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Abstract. In order to compute a multiple of a point on an elliptic curve in Weierstrass form
one can use formulas in only one of the two coordinates of the points. These x-only formulas
can be seen as an arithmetic on the Kummer line associated to the curve.

In this paper, we look at models of Kummer lines, and define an intrinsic notion of iso-
morphisms of Kummer lines. This allows us to give conversion formulas between Kummer
models in a unified manner. When there is one rational point T of 2-torsion on the curve,
we also use Mumford’s theory of theta groups to show that there are two type of models:
the “symmetric” ones with respect to T and the “anti-symmetric” ones. We show how this
recovers the Montgomery model and various variants of the theta model.

We also classify when curves admit these different models via Galois representations and
modular curves. When an elliptic curve is viewed inside a 2-isogeny volcano, we give a criteria
to say if it has a given Kummer model based solely on its position in the volcano. We also
give applications to the ECM factorization algorithm.

1. Introduction

In many cryptographic protocols based on elliptic curves, one wants to compute n ¨ P “

P `¨ ¨ ¨`P in the most efficient way as possible. The applications include key exchange (ECDH),
digital signature (ECDSA), pairings-based identity-based encryption (IBE) and isogeny-based
key encapsulation methods (e.g. CSIDH). Between 1997 and 2020 the Workshop on elliptic curve
cryptography (ECC)1 gave a special place to the algorithms and implementations of the scalar
product.

On the cryptanalytic side too, the scalar product is important. The elliptic curve method of
factorization (ECM) — see Lenstra’s seminal work [Len87] — is a building block which takes a
non-negligible amount of time in the record computations against RSA and DSA.

The improvements to the scalar product (see e.g. [BSS99; BSS05]) include among others
new systems of coordinates. Some of them are available to all elliptic curves, like the Weierstrass
form, and some are restricted to certain families of curves, like the Montgomery form [Mon87], the
Edwards form [Edw07; BL07b], the twisted Edwards form [Ber+08; His+08], the Hessian form
[Sma01], the generalized Hessian form [FJ10], the theta coordinates [GL09] and theta squared
coordinates [Bos+13; HR19]. We also mention a mixed system [CGF08] where the addition law
takes coordinates in one form and returns coordinates in another form.

If the x-coordinate of n ¨ P is computed one can recover its y-coordinate by a square root.
Montgomery noted [Mon87] that the x-coordinate of n ¨ P can be obtained more efficiently by
using only the x-coordinate of intermediate points of the computation. Computing with the
x-coordinate only is equivalent to computing on the set E{ ˘ 1 also known as the Kummer line.
Our goal in this paper is to study models of Kummer lines and their arithmetic.

Key words and phrases. Elliptic curve cryptography, Kummer lines, theta functions, modular curves, Galois
representation.

1https://eccworkshop.org/
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Motivation. This article is part of a line of investigations on Kummer lines:
‚ It is easy to say what the Kummer line of an elliptic curve in Montgomery form, or

Edwards form or theta coordinates looks like. Can one define the Kummer lines in a
unified and abstract manner to encompass any model, without going back to a model
of the curve E itself? Can one make a complete list of Kummer models up to some
equivalence that has to be specified?

‚ It is known that Montgomery curves have a rational 2-torsion point and a fast doubling
formula. Similarly it is known that Hessian curves have a 3-isogeny and have a fast
tripling formula. It is part of the folklore that this is related to the fact that the doubling
endomorphism factors as a composition of two isogenies and on a computer it is faster
to evaluate the composition of two polynomials when compared to evaluating a random
polynomial of the same degree as their composition. Can one find efficient 2-isogeny
formulas on Kummer lines in all models having a rational 2-torsion point?

‚ It is known that if P and Q are two points on an elliptic curve and P , Q and P ´Q are
known on the Kummer line, then one can compute P ` Q. Can we exploit a rational
point of 2-torsion to speed up differential additions on Kummer lines, similar to how it
was exploited to speed up doublings?

In this work we answer the questions in the first item, i.e. we give a unified description of
Kummer line models. Also, it allows to find in a unified manner conversion formulas from one
model to another. Finally, it allows to revisit from a more geometric point of view classical models
used in the literature: Montgomery models, theta, theta squared and theta twisted models.

We postponed the publication of this article, which gives a new point of view on old and
new results, until two articles answering the other items were published. Indeed, having a good
geometric understanding of the characterisation of the isomorphism class of a Kummer line, as
explained in Section 2 and Appendix A, was key to obtain the arithmetic results from [RS24a]
and [RS24b] which bring further cryptographic applications of this article.

Some applications. In isogeny based cryptography, a recent trend has been the use of higher
dimensional isogenies, between product of elliptic curves. Currently, their implementation all
use theta coordinates of level 2. By contrast, it is slightly more efficient to use the Montgomery
models on elliptic curves. The change of coordinates from Section 4 have been used to convert
between both models for the higher dimensional isogeny is required. Although conversion between
Montgomery and theta coordinates where already given in [HR19], for the isogeny applications
we really need to keep track of the associated level structure, in particular the extra level 4
information, which is easy to do with the tools we introduce in this paper. As an example, the
conversion formulas used in 2d [Dar+24] or 4d [Dar24] come from results obtained during this
work.

For the round 2 submission of SQISign, the contributors needed a method to select a Mont-
gomery model from a theta model (obtained via a 2d isogeny computation). In order not to
leak any information from the extra level information contained in the choice of a Montgomery
model, it was needed to select one uniformly among the 6 possible ones. This was done using
the results of Example 6.10.

Recently, it was observed in [Rob24] that one could also use the “cubical arithmetic” on abelian
varieties, constructed via work of Mumford, Grothendeick and Breen, for algorithmic purpose.
Indeed, the cubical arithmetic refines the standard arithmetic and give a unified framework for
the computations of pairings and isogenies. It is easy to extend our results of Section 4 of
isomorphisms of Kummer line to obtain isomorphism of the underlying cubical torsor structure.
Indeed, by the unicity of the cubical torsor structure, it suffices to lift the isomorphism from a
projective linear change of variable to an affine change of variable, such that the cubical neutral
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point of the domain is sent to the cubical neutral point of the codomain. For instance, the map
pX : Zq ÞÑ pbX ` aZ : aZ ´ bXq from Proposition 4.2 for the conversion from a theta model to
a Montgomery model can be lifted to a map pX,Zq ÞÑ pX{a` Z{b, Z{b´X{aq. This sends the
cubical neutral point pa, bq to p1, 0q, hence is an isomorphism of cubical torsor structure. This
isomorphism was originally used in [Rob24] to obtain the cubical formulas for the Montgomery
model from the ones from the theta model. In the end, a more direct proof of the Montgomery
cubical formulas was given in that paper.

Roadmap. In Section 2, we discuss the general theory of Kummer lines. In Section 3 and 4, we
describe the Kummer lines built from Montgomery curves and certain theta functions of level 2.
We also provide the differential addition and doubling formulas in every model, as well as the
correlations between them and the conversion formulas. Section 5 covers the classification of
elliptic curves via Shimura theory and the easier Galois representation criteria for the previously
introduced Kummer lines. Finally, we relate the different models to isogeny volcanos in Section 7
and describe how to find curves with theta squared model to use for instance in ECM, as well
as some thoughts on stage 2 with Kummer lines in Section 8.

Notations. We will use the following notations for computational cost:
‚ M is a generic multiplication,
‚ S is a generic squaring,
‚ m is a multiplication by a constant that could change on a set curve, for instance the
x-coordinate of a base point,

‚ m0 is a multiplication by a curve parameter, for instance the A parameter of a Mont-
gomery curve,

‚ c is a multiplication by a constant less than a computer word.

A brief presentation of the results. The article is relatively long and the reader can benefit
from a brief abstract of the results. To do so we use a a language which is more abstract than
the rest of the article, where we introduce the concepts gradually.

The Kummer line E{ ˘ 1 is isomorphic, as a scheme, to P1. However, it is not possible to
recover E from the projective line, we need extra data. We first show that it is (almost) enough
to give as extra marking the 4-ramification points on P1 (the image of the 2-torsion point on
E), along with which point out of those 4 is the point 0E . (It is customary to send 0E to the
point at infinity p1 : 0q on the Kummer line, but some of the models we will study won’t have
this property). This model will be rational (i.e. correspond to the Kummer line f a rational
elliptic curve) whenever the ramification is stable under the Galois action, and the image of 0E
is rational. We note that from this data, we can only recover E up to a quadratic twist.

Although our proofs of the above facts are completely elementary, their underlying structural
reason is that the Kummer line ought to be taken as a stacky quotient rE{µ2s, where µ2 “ t´1, 1u

is the group scheme of square roots of the unity, rather than as a schematic quotient E{µ2 (the
later is the coarse space of the former). We explain this briefly in Appendix A. This also explains
why the Kummer line can “see” E only up to a quadratic twist: the choice of E is determined
by the stacky quotient rE{ ˘ 1s along with a choice of map rE{µ2s Ñ Bµ2, where Bµ2 “ rk{µ2s

is the classifying stack of étale µ2-torsors. We stress that we won’t use this more abstract point
of view in the main part of the paper.

The ramification data thus gives us a very simple description of the Kummer line, while still
allowing us to find formulas for the arithmetic. Let us start with isomorphisms of Kummer lines:
to find an isomorphism between the Kummer coordinate pX1 : Z1q of E1{ ˘ 1 and pX2 : Z2q of
E2{˘1, it suffices to find the homography that sends the ramification of E1{˘1 to the ramification
to E2{ ˘ 1, and 0E1 to 0E2 ; this boils down to linear algebra. Indeed, such an homography lifts
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to an isomorphism of elliptic curves E1 Ñ E2 (maybe up to replacing them by quadratic twists),
isomorphism that sends 0E1 to 0E2 by assumption, hence which automatically preserve the group
law. In particular, this gives a much simplified proof of the change of coordinates from [HR19],
where the authors used a formal calculus software to check that their conversion formula preserved
the group law. Instead, we only need to check that the image of the ramification matches.

Next, the ramification data is also enough to find doubling and differential addition formulas
on the Kummer line. Doublings were worked out in [RS24a], while differential additions in
[RS24b]. As such, we won’t expand on these arithmetic aspects in this paper, but focus on the
models themselves. In Section 3 we give a list of some standard Kummer models used in the
literature, like the Montgomery, theta, squared theta (and maybe less standard like the twisted
theta) model, and refer to the existing formulas in the literature for the arithmetic (which were
also rebuilt “from scratch” in [RS24a; RS24b]). Here our contribution is Section 4, where we
give conversion map between these different models. We remark that most of these were already
done in [HR19], descending the existing conversion formulas in the litterature from elliptic curves
to Kummer lines. What we do in Section 4 is to instead recover the conversion formulas from
scratch, simply from the ramification of these different models.

In [RS24a], using the general doubling framework on Kummer lines, it was observed that for
some models doublings and translation by a point of 2-torsion could be faster than a doubling.
This was used to adjust the usual Montgomery ladder by replacing doublings by doublings with
translation. We mention that we can retrieve a particular case as follows: the Montgomery
model has faster doublings than the theta squared model, but the theta squared model has
faster differential additions. But, using the conversion formulas, we see in Proposition 4.7 that
they have the exact same ramification, but with a different marked point for 0E . This means that
the identity pX : Zq ÞÑ pX : Zq behaves as translation by a point of 2-torsion when converting
back and forth between these two models; and that using the Montgomery doubling formulas
in the theta model behaves as doubling and translation, and similarly using the theta squared
differential additions in the Montgomery model behaves as a differential addition + translation.
Since the extra translation is easy to keep track (for instance it is killed by a subsequent doubling),
it is easy to adjust the Montgomery ladder to use the translated formulas instead.

