤2

1 + 𝛽𝑤1𝑤2 + 𝛾𝑤2
2 in Sym2 Ω1(𝒞).

Switching from one representation to another can be done at the cost of 𝑂(1) operations
in 𝑘 using the formulæ for Igusa invariants, the expression of their derivatives as a
covariant, and linear algebra.

Proof Details. We simply specialize the results above, to get explicit Kodaira-Spencer formula in
the genus 2 case. For simplicity we assume that we are over a field (of characteristic different from
2). Let 𝐶 ∶ 𝑣2 = 𝐸𝐶(𝑢) be an hyperelliptic curve of genus 2 over 𝑘. We want to prove that to give
a deformation of Jac(𝐶) over 𝑘[𝜖] (with 𝜖2 = 0), is the same as to give {defo:i}

1. A deformation 𝐶𝜖/𝑘[𝜖] of 𝐶 {defo:ii}
2. A deformation 𝐸𝐶,𝜖 of 𝐸𝐶 {defo:iii}
3. If 𝑤1 = 𝑑𝑥/𝑦, 𝑤2 = 𝑥𝑑𝑥/𝑦 are the canonical basis of differential forms on 𝐶, a vector

𝑣 = 𝛼𝑤2
1 + 𝛽𝑤1𝑤2 + 𝛾𝑤2

2 in Sym2 Ω1(𝐶). {defo:iv}
4. The Igusa invariants 𝑗1(𝐶𝜖), 𝑗2(𝐶𝜖), 𝑗3(𝐶𝜖) (if 𝑗1(𝐶) ≠ 0)
The Torelli morphism from the stack of hyperelliptic curves to the stack of principally polarized

abelian varieties is unramified, so in genus 2 induces an isomorphism on tangent space since their
dimension are the same. Hence Item 1. The equivalence of Item 1 and Item 2 comes from the
theory of hyperelliptic curves over a base scheme, and Item 3 is the Kodaira-Spencer isomorphism.
Finally Item 4 comes from the discussion above Proposition 4.16, since 𝑗1(𝐶𝜖) ≠ 0 if 𝑗1(𝐶) ≠ 0.

Changing between these representations is done as follow: given 𝐸𝐶,𝜖, we can evaluate
𝑗1(𝐶𝜖), 𝑗2(𝐶𝜖), 𝑗3(𝐶𝜖) since they are rational functions on the coefficients of 𝐸𝐶,𝜖. Conversely,
from 𝑗1(𝐶𝜖), 𝑗2(𝐶𝜖), 𝑗3(𝐶𝜖) we can recover the curve 𝐶𝜖 by applying Mestre’s algorithm [Mes91].
This algorithm requires finding a rational point on a conic, but since we know 𝐶 we just need to
lift the point coming from 𝐶. Alternatively, writing the coefficients of 𝐸𝐶,𝜖 as 𝑎𝑖 + 𝜖𝑎′

𝑖 where 𝑎𝑖 are
the coefficients of 𝐸𝐶, and then plugging the formulas for 𝑗1, 𝑗2, 𝑗3, this amount to solving linear
equations in the 𝑎′

𝑖.
If 𝐶𝜖 is a deformation coming from a tangent vector 𝑤, then 𝑗𝑖(𝐶𝜖) = 𝑗𝑖(𝐶) + 𝑑𝑗𝑖(𝐶)(𝑤)𝜖.

Using Proposition 4.34, we can evaluate 𝑑𝑗𝑖(𝐶)(𝑤) for 𝑤 = 𝑤2
1, 𝑤 = 𝑤1𝑤2 and 𝑤 = 𝑤2

2,
hence for all 𝑤 by linearity. Conversely, given the 𝑗𝑖(𝐶𝜖), to search for 𝑤 such that 𝑗𝑖(𝐶𝜖) =
𝑗𝑖(𝐶)+𝑑𝑗𝑖(𝐶)(𝑤)𝜖 we simply compute 𝑑𝑗𝑖(𝐶)(𝑤) for 𝑤 = 𝑤2

1, 𝑤 = 𝑤1𝑤2 and 𝑤 = 𝑤2
2 and solve

a linear equation.

In the Hilbert case, it is more difficult to ensure genericity in the sense of Defini-
tion 3.20 because the Hilbert embedding ℋ𝑔 → 𝒜𝑔 comes into play. We assume that 𝑘
splits ℤ𝐾, and fix a trivialization of ℤ𝐾 ⊗ 𝑘.

{prop:tangent_hilbert}
Proposition 4.37. Let 𝐴, 𝐴′ be abelian varieties representing 𝑘-points of ℋ𝑔, and let 𝒞, 𝒞 ′

be hyperelliptic equations over 𝑘 whose Jacobians are isomorphic to 𝐴, 𝐴′ respectively;
assume that 𝒞, 𝒞 ′ are Hilbert-normalized and that there exists a 𝛽-isogeny 𝜑∶ 𝐴 → 𝐴′.
Then we have

𝐷Ψ𝛽,𝐿(𝑗, 𝑗′) ⋅ 𝐷𝑡𝐽(𝒞) = −𝐷Ψ𝛽,𝑅(𝑗, 𝑗′) ⋅ 𝐷𝑡𝐽(𝒞 ′) ⋅ Diag(1/𝛽, 1/ ̅𝛽) ⋅ (𝑑𝜑)2.
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Proof. This comes from the relation between the deformation and tangent matrices
(Proposition 4.30).

The equality in Proposition 4.37 only allows to compute (𝑑𝜑)2 when 𝜑 is generic.
Even in this case, we get several possible candidates for 𝑑𝜑 up to sign. The discussion
of Remark 4.31 shows that Proposition 3.24, which gives an algorithm to construct
potentially Hilbert-normalized curve equations in genus 2, is still valid over 𝑘.

Remark 4.38. The 3 × 2 matrices 𝐷𝑡𝐽(𝒞) and 𝐷𝑡𝐽(𝒞 ′) have rank two when the Igusa
invariants contain uniformizers of ℋ𝑔 at 𝐴 and 𝐴′ by [Gro64, p. IV.17.11.3]. Given the
relation between derivatives of Igusa invariants on the Hilbert and Siegel sides (Proposi-
tion 3.24, which is valid over 𝑘 by Proposition 4.28), this will be the case at soon as the
images of 𝐴 and 𝐴′ in A𝑔 lie in the open set 𝑈 from Proposition 4.36.

Assume that generators of the ring of Hilbert modular forms are known, and the
expression of Igusa invariants in terms of these generators is given. Since modular forms
realize a projective embedding of H𝑔, one can compute from this data an open set 𝑉
in H𝑔 where the Igusa invariants contain local uniformizers. Then, if 𝐴 lies in 𝑉 and
Aut(𝐴) ≃ {±1}, the Igusa invariants will contain local uniformizers ofℋ𝑔, hence𝐷𝑡𝐽(𝒞)
will have rank 2.

In the Hilbert case, if Igusa invariants contain local uniformizers of ℋ𝑔 at 𝐴 and
if 𝒞 is a Hilbert-normalized curve equation for 𝐴, then giving an element of 𝑇𝐴(ℋ𝑔) is
equivalent to giving

1. A deformation 𝒞𝜖 of 𝒞 over 𝑘[𝜖]/(𝜖2) with real multiplication by ℤ𝐾,

2. Igusa invariants 𝑗1(𝒞𝜖), 𝑗2(𝒞𝜖), 𝑗3(𝒞𝜖) in 𝑘[𝜖]/(𝜖2) lying on the Humbert surface
(if 𝑗1(𝒞) ≠ 0),

3. If (𝑤1, 𝑤2) = (𝑥 𝑑𝑥/𝑦, 𝑑𝑥/𝑦) is the canonical basis of differential forms on 𝒞, a
vector 𝑣 = 𝛼𝑤2

1 + 𝛾𝑤2
2 in Sym2 Ω1(𝒞).

Switching from one representation to another can be done at the cost of 𝑂(1) operations
in 𝑘.

Proof Details. Indeed, this is immediate by ??. When 𝑔 = 2, the Humbert surface is enough to
determine a potentially Hilbert normalized basis, as explained in Remark 4.31, we may even only
assume that 𝒞 is potentially Hilbert normalized.

This give an algebraic interpretation of Section 3.6, and as a corollary, we get that Algorithms
Algorithms 3.25 and A.5 are valid over an arbitrary field (of characteristic different from two).