In Section 5 we study when the models of Section 3 are rational, and how they are parametrized.
This is where Galois representation comes in: we show that each of the family correspond to
the Galois representation in the 2-Tate module T2E taking a specific form. In fact for these
families it is enough to look at the Galois representation in Er4s. The Galois representation
then gives matrices in SL2pZ{4Zq and the families correspond to matrices living in some specific
subgroup G. By Shimura theory (see e.g. [Zyw15]) our families can then be described by modular
curves. More precisely, in Section 5 we show that Montgomery models correspond to G “ Γ0p4q,
theta squared models to G “ Γ0p4q X Γp2q, and theta models to G “ Γp2, 4q “ Γ0p4q X Γ0p4q.
We also reinterpret the condition to have Galois representation in Γ0p4q in terms of the 2-Tate
pairing. These results are certainly folklore. For the theta model they are a consequence of the
more general (analytic) result by Igusa that theta constants of level n in dimension g are modu-
lar forms for Γpn, 2nq. (The algebraic interpretation of Igusa’s result, as shown by Mumford in
[Mum66], is having a rational symmetric theta structure of level n.) However, we haven’t seen ex-
plicitly stated in the literature the many equivalent conditions to having a rational Montgomery
model given in Corollary 6.3. This section also allows us to understand the link between Mont-
gomery and theta models better: in dimension 1 and level 2, having a rational theta structure
is equivalent to having two different Montgomery models (if E{ ˘ 1 has a Montgomery model,
pX : Zq ÞÑ p´X : Zq automatically gives another one, that leaves p0 : 0q invariant. By two dif-
ferent Montgomery model we mean an isomorphism of models that sends p0 : 0q to another two
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torsion point). In Section 5, we consider the modular curves as schemes (hence as coarse spaces).
For moduli problems the fine moduli spaces keep track of more information, but in presence of
non trivial automorphisms this requires to work with stacks rather than schemes. We briefly
survey stacky modular curves in Appendix B, and their parametrisation of the Kummer models
(and twists).

In Section 6, we explain why the families studied in Section 3 are “natural”. Recall that our
Kummer lines are isomorphic as a scheme to P1. We certainly want to use a line as a model
of P1, so use as coordinate a section of a divisor ptq of degree 1: either x (which has a pole at
8 “ p1 : 0q) or an homography pax ` bq{pcx ` dq (which has a pole at t “ ´d{c). In practice,
since we prefer to work with projective coordinates pX : Zq, this amounts to choosing a linear
change of variable pX : Zq ÞÑ paX ` bZ : cX ` dZq. From the elliptic curve point of view, if
π : E Ñ E{ ˘ 1 » P1 is the projection, pX,Zq can then be seen as sections of π˚ptq „ 2p0Eq:
they form coordinates of level 2. So for us a model of Kummer lines boils down to a choice of
coordinate x, and looking at how the ramification behaves. This might seem rather boring, but
there are actually some nice arithmetic considerations behind the choice of x.

We want to focus on models of Kummer lines which have at least one rational point of two-
torsion T (because this allows us to split doublings into the composition of two 2-isogenies).
Since our projective coordinates pX : Zq are of level 2, the translation map pXpP q : ZpP qq ÞÑ

pXpP ` T q : ZpP ` T qq (which is well defined on the Kummer line because T is of 2-torsion) is
given by a linear change of variable pXpP`T q : ZpP`T qq “ MT ¨pXpP q : ZpP qq for a 2ˆ2 matrix
MT (well defined up to a multiplications by λ Id because pX : Zq are projective coordinates).
Since T is of two-torsion, M2

T acts by the projective identity, so we have, M2
T “ λT Id. A natural

question is whether we can find MT such that M2
T “ Id, i.e. λT “ 1? It is easy to see that

changing MT to λMT changes λT to λ2λT , so λT is well defined up to squares: we call it the type
of T . In particular, there is an arithmetic obstruction to finding such a MT : namely whether the
class of λT modulo squares is trivial (i.e. is λT a square)?

If this condition is satisfied, then up to a change of basis we have MT “ p 0 1
1 0 q and the

translation by T is pX : Zq ÞÑ pZ : Xq. Putting 0E at infinity p1 : 0q, we then have that
T “ p0 : 1q, and the other two torsion points are given by pα : 1q, p1 : αq (since tT1, T2u is stable
under the action of MT ). We have rediscovered the Montgomery model!

An alternative is to take M 1
T “ p 1 0

0 ´1 q, this matrix is conjugate to MT and the conjugation
gives the new variables pX 1 : Z 1q “ pX`Z : X´Zq (which we will call the Hadamard transform).
Taking the Montgomery model, the ramification is then given in the pX 1 : Z 1q coordinates by
0E “ p1 : 1q, T1 “ p´1 : 1q, T2 “ pβ : 1q, T3 “ p´β : 1q with β “ pα ` 1q{pα ´ 1q.

Now assume that we have two rational points of 2-torsion, T1, T2. We can try to further
refine by asking that T1, T2 should both be of trivial type, so that we can find two matrices
M1,M2 giving their translation map and such that M2

1 “ M2
2 “ 1. Then M1 and M2 have to

anticommute (this can be seen by working out the form they can take given the ramification,
but also result from the deeper theory that the commutator bracket of M1,M2 gives the Weil
pairing eW,2pT1, T2q “ ´1.) From general linear algebra, we can always find a basis pX,Zq such
that M1 “ p 0 1

1 0 q and M2 “ p 1 0
0 ´1 q. We remark that such a basis is uniquely determined (up

to a common scalar), in particular we do not have extra degrees of liberty to put 0E at infinity
anymore. If we denote pXp0Eq : Zp0Eqq “ pa : bq, then by constructions of M1,M2, we have
T1 “ pb : aq, T2 “ p´a : bq, T1 ` T2 “ p´b : aq. We have just rediscovered the theta model!
In other words: a Kummer line has a rational Montgomery model when its ramification is (up
to a change of variable) symmetric for one of the two symmetries: pX : Zq ÞÑ pZ : Xq or
pX : Zq ÞÑ p´X : Zq, while it admits a rational theta model if its ramification is (up to a change
of variable) symmetric for both symmetries at the same time.
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Hidden behind this story is Mumford’s theta group Gp2p0Eqq: our matrices MT are given by
the action of elements of the theta groups on the sections Γp2p0Eqq, and being able to find a
matrix MT such that M2

T “ 1 amount to being able to find a symmetric element above T in the
theta group. Unsurprisingly, we also show in Section 6 that the class of the type λT P k˚{k˚,2

of T is given by the self Tate pairing eT,2pT, T q. Yet another equivalent condition is to look
at points of 4-torsion: a point T 1 on the Kummer line is of 4-torsion above T if and only if
pXpT 1q : ZpT 1qq are projectively invariant under the action of MT , i.e. pXpT 1q, ZpT 1qq is an
eigenvector of MT . There are two such eigenvectors, with eigenvalues ˘

?
λT P k (because MT

is not projectively trivial, hence not diagonal), so these eigenvectors are rational if and only if
λT is a square. We refer to Corollary 6.3 for other equivalent conditions. This explains why in
Section 5 we are interested in the Galois representation in Er4s.

Using these algebraic and arithmetic tools, we revisit the families of Section 3 from the theta
group point of view. We also explain how we can reinterpret them as twisted variant of the theta
model, and how to count their number of rational models.

In Sections 5 and 6, we look at whether a Kummer line admitted a Montgomery or theta
model. In Section 7, we tackle the question whether it is isogeneous to one such model. For that,
we use the theory of isogeny volcano.

In Section 8 we study ECM with the level 2 theta model and some of its variants. Thanks to
the modular curves from Section 5, we parametrize all the elliptic curves which are suitable for
our coordinate systems. In particular, we can select curves with more torsion points and small
parameters.

2. Models of Kummer lines

In this article, we fix a perfect field k of characteristic 0 or p ą 2.
Let E{k be an elliptic curve, and π : E Ñ E{˘1 be the projection, it is a degree 2 cover. This

map ramifies at the 2-torsion points Er2s. Since there are 4 of them on k, E{ ˘ 1 is a marked
curve of genus 0, the marked point being πpOEq, hence is isomorphic to P1 over k. In fact, taking
an affine Weierstrass model y2 “ hpxq with hpxq of degree 3 and the neutral point OE being at
infinity, then since ´P “ pxP ,´yP q, it is classical that the quotient π : E Ñ E{ ˘ 1 is given by
pX : Y : Zq ÞÑ pX : Zq; this is equivalent to checking that the field kpxq is the subfield of kpEq

invariant by the involution r´1s.

Definition 2.1. A Kummer line is a map π : E Ñ P1 defined over k through which r´1s

factorizes, modulo the identification of π with π1 : E1 Ñ P1 whenever there is an isomorphism
(of elliptic curves) φ : E » E1 defined over k such that π1 “ π ˝ φ.

An isomorphism of Kummer lines π1 : E1 Ñ P1 and π2 : E2 Ñ P1 is any isomorphism
φ : P1 Ñ P1 defined over k, such that φ extends to an isomorphism ψ : E1 Ñ E2 over k such
that π2 ˝ ψ “ φ ˝ π1.

E E1 E1 E2

P1 P1 P1
π{k

φ{k

π1
{k

π1{k

ψ{k

π2{k

φ{k

Figure 1. Commutative diagrams for Definition 2.1
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Remark 2.2. Note that in Definition 2.1, the morphisms between elliptic curves are defined
over the algebraic closure k, whereas the maps to the projective line are defined over k.

For instance let us consider an elliptic curve E defined over a finite field k and its quadratic
twist E1. Then what the definition says is that we identify the Kummer lines of E and E1 even
if E,E1 are only isomorphic on the algebraic closure but not on k itself.

Although the definition given above might seem ad hoc, it is quite natural if we consider the
Kummer line as a stack quotient rather than a scheme quotient, we refer to Appendix A for more
details.

Not every degree 2 cover E Ñ P1 factorizes through r´1s, hence define a Kummer line. Indeed,
degree 2 covers are given by degree 2 divisors , as the pullback of p8q on P1 (by Riemann-Roch
a degree 2 divisor has two global sections, hence define a morphism to P1), and such a divisor D
is, up to linear equivalence, of the form D “ pP q ` pOEq “ 2pP 1q. It corresponds to the cover
R ÞÑ xpR´ P 1q, which factorizes through r´1s if and only if P 1 is a point of two torsion, that is
D is linearly equivalent to 2p0Eq.

Here is the definition of Kummer line found in [RS24a]:

Definition 2.3. A Kummer line is the datum of a degree 2 cover of P1 by E with 4 distinct
ramification points, one of which is rational and marked:

π : E Ñ P1 and DOE P Epkq, DT,R, S P E with #π´1pπpP qq “

#

1 if P P tOE , T,R, Su,

2 otherwise.

As we will see in Proposition 2.5, both definitions are equivalent, we will first need a lemma:

Lemma 2.4. Let E be an algebraic curve defined over k, and π : E Ñ P1 a degree 2 cover
defined over k with 4 ramification points, one of which is marked. Then E is an elliptic curve.