5 Computing the isogeny from its tangent map
{sec:alg}

5.1 General strategy
{subsec:introalg}

Assume that we are given the tangent map 𝑑𝜑 of a separable isogeny 𝜑∶ 𝐴 → 𝐴′ of
principally polarized abelian varieties of dimension 𝑔 defined over a field 𝑘. In general,
the task of computing 𝜑 explicitly may be specified as follows: given models of 𝐴 and 𝐴′,
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that is given very ample line bundles ℒ𝐴 and ℒ𝐴′ on 𝐴 and 𝐴′ and a choice of global
sections (𝑎𝑖) (resp. (𝑎′

𝑗)) which give a projective embedding of 𝐴 (resp. 𝐴′), express the
functions 𝜑∗𝑎′

𝑗 on 𝐴 as rational fractions in terms the coordinates (𝑎𝑖).
One method to determine 𝜑 given 𝑑𝜑 is to work over the formal groups of 𝐴 and 𝐴′.

Let 𝑥1, … , 𝑥𝑔 be uniformizers at 0𝐴, and let 𝑦1, … , 𝑦𝑔 be uniformizers at 0𝐴′ . Knowing
the map 𝑑𝜑 allows us to express the differential form 𝜑∗𝑑𝑦𝑗 in term of the differential
forms 𝑑𝑥𝑖 on 𝐴, so the functions 𝜑∗𝑎′

𝑗 satisfy a differential system. A possible strategy
to solve this differential system is to use a multivariate Newton algorithm, possibly
over an extension of the formal group. If this algorithm is successful, we recover the
functions 𝜑∗𝑎′

𝑗 as power series in 𝑘[[𝑥1, … , 𝑥𝑔]] up to some precision. The next step is
to use multivariate rational reconstruction to obtain 𝜑 as a rational map. In order for the
rational reconstruction algorithm to succeed, the power series precision must be large
enough with respect to the degrees of the result in the variables (𝑎𝑖).

This strategy to compute 𝜑 is not new: the idea of using a differential equation
to compute isogenies in genus 1 appears in [Elk98], and [BMS+08] uses a Newton
algorithm to solve this differential equation. To the best of our knowledge, the first article
to extend these ideas to genus 2 is [CE15]. The method is further extended to compute
endomorphisms of Jacobians over a number field in [CMS+19]. In [CMS+19, §6], the
endomorphism is represented as a divisorial correspondence; the interpolation of this
divisor is done a bit differently, via linear algebra on Riemann–Roch spaces.

A necessary condition for the whole method to work is that 𝜑 be completely de-
termined by its tangent map. In general, this will be the case when char 𝑘 is large with
respect to the degree of 𝜑. For instance, we have the following statement in the case of
ℓ-isogenies.

Lemma 5.1. Let 𝐴 and 𝐴′ be two principally polarized abelian varieties over a field 𝑘, and
𝑀 ∶ 𝑇0(𝐴) → 𝑇0(𝐴′) a linear map. Assume that that char 𝑘 = 0 or char 𝑘 > 4𝑁. Then
there is at most one ℓ-isogeny 𝜑∶ 𝐴 → 𝐴′ with ℓ ≤ 𝑁 such that 𝑑𝜑 = 𝑀.

Proof. Let 𝜑1 and 𝜑2 be two such isogenies. Then 𝜑1 = 𝜑2 + 𝜓 where 𝜓 is inseparable.
If char 𝑘 = 0, this implies 𝜓 = 0 and hence 𝜑1 = 𝜑2. Otherwise, write 𝑝 = char 𝑘 and
denote by 𝜑1 the contragredient isogeny. Then if 𝜓 ≠ 0, we have

𝜓𝜓 = 𝜑2𝜑2 + 𝜑1𝜑1 − 𝜑1𝜑2 − 𝜑2𝜑1.

But 𝜓𝜓 is equal to 𝑝𝑚 for some 𝑚 ≥ 1, and 𝜑1𝜑1 = ℓ1, 𝜑2𝜑2 = ℓ2 with ℓ1, ℓ2 ≤ 𝑁 by
hypothesis. Therefore we obtain 𝑝𝑚 ≤ 2𝑁 + 2√𝑁√𝑁 = 4𝑁.

In practice, Newton iterations will fail to reach sufficiently high power series precision
if char 𝑘 is too small, hence the bound given inTheorem 1.1.

In the rest of this section, we carry out this strategy in detail when 𝐴, 𝐴′ are the
Jacobians of genus 2 hyperelliptic curves 𝒞, 𝒞 ′. Concretely, we are given the matrix of
𝑑𝜑 in the bases of 𝑇0(𝐴) and 𝑇0(𝐴′) that are dual to 𝜔(𝒞) and 𝜔(𝒞 ′) respectively (see
§3.1). In this case, a nice simplification occurs: the isogeny 𝜑 is completely determined
by the compositum

𝒞 Jac(𝒞) Jac(𝒞 ′) 𝒞 ′2,sym 𝔸4𝑄↦[𝑄−𝑃] 𝜑 ∼ 𝑚
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where 𝑃 is any point on 𝒞, and 𝑚 is the rational map given by

{(𝑥1, 𝑦1), (𝑥2, 𝑦2)} ↦ (𝑥1 + 𝑥2, 𝑥1𝑥2, 𝑦1𝑦2,
𝑦2 − 𝑦1
𝑥2 − 𝑥1

).

This compositum is a tuple of four rational fractions 𝑠, 𝑝, 𝑞, 𝑟 ∈ 𝑘(𝑢, 𝑣) that we call the
rational representation of 𝜑 at the base point 𝑃. We choose a uniformizer 𝑧 of 𝒞 around 𝑃
and perform the Newton iterations and rational reconstruction over the univariate power
series ring 𝑘[[𝑧]].

We explain how we choose the base point 𝑃 and solve the differential system in
Section 5.2. One difficulty is that the differential systemwe obtain is singular (Lemma 5.7),
so we need to use the geometry of the curves (Proposition 5.4) to find the first few terms
in the series before switching to Newton iterations (Proposition 5.9). In Section 5.3, we
estimate the degrees of the rational fractions that we want to compute and present the
rational reconstruction step.

5.2 Solving the differential system
{subsec:diffsyst}

We keep the notation used in §5.1. Write the curve equations 𝒞, 𝒞 ′ and the tangent
matrix as

𝒞 ∶ 𝑣2 = 𝐸𝒞(𝑢), 𝒞 ′ ∶ 𝑦2 = 𝐸𝒞′(𝑥), 𝑑𝜑 = (𝑚1,1 𝑚1,2
𝑚2,1 𝑚2,2

) .

We assume that 𝜑 is separable, so that 𝑑𝜑 is invertible. If 𝑃 is a base point on 𝒞, we denote
by 𝜑𝑃 the associated map 𝒞 → 𝒞 ′2,sym.

Step 1: choice of base point and power series. Let 𝑃 be a point on 𝒞 which is not at
a point at infinity; up to enlarging 𝑘, we assume that 𝑃 ∈ 𝒞(𝑘). Since 𝜑𝑃(𝑃) is zero
in Jac(𝒞 ′), we have

𝜑𝑃(𝑃) = {𝑄, 𝑖(𝑄)}

for some 𝑄 ∈ 𝒞 ′, where 𝑖 denotes the hyperelliptic involution. We say that 𝜑𝑃 is of
Weierstrass type if 𝑄 is a Weierstrass point of 𝒞 ′, and of generic type otherwise. If 𝑧 is a
local uniformizer of 𝒞 at 𝑃, and 𝑅 is an étale extension of 𝑘[[𝑧]], we define a local lift
of 𝜑𝑃 at 𝑃 with coefficients in 𝑅 to be a tuple 𝜑𝑃 = (𝑥1, 𝑥2, 𝑦1, 𝑦2) ∈ 𝑅4 such that we
have a commutative diagram

Spec𝑅 𝒞 ′ 2

Spec 𝑘[[𝑧]] 𝒞 𝒞 ′ 2,sym.

(𝑥1,𝑦1),(𝑥2,𝑦2)

𝜑𝑃

If the power series 𝑥1, 𝑥2, 𝑦1, 𝑦2 define a local lift of 𝜑𝑃, then they satisfy the differ-
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ential system (𝑆) given by

⎧{{{{{
⎨{{{{{⎩

𝑥1 𝑑𝑥1
𝑦1

+
𝑥2 𝑑𝑥2

𝑦2
= (𝑚1,1𝑢 + 𝑚1,2)

𝑑𝑢
𝑣

𝑑𝑥1
𝑦1

+
𝑑𝑥2
𝑦2

= (𝑚2,1𝑢 + 𝑚2,2)
𝑑𝑢
𝑣

𝑦2
1 = 𝐸𝒞′(𝑥1)

𝑦2
2 = 𝐸𝒞′(𝑥2),

(𝑆) {{eq:diffsyst}}{{eq:diffsyst}}

where we consider the coordinates 𝑢, 𝑣 on 𝒞 as elements of 𝑘[[𝑧]], and the letter 𝑑 denotes
derivation with respect to 𝑧.

When solving (𝑆), we want 𝜑𝑃 to be of generic type. Proposition 5.4 shows how to
choose 𝑃 to enforce this condition; in order to prove it, we first study the existence of
local lifts for arbitrary base points.

{lem:lift}
Lemma 5.2. Let 𝑧 be a uniformizer of 𝒞 at 𝑃. Then there is a quadratic extension 𝑘′/𝑘
such that a local lift of 𝜑𝑃 at 𝑃 with coefficients in 𝑅 = 𝑘′[[√𝑧]] exists. Moreover, if 𝜑𝑃
is of generic type, or if 𝑃 is a Weierstrass point of 𝒞, then the same statement holds with
𝑅 = 𝑘′[[𝑧]].

Proof. First assume that 𝜑𝑃 is of generic type. Since the unordered pair {𝑄, 𝑖(𝑄)} is
Galois-invariant, there is a quadratic extension 𝑘′/𝑘 such that 𝑄 is defined over 𝑘′. The
map 𝒞 ′ 2 → 𝒞 ′ 2,sym is étale at (𝑄, 𝑖(𝑄)), so induces an isomorphism of completed local
rings. Therefore a local lift exists over 𝑘′[[𝑧]].

Second, assume that 𝜑𝑃 is of Weierstrass type. The map Spec 𝑘[[𝑧]] → 𝒞 ′2,sym

defines a 𝑘((𝑧))-point of 𝒞 ′2,sym, and there exists a preimage of this point defined over
an extension 𝐾/𝑘((𝑧)) of degree 2. Let 𝑅 be the integral closure of 𝑘[[𝑧]] in 𝐾. Then 𝑅
is contained in 𝑘′[[√𝑧]] for some quadratic extension 𝑘′/𝑘 [The18, Tag 09E8]. By the
valuative criterion of properness, our 𝐾-point of 𝒞 ′2 extends to an 𝑅-point uniquely, so
a local lift exists over 𝑅.

Finally, assume that 𝜑𝑃 is of Weierstrass type and that 𝑃 is a Weierstrass point of 𝒞.
Let (𝑥1, 𝑥2, 𝑦1, 𝑦2) be a local lift of 𝜑𝑃 over 𝑘′[[√𝑧]]. The completed local ring of the
Kummer line of 𝒞 at 𝑃 is 𝑘[[𝑧2]], and the unordered pair {𝑥1, 𝑥2} is defined on the
Kummer line; by the same argument as above, 𝑥1 and 𝑥2 are defined over 𝑘′[[𝑧]]. The
system (𝑆) can be written as

(1/𝑦1
1/𝑦2

) = (𝑥1𝑥′
1 𝑥2𝑥′

2
𝑥′

1 𝑥′
2

)
−1

(𝑅1(𝑧)
𝑅2(𝑧))

for some series 𝑅1, 𝑅2 ∈ 𝑘[[𝑧]], hence 𝑦1 and 𝑦2 are defined over 𝑘′[[𝑧]] as well.

Consider the tangent space 𝑇(𝑄,𝑖(𝑄)) 𝒞 ′2 of 𝒞 ′2 at (𝑄, 𝑖(𝑄)). It decomposes as

𝑇(𝑄,𝑖(𝑄)) 𝒞 ′ 2 = 𝑇𝑄 𝒞 ′ ⊕ 𝑇𝑖(𝑄) 𝒞 ′ ≃ (𝑇𝑄 𝒞 ′)2

where the last map is given by the hyperelliptic involution on the second term.
{lem:colinear}

Lemma 5.3. Assume that a local lift 𝜑𝑃 of 𝜑𝑃 to 𝑘′[[𝑧]] exists. Then the tangent vector
𝑑𝜑𝑃/𝑑𝑧 at 𝑧 = 0 cannot be of the form (𝑣, 𝑣) where 𝑣 ∈ 𝑇𝑄 𝒞 ′.
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Proof. Assume the contrary. The direction (𝑣, 𝑣) is contracted to zero in the Jacobian, so
every differential formon the Jacobian is pulled back to zero via𝜑𝑃. This is a contradiction
because 𝜑∗ is nonzero.

{prop:imagept}
Proposition 5.4. The point 𝑄 is uniquely determined by the property that, up to a scalar
factor,

𝜑∗𝜔′
𝑄 = 𝜔𝑃

where 𝜔𝑃 (resp. 𝜔′
𝑄) is a nonzero differential form on 𝒞 (resp. 𝒞 ′) vanishing at 𝑃 (resp. 𝑄).

Proof. First, assume that a local lift 𝜑𝑃 exists over 𝑘′[[𝑧]]. By Lemma 5.3, the tangent
vector 𝑑𝜑𝑃/𝑑𝑧 at 𝑧 = 0 is of the form (𝑣 + 𝑤, 𝑤) for some 𝑣, 𝑤 ∈ 𝑇𝑄𝒞 ′ such that 𝑣 ≠ 0.
Let 𝜔′ be the unique nonzero differential form pulled back to 𝜔𝑃 by 𝜑. Then 𝜔′ must
vanish on (𝑣, 0), in other words 𝜔′ must vanish at 𝑄.

Second, assume that no such lift exists. By Lemma 5.2, 𝑄 is a Weierstrass point on 𝒞 ′,
and 𝑃 is not a Weierstrass point on 𝒞. After a change of variables, we may assume that 𝑄
is not at infinity. Write 𝑃 = (𝑢0, 𝑣0) with 𝑣0 ≠ 0, and 𝑄 = (𝑥0, 0). We have to show
that

𝑥0 =
𝑚1,1𝑢0 + 𝑚1,2
𝑚2,1𝑢0 + 𝑚2,2

.

Let (𝑥1, 𝑦1, 𝑥2, 𝑦2) be a lift over 𝑘′[[√𝑧]] as in Lemma 5.2, and look at the differential
system (𝑆). Write the lift as

𝑦1 = 𝑣1√𝑧 + 𝑡1𝑧 + 𝑂(𝑧3/2), 𝑦2 = 𝑣2√𝑧 + 𝑡2𝑧 + 𝑂(𝑧3/2).

Then the relation 𝑦2 = 𝐸𝒞′(𝑥) forces 𝑥1, 𝑥2 to have no term in √𝑧, so that

𝑥1 = 𝑥0 + 𝑤1𝑧 + 𝑂(𝑧3/2), 𝑥2 = 𝑥0 + 𝑤2𝑧 + 𝑂(𝑧3/2).

Using the relation 𝑑𝑥/𝑦 = 2𝑑𝑦/𝐸′
𝒞′(𝑥), we have

⎧{{
⎨{{⎩

2𝑥1
𝑑𝑦1

𝐸′
𝒞′(𝑥1) + 2𝑥2

𝑑𝑦2
𝐸′

𝒞′(𝑥2) = (𝑚1,1𝑢 + 𝑚1,2)
𝑑𝑢
𝑣 ,

2
𝑑𝑦1

𝐸′
𝒞′(𝑥1) + 2

𝑑𝑦2
𝐸′

𝒞′(𝑥2) = (𝑚2,1𝑢 + 𝑚2,2)
𝑑𝑢
𝑣 .

Inspection of the (√𝑧)−1 term gives the relation 𝑣1 = −𝑣2. Write 𝑒 = 𝐸′
𝒞′(𝑥0). Then

the constant term of the series on the left hand side are respectively

2𝑥0(
𝑡1
𝑒 +

𝑡2
𝑒 ) and 2(

𝑡1
𝑒 +

𝑡2
𝑒 ).

The differential forms on the right hand side do not vanish simultaneously at 𝑃, therefore
𝑚2,1𝑢0 +𝑚2,2 must be nonzero. Taking the quotient of the two lines gives the result.

Using Proposition 5.4, we choose a base point 𝑃 on 𝒞 such that 𝜑𝑃 is of generic type.
By Lemma 5.2, a local lift 𝜑𝑃 = (𝑥1, 𝑥2, 𝑦1, 𝑦2) of 𝜑𝑃 exists over 𝑘′[[𝑧]], where 𝑘′ is a
quadratic extension of 𝑘.
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More Details 5.5. Let 𝑈, 𝐷 be the power series in 𝑧 with respective constant terms 𝑢0, 𝑑0 such
that 𝑢 = 𝑈(𝑧) and 𝑑𝑢/𝑣 = 𝐷(𝑧) 𝑑𝑧. Then we can rewrite (𝑆) as follows:

⎧{{{{{
⎨{{{{{⎩

𝑥1𝑥′
1

𝑦1
+

𝑥2𝑥′
2

𝑦2
= (𝑚1,1𝑈 + 𝑚2,1)𝐷

𝑥′
1

𝑦1
+

𝑥′
2

𝑦2
= (𝑚2,1𝑈 + 𝑚2,2)𝐷

𝑦2
1 = 𝐸𝒞′(𝑥1)

𝑦2
2 = 𝐸𝒞′(𝑥2).