Proof. This statement could be proved using Riemann-Hurwitz formula, but we will use another
approach that will yield more information on the ramification in Proposition 2.5. Since π is a
degree 2 cover and one of the ramification points is in Epkq, π˚ : kpP1q Ñ kpEq is a degree 2
extension. Because char k ‰ 2, one can write kpP1q “ kpxq, kpEq “ kpx, yq and y2 “ hpxq, where
h P krxs. The discriminant of this extension is ∆ “ 4h. We now work over k. The places in P1

are the pα associated to the irreducible polynomial x´α with α P k, and the place at infinity p8.
A place pα ramifies if and only if pα | ∆, i.e. hpαq “ 0 since the characteristic is not 2. With the
place at infinity, this means that h has either 3 or 4 roots in k, hence E is an elliptic curve. □

Proposition 2.5. Let E be an elliptic curve and π : E Ñ P1 a map, both defined over k. The
following assertions are equivalent:

(1) π is a Kummer line in the sense of Definition 2.1.
(2) π is a Kummer line in the sense of Definition 2.3.

Moreover, the 4 ramification points in Definition 2.3 are exactly the 2-torsion points and the
fibres are given by π´1pπpP qq “ t˘P u for P P E.

Proof. Assume first that π is a Kummer line in the sense of Definition 2.1. We consider p : E Ñ P1

with ppP q “ px : 1q if P “ px, yq P E and ppOq “ p1 : 0q. p is a degree 2 cover which factors by
r´1s, hence because of the universal property defining π, we can identify them. If P P E, the
fibres are p´1pppP qq “ t˘P u, so ramification points must verify P “ ´P , i.e. 2 ¨ P “ O, that is
P is a ramification point if and only if P is a 2-torsion point. This gives exactly 4 ramification
points, and OE is rational, so p and π are Kummer lines in the sense of Definition 2.3.

Conversely, assume π is a Kummer line in the sense of Definition 2.3. We will reuse notations
of the proof of Lemma 2.4, where kpP1q “ kpxq, kpEq “ kpx, yq, y2 “ hpxq with h P krxs and
π˚ : kpP1q Ñ kpEq is the degree 2 extension. Let σ P Galpkpx, yq{kpxqq, then σpxq “ x and
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because y2 P kpxq, we must have σpyq
2

“ y2, that is σpyq “ ˘y. Hence, the non-trivial Galois
automorphism is given by σpxq “ x and σpyq “ ´y. It is well known that this corresponds to
the involution ι : E Ñ E with ιpP q “ ´P , see [Sil86, § III.2.3]. Because π˚ “ σ ˝ π˚, we recover
that π “ π ˝ ι, which implies π´1pπpP qq “ t˘P u, and as before the ramification points are the
2-torsion points. Because of the fibres, r´1s factorizes through π, hence it is a Kummer line in
the sense of Definition 2.1. □

3. Some families of Kummer lines

We now give some examples of Kummer lines, from the classical Montgomery model to variants
of theta models.

3.1. Montgomery curves. Let A, B P k, an elliptic curve of the following form is known as a
Montgomery curve:

MA,B : By2 “ xpx2 ` Ax` 1q

Points are written in projective coordinates pX : Y : Zq satisfying the following equation:

BY 2Z “ XpX2 ` AXZ ` Z2q

The neutral element for the addition law is O “ p0 : 1 : 0q.
The Kummer line associated to a Montgomery curve is the x-only system of coordinates:

MA,B
π

ÝÑ P1

pX : Y : Zq ÞÑ

#

p1 : 0q if pX : Y : Zq “ O,
pX : Zq otherwise.

Because the ramification on the Kummer line is given by the 2-torsion, it corresponds to the
point at infinity and the points with x-coordinate a root of xpx2 ` Ax` 1q.

Definition 3.1. Let α P k be a root of x2 ` Ax` 1, then the ramification is:

(1) O “ p1 : 0q
˚
, T “ p0 : 1q, R “ pα : 1q, S “ p1 : αq.

If α “ pa : bq P P1, we will denote the Montgomery Kummer line model Mpa : bq.

The arithmetic provided by Montgomery in [Mon87] and recalled in Algorithms 1 and 2 is
efficient with this construction as a differential addition can be done in 2M ` 2S ` 1m and a
doubling in 2M ` 2S ` 1m0.

Remark 3.2. The differential addition formulas do not hold if rP ´ Qs “ p0 : 1q, in this
case, P ´ Q “ T is a 2-torsion point and rP ` Qs “ r2 ¨ Q ` T s. If r2 ¨ Qs “ pX : Zq, then
r2 ¨Q` T s “ pZ : Xq according to [RS24a, Eq. (4)].

It can be noted that the constant B is never involved in the formulas, which is a specificity of
Kummer lines, the twist we are working on does not matter. We refer to [CS18] for a survey on
Montgomery curves.

Lastly, it will prove useful to determine when there are any rational 4-torsion points on the
Kummer line T 1. Of course, this implies that T :“ 2T 1 is rational. To do that, the approach is
the same as what is done in [RS24a, § 3.2, Main Example 4]. We first determine the translation
τ : P ÞÑ P ` T on the Kummer line, where T is a 2-torsion point, therefore τ factors by r´1s

on both sides and hence is well-defined and is a homography γT . Then we look for a point
xpT 1q “ pXpT 1q : ZpT 1qq that is invariant by γT . We stress that although we only look for T 1

rational on the Kummer line, i.e. xpT 1q rational; T 1 itself may only be defined over a quadratic
extension. We note the following easy lemma:



MODELS OF KUMMER LINES AND GALOIS REPRESENTATIONS 9

Algorithm 1: Differential addition in Montgomery xz-coordinates
Input: rP s “ pX1 : Z1q, rQs “ pX2 : Z2q and rP ´Qs “ pX0 : Z0q ‰ p0 : 1q, p1 : 0q

Output: rP `Qs “ pX : Zq

1 Function DiffAdd(rP s, rQs, rP ´Qs):
2 u Ð pX1 ` Z1qpX2 ´ Z2q;
3 v Ð pX1 ´ Z1qpX2 ` Z2q;
4 w Ð pu` vq

2;
5 t Ð pu´ vq

2;
6 X Ð w;
7 Z Ð X0

Z0
t;

8 return pX : Zq;

Algorithm 2: Doubling in Montgomery xz-coordinates
Input: rP s “ pX1 : Z1q

Output: r2 ¨ P s “ pX : Zq

Data: On MA,B , d “ A`2
4

1 Function Doubling(rP s):
2 u Ð pX1 ` Z1q

2;
3 v Ð pX1 ´ Z1q

2;
4 t Ð u´ v;
5 X Ð uv;
6 Z Ð tpv ` dtq;
7 return pX : Zq;

Lemma 3.3. A 4-torsion point T 1 P E above a rational 2-torsion point T “ 2T 1 has xpT 1q P k if
and only if σpT 1q “ T 1 or σpT 1q “ T 1 ` T for all σ P Galpk{kq, if and only if the cyclic subgroup
of order 4, xT 1y, is rational.

In this case there is also a second rational cyclic subgroup of order 4 containing T , generated
by T 1 ` T2 for a 2-torsion point T2 ‰ T .

Proof. Note that if φ : E Ñ E2 “ E{xT y is the corresponding 2-isogeny, then the image of T2 by
φ is a rational point of 2-torsion (which gives the dual isogeny), the image of T 1 is also a rational
point of 2-torsion, hence there is also a third rational point of 2-torsion on E2, and composing
the associated isogeny E2 Ñ E3 with φ gives a cyclic isogeny of degree 4. □

On the Montgomery model, for T “ p0 : 1q, γT : pX : Zq ÞÑ pZ : Xq, and we find that there
are always two points of 4-torsion: T 1 “ p1 : 1q and T 2 “ p´1 : 1q.

3.2. Theta models. It is easy to define from a Montgomery curve a Kummer line model with ef-
ficient arithmetic. Another way to build Kummer lines is via theta functions, which have already
been used for instance in [GL09; KS20]. Their arithmetic is competitive with the Montgomery
one, hence why we would like to study them. Another interesting aspect about these functions
is that they generalize well to abelian varieties of higher dimension, but we will not discuss this
aspect in this paper.

Theta functions can be naturally expressed as analytic functions over C, hence an approach
is to study and find formulas on complex numbers and check that those are still valid on more
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generic fields, especially finite ones. For the direct algebraic interpretation of theta functions we
refer to [Mum66] for their construction via the theta group, and to [Bre83] for their construction
via the cubical torsor structure.

Let H be the Poincaré half-plane H “ tτ P C | im τ ą 0u and consider τ P H. We can then
define a lattice Λτ “ Z ` τZ and an elliptic curve on C can be seen as Eτ “ C{Λτ . Our first
objective is to define some mappings Eτ Ñ Pℓ´1pCq with simple algebraic addition law. Theta
functions will help us to do so, more details can be found in [Mum83, § II].

First, for τ P H, the Jacobi theta function is defined as follows for every z P C:
(2) ϑpz; τq “

ÿ

nPZ
exppiπn2τ ` 2iπnzq.

This function is well-defined for every z P C (see [Mum83, § II.1, Prop. 1.1]).
If a, b P Z, ℓ P N˚, we also define theta functions with characteristics (we use the notations of

Gaudry and Lubicz [GL09]):

(3) ϑℓ ra, bs pz; τq “
ÿ

nPZ
exp

ˆ

iπ
´

n`
a

ℓ

¯2
τ ` 2iπ

´

n`
a

ℓ

¯

ˆ

z `
b

ℓ

˙˙

.

Let us list a series of classical properties of the theta functions:

Proposition 3.4. Let z P C, ℓ P N˚, a, b P Z, m P Z, then:
ϑℓ ra, bs pz; τq “ exppiπa2τ{ℓ2 ` 2iπapz ` b{ℓq{ℓqϑpz ` aτ{ℓ` b{ℓ; τq,

ϑℓ ra, bs pz `m; τq “ expp2iπam{ℓqϑℓ ra, bs pz; τq,

ϑℓ ra, bs pz `mτ ; τq “ expp´2iπbm{ℓq expp´iπm2τ ´ 2iπmzqϑℓ ra, bs pz; τq.

These functions are still well-defined if a, b P R, but we generally restrict to the case where
a, b P Z.

Theta functions with characteristic are a particular case of functions of level ℓ.

Definition 3.5. Let τ P H and ℓ P N˚. An entire function f : C Ñ C is said to be of level ℓ if
for all z P C, m P Z:

fpz `mq “ fpzq and fpz `mτq “ expp´iπℓm2τ ´ 2iπℓmzqfpzq

We call Rτℓ the vector space of functions of level ℓ.

The point of defining such functions is that if we take a family f1, . . . , fr P Rτℓ and λ P Λτ ,
then there is a function cℓ : C Ñ C such that for all 1 ď i ď r, for all z P C, fipz`λq “ cℓpzqfipzq,
hence in the projective space, pf1 : ¨ ¨ ¨ : frq is invariant by the lattice Λτ . Functions of level ℓ
are interesting because up to a projective factor, they are invariant under the action of Λτ .

We will now relate theta functions with characteristics with functions of level ℓ. Because of
the definition in Eq. (3), at a set ℓ and with integer characteristics, it is clear that we can define
for a given τ exactly ℓ2 functions. The following theorem shows that in fact we only require ℓ of
them.