(𝑆) {{eq:diffsyst-ps}}{{eq:diffsyst-ps}}

Step 2: initialization. Now we explain how to compute the power series 𝑥1, 𝑥2, 𝑦1, 𝑦2
up to 𝑂(𝑧2). We can compute the point 𝑄 = (𝑥0, 𝑦0) using Proposition 5.4. Write

𝑥1 = 𝑥0 + 𝑣1𝑧 + 𝑂(𝑧2), 𝑥2 = 𝑥0 + 𝑣2𝑧 + 𝑂(𝑧2).

Then, using the curve equations, we can compute 𝑦1, 𝑦2 up to 𝑂(𝑧2) in terms of 𝑣1, 𝑣2
respectively. Let 𝑢0 (resp. 𝑑0) be the constant term of the power series 𝑢 (resp. 𝑑𝑢/𝑣).
Then (𝑆) gives

𝑣1 + 𝑣2 =
𝑦0
𝑥0

(𝑚1,1𝑢0 + 𝑚2,1)𝑑0 = 𝑦0(𝑚2,1𝑢0 + 𝑚2,2)𝑑0. (2) {{eq:vi1}}{{eq:vi1}}

Combining the two lines, we also obtain

(𝑥1 − 𝑥0)
𝑑𝑥1
𝑦1

+ (𝑥2 − 𝑥0)
𝑑𝑥2
𝑦2

= 𝑅,

where 𝑅 = 𝑟1𝑧 + 𝑂(𝑧2) has no constant term. At order 1, this yields

𝑣2
1 + 𝑣2

2 = 𝑦0𝑟1. (3) {{eq:vi2}}{{eq:vi2}}

Equalities (2) and (3) yield a quadratic equation satisfied by 𝑣1, 𝑣2. This gives the values
of 𝑣1 and 𝑣2 in a quadratic extension 𝑘′/𝑘.

Step 3: Newton iterations. Assume that the series 𝑥1, 𝑥2, 𝑦1, 𝑦2 are knownup to𝑂(𝑧𝑛)
for some𝑛 ≥ 2. The system (𝑆) is satisfied up to𝑂(𝑧𝑛−1) for the first two lines, and𝑂(𝑧𝑛)
for the last two lines. We attempt to double the precision, and write

𝑥1 = 𝑥0
1(𝑧) + 𝛿𝑥1(𝑧) + 𝑂(𝑧2𝑛), etc.

where 𝑥0
1 is the polynomial of degree at most 𝑛−1 that has been computed. The series 𝛿𝑥𝑖

and 𝛿𝑦𝑖 start at the term 𝑧𝑛. From now on, we also denote by 𝑥′ the derivative of a power
series 𝑥 with respect to 𝑧.

{prop:diffsyst-linearize}
Proposition 5.6. The power series 𝛿𝑥1, 𝛿𝑥2 satisfy a linear differential equation of the first
order

𝑀(𝑧) (𝛿𝑥′
1

𝛿𝑥′
2
) + 𝑁(𝑧) (𝛿𝑥1

𝛿𝑥2
) = 𝑅(𝑧) + 𝑂(𝑧2𝑛−1) (𝐸𝑛) {{eq:mde}}{{eq:mde}}
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where 𝑀, 𝑁, 𝑅 ∈ ℳ2(𝑘′[[𝑧]]) have explicit expressions in terms of 𝑥0
1, 𝑥0

2, 𝑦0
1, 𝑦0

2, 𝑢, 𝑣,
𝐸𝒞 and 𝐸𝒞′. In particular,

𝑀(𝑧) = (𝑥0
1/𝑦0

1 𝑥0
2/𝑦0

2
1/𝑦0

1 1/𝑦0
2

)

and, writing 𝑒 = 𝐸′
𝒞′(𝑥0), the constant term of 𝑁 is

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑣1
𝑦0

−
𝑥0𝑣1

2𝑦3
0

𝑒
𝑣2
𝑦0

−
𝑥0𝑣2

2𝑦3
0

𝑒

−
𝑣1

2𝑦3
0

𝑒 −
𝑣2

2𝑦3
0

𝑒

⎞⎟⎟⎟⎟⎟⎟
⎠

.

Proof. Linearize the system (𝑆). We omit the calculations.

In order to solve (𝑆) in quasi-linear time in the precision, it is enough to solve
equation (𝐸𝑛) in quasi-linear time in 𝑛. One difficulty here, that does not appear in
similar works [CE15; CMS+19], is that the matrix 𝑀 is not invertible in 𝑘′[[𝑧]]. Still,
we can adapt the generic divide-and-conquer algorithm from [BCG+17, §13.2].

{lem:det-valuation}
Lemma 5.7. The determinant

det𝑀(𝑧) =
𝑥0

1 − 𝑥0
2

𝑦0
1𝑦0

2

has valuation one.

Proof. We know that 𝑦0
1 and 𝑦0

2 have constant term ±𝑦0 ≠ 0. The polynomials 𝑥0
1 and 𝑥0

2
have the same constant term 𝑥0, but they do not coincide at order 2: if they did, then so
would 𝑦1 and 𝑦2 because of the curve equation, contradicting Lemma 5.3.

By Lemma 5.7, we can find 𝐼 ∈ ℳ2(𝑘[[𝑧]]) such that 𝐼𝑀 = (𝑧 0
0 𝑧).

{lem:invertible}
Lemma 5.8. Let 𝜅 ≥ 1, and assume that char 𝑘 > 𝜅 + 1. Let 𝐴 = 𝐼𝑁. Then the matrix
𝐴 + 𝜅 has an invertible constant term.

Proof. By Lemma 5.7, the leading term of det(𝑀) is 𝜆𝑧 for some nonzero 𝜆 ∈ 𝑘′. Using
Proposition 5.6, we compute that the constant term of det(𝐴 + 𝜅) is 𝜆2𝜅(𝜅 + 1). We
omit the calculations.

{prop:newton-mde}
Proposition 5.9. Let 1 ≤ 𝜈 ≤ 2𝑛 − 1, and assume that char 𝑘 > 𝜈. Then we can
solve (𝐸𝑛) to compute 𝛿𝑥1 and 𝛿𝑥2 up to precision 𝑂(𝑧𝜈) using 𝑂(𝜈) operations in 𝑘′.

Proof. Write 𝜃 = (𝛿𝑥1
𝛿𝑥2

). Multiplying (𝐸𝑛) by 𝐼, we obtain the equation

𝑧𝜃′ + (𝐴 + 𝜅)𝜃 = 𝐵 + 𝑂(𝑧𝑑), where 𝑑 = 2𝑛 − 1, 𝜅 = 0.
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We show that 𝜃 can be computed from this kind of equation up to 𝑂(𝑧𝑑) using a divide-
and-conquer strategy. If 𝑑 > 1, write 𝜃 = 𝜃1 + 𝑧𝑑1𝜃2 where 𝑑1 = ⌊𝑑/2⌋. Then we
have

𝑧𝜃′
1 + (𝐴 + 𝜅)𝜃1 = 𝐵 + 𝑂(𝑧𝑑1)

for some other series 𝐵. By induction, we can recover 𝜃1 up to 𝑂(𝑧𝑑). Then

𝑧𝜃′
2 + (𝐴 + 𝜅 + 𝑑1)𝜃2 = 𝐸 + 𝑂(𝑧𝑑−𝑑1)

where 𝐸 has an expression in terms of 𝜃1. This is enough to recover 𝜃2 up to 𝑂(𝑧𝑛−1−𝑑),
so we can recover 𝜃 up to 𝑂(𝑧𝑛−1). We initialize the induction with the case 𝑑 = 1,
where we have to solve for the constant term in

(𝐴 + 𝜅)𝜃 = 𝐵.

Since 𝜃 starts at 𝑧2, the values of 𝜅 that occur are 2, … , 𝜈−1when computing the solution
of (𝑆) up to precision 𝑂(𝑧𝜈). By Lemma 5.8, the constant term of 𝐴 + 𝜅 is invertible.
This concludes the induction, and the result follows from standard lemmas in computer
algebra [BCG+17, Lem. 1.12].

{prop:newton}
Proposition 5.10. Let 𝜈 ≥ 1, and assume that char 𝑘 > 𝜈. Then we can compute the lift
𝜑𝑃 up to precision 𝑂(𝑧𝜈) within 𝑂(𝜈) operations in 𝑘′.

Proof. This is a consequence of Proposition 5.9 and [BCG+17, Lem. 1.12].

5.3 Rational reconstruction
{subsec:rational}

Finally, we want to recover the rational representation (𝑠, 𝑝, 𝑞, 𝑟) of 𝜑 at 𝑃 from its power
series expansion 𝜑𝑃 at some finite precision. First, we estimate the degrees of the rational
fractions we want to compute; second, we present the reconstruction algorithm.

Degree estimates. Thedegrees of 𝑠, 𝑝, 𝑞, 𝑟 asmorphisms from𝒞 toℙ1 can be computed
as intersection numbers of divisors on Jac(𝒞 ′), namely 𝜑𝑃(𝒞) and the polar divisors of
𝑠, 𝑝, 𝑞 and 𝑟 as functions on Jac(𝒞 ′). They are already known in the case of an ℓ-isogeny.

{prop:degree-siegel}
Proposition 5.11 ([CE15, §6.1]). Let 𝜑∶ Jac(𝒞) → Jac(𝒞 ′) be an ℓ-isogeny, and let
𝑃 ∈ 𝒞(𝑘). Let (𝑠, 𝑝, 𝑞, 𝑟) be the rational representation of 𝜑 at the base point 𝑃. Then the
degrees of 𝑠, 𝑝, 𝑞 and 𝑟 as morphisms from 𝒞 to ℙ1 are 4ℓ, 4ℓ, 12ℓ, and 8ℓ respectively.

Now assume that Jac(𝒞) and Jac(𝒞 ′) have real multiplication by ℤ𝐾 given by em-
beddings 𝜄, 𝜄′, and that

𝜑∶ (Jac(𝒞), 𝜄) → (Jac(𝒞 ′), 𝜄′)

is a 𝛽-isogeny. Denote the theta divisors on Jac(𝒞) and Jac(𝒞 ′) by Θ and Θ′ respectively,
and denote by 𝜂𝑃 ∶ 𝒞 → Jac(𝒞) the map 𝑄 ↦ [𝑄 − 𝑃]. Then 𝜂𝑃(𝒞) is algebraically
equivalent to Θ.

{lem:spqr-poles}
Lemma 5.12. The polar divisors of 𝑠, 𝑝, 𝑞, 𝑟 as rational functions on Jac(𝒞 ′) are alge-
braically equivalent to 2Θ′, 2Θ′, 6Θ′ and 4Θ′ respectively.
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Proof. See [CE15, §6.1]. For instance, 𝑠 = 𝑥1 + 𝑥2 has a pole of order 1 along each
of the two divisors {(∞±, 𝑄) | 𝑄 ∈ 𝒞}, where ∞± are the two points at infinity on 𝒞,
assuming that we choose a degree 6 hyperelliptic model for 𝒞 ′. Each of these divisors is
algebraically equivalent to Θ′. The proof for 𝑝, 𝑞, and 𝑟 is similar.

Recall that divisor classes on Jac(𝒞 ′) are in bijective correspondence with isomor-
phism classes of line bundles. ByTheorem 2.21, if (𝐴, 𝜄) is a principally polarized abelian
surface with real multiplication by ℤ𝐾, then there is a bijection 𝛼 ↦ ℒ 𝜄(𝛼)

𝐴 between ℤ𝐾
and the Néron–Severi group of 𝐴.

{lem:image-divisor}
Lemma 5.13. Let 𝜑 be a 𝛽-isogeny as above. Then the divisor 𝜑𝑃(𝒞) is algebraically
equivalent to the divisor corresponding to the line bundle ℒ 𝜄′( ̅𝛽)

Jac(𝒞′).

Proof. ByTheorem 2.21, there exists an 𝛼 ∈ ℤ𝐾 such that the divisor𝜑𝑃(𝒞) corresponds
to the line bundle ℒ 𝜄′(𝛼)

Jac(𝒞′) up to algebraic equivalence. Look at the pullback 𝜑∗(𝜑𝑃(𝒞))
as a divisor on Jac(𝒞): by definition, we have

𝜑∗(𝜑𝑃(𝒞)) = ∑
𝑥∈ker𝜑

(𝑥 + 𝜂𝑃(𝒞))

and therefore, up to algebraic equivalence,

𝜑∗(𝜑𝑃(𝒞)) = (# ker𝜑)Θ = 𝑁𝐾/ℚ(𝛽)Θ.

Since 𝜑 is a 𝛽-isogeny, by Definition 2.22, the pullback 𝜑∗Θ′ corresponds to ℒ 𝜄(𝛽)
Jac(𝒞) up

to algebraic equivalence. Therefore, for every 𝛾 ∈ ℤ𝐾,

𝜑∗ℒ 𝜄′(𝛾)
Jac(𝒞′) = ℒ 𝜄(𝛾𝛽)

Jac(𝒞).

ByTheorem 2.21 applied on Jac(𝒞), we have 𝛼𝛽 = 𝑁𝐾/ℚ(𝛽), so 𝛼 = ̅𝛽.

The next step is to compute the intersection degree of Θ′ and the divisor correspond-
ing to ℒ 𝜄(𝛼)

Jac(𝒞′) on Jac(𝒞 ′), for every 𝛼 ∈ ℤ𝐾.
{prop:end-quadform}

Proposition 5.14 ([Kan19, Rem. 16]). Let (𝐴, 𝜄) be a principally polarized abelian surface
with real multiplication by ℤ𝐾, and let Θ be its theta divisor. Then the quadratic form

𝐷 ↦ (𝐷 ⋅ Θ)2 − 2(𝐷 ⋅ 𝐷)

on NS(𝐴) corresponds via the isomorphism of Theorem 2.21 to the quadratic form on ℤ𝐾
given by

𝛼 ↦ 2Tr𝐾/ℚ(𝛼2) −
1
2 Tr𝐾/ℚ(𝛼)2.

{cor:theta-intersection}
Corollary 5.15. Let (𝐴, 𝜄) be a principally polarized abelian surface with real multiplica-
tion by ℤ𝐾, and let Θ be its theta divisor. Then for every 𝛼 ∈ ℤ𝐾, we have

(ℒ 𝜄(𝛼)
𝐴 ⋅ Θ)2 = Tr𝐾/ℚ(𝛼)2.
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Proof. Write 𝛼 = 𝑎 + 𝑏√Δ. By Proposition 5.14, we can compute

(ℒ 𝜄(𝛼)
𝐴 ⋅ Θ)2 − 2 (ℒ 𝜄(𝛼)

𝐴 ⋅ ℒ 𝜄(𝛼)
𝐴 ) = 2Tr(𝛼2) −

1
2 Tr(𝛼)2 = 4𝑏2Δ.

On the other hand, the Riemann–Roch theorem [Mil86a, Thm. 11.1] gives

(ℒ 𝜄(𝛼)
𝐴 ⋅ ℒ 𝜄(𝛼)

𝐴 ) = 2 𝜒(ℒ 𝜄(𝛼)
𝐴 ) = 2√deg 𝜄(𝛼) = 2(𝑎2 − 𝑏2Δ).

The result follows.
{prop:spqr-degrees}

Proposition 5.16. Let 𝜑 be a 𝛽-isogeny as above, and let (𝑠, 𝑝, 𝑞, 𝑟) be the rational repre-
sentation of 𝜑 at 𝑃. Then, considered as morphisms from 𝒞 to ℙ1, the respective degrees of
𝑠, 𝑝, 𝑞, and 𝑟 are 2Tr(𝛽), 2Tr(𝛽), 6Tr(𝛽) and 4Tr(𝛽).

Proof. The degrees of 𝑠, 𝑝, 𝑞, 𝑟 can be computed as the intersection of the polar divisors
from Lemma 5.12 and the divisor 𝜑𝑃(𝒞). By Lemma 5.13, the line bundle associated
with 𝜑𝑃(𝒞), up to algebraic equivalence, is ℒ ̅𝛽

Jac(𝒞′). Its intersection number with Θ′ is
nonnegative, hence by Corollary 5.15, we have

(𝜑𝑃(𝒞) ⋅ Θ′) = Tr𝐾/ℚ( ̅𝛽) = Tr𝐾/ℚ(𝛽).

The result follows by Lemma 5.12.

Rational reconstruction. Now we present the rational reconstruction algorithm, and
compute the power series precision that is precisely needed.

Lemma 5.17. Let 𝑠 ∶ 𝒞 → ℙ1 be a morphism of degree 𝑑.

1. If 𝑠 is invariant under the hyperelliptic involution 𝑖, then we canwrite 𝑠(𝑢, 𝑣) = 𝑋(𝑢)
where the degree of 𝑋 is bounded by 𝑑/2.

2. In general, let 𝑋, 𝑌 be the rational fractions such that

𝑠(𝑢, 𝑣) = 𝑋(𝑢) + 𝑣 𝑌(𝑢).

Then the degrees of 𝑋 and 𝑌 are bounded by 𝑑 and 𝑑 + 3 respectively.

Proof. For item 1, use the fact that the function 𝑢 itself has degree 2. For item 2, write

𝑠(𝑢, 𝑣) + 𝑠(𝑢, −𝑣) = 2𝑋(𝑢),
𝑠(𝑢, 𝑣) − 𝑠(𝑢, −𝑣)

𝑣 = 2𝑌(𝑢).