Theorem 3.6 ([Mum83], § II.1, Prop. 1.3). For every τ P H, ℓ P N˚, dimRτℓ “ ℓ.

Mumford’s proof builds explicit bases via theta functions with characteristics. In the following,
we will focus on level ℓ “ 2 because we will gain on several aspects, especially recovering easily
Kummer lines. We will now give some of the families used in Mumford’s proof:

Definition 3.7. Let τ P H, for every z P C, we define the following theta functions:
θτ0 pzq “ ϑ2 r0, 0s pz; τ{2q, θτ1 pzq “ ϑ2 r0, 1s pz; τ{2q.

Proposition 3.8 ([Mum83], § II.1, Prop. 1.3). pθτ0 , θ
τ
1 q is a basis of Rτ2 .
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For every elliptic curve E on C, there exists τ such that E “ Eτ , to which we associate the
previously defined theta functions, giving a degree 2 cover thanks to the following theorem by
Lefschetz proven in [Mum83, § II.1, Thm. 1.3] and [Mum70, § I.3]:

Theorem 3.9 (Lefschetz). Let τ P H. If Eτ is an elliptic curve on C, denote by Kτ “ Eτ { ˘ 1,
and z P Kτ the class of z P Eτ . If pf, gq is a basis of Rτ2 , then the following map Φ : Kτ Ñ P1 is
well-defined and is an embedding:

Φ : z ÞÑ pfpzq : gpzqq.

Equivalently, π : Eτ Ñ P1, z ÞÑ pfpzq : gpzqq is a Kummer line.

Remark 3.10. The more general version of the theorem also states that if the level ℓ is greater
than 3, then we directly have an embedding Eτ Ñ Pℓ´1.

As for the arithmetic, we will need the following formulas relating theta functions with different
characteristics and τ , we will only give them in level 2, however more general formulas can be
found in [Igu72, § IV.1, Thm. 2]:

Proposition 3.11 (Duplication formulas). Let a1, b1, a2, b2 P Z, z1, z2 P C and τ P H. Let
2w1 “ z1 ` z2 and 2w2 “ z1 ´ z2, then:

2ϑ2 ra1, b1s pz1; τqϑ2 ra2, b2s pz2; τq “

ÿ

tPt0,1u

e´iπa1tϑ2

„

a1 ` a2,
b1 ` b2

2 ` t

ȷ

pw1; τ{2q ¨ ϑ2

„

a1 ´ a2,
b1 ´ b2

2 ` t

ȷ

pw2; τ{2q,

ϑ2 ra1, b1s pz1; τqϑ2 ra2, b2s pz2; τq “

ÿ

tPt0,1u

ϑ2

„

a1 ` a2

2 ` t, b1 ` b2

ȷ

p2w1; 2τq ¨ ϑ2

„

a1 ´ a2

2 ` t, b1 ´ b2

ȷ

p2w2; 2τq.

Proof. The first formula is [Igu72, § IV.1, Thm. 2]. The second one can then be derived from
the first one, set:

A “
ÿ

tPt0,1u

ϑ2

„

a1 ` a2

2 ` t, b1 ` b2

ȷ

p2w1; 2τq ¨ ϑ2

„

a1 ´ a2

2 ` t, b1 ´ b2

ȷ

p2w2; 2τq.

Also set, for t P t0, 1u:

a1
1 “

a1 ` a2

2 ` t, a1
2 “

a1 ´ a2

2 ` t, b1
1 “ b1 ` b2, b1

2 “ b1 ´ b2.

A quick computation yields:

a1
1 ` a1

2 “ a1 ` 2t, a1
1 ´ a1

2 “ a2, b1
1 ` b1

2 “ 2b1, b1
1 ´ b1

2 “ 2b2.

By applying the first formula inside the sum of A, since 2t “ 0 mod 2, we get:

A “
1
2

ÿ

t,rPt0,1u

e´iπa1
1rϑ2 ra1, b1 ` rs pz1; τq ¨ ϑ2 ra2, b2 ` rs pz2; τq.

We then split when r “ 0 and r “ 1. If r “ 0, then there is no dependency on t, and we recover
2ϑ2 ra1, b1s pz1; τqϑ2 ra2, b2s pz2; τq in the sum. If r “ 1, the theta functions do not depend on t
and the exponential is expp´iπa1

1rq “ expp´iπ a1`a2
2 q expp´iπtq. Because 1 ` expp´iπq “ 0, we

finally get:
A “ ϑ2 ra1, b1s pz1; τqϑ2 ra2, b2s pz2; τq.

□
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3.2.1. Theta models and their duals. A period τ P H is set for the rest of this section. Let us
first consider the theta functions pθτ0 , θ

τ
1 q. It is a basis of Rτ2 thanks to Proposition 3.8, so the

map π : z P Eτ ÞÑ pθτ0 pzq : θτ1 pzqq is a Kummer line by Theorem 3.9. For convenience, set
pa : bq :“ pθτ0 p0q : θτ1 p0qq, they are the theta constants. It can be shown using the definition of
the theta functions that the ramification on the Kummer line is then:

(4) O “ pa : bq˚
, T “ p´a : bq, R “ pb : aq, S “ p´b : aq.

Definition 3.12. An elliptic curve E{k has a theta model with theta constants pa : bq P P1pkq

if there exist a Kummer line E Ñ P1 with the following ramification points as in (4). The theta
model will be written θpa : bq generally, or θτ pa : bq over Eτ .

Another model that can be derived from this one is the dual one using the Hadamard trans-
form.

Definition 3.13. Let E{k be an elliptic curve with a theta model θpa : bq, the Kummer line is
denoted π. The dual theta model is given by composing π with the Hadamard transform

(5)
H : P1 Ñ P1

pX : Zq ÞÑ pX ` Z : X ´ Zq.

The theta constants are pa1 : b1q “ pa` b : a´ bq, and the ramification is:

O “ pa1 : b1q
˚
, T “ pb1 : a1q, R “ p´a1 : b1q, S “ p´b1 : a1q.

The dual model is written θ1pa : bq or θ1τ pa : bq over Eτ .

The corresponding theta functions are:

θ1τ
0 “ θτ0 ` θτ1 , θ1τ

1 “ θτ0 ´ θτ1 .

It is a corollary from Proposition 3.8 that this is also a basis of Rτ2 .

Remark 3.14. A computation with the analytic definition helps to express θ1τ
0 and θ1τ

1 as theta
functions with characteristic:

θ1τ
0pzq “ ϑ2 r0, 0s p2z; 2τq, θ1τ

1pzq “ ϑ2 r1, 0s p2z; 2τq.

With these new notations, and using Proposition 3.11 with pa1, b1q “ pa2, b2q, one can relate
the theta functions to get a differential addition and doubling:

Proposition 3.15. Let τ P H, for every u, v P C:

(6)

$

’

’

’

’

&

’

’

’

’

%

2θ1τ{2
0 pu` vqθ1τ{2

0 pu´ vq “ θτ0 p2uqθτ0 p2vq ` θτ1 p2uqθτ1 p2vq,

2θ1τ{2
1 pu` vqθ1τ{2

1 pu´ vq “ θτ0 p2uqθτ0 p2vq ´ θτ1 p2uqθτ1 p2vq,

θτ0 pu` vqθτ0 pu´ vq “ θ1τ{2
0 puqθ1τ{2

0 pvq ` θ1τ{2
1 puqθ1τ{2

1 pvq,

θτ1 pu` vqθτ1 pu´ vq “ θ1τ{2
0 puqθ1τ{2

0 pvq ´ θ1τ{2
1 puqθ1τ{2

1 pvq.

It is convenient to give names to the theta constants on the 2-isogeneous curve Eτ{2. Let
pA : Bq :“ pθ

τ{2
0 p0q : θτ{2

1 p0qq and pA1 : B1q :“ pA ` B : A ´ Bq. Setting u “ v “ 0 in Eq. (6),
one obtains2:

pA12 : B12q “ pa2 ` b2 : a2 ´ b2q.

2This relation is also in [GL09, § 6.2], however there is a typo in the published version as squares are missing
on A1 and B1. The preprint is fixed.
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Remark 3.16. The formulas in Eq. (6), while obtained over C, are purely algebraic in the
end. This is what enables us to use them on more general fields, such as finite fields, thanks to
Lefschetz’ principle.

Similarly to what Montgomery did, these formulas provide differential addition formulas as
well as doubling ones, they are described in Algorithms 3 and 4. Differential addition costs
2M ` 4S ` 1m ` 1m0, while doubling is 4S ` 2m0.

Algorithm 3: Differential addition on theta model
Input: rP s “ pX1 : Z1q, rQs “ pX2 : Z2q and rP ´Qs “ pX0 : Z0q

Output: rP `Qs “ pX : Zq

Data: On θτ pa : bq, pA12 : B12q “ pa2 ` b2 : a2 ´ b2q

1 Function DiffAdd(rP s, rQs, rP ´Qs):
2 u Ð pX2

1 ` Z2
1 qpX2

2 ` Z2
2 q;

3 v Ð A12

B12 pX2
1 ´ Z2

1 qpX2
2 ´ Z2

2 q;
4 X Ð pu` vq;
5 Z Ð X0

Z0
pu´ vq;

6 return pX : Zq;

Algorithm 4: Doubling on theta model
Input: rP s “ pX1 : Z1q

Output: r2 ¨ P s “ pX : Zq

Data: On θτ pa : bq, pA12 : B12q “ pa2 ` b2 : a2 ´ b2q

1 Function Doubling(rP s):
2 u Ð pX2

1 ` Z2
1 q

2;
3 v Ð A12

B12 pX2
1 ´ Z2

1 q
2;

4 X Ð pu` vq;
5 Z Ð a

b pu´ vq;
6 return pX : Zq;

We can also study points of 4-torsion on the theta model θτ pa : bq. Recall that T “ p´a : bq
and R “ pb : aq are two independent 2-torsion points, then τ : pX : Zq ÞÑ p´X : Zq is the
translation by T and τ 1 : pX : Zq ÞÑ pZ : Xq is the translation by R. Then, on the Kummer line,
if we have a 4-torsion point T 1 above T , it verifies T 1 ` T “ T 1. Hence, if T 1 “ pX : Zq, we must
have pX : Zq “ p´X : Zq, that is T 1 “ p1 : 0q or T 1 “ p0 : 1q. Similarly, if R1 is above R, we find
that R1 “ p1 : 1q or R1 “ p´1 : 1q.

Proposition 3.17. On the theta model θτ pa : bq, the 4-torsion is:
T 1 “ p1 : 0q, T 2 “ p0 : 1q, R1 “ p1 : 1q, R2 “ p´1 : 1q

where 2 ¨ T 1 “ 2 ¨ T 2 “ T and 2 ¨ R1 “ 2 ¨ R2 “ R. On the theta dual model θ1τ pa1 : b1q, the
4-torsion is:

T 1 “ p1 : 1q, T 2 “ p´1 : 1q, R1 “ p1 : 0q, R2 “ p0 : 1q.

On both model, the last points above S may not be rational but are still given by S1 “ pi : 1q and
S2 “ p´i : 1q with i2 “ ´1.
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3.2.2. Theta squared model. It appears in Algorithms 3 and 4 that one only needs the square of
the coordinates. This is what leads to the theta squared model. For a set τ P H, we define the
following theta functions:

pθ
τ{2
0 pzq “ ϑ2 r0, 0s pz; τ{2q

2
, pθ

τ{2
1 pzq “ ϑ2 r0, 1s pz; τ{2q

2
,

qθ1
τ

0pzq “ ϑ2 r0, 0s pz; τq
2
, qθ1

τ

1pzq “ ϑ2 r1, 0s pz; τq
2
.