The degrees of these morphisms are bounded by 2𝑑 and 2𝑑 + 6 respectively.
{prop:reconstruction}

Proposition 5.18. Let 𝜑𝑃 and 𝜑𝑖(𝑃) be local lifts of 𝜑𝑃 at 𝑃 and 𝑖(𝑃) in the uniformizers 𝑧
and 𝑖(𝑧). Let 𝜈 = 8ℓ + 7 in the Siegel case, and 𝜈 = 4Tr𝐾/ℚ(𝛽) + 7 in the Hilbert case.
Then, given 𝜑𝑃 and 𝜑𝑖(𝑃) at precision 𝑂(𝑧𝜈), we can compute the rational representation
of 𝜑 at 𝑃 within 𝑂(𝜈) operations in 𝑘′.
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Proof. It is enough to recover the rational fractions 𝑠 and 𝑝; afterwards, 𝑞 and 𝑟 can be
deduced from the equation of 𝒞 ′.

First, assume that 𝑃 is a Weierstrass point of 𝒞. Then 𝑠, 𝑝 are invariant under the
hyperelliptic involution. Therefore we have to recover univariate rational fractions in 𝑢 of
degree 𝑑 ≤ 2ℓ (resp. 𝑑 ≤ Tr(𝛽)). This can be done in quasi-linear time from their power
series expansion up to precision 𝑂(𝑢2𝑑+1) [BCG+17, §7.1]. Since 𝑢 has valuation 2 in 𝑧,
we need to compute 𝜑𝑃 at precision 𝑂(𝑧4𝑑+1).

Second, assume that 𝑃 is not a Weierstrass point of 𝒞. Then the series defining
𝑠(𝑢, −𝑣) and 𝑝(𝑢, −𝑣) are given by 𝜑𝑖(𝑃). We now have to compute rational fractions of
degree 𝑑 ≤ 4ℓ + 3 (resp. 𝑑 ≤ 2Tr(𝛽) + 3) in 𝑢. Since 𝑢 has valuation 1 in 𝑧, this can be
done in quasi-linear time if 𝜑𝑃 and 𝜑𝑖(𝑃) are known up to precision 𝑂(𝑧2𝑑+1).

6 Summary of the algorithm
{sec:summary}

In this final section, we summarize the isogeny algorithm and proveTheorem 1.1. We
also state the analogous result in the case of 𝛽-isogenies (Theorem 6.3).

{algo:main}
Algorithm 6.1. Let 𝑗, 𝑗′ the Igusa invariants of principally polarized abelian varieties
𝐴, 𝐴′ over 𝑘. Assume that 𝐴, 𝐴′ are ℓ-isogenous (the Siegel case), or that 𝐴, 𝐴′ have real
multiplication by ℤ𝐾 and are 𝛽-isogenous (the Hilbert case).

1. UseMestre’s algorithm [Mes91] to construct curve equations𝒞, 𝒞 ′ whose Jacobians
are isomorphic to𝐴, 𝐴′. In theHilbert case, useAlgorithm3.25 to ensure that𝒞, 𝒞 ′

are potentially Hilbert-normalized.

2. Compute at most 4 candidates for the tangent matrix of the isogeny 𝜑 using
Proposition 4.36 in the Siegel case, or Proposition 4.37 in the Hilbert case. Run
the rest of the algorithm for all the candidates; in general, only one will produce
meaningful results.

3. Choose a base point 𝑃 on 𝒞 such that 𝜑𝑃 is of generic type, and compute the power
series 𝜑𝑃 and 𝜑𝑖(𝑃) up to precision 𝑂(𝑧8ℓ+7), respectively 𝑂(𝑧4Tr(𝛽)+7) using
Proposition 5.10.

4. Recover the rational representation of 𝜑 at 𝑃 using Proposition 5.18.

We recall the statement of Theorem 1.1 from the introduction.
{thm:main_proved}

Theorem 6.2. Let ℓ be a prime, and let 𝑘 be a field such that char 𝑘 = 0 or char 𝑘 > 8ℓ+7.
Let 𝑈 ⊂ A2(𝑘) be the open set consisting of abelian surfaces 𝐴 such that Aut(𝐴) ≃ {±1}
and 𝑗3(𝐴) ≠ 0. Assume that there is an algorithm to evaluate derivatives of modular
equations of level ℓ at a given point of 𝑈 × 𝑈 over 𝑘 using 𝐶ev(ℓ) operations in 𝑘.

Let𝐴, 𝐴′ ∈ 𝑈, and let 𝑗(𝐴), 𝑗(𝐴′) be their Igusa invariants. Assume that𝐴 and𝐴′ are
ℓ-isogenous over 𝑘, and that the subvariety of 𝔸3 × 𝔸3 cut out by the modular equations
Ψℓ,𝑖 for 1 ≤ 𝑖 ≤ 3 is normal at (𝑗(𝐴), 𝑗(𝐴′)). Then, given 𝑗(𝐴) and 𝑗(𝐴′), Algorithm 6.1
succeeds and returns

1. a field extension 𝑘′/𝑘 of degree dividing 8,
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2. hyperelliptic curve equations 𝒞, 𝒞 ′ over 𝑘′ whose Jacobians are isomorphic to 𝐴, 𝐴′

respectively,

3. a point 𝑃 ∈ 𝒞(𝑘′),

4. the rational representation (𝑠, 𝑝, 𝑞, 𝑟) ∈ 𝑘′(𝑢, 𝑣)4 of an ℓ-isogeny 𝜑∶ Jac(𝒞) →
Jac(𝒞 ′) at 𝑃.

The cost of Algorithm 6.1 in the Siegel case is 𝑂(𝐶ev(ℓ)) + 𝑂(ℓ) elementary operations
and 𝑂(1) square roots in 𝑘′.

Proof. Mestre’s algorithm returns curve equations 𝒞, 𝒞 ′ defined over extensions of 𝑘
of degree at most 2, and costs 𝑂(1) operations in 𝑘 and 𝑂(1) square roots. Under
our hypotheses, Proposition 4.36 applies and allows us to recover Sym2(𝑑𝜑) using
𝑂(𝐶ev(ℓ))+𝑂(1) operations in 𝑘. We recover 𝑑𝜑 up to sign using𝑂(1) square roots and
elementary operations; since 𝜑 is defined over 𝑘, extending the base field is not necessary.
We choose the base point 𝑃 on 𝒞 such that 𝜑𝑃 is of generic type using Proposition 5.4,
perhaps taking another extension of degree 2. By Proposition 5.10, we can compute
the local lifts 𝜑𝑃 and 𝜑𝑖(𝑃) up to precision 8ℓ + 7 within 𝑂(ℓ) field operations; this is
where we use the hypothesis on char 𝑘. Finally, we recover the rational representation
at 𝑃 using a further 𝑂(ℓ) field operations by Proposition 5.18. The result is defined over
an extension of 𝑘 of degree dividing 8.

We conclude with the analogue of Theorem 6.2 in the Hilbert case.
{thm:proved-main-hilbert}

Theorem 6.3. Let 𝐾 be a real quadratic field, and let 𝛽 ∈ ℤ𝐾 be a totally positive prime.
Let 𝑘 be a field such that char 𝑘 = 0 or char 𝑘 > 4Tr𝐾/ℚ(𝛽) + 7. Assume that there is
an algorithm to evaluate derivatives of modular equations of level 𝛽 at a given point (𝑗, 𝑗′)
over 𝑘 using 𝐶ev(𝛽) operations in 𝑘.

Let𝐴, 𝐴′ be principally polarized abelian surfaces over 𝑘with real multiplication byℤ𝐾
whose Igusa invariants 𝑗(𝐴), 𝑗(𝐴′) are well defined, and assume that there exists a𝛽-isogeny
𝜑∶ 𝐴 → 𝐴′ defined over 𝑘 which is generic in the sense of Definition 3.18. Then, given 𝑗(𝐴)
and 𝑗(𝐴′), Algorithm 6.1 succeeds and returns

1. a field extension 𝑘′/𝑘 of degree dividing 8,

2. hyperelliptic curve equations 𝒞, 𝒞 ′ over 𝑘′ whose Jacobians are isomorphic to 𝐴, 𝐴′

respectively,

3. a point 𝑃 ∈ 𝒞(𝑘′),

4. at most 4 possible values for the rational representation (𝑠, 𝑝, 𝑞, 𝑟) ∈ 𝑘′(𝑢, 𝑣)4 of
a 𝛽- or ̅𝛽-isogeny 𝜑∶ Jac(𝒞) → Jac(𝒞 ′) at 𝑃.

The cost of Algorithm 6.1 in the Hilbert case is 𝑂(𝐶ev(𝛽)) + 𝑂(Tr𝐾/ℚ(𝛽)) + 𝑂𝐾(1)
elementary operations and 𝑂(1) square roots in 𝑘′; the implied constants, 𝑂𝐾(1) excepted,
are independent of 𝐾.

Note that 𝐶ev(𝛽) also depends on 𝐾. We expect that the algorithm returns only one
answer for the rational representation of 𝜑 at 𝑃; if the algorithm outputs several answers,
we could implements tests for correctness, but they might be more expensive than the
isogeny algorithm itself.
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Proof. We use Algorithm 3.25 to construct the curve equations 𝒞, 𝒞 ′. By Remark 4.31,
we obtain potentially Hilbert-normalized curves, and each of them is defined over an
extension of 𝑘 of degree at most 4. This requires 𝑂𝐾(1) elementary operations and 𝑂(1)
square roots in 𝑘. We may assume that 𝒞, 𝒞 ′ are Hilbert-normalized for some choice of
real multiplication embeddings that are compatible via 𝜑, which becomes either a 𝛽- or
a ̅𝛽-isogeny.

Under our hypotheses, Proposition 4.37 applies, so we recover two possible values
for (𝑑𝜑)2 within 𝑂(𝐶ev(𝛽)) + 𝑂(1) operations in 𝑘, and hence 4 possible values for 𝑑𝜑,
using 𝑂(1) square roots. We can now make a change of variables to the (not necessarily
Hilbert-normalized) curves output by Mestre’s algorithm, so that each curve is defined
over an extension of 𝑘 of degree 2. The end of the algorithm is similar to the Siegel case:
we take an extension of degree 2 to find the base point, then try to compute the rational
representation for each value of 𝑑𝜑 using 𝑂(Tr𝐾/ℚ(𝛽)) operations in 𝑘. For the correct
value of 𝑑𝜑, rational reconstruction will succeed and output fractions of the correct
degrees.
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A The case 𝐾 = ℚ(√5)
{appendix:Qr5}

We present a variant of our algorithm in the case of principally polarized abelian varieties
with real multiplication by ℤ𝐾 where 𝐾 = ℚ(√5). In this case, the structure of the ring
of Hilbert modular form is well known, and the Humbert surface is rational: its function
field can be generated by only two elements called Gundlach invariants. Having only two
coordinates reduces the size of modular equations.

We work over ℂ, but the methods of §4 show that the computations are valid in
general. We illustrate our algorithm with an example of cyclic isogeny of degree 11 over
a finite field.

A.1 Hilbert modular forms for 𝐾 = ℚ(√5)
We keep the notation used to describe the Hilbert embedding (§2.4). Hilbert modular
forms have Fourier expansions in terms of

𝑤1 = exp(2𝜋𝑖(𝑒1𝑡1 + ̅𝑒1𝑡2)) and 𝑤2 = exp(2𝜋𝑖(𝑒2𝑡1 + ̅𝑒2𝑡2)).

We use this notation and the term 𝑤-expansions to avoid confusion with expansions of
Siegel modular forms. Apart from the constant term, a term in 𝑤𝑎

1𝑤𝑏
2 can only appear

when 𝑎𝑒1 + 𝑏𝑒2 is a totally positive element of ℤ𝐾. Since 𝑒1 = 1 and 𝑒2 has negative
norm, for a given 𝑎, only finitely many 𝑏’s appear. Therefore we can consider truncations
of 𝑤-expansions as elements of ℂ(𝑤2)[[𝑤1]] modulo an ideal of the form (𝑤𝜈

1).
{thm:hilbert-structure}

Theorem A.1 ([Nag83]). The graded ℂ-algebra of symmetric Hilbert modular forms of
even parallel weight for𝐾 = ℚ(√5) is generated by three elements𝐺2, 𝐹6, 𝐹10 of respective
weights 2, 6 and 10, with 𝑤-expansions

𝐺2(𝑡) = 1 + (120𝑤2 + 120)𝑤1

+ (120𝑤3
2 + 600𝑤2

2 + 720𝑤2 + 600 + 120𝑤−1
2 )𝑤2

1 + 𝑂(𝑤3
1),

𝐹6(𝑡) = (𝑤2 + 1)𝑤1 + (𝑤3
2 + 20𝑤2

2 − 90𝑤2 + 20 + 𝑤−1
2 )𝑤2

1 + 𝑂(𝑤3
1),

𝐹10(𝑡) = (𝑤2
2 − 2𝑤2 + 1)𝑤2

1 + 𝑂(𝑤3
1).

The Gundlach invariants for 𝐾 = ℚ(√5) are

𝑔1 =
𝐺5

2
𝐹10

and 𝑔2 =
𝐺2

2𝐹6
𝐹10

.

Recall that we denote by 𝜎 the involution (𝑡1, 𝑡2) ↦ (𝑡2, 𝑡1) ofH2(ℂ)

Proposition A.2. The Gundlach invariants define a birational map

H2(ℂ)/𝜎 → ℂ2.

Proof. This is a consequence of the theorem of Baily and Borel [BB66, Thm. 10.11] and
Theorem A.1.
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By Proposition 2.18, the pullbacks of the Siegel modular forms 𝜓4, 𝜓6, 𝜒10 and
𝜒12 via the Hilbert embedding 𝐻 are symmetric Hilbert modular forms of even weight,
so they have expressions in terms of 𝐺2, 𝐹6, 𝐹10. These expressions can be computed
using linear algebra on Fourier expansions [MR17, Prop. 2.12]: in our case, the Hilbert
embedding is defined by 𝑒1 = 1, 𝑒2 = (1 − √5)/2, so

𝑞1 = 𝑤1, 𝑞2 = 𝑤2, 𝑞3 = 𝑤1𝑤2.

As a corollary, we obtain the expression for the pullback of Igusa invariants.
{prop:igusa-pullback}

Proposition A.3 ([MR17, Cor. 2.14]). In the case 𝐾 = ℚ(√5), we have

𝐻∗𝑗1 = 8𝑔1(3
𝑔2

2
𝑔1

− 2)
5
,

𝐻∗𝑗2 =
1
2𝑔1(3

𝑔2
2

𝑔1
− 2)

3
,

𝐻∗𝑗3 =
1
8𝑔1(3

𝑔2
2

𝑔1
− 2)

2
(4

𝑔2
2

𝑔1
+ 2532 𝑔2

𝑔1
− 3).

Let 𝛽 ∈ ℤ𝐾 be a totally positive prime. We call theHilbert modular equations of level
𝛽 in Gundlach invariants the data of the two polynomials Ψ𝛽,1, Ψ𝛽,2 ∈ ℂ(𝐺1, 𝐺2)[𝐺′

1]
defined as follows:

• Ψ𝛽,1 is the univariate minimal polynomial of the function 𝑔1(𝑡/𝛽) over the field
ℂ(𝑔1(𝑡), 𝑔2(𝑡)).

• We have the following equality of meromorphic functions onH2(ℂ):

𝑔2(𝑡/𝛽) = Ψ𝛽,2(𝑔1(𝑡), 𝑔2(𝑡), 𝑔1(𝑡/𝛽)).

Modular equations using Gundlach invariants for 𝐾 = ℚ(√5) also have denominators.
They have been computed up to 𝑁𝐾/ℚ(𝛽) = 41 [Mil].

A.2 Variants in the isogeny algorithm
Constructing potentially Hilbert-normalized curves. We give another method to
reconstruct such curves using the pullback of the modular form 𝑓8,6 from Example 2.11
as a Hilbert modular form. Let 𝐻∶ ℍ2

1 → ℍ2 be the Hilbert embedding from §2.4.
{prop:f86-pullback}

Proposition A.4. Define the functions 𝑏𝑖(𝑡) for 0 ≤ 𝑖 ≤ 6 on ℍ2
1 by

∀𝑡 ∈ ℍ2
1, det8 Sym6(𝑅)𝑓8,6(𝐻(𝑡)) =

6
∑
𝑖=0

𝑏𝑖(𝑡) 𝑥𝑖.
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Then 𝑏2 and 𝑏4 are identically zero, and

𝑏2
3 = 4𝐹10𝐹2

6,

𝑏1𝑏5 =
36
25𝐹10𝐹2

6 −
4
5𝐹2

10𝐺2,

𝑏0𝑏6 =
−4
25 𝐹10𝐹2

6 +
1
5𝐹2

10𝐺2,

𝑏3(𝑏2
0𝑏3

5 + 𝑏3
1𝑏2

6) = 123𝐹3
10𝐹6 −

32
25𝐹2

10𝐹2
6𝐺2

2 +
288
125𝐹10𝐹4

6𝐺2 −
3456
3125𝐹6

6.

Proof. By Proposition 2.18, each coefficient 𝑏𝑖 is a Hilbert modular form of weight (8 +
𝑖, 14 − 𝑖). We can check using the action of 𝑀𝜎 that 𝜎 exchanges 𝑏𝑖 and 𝑏6−𝑖. From the
Siegel 𝑞-expansion for 𝑓8,6, we can compute the 𝑤-expansions of the 𝑏𝑖’s; then, we use
linear algebra to identify symmetric combinations of the 𝑏𝑖’s of parallel even weight in
terms of the generators 𝐺2, 𝐹6, 𝐹10.