Proposition 3.18 ([Mum83], § II.1, Prop. 1.3). pqθ1
τ

0 ,
qθ1
τ

1q is a basis of Rτ2 and ppθ
τ{2
0 , pθ

τ{2
1 q is a

basis of Rτ{2
2 .

This gives new theta models, but more importantly they are related to the previous ones via
the following relations:

pθ
τ{2
i pzq “ θτi pzq

2
, qθ1

τ

i p2zq “ θ1τ{2
i pzq

2
.

The curve Eτ and Eτ{2 are 2-isogeneous, the isogeny and its dual are given by:

f : z mod Λτ ÞÑ z mod Λτ{2, f̂ : z mod Λτ{2 ÞÑ 2z mod Λτ .

If we relate this to the formulas above, we have just expressed f and f̂ on certain theta models.
As for the ramification points, we use the additional 4-torsion given in Proposition 3.17.

Definition 3.19. An elliptic curve E{k has a theta squared model with constants pa2 : b2q P P1pkq

if there exist a Kummer line E Ñ P1 with the following ramification points:

O “ pa2 : b2q
˚
, T “ pb2 : a2q, R “ p1 : 0q, S “ p0 : 1q.

The theta squared model will be written pθpa2 : b2q generally, or pθτ{2pa2 : b2q over Eτ{2, and
qθ1
τ
pA12 : B12q over Eτ with the according constants.

Remark 3.20. While as functions pθi and qθ1
i are not exactly the same, they both correspond to

squared coordinates of a theta model and have ramification in the same shape, hence the name
and the association. The ramification points are exactly the same as in the Montgomery model
Eq. (1), but the marked point is different. We will develop this connection in the next section.

Note that with this definition, an elliptic curve can admit a theta squared model pθpa2 : b2q

without having a theta model θpa : bq: pa : bq may not be rational.

Proposition 3.21. The rational 4-torsion on the theta squared model pθpa2 : b2q is given by
T 1 “ p1 : 1q and T 2 “ p´1 : 1q where 2 ¨ T 1 “ 2 ¨ T 2 “ T .

By adapting Algorithms 3 and 4, we can recover a more efficient differential addition in
2M ` 2S ` 1m ` 1m0 in this model with a doubling still in 4S ` 2m0, they are in Algorithms 5
and 6.

3.2.3. Theta twisted model. While arithmetic on theta squared model is quite efficient, it is hard
to go back to the original theta model if it exists because of the squares. We will then introduce
a more natural model which is as efficient as the theta squared one and less restrictive to go back
to the theta one.

If we have theta functions pθ0, θ1q which give a theta model, the associated theta constants
are not zero, and we can then consider a new basis:

rθ0pzq :“ θ0p0qθ0pzq, rθ1pzq :“ θ1p0qθ1pzq.

This is clearly a basis of Rτ2 from Proposition 3.8, and define a new theta model named theta
twisted. The ramification is as follows if we start from the theta model θpa : bq:
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Algorithm 5: Differential addition on theta squared model
Input: rP s “ pX1 : Z1q, rQs “ pX2 : Z2q and rP ´Qs “ pX0 : Z0q

Output: rP `Qs “ pX : Zq

Data: On qθ1
τ
pA12 : B12q, pa2 : b2q “ pA12 `B12 : A12 ´B12q

1 Function DiffAdd(rP s, rQs, rP ´Qs):
2 u Ð pX1 ` Z1qpX2 ` Z2q;
3 v Ð a2

b2 pX1 ´ Z1qpX2 ´ Z2q;
4 X Ð pu` vq

2;
5 Z Ð X0

Z0
pu´ vq

2;
6 return pX : Zq;

Algorithm 6: Doubling on theta squared model
Input: rP s “ pX1 : Z1q

Output: r2 ¨ P s “ pX : Zq

Data: On qθ1
τ
pA12 : B12q, pa2 : b2q “ pA12 `B12 : A12 ´B12q

1 Function Doubling(rP s):
2 u Ð pX1 ` Z1q

2;
3 v Ð a2

b2 pX1 ´ Z1q
2;

4 X Ð pu` vq
2;

5 Z Ð A12

B12 pu´ vq
2;

6 return pX : Zq;

Definition 3.22. An elliptic curve E{k has a theta twisted model with constants pa2 : b2q P P1pkq

if there exist a Kummer line E Ñ P1 with the following ramification points:

O “ pa2 : b2q
˚
, T “ p´a2 : b2q, R “ p1 : 1q, S “ p´1 : 1q.

The theta twisted model will be written rθpa2 : b2q generally, or rθτ pa2 : b2q over Eτ .

The 4-torsion above T is always rational and is given by T 1 “ p1 : 0q and T 2 “ p0 : 1q. The
4-torsion above R may not be rational, but is given by R1 “ pa : bq and R2 “ p´a : bq.

Remark 3.23. Similarly to the theta squared model, an elliptic curve can admit a theta twisted
model rθpa2 : b2q without having a theta model θpa : bq if pa : bq is not rational. However, it is
much easier to recover the original model via pX : Zq P rθpa2 : b2q ÞÑ pbX : aZq P θpa : bq if
pa : bq P P1pkq.

If pθ1
0, θ

1
1q are the dual theta functions, we can twist this basis too:

rθ10pzq :“ θ1
0p0qθ1

0pzq, rθ11pzq :“ θ1
1p0qθ1

1pzq.

It appears there are a lot of similarities between theta squared and theta twisted models. In
fact, if we set u “ v in Eq. (6), we find:

prθ1
τ

0 : rθ1
τ

1q “ ppθ
τ{2
0 ` pθ

τ{2
1 : pθ

τ{2
0 ´ pθ

τ{2
1 q, prθ

τ{2
0 : rθ

τ{2
1 q “ pqθ1

τ

0 ` qθ1
τ

1 : qθ1
τ

0 ´ qθ1
τ

1q.

In the end, the theta twisted coordinates are just the Hadamard dual of the theta squared
coordinates, hence why they behave similarly. But note in the above formula that they are
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coordinates for different period matrices τ and τ{2, hence they are also quite useful to study
2-isogenies in theta coordinates.

The differential addition and doubling in theta twisted coordinates are given in Algorithms 7
and 8 respectively. They are derived from the ones in theta squared and by applying Eq. (5).

In terms of complexity, Algorithm 7 costs 2M`2S`1m`1m0 and Algorithm 8 costs 4S`2m0,
which is the same as in the squared model.

Algorithm 7: Differential addition in theta twisted coordinates
Input: rP s “ pX1 : Z1q, rQs “ pX2 : Z2q and rP ´Qs “ pX0 : Z0q

Output: rP `Qs “ pX : Zq

Data: On rθτ pa2 : b2q, pA12 : B12q “ pa2 ` b2 : a2 ´ b2q

1 Function DiffAdd(rP s, rQs, rP ´Qs):
2 u Ð X1X2;
3 v Ð a2

b2 Z1Z2;
4 rX Ð X0 ` Z0;
5 rZ Ð X0 ´ Z0;
6 w Ð pu` vq

2;
7 t Ð

ĂX
rZ

pu´ vq
2;

8 X Ð w ` t;
9 Z Ð w ´ t;

10 return pX : Zq;

Algorithm 8: Doubling in theta twisted coordinates
Input: rP s “ pX1 : Z1q a point
Output: r2 ¨ P s “ pX : Zq

Data: On rθτ pa2 : b2q, pA12 : B12q “ pa2 ` b2 : a2 ´ b2q

1 Function Doubling(rP s):
2 u Ð X2

1 ;
3 v Ð a2

b2 Z
2
1 ;

4 w Ð pu` vq
2;

5 t Ð A12

B12 pu´ vq
2;

6 X Ð w ` t;
7 Z Ð w ´ t;
8 return pX : Zq;

A summary of the maps between various theta models is available in Fig. 2.
We remark that a similar figure first appeared in [RS17, § 4.3] (in dimension 2), and then in

[HR19, Corollary 4, Theorem 5] in dimension 1. The “intermediate Kummer” introduced in these
work is our twisted theta model. The explanation for that name will be given in Section 6.2.

4. Conversions between these models

As seen in Section 2, Kummer lines isomorphisms are given by homographies that preserve
2-torsion. This allows us to recover the existing formulas in the literature, notably those of
[HR19].
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Eτ { ˘ 1 : θpa : bq rθpa2 : b2q pqθ1q1pa2 : b2q qθ1pA12 : B12q

Eτ{2{ ˘ 1 : pθpa2 : b2q ppθq1pA12 : B12q Ąpθ1qpA12 : B12q θ1pA1 : B1q

f :rP sÞÑrP s

if a
b Pk H

H if A1

B1 Pk

f̂ :rP sÞÑr2¨P s

Figure 2. Relations among several models pf the Kummer line: the theta θ
(Definition 3.12),

Remark 4.1. There is a less direct way to convert from Montgomery to theta squared and theta
twisted, by chaining isomorphisms from Montgomery to Legendre and then from Legendre to
theta squared, which can be found in [EH22, § 2.8] for the Montgomery to Legendre maps, and
in [GL09, § 6] and [KS20, § 2.6] for the Legendre to theta squared maps.

With the 2-torsion data, we can then define our isomorphisms:

Proposition 4.2 (Montgomery and theta). Let a, b P k and set pA12 : B12q “ pa2 ` b2 : a2 ´ b2q.
Let M and θ be the Kummer line models in Definitions 3.1 and 3.12. There is a morphism φ
given by:

φ : θpa : bq Ñ MpA12 : B12q

pX : Zq ÞÑ pbX ` aZ : aZ ´ bXq.

Conversely, if A12, B12 P k and pa2 : b2q “ pA12 `B12 : A12 ´B12q with a, b P k, the converse of φ
is given by:

φ´1 : MpA12 : B12q Ñ θpa : bq
pX : Zq ÞÑ papX ´ Zq : bpX ` Zqq.

Proof. We are looking for a homography φ : pX : Zq ÞÑ pαX ` βZ : γX ` δZq such that:
‚ φpa : bq “ p1 : 0q, that is γa` δb “ 0,
‚ φp´a : bq “ p0 : 1q, that is ´αa` βb “ 0,
‚ φpb : aq “ pA12 : B12q, that is pαb` βa : γb` δaq “ pA12 : B12q.

The last equation can be reformulated as:

pA12 : B12q “ pαb2 ` βab : γb2 ` δabq “ pαpb2 ` a2q : γpb2 ´ a2qq.

Thus, pA12 : B12q “ p´αA12 : γB12q, i.e. α “ ´γ, β “ δ, and since γa “ ´δb, we end up with the
expression of φ. We can then check that with this expression φp´b : aq “ pB12 : A12q.

For the converse, we give another method which is to check that the 2-torsion is mapped
correctly and the point at infinity correspond:

φ´1p1 : 0q “ pa : bq, φ´1p0 : 1q “ p´a : bq, φ´1pA12 : B12q “ pb : aq, φ´1pB12 : A12q “ p´b : aq.

□

We can compose these conversion map with the map MpA12 : B12q Ñ MpA12 : ´B12q, pX :
Zq ÞÑ p´X : Zq, to obtain θpa : bq Ñ MpA12 : ´B12q, pX : Zq ÞÑ pX{a ` Z{b : X{a ´ Z{bq, the
Hadamard transform of another twisted variant of theta coordinates: θ0{θ0p0q, θ1{θ1p0q.