By Propositions 3.6 and 3.12, the standard curve 𝒞𝐾(𝑡) attached to 𝑡 ∈ ℍ2
1 is

proportional to the curve 𝑦2 = ∑ 𝑏𝑖(𝑡)𝑥𝑖. The algorithm to compute a potentially
Hilbert-normalized curve 𝒞 from its Igusa invariants (𝑗1, 𝑗2, 𝑗3) runs as follows.

{algo:hilb-curve-1}
Algorithm A.5. 1. Compute Gundlach invariants (𝑔1, 𝑔2) mapping to the Igusa

invariants (𝑗1, 𝑗2, 𝑗3) via 𝐻 using Proposition A.3, and compute values for the
generators 𝐺2, 𝐹6, 𝐹10 giving these invariants.

2. Compute 𝑏2
3, 𝑏1𝑏5, etc. using Proposition A.4.

3. Recover values for the coefficients: choose any square root for 𝑏3; choose any value
for 𝑏1, which gives 𝑏5; finally, solve a quadratic equation to find 𝑏0 and 𝑏6.

We can always choose values𝐺2, 𝐹6, 𝐹10 such that 𝑏2
3 is a square in 𝑘; then, the output

is defined over a quadratic extension of 𝑘. Even if arbitrary choices are made during
Algorithm A.5, the output will be potentially Hilbert-normalized.

Computing the tangent matrix. Consider Ψ𝛽,1 and Ψ𝛽,2 as elements of the ring
ℚ(𝐺1, 𝐺2)[𝐺′

1, 𝐺′
2]. Define the 2 × 2 matrices

𝐷Ψ𝛽,𝐿 = (
𝜕Ψ𝑛
𝜕𝐺𝑘

)
1≤𝑛,𝑘≤2

and 𝐷Ψ𝛽,𝑅 = (
𝜕Ψ𝑛
𝜕𝐺′

𝑘
)

1≤𝑛,𝑘≤2
.

Then we have an analogue of Proposition 4.37, where we replace derivatives of Igusa
invariants in Proposition 3.19 by derivatives of Gundlach invariants. The relation between
these derivatives is given by Proposition A.3. This time, using the formalism of §4, we
can prove that all 2 × 2 matrices will be invertible if the abelian varieties 𝐴, 𝐴′ have
only ℤ×

𝐾 as automorphisms, have 𝑔1 ≠ 0, and if the modular equations in Gundlach
invariants cut out a normal subvariety of 𝔸2 × 𝔸2 at (𝑔(𝐴), 𝑔(𝐴′)).
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A.3 An example of cyclic isogeny
{sec:ex}

We illustrate our algorithm in the Hilbert case with 𝐾 = ℚ(√5) by computing a 𝛽-
isogeny between Jacobians with real multiplication by ℤ𝐾, where

𝛽 = 3 +
1 + √5

2 ∈ ℤ𝐾, 𝑁𝐾/ℚ(𝛽) = 11, Tr𝐾/ℚ(𝛽) = 7.

We work over the prime finite field 𝑘 = 𝔽56311, whose characteristic is large enough for
our purposes. We choose a trivialization of ℤ𝐾 ⊗ 𝑘, in other words a square root of 5
in 𝑘, so that 𝛽 = 26213.

Consider the Gundlach invariants

(𝑔1, 𝑔2) = (23, 56260), (𝑔′
1, 𝑔′

2) = (8, 36073).

{{ The corresponding Igusa–Streng invariants are

(𝑗1, 𝑗2, 𝑗3) = (14030, 9041, 56122), (𝑗′1, 𝑗′2, 𝑗′3) = (13752, 42980, 12538);

they lie on the Humbert surface, as expected! }} In order to reconstruct a Hilbert-normalized
curve, we apply Algorithm A.5. We obtain the curve equations

𝒞 ∶ 𝑣2 = 13425𝑢6 + 34724𝑢5 + 102𝑢3 + 54150𝑢 + 11111
𝒞 ′ ∶ 𝑦2 = 47601𝑥6 + 35850𝑥5 + 40476𝑥3 + 24699𝑥 + 40502.

The derivatives of Gundlach invariants are given by

𝐷𝑡𝐺(𝒞) = (43658 17394
16028 26656) , 𝐷𝑡𝐺(𝒞 ′) = (15131 739

50692 49952) .

Computing derivatives of the modular equations as in Proposition 3.19, we find that
the isogeny is compatible with the real multiplication embeddings for which 𝒞, 𝒞 ′ are
Hilbert-normalized. We do not known whether 𝜑 is a 𝛽- or a ̅𝛽-isogeny, so we have four
candidates for the tangent matrix up to sign:

𝑑𝜑𝛽,± = (38932𝛼 + 19466 0
0 ±(53318𝛼 + 26659)) ,

𝑑𝜑 ̅𝛽,± = (50651𝛼 + 53481 0
0 ±(11076𝛼 + 5538))

where 𝛼2 + 𝛼 + 2 = 0. We see that the isogeny is only defined over a quadratic extension
of 𝑘.

The curve 𝒞 has a rational Weierstrass point (36392, 0). We can bring it to (0, 0), so
that 𝒞 is of the standard form

𝒞 ∶ 𝑣2 = 33461𝑢6 + 7399𝑢5 + 16387𝑢4 + 34825𝑢3 + 14713𝑢2 + 𝑢.

This multiplies the tangent matrix on the right by

(44206 18649
0 7615 ) .
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Choose 𝑃 = (0, 0) as a base point on 𝒞, and 𝑧 = √𝑢 as a uniformizer; it is a
Weierstrass point, and we check that 𝜑𝑃 is of generic type. We solve the differential
system up to precision 𝑂(𝑧35), or any higher precision. It turns out that the correct
tangent matrix is 𝑑𝜑 ̅𝛽,+ as the other series do not come from rational fractions of the
prescribed degree. We obtain

𝑠(𝑢) =
50255𝑢6 + 40618𝑢5 + 17196𝑢4 + 9527𝑢3 + 22804𝑢2 + 49419𝑢 + 11726

𝑢6 + 40883𝑢5 + 22913𝑢4 + 41828𝑢3 + 18069𝑢2 + 14612𝑢 + 7238
,

𝑝(𝑢) =
35444𝑢6 + 9569𝑢5 + 52568𝑢4 + 3347𝑢3 + 9325𝑢2 + 32206𝑢 + 7231
𝑢6 + 40883𝑢5 + 22913𝑢4 + 41828𝑢3 + 18069𝑢2 + 14612𝑢 + 7238

.

More Details A.6.

𝑟(𝑢, 𝑣) = 𝑣
(47538𝛼 + 23769)𝑢10 + (54736𝛼 + 27368)𝑢9 + (10441𝛼 + 33376)𝑢8 + (51740𝛼 + 25870)𝑢7 + (27982𝛼 + 13991)𝑢6 + (47619𝛼 + 51965)𝑢5 + (55801𝛼 + 56056)𝑢4 + (12897𝛼 + 34604)𝑢3 + (36860𝛼 + 18430)𝑢2 + (30245𝛼 + 43278)𝑢 + (55909𝛼 + 56110)

𝑢13 + 25455𝑢12 + 42413𝑢11 + 8422𝑢10 + 1295𝑢9 + 10859𝑢8 + 4334𝑢7 + 33200𝑢6 + 52976𝑢5 + 10154𝑢4 + 37792𝑢3 + 19196𝑢2 + 19414𝑢

𝑡(𝑢, 𝑣) = 𝑣
(21373𝛼 + 38842)𝑢10 + (52517𝛼 + 54414)𝑢9 + (30517𝛼 + 43414)𝑢8 + (26715𝛼 + 41513)𝑢7 + (39071𝛼 + 47691)𝑢6 + (31123𝛼 + 43717)𝑢5 + (13028𝛼 + 6514)𝑢4 + (29429𝛼 + 42870)𝑢3 + (12405𝛼 + 34358)𝑢2 + (26273𝛼 + 41292)𝑢 + (359𝛼 + 28335)

𝑢13 + 25455𝑢12 + 42413𝑢11 + 8422𝑢10 + 1295𝑢9 + 10859𝑢8 + 4334𝑢7 + 33200𝑢6 + 52976𝑢5 + 10154𝑢4 + 37792𝑢3 + 19196𝑢2 + 19414𝑢

with 𝑡(𝑢, 𝑣) = (𝑥1𝑦2 − 𝑥2𝑦1)/(𝑥2 − 𝑥1), and 𝑞 = 𝑡2 + 𝑟2𝑝 + 𝑠𝑟𝑡.

The degrees agree with Proposition 5.16. The isogeny is 𝑘-rational at the level of
Kummer surfaces, but not on the Jacobians themselves: 𝛼 appears on the numerator of
𝑟(𝑢, 𝑣).
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