Remark 4.3. In Proposition 4.2, we chose to map pA12 : B12q and p´a : bq together, but we
could have done it differently. Set pa1 : b1q “ pa` b : a´ bq. Transposing 2-torsion is the same as
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working on the dual theta model, so we apply φ and φ´1 to θ1pa1 : b1q and then use a Hadamard
transform to go back to θpa : bq:

φ1 : θpa : bq Ñ Mp rA2 : rB2q

pX : Zq ÞÑ paX ´ bZ : bX ´ aZq,

and:
φ1´1 : Mp rA2 : rB2q Ñ θpa : bq

pX : Zq ÞÑ paX ´ bZ : bX ´ aZq.

This time p rA2 : rB2q “ pa12 ` b12 : a12 ´ b12q “ pa2 ` b2 : 2abq, φ1 “ φ ˝H, rA2, rB2 P k and a, b P k.

Remark 4.4. The conversion formulas in Proposition 4.2 also help to express Montgomery XZ-
coordinates via theta functions. Indeed, let τ P H and consider the theta model θτ pa : bq. We
write pX : Zq “ pθτ0 pzq : θτ1 pzqq and pXM : ZM q “ pbX ` aZ : aZ ´ bXq the corresponding
Montgomery coordinates. Using Proposition 3.11, with α “ a1 “ a2 and β “ b1 “ b2, one gets:
2ϑ2 rα, βs pz; τq

2
“ ϑ2 r0, 0s p0; τ{2qϑ2 r0, βs pz; τ{2q ` e´iπαϑ2 r0, 1s p0; τ{2qϑ2 r0, β ` 1s pz; τ{2q.

Applying this to pα, βq “ p0, 1q and pα, βq “ p1, 1q, one gets the two following formulas:
#

2ϑ2 r0, 1s pz; τq
2

“ ϑ2 r0, 0s p0; τ{2qϑ2 r0, 1s pz; τ{2q ` ϑ2 r0, 1s p0; τ{2qϑ2 r0, 0s pz; τ{2q

2ϑ2 r1, 1s pz; τq
2

“ ϑ2 r0, 0s p0; τ{2qϑ2 r0, 1s pz; τ{2q ´ ϑ2 r0, 1s p0; τ{2qϑ2 r0, 0s pz; τ{2q.

Hence pXM : ZM q “ paZ ` bX : aZ ´ bXq “ pϑ2 r0, 1s pz; τq
2 : ϑ2 r1, 1s pz; τq

2
q expresses the

Montgomery coordinates via theta functions of level 2.

Proposition 4.5 (Montgomery and theta squared). Let a, b P k with a2, b2 P k. Let M and
θ̂ be the Montgomery and theta squared models as in Definitions 3.1 and 3.19. There is an
isomorphism pφ given by:

pφ : pθpa2 : b2q Ñ Mpa2 : b2q

pX : Zq ÞÑ pa2X ´ b2Z : b2X ´ a2Zq.

The converse is:
pφ´1 : Mpa2 : b2q Ñ pθpa2 : b2q

pX : Zq ÞÑ pa2X ´ b2Z : b2X ´ a2Zq.

Proof. Similarly to Proposition 4.2, we will determine pφ : pX : Zq ÞÑ pαX`βZ : γX`δZq using
the 2-torsion. We want:

‚ pφpa2 : b2q “ p1 : 0q, that is γa2 ` δb2 “ 0,
‚ pφp1 : 0q “ pa2 : b2q, that is pα : γq “ pa2 : b2q,
‚ pφp0 : 1q “ pb2 : a2q, that is pβ : δq “ pb2 : a2q.

From the first two equations, we deduce α “ ´δ, and because βa2 “ δb2, γa2 “ ´δb2, we have:
pαX ` βZ : γX ` δZq “ pδp´a2X ` b2Zq : δp´b2X ` a2Zqq “ pa2X ´ b2Z : b2X ´ a2Zq.

It follows that pφpb2 : a2q “ p0 : 1q.
For the converse, we will again just check that the point at infinity and the 2-torsion are

correctly mapped:
pφ´1p1 : 0q “ pa2 : b2q, pφ´1p0 : 1q “ pb2 : a2q, pφ´1pa2 : b2q “ p1 : 0q, pφ´1pb2 : a2q “ p0 : 1q.

□

The last conversion between theta twisted and Montgomery models can be derived from
Proposition 4.5 thanks to the Hadamard transform:
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Proposition 4.6 (Montgomery and theta twisted). Let a, b P k such that a2, b2 P k, and set
pA12 : B12q “ pa2 ` b2 : a2 ´ b2q. Let M and rθ be the Montgomery and twisted theta models as in
Definitions 3.1 and 3.22. There is an isomorphism rφ given by:

rφ : rθpa2 : b2q Ñ MpA12 : B12q

pX : Zq ÞÑ pb2X ` a2Z : a2Z ´ b2Xq.

The converse is:
rφ´1 : MpA12 : B12q Ñ rθpa2 : b2q

pX : Zq ÞÑ pa2pX ´ Zq : b2pX ` Zqq.

Proof. Because of the isomorphism H : rθpa2 : b2q Ñ pθpA12 : B12q, pX : Zq ÞÑ pX ` Z : X ´ Zq,
we just have to compose pφ : pθpA2 : B12q Ñ MpA12 : B12q with H to get rφ “ pφ ˝ H and
rφ´1 “ H´1 ˝ pφ´1. We then have:
rφpX : Zq “ pA12pX `Zq ´B12pX ´Zq : B12pX `Zq ´A12pX ´Zqq “ pb2X ` a2Z : a2Z ´ b2Xq,

and:
rφ´1pX : Zq “ pA12X´B12Z`B12X´A12Z : A12X´B12´B12X`A12Zq “ pa2pX´Zq : b2pX`Zqq.

□

To benefit from faster doubling formulas on the theta squared model while keeping the better
differential addition on Montgomery model, one could do conversions, however this approach
adds a lot of multiplications. However, there is one last conversion map that is interesting
between theta squared and Montgomery models to tackle this issue:

Proposition 4.7. Let a, b P k such that a2, b2 P k. Let rPθs P pθpa2 : b2q and rPM s “ pφprPθsq

from Proposition 4.5. Finally, let rRθs “ p1 : 0q P pθpa2 : b2q and rRM s “ pa2 : b2q P Mpa2 : b2q

2-torsion points on their respective models.
The map τ : pθpa2 : b2q Ñ Mpa2 : b2q, rPθs ÞÑ rPM ` RM s is well-defined and given by

pX : Zq ÞÑ pX : Zq. It is a bijection and the converse is τ´1 : rPM s ÞÑ rPθ `Rθs.

Proof. The map is well-defined because RM is a 2-torsion point, so rPM ` RM s “ rPM ´ RM s

and the map Pθ ÞÑ PM ` RM on the elliptic curves factors through r´1s, giving τ . Recall the
ramification on each model:

rOθs “ pa2 : b2q
˚
, rTθs “ pb2 : a2q, rRθs “ p1 : 0q, rSθs “ rTθ `Rθs “ p0 : 1q,

rOM s “ p1 : 0q
˚
, rTM s “ p0 : 1q, rRM s “ pa2 : b2q, rSM s “ rTM `RM s “ pb2 : a2q.

It is then clear that pX : Zq ÞÑ pX : Zq and τ match on the 2-torsion, hence on the whole model.
The converse τ´1 also matches with pX : Zq ÞÑ pX : Zq. □

The idea to do the computations on several models up to a 2-torsion point has been developed
in [RS24a, § 5] with the hybrid ladder.

The possible conversions between the Montgomery and Legendre model, we give one choice
below. Combining this with the other conversion maps allows to obtain the conversion formulas
between the theta model variants and the Legendre model.

Proposition 4.8 (Montgomery and Legendre). If Mpα : 1q is a Montgomery model, the ram-
ification is O “ p1 : 0q

˚
, T “ p0 : 1q, R “ pα : 1q, S “ p1 : αq, and so the map pX :

Zq ÞÑ pαX : Zq gives an isomorphism (defined over the field of definition of α) with the Legendre
Kummer line whose ramification is O “ p1 : 0q

˚
, T “ p0 : 1q, R “ pλ : 1q, S “ p1 : 1q, and

λ “ α2.
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In particular, combining with Proposition 4.2, given a theta model θpa : bq we see that it is
isomorphic to the Legendre model with λ “ A14{B14.

5. Interpretation in terms of Galois representation

Here we will give an interpretation of the models of Section 3 in terms of Galois representation.
Let us introduce some notations first.

5.1. Weil and Tate pairings. k is as before a perfect field with charpkq ‰ 2, and we will
consider an elliptic curve E defined over k. Let n ě 2 be an integer, prime with charpkq if it is
positive. We will note the n-torsion on E by Erns and the rational n-torsion Ernspkq, that is:

Erns “ tP P E | n ¨ P “ Ou and Ernspkq “ Erns X Epkq.

The structure of Erns is well known (see for instance [Sil86, Cor. III.6.4]):
Erns » Z{nZ ˆ Z{nZ.

If P,Q P Erns, one can define their Weil pairing eW,npP,Qq P µn where µn are the n-th roots
of unity, see [Sil86, § III.8]. We will mainly use the following properties:

Proposition 5.1. eW,n : Erns ˆ Erns Ñ µn is:
(1) Bilinear:

eW,npP1 ` P2, Qq “ eW,npP1, QqeW,npP2, Qq

eW,npP,Q1 `Q2q “ eW,npP,Q1qeW,npP,Q2q

(2) Alternating:
eW,npP, P q “ 1

(3) Non-degenerate:
p@P P Erns, eW,npP,Qq “ 1q ùñ Q “ O

(4) Surjective: there are P,Q P Erns such that eW,npP,Qq is a primitive n-th root of unity.

There are many equivalent definitions of the Tate pairing. For our purposes, we will use the
following definition (see for instance [Rob23, § 4.4, Eq. (10)]):

Definition 5.2. Denote by Gk “ Galpk{kq the absolute Galois group of k and assume that there
is a rational n-torsion point on E, that is Q P Ernspkq. Let P P Epkq and P0 P E such that
n ¨ P0 “ P . The Tate pairing is then defined as:

eT,npP,Qq : Gk Ñ µn

σ ÞÑ eW,npσpP0q ´ P0, Qq

Remark 5.3. The Tate pairing can be evaluated up to an n-th power because H1pGk, µnq »

kˆ{pkˆq
n, more details can be found in [Rob23, § 4.4] to switch between the different points of

view.
On a finite field, the Tate pairing can even be reduced to studying only the case σ “ πq where

πq is the Frobenius map over Fq. This is called the reduced Tate pairing (see [Rob23, § 4.5]), but
we won’t need it here.

One use of the Tate pairing to have a nice criterion about having a 4-isogeny (see also [Rob23,
Ex. 5.9] which use the geometric definition to obtain the following result as an immediate corol-
lary):

Lemma 5.4. Assume E has a non-trivial rational 2-torsion point P P Er2spkq and set P0 P Er4s

such that 2 ¨ P0 “ P . The following conditions are equivalent:
(1) eT,2pP, P q is trivial.
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(2) For all σ P Gk, σpP0q “ P0.
(3) K “ xP0y is a rational cyclic subgroup of Er4s of order 4 (i.e. σpKq “ K for all σ P Gk).
(4) E has a 4-isogeny which is cyclic and rational.

Moreover, E has a rational cyclic 4-isogeny if and only if there is a rational 4-torsion point rP0s

on the associated Kummer line K “ E{t˘1u.

Proof. Let σ P Gk. Since P P Er2spkq Ď Er2s, we can consider Q P Er2s such that Er2s “ xP,Qy.
The non-degeneracy of the Weil pairing imposes that eW,2pP,Qq is a primitive root of unity, i.e.
eW,2pP,Qq “ ´1.

Because σpP0q´P0 P Er2s, we write it as aP`bQ with a, b P Z{2Z, then eT,npP, P qpσq “ p´1q
b.

eT,npP, P q is trivial if and only if for all σ P Gk, σpP0q ´ P0 P xP y, and because P ` P0 “ ´P0:

eT,npP, P q “ 1 ðñ @σ P Gk, σpP0q “ ˘P0.

The rest of the equivalence follows from Lemma 3.3.
□

5.2. Galois representation and modular curves. For this section we refer to [Zyw15, § 2,
§ 3] which gives a modern point of view of Shimura’s theory developed in [Shi94].

5.2.1. Galois representation. Let E be an elliptic curve defined over k a field with charpkq ‰ 2 and
n ě 2. As stated above, the structure of Erns is well known. We will fix a basis of Erns “ xP,Qy

for the rest of this section. Gk acts on points of E coordinate-wise and is compatible with the
addition law. Therefore, if σ P Gk, σpErnsq “ Erns. So one only needs to know the image of P
and Q by σ to get the full image of Erns.

If σpP q “ aP ` cQ and σpQq “ bP ` dQ with a, b, c, d P Z{nZ, we can set:

Mσ “

ˆ

a b
c d

˙

P GL2pZ{nZq.

Definition 5.5 (Galois representation). The following map defines a representation of Gk on
GL2pZ{nZq, known as the Galois representation modulo n:

ρE,n : Gk Ñ GL2pZ{nZq

σ ÞÑ Mσ.

The morphism ρE,npGkq plays a key role in the classification of elliptic curves E, but to explain
why we first introduce modular curves.

5.2.2. Modular curves over Q. Here we assume that k “ Q. Recall that H is the upper half-plane
of C, then SL2pZq acts on H via γ ¨ τ “ aτ`b

cτ`d if τ P H and γ “
`

a b
c d

˘

P SL2pZq.
Let ΓpNq be the kernel of the reduction modulo N map SL2pZq ↠ SL2pZ{NZq, that is

the set of matrices of determinant 1 which reduce to the identity modulo N . The quotient
Y pNq “ ΓpNqzH is a Riemann surface which can be compactified in a smooth compact Riemann
surface denoted XpNq. If τ P H, every meromorphic function f on XpNq can be written in
q-expansion (q1{N “ e2iπτ{N ), that is there is a sequence of complex numbers pcnqněn0

with
n0 P Z such that:

fpτq “
ÿ

něn0

cnq
n{N .

We denote by FN the field of meromorphic functions over XpNq that has q-expansion coefficients
in QpζN q with ζN “ e2iπ{N . Its elements are called the modular functions of level N . If j “ jpτq

is the modular j-invariant, then F1 “ Qpjq. According to [Zyw15, Prop. 3.1], FN is a Galois
extension of Qpjq with Galois group isomorphic to GL2pZ{NZq{t˘Iu.
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For G a subgroup of GL2pZ{NZq containing ´I and such that detpGq “ pZ{NZq
ˆ, we can

then define FG
N the subfield of FN fixed by the action of G seen as a part of GalpFN{Qpjqq. By

the assumption on detpGq, Q is algebraically closed in FG
N and XG “ GzXpNq is well-defined as

the smooth projective curve over Q with function field FG
N . Because of the inclusion Qpjq Ď FG

N ,
there is also a non-constant morphism of degree rGL2pZ{NZq : Gs:

πG : XG Ñ P1pQq

The core of the classification of models relies on this theorem from [Zyw15, Prop. 3.3]:

Theorem 5.6 (Modular interpretation). Let G be a subgroup of GL2pZ{NZq that contains ´I

and satisfies detpGq “ pZ{NZq
ˆ, and let E be an elliptic curve defined over Q such that its

j-invariant is different from 0, 1728. Then ρE,N pGQq is conjugate in GL2pZ{NZq to a subgroup
of G if and only if jE P πGpXGpQqq.

Remark 5.7. Theorem 5.6 can be generalized to more general fields, but requires developing the
theory of modular curves over a generic field k. For completeness, this is done in Appendix B.

We will introduce some notations for specific curves, we have already seen XpNq. Let T`pNq

be the set of upper triangular matrices in GL2pZ{NZq and X0pNq “ XT`pNq. Set also T´pNq be
the set of lower triangular matrices in GL2pZ{NZq and DpNq “ T`pNq X T´pNq the diagonal
matrices. Let T1pNq “ tp 1 ˚

0 ˚ q P GL2pZ{NZqu and X1pNq “ XT1pNq. Finally, if M ě 1 is another
integer, we set:

HpM,MNq “ tg P T`pMNq | g ” I mod Mu and XpM,MNq “ XHpM,MNq.

Definition 5.8. Γ is said to be a congruence subgroup if there exists N ě 1 such that ΓpNq Ă Γ.

Modular curves over C can be seen as the compactification of Y pΓq “ ΓzH, i.e. XpΓq “ ΓzH˚

where H˚ “ H Y Q Y t8u is the completed upper half plane, as done in [DS05]. Congruence
subgroups then help to describe complex points of such curves. The following result can be
computed with a computer algebra software like Magma and is tabulated in LMFDB.

Proposition 5.9. When N “ 4, the 19 possible images of congruence subgroups in SL2pZ{4Zq

have been represented in Fig. 6 in Appendix C.

Because of Theorem 5.6, some of these subgroups give families of elliptic curves with Kummer
lines we would like to classify, as we will see in the next section.

5.3. Classification of models. Here we give description of the models of Section 3 in terms of
modular curves. k is a field with charpkq ‰ 2.

It is an open question whether all the efficient families of curves in cryptography are associated
to congruence subgroups, especially those in Fig. 6. In Section 8, we will come back to this
classification where we will want both good arithmetic, such as Montgomery or theta coordinates,
and also good torsion properties, so we may need to intersect some of these families.

An example of such classification is Legendre curves:

Proposition 5.10. Let E be an elliptic curve over k with j-invariant different from 0, 1728.
Then E is a Legendre curve if and only if it has full rational 2-torsion or equivalently if j P

πGpXp2qq.

5.3.1. Montgomery curves. To describe Montgomery curves, we will first need a criterion shown
in [OKS00, Prop. 1]:

Lemma 5.11. Let E be an elliptic curve over k and written in Weierstrass form y2 “ hpxq.
Then E can be put in Montgomery form if and only if there exists α P k such that hpαq “ 0 and
h1pαq is a square different from zero.
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The first condition means there is a non-trivial rational 2-torsion point, which is clear with the
equation of a Montgomery curve. We will explicit the second condition using the Tate pairing:

Proposition 5.12. Let E be an elliptic curve over k with j-invariant different from 0, 1728.
Then E is a Montgomery curve if and only if it admits a rational cyclic subgroup K of order 4.
Every Montgomery curve is described by a rational point x P X0p4qpkq and vice-versa.

Proof. We will write E : y2 “ hpxq in Weierstrass form.
First assume E is a Montgomery curve. By Lemma 5.11, P “ pα, 0q is a rational 2-torsion

point in Weierstrass coordinates with α P k and such that h1pαq P pkˆq
2. Now recall Remark 5.3,

the Tate pairing eT,2pP, P q P H1pG,µ2q is trivial if and only if it is a square. But if P is
a rational 2-torsion point, thanks to some computation done in [Rob23, Ex. 5.8.1], we have
eT,2pP, P q ” h1pαq, which is a square. So eT,2pP, P q is trivial and using Lemma 5.4 we have a
rational subgroup K » Z{4Z.

Conversely, assume that E has such a subgroup K, and denote its generator by P0 P Er4s.
By Lemma 5.4, σpP0q “ ˘P0 for all σ P Gk because K is rational. Setting P “ 2 ¨ P0, we then
have σpP q “ P , that is P is a non-trivial rational 2-torsion point on E. We write it pα, 0q in
Weierstrass coordinates with α P k. Again, by Lemma 5.4, eT,2pP, P q is trivial, i.e. it is a square.
This implies that h1pαq is also a square because of eT,2pP, P q ” h1pαq, and we conclude with
Lemma 5.11.

If we set the basis of Er4s “ xP0, Qy where K “ xP0y, then for all σ P Gk, σpP0q “ ˘P0.
Therefore, ρE,4pσq is upper triangular, i.e. ρE,4pGkq Ă T`p4q. Thanks to Theorem 5.6 applied to
G “ T`p4q, E being in Montgomery form is equivalent to its j-invariant jE being in πGpX0p4qpkqq.

□

Remark 5.13. In terms of congruence subgroups, we are on the curve associated to T`p4q “
@

Γ0p4q,
`

´1 0
0 1

˘D

which is group 4.6.0.c.1 in Fig. 6.

5.3.2. Theta and theta squared models. As seen before, rational torsion is really helpful to de-
termine on which modular curve we are. In addition to that, as shown in Lemma 5.4 the Tate
pairing also gives useful information on the Galois representation. We will consider the theta
model θpa : bq and the theta squared model pθpa2 : b2q. These two models have full 2-torsion, and
some rational 4-torsion points, as already seen in Propositions 3.17 and 3.21.

We have the following proposition:

Proposition 5.14. Let E be an elliptic curve over k, with j-invariant jE different from 0, 1728.
(1) E admits a theta model if and only if it has two rational subgroups K1,K2 » Z{4Z

with trivial intersection. Every theta model can then be described by a rational point
jE P πDp4qpXDp4qpkqq and vice-versa.

(2) E admits a theta squared model if and only if Er2spkq “ Er2s and E has a rational
subgroup K » Z{4Z. Every theta squared model can then be described by a rational point
jE P πHp2,4qpXp2, 4qpkqq and vice-versa.

Proof. If E admits a theta model θpa : bq, we have two rational independent 4-torsion points on
the Kummer line which are p1 : 0q and p1 : 1q according to Proposition 3.17. They can be lifted
to points P0, Q0 P Er4s which generates two rational cyclic kernels K1 “ xP0y and K2 “ xQ0y

thanks to Lemma 5.4 (the points P0, Q0 may not be rational however). The kernels now have
trivial intersection because the torsion points are independent, they do not lie above the same
2-torsion point. We also recover that E has full rational 2-torsion generated by P “ 2 ¨ P0 and
Q “ 2 ¨Q0, which are rational because the kernels are too.

If E only has a theta squared model, we still have the full rational 2-torsion by lifting pb2 : a2q

and p1 : 0q to E. The points are rational on the curve too because they are of order 2. We then
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set K “ xP0y where P0 is a lift of the rational 4-torsion point p1 : 1q on the Kummer line. Then
K is rational because of Lemma 5.4.

Conversely, assume that E has a rational kernel K » Z{4Z and full rational 2-torsion. Then
E can be put in Montgomery form using Proposition 5.12:

E : By2 “ xpx2 ` Ax` 1q.

Moreover, non-trivial 2-torsion points on a Montgomery curve are given by y “ 0, i.e. x “ 0 or
x2 ` Ax` 1 “ 0. Because the 2-torsion is rational, x2 ` Ax` 1 is split, and we have α P kˆ such
that:

E : By2 “ xpx´ αqpx´ α´1q.

From that point, we know that the Kummer line associated to E is Mpα : 1q, as defined in
Section 3. This model is isomorphic to pθpα : 1q via Proposition 4.5, hence E admits a theta
squared model.

If we have the stronger hypothesis that E has two rational kernels K1,K2 » Z{4Z with trivial
intersection, we write K1 “ xP0y and K2 “ xQ0y, P “ 2 ¨P0 and Q “ 2 ¨Q0. Since for all σ P Gk,
σpKiq “ Ki, when looking at the order we must have σpP q “ P and σpQq “ Q, so these points
are rational, and because they are distinct they are generators of the 2-torsion. We then are in
the previous case with α P kˆ such that:

E : By2 “ xpx´ αqpx´ α´1q “ hpxq.

We would like to prove that α`1
α´1 is a square. Up to transposing P and Q, assume that

Q “ pα, 0q. Because K2 is cyclic rational of degree 4, eT,2pQ,Qq is trivial thanks to Lemma 5.4.
With the computation done in [Rob23, Ex. 5.8.1], we know that eT,2pQ,Qq ” h1pαq is a square.

Because h1pxq “ 3x2 ` 2Ax` 1 where A “ ´α ´ α´1, when evaluated in α, we get:

h1pαq “ α2 ´ 1 “
α ` 1
α ´ 1 pα ´ 1q

2
.

Thus, β “

b

α`1
α´1 P k, and Mpα : 1q is isomorphic to θpβ : 1q thanks to Proposition 4.2, so E

admits a theta model.
The interpretation in terms of modular curves is straight-forward:

‚ If E has a theta model, denote K1 “ xP0y and K2 “ xQ0y with P0, Q0 P Er4s the two
rational kernels. We have Er4s “ xP0, Q0y. Because both K1 and K2 are rational, for
all σ P Gk, σpP0q “ ˘P0 and σpQ0q “ ˘Q0, so ρE,4pGkq Ă Dp4q, which is equivalent to
jE P πDp4qpXDp4qpkqq with Theorem 5.6.

‚ If E has a theta squared model, let K “ xP0y with P0 P Er4s be the rational kernel. Set
P “ 2 ¨ P0 P Er2spkq, write Er2spkq “ xP,Qy and take Q0 P Er4s such that 2 ¨ Q0 “ Q
and Er4s “ xP0, Q0y. Then for all σ P Gk, σpP0q “ ˘P0, σpP q “ P and σpQq “ Q, so
ρE,2pσq “ I and ρE,4pσq P T`p4q, i.e. ρE,4pGkq Ă Hp2, 4q. This is again equivalent to
jE P πHp2,4qpXp2, 4qpkqq with Theorem 5.6.

□

We remark that Proposition 5.14, for the theta model, is a particular case of a general result
from Igusa that states that the theta constants of level n are modular forms for the subgroup
Γpn, 2nq Ă Sp2gpZq. Indeed, in the particular case when n “ 2 and g “ 1, we have Γp2, 4q which
is conjugated to Dp4q “ T`p4q X T´p4q.

Remark 5.15. By Propositions 5.12 and 5.14, we see that the theta squared (or equivalently
the theta twisted) model correspond to a Montgomery model with full rational 2-torsion (i.e. in
Montgomery X Legendre). This can be seen directly from the conversion formulas from Section 4.



MODELS OF KUMMER LINES AND GALOIS REPRESENTATIONS 25

6. Interpretation in terms of the theta group

In this section, we reinterpret the results of Section 5 in term of the theta group.

6.1. The theta group and the type of a point. We refer to [Mum66] for the definition of
the theta group of an abelian variety, and to [RS24a, § 2.2; RS24b, § 5.1, § 5.2] for more details
on Mumford’s theta group of an elliptic curve.

We briefly recall the definitions we’ll need here, we’ll only need to work with theta groups of
level n “ 2. Let D “ 2p0Eq, then theta group GpDq is the group of functions gP on kpEq such
that P P Er2s, and div gP “ t˚´PD ´ D. The addition law of GpDq is given by pgP ¨ gQqpRq “

gP pRqgQpR´P q, it is a function with divisor t˚´P´QD´D. We have a canonical faithful action
of GpDq on ΓpDq given by pgP ¨ sqpRq “ gP pRqspR ´ P q.

If P P Er2s, we have the translation map R ÞÑ R ` P which induces a linear map on ΓpDq “

xX,Zy, hence an homography γP on the Kummer line E{˘1. We can represent the homography
γP as an element of PGL2. A choice of theta group element gP is then equivalent to the choice
of a matrix MP P GL2 above γP .

Since P is a point of 2-torsion, we have M2
P “ λP . If P is rational and we take MP P GL2pkq,

then changing MP by a scalar changes λP by a square; we see that the class of λP P k˚{k˚,2

depends only on P , not on GP , and is called the type of P (see [RS24a, Definition 2]). Since the
type of P can be recovered from the equation g2

P “ λP for a rational element gP in the theta
group above P , we see that it does not depend on the choice of basis of ΓpDq.

Theorem 6.1. Assume that P ‰ 0E P Er2spkq. The type λP P k˚{k˚,2 of P is also the class
of the non reduced self Tate pairing eT,2pP, P q P k˚{k˚,2. If we take a representative λP of the
type, then there is a model of the Kummer line E{ ˘ 1 where 0E is sent to 8 P to 0E, and the
other two torsion points are given by pα : 1q, p1{pλPαq : 1q (where α P k).

Conversely, if we have a model of the Kummer line E{ ˘ 1 such that the ramification is stable
by pX : Zq ÞÑ pZ : λPXq with 0E sent to P , then P is of type λP . In particular, P is of type λP
if and only if there is a rational Weierstrass equation of E of the form By2 “ xpx2 `Ax` 1{λP q

with xpP q “ 0.

Proof. Recall that the type of P is given by g2
P “ λP where gP is any theta group element above

P . By the definition of the theta group law, we have λP “ eT,2pP, P q (see [RS24a, p. 8]).
Now looking at the matrix MP given by the action of gP on Γp2q, we also have M2

P “ λP .
This is the minimal polynomial of MP because MP cannot be a diagonal matrix since P ‰ 0E .
So we can find a basis of sections of D such that MP “

` 0 λP
1 0

˘

.
If 0E “ pa : bq with this basis, then P “ γP ¨ 0E “ pb : λPaq. Then change of basis

pX,Zq ÞÑ pX´ b
λP a

Z : Z´ b
aXq sends 0E to p1 : 0q and P to p0 : 1q, while MP is invariant by the

corresponding conjugation. It follows that if one other two-torsion as coordinates T2 “ pα : 1q,
then T3 “ γP ¨ T2 “ p1 : λPαq.

Conversely, an homography of order 2 that stabilizes the ramification and sends 0E to P has
to be the one induced by the translation by P , and by our assumptions we can take MP “
` 0 λP

1 0
˘

. □

Remark 6.2. Pick up gP such that g2
P “ λP . One way to find a basis pX,Zq P ΓpDq so that the

ramification is as Theorem 6.1 is as follows. First let Z1 P Γpp0Eqq be a section, and let Z “ Z2
1 .

Then we let X “ gP ¨ Z. Since Zp0Eq “ 0, we have 0E “ p1 : 0q, and P “ p0 : 1q. If T2 is
another two-torsion point, T3 “ gP ¨ T2.

Theorem 6.1 explains how the structure of the ramification on the Kummer line, the action
of the theta group on ΓpDq, and the Tate self-pairing are all linked together. A particularly
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important case is when the type of P is a square, in which case we say that P is of Montgomery
type.

Corollary 6.3. If P P Er2spkq is a rational two torsion point, the following conditions are
equivalent:

(1) the type of P is a square;
(2) E has a Montgomery model By2 “ xpx2 `Ax` 1q with xpP q “ 0;
(3) there is a model of the Kummer line of E which has its ramification invariant by pX :

Zq ÞÑ pZ : Xq with 0E sent to P
(4) there is a model of the Kummer line of E such that 0E “ p1 : 0q, P “ p0 : 1q, and the

other points of 2-torsion are given by T2 “ pα : 1q, T3 “ p1 : αq

(5) there is a model of the Kummer line of E which has its ramification invariant by pX :
Zq ÞÑ p´X : Zq with 0E sent to P

(6) there is a model of the Kummer line of E such that 0E “ p1 : 1q, P “ p´1 : 1q, and the
other points of 2-torsion are given by T2 “ pβ : 1q, T3 “ p´β : 1q

(7) there exists a rational element gP P GpDq such that g2
P “ 1 (equivalently: the two

symmetric elements ˘gP P GpDq above P are rational);
(8) the reduced Tate self pairing is trivial: eT,2pP, P q “ 1;
(9) there exists a rational cyclic subgroup K of degree 4 containing P ;

(10) there exists a point of 4-torsion P 1 above P which is rational on the Kummer line (i.e.
such that if E : By2 “ x3`a2x

2`a4x`a6, xpP 1q is rational). Equivalently, σpP 1q “ ˘P 1

for all σ P Galpk{kq.
(11) E{xP y has its full 2-torsion rational (i.e. admits a rational Legendre model);
(12) The isogeny φP : E Ñ E{xP y can be extended to a rational cyclic isogeny of degree 4

(automatically in two different ways).

Proof. The first eight equivalences are consequences of the definition of the type of P and of
Theorem 6.1: if P has type a square, we can take λP “ 1 and MP “ p 0 1

1 0 q. Then the Hadamard
change of basis pX,Zq ÞÑ pX ` Z,X ´ Zq shows that we can also take MP “

` 1 0
0 ´1

˘

.
The link between the Tate pairing and having a rational cyclic group is given by Lemma 5.4,

but we can use the above result to give an alternative proof: if P is a 2-torsion point, then an
element gP P GpDq such that g2

P “ 1 is completely determined by a choice of 4-torsion point P 1

above P (more precisely, the choice of P 1 determines a symmetric element gP , but for n “ 2,
gP is symmetric if and only if g2

P “ 1, see [RS24a]). If P 2 “ P 1 ` T is a different choice of
4-torsion point, so that T P Er2s, the element induced by P 2 is the same one as the one by P 1

if and only if eW,2pT, P q “ 1. It follows that we can find a rational gP if and only if we can find
P 1 such that σpP 1q “ ˘P 1 for all σ P Galpk{kq. Yet another alternative proof is to use descent
theory: we can find a rational symmetric gP if and only if 2p0Eq descends to a symmetric divisor
on E1 “ E{xP y, i.e. there is a rational divisor D1 linearly equivalent to D “ 2p0Eq of the form
φ˚
P ppT 1qq for T 1 P E1r2s where φP : E Ñ E1 is the 2-isogeny. But then D1 “ pP 1q ` pP 1 ` P q,

for some point of 4-torsion P 1, and since D1 is rational we recover that σpP 1q “ ˘P 1 for all
σ P Galpk{kq.

We already saw that (9) is equivalent to (10).
For the last two statements, notice that on E1 “ E{xP y there is always a rational 2-torsion

point T 1
1 giving the dual isogeny E1 Ñ E. The isogeny φP can be extended to a cyclic isogeny of

degree 4 if and only if there is another rational point of 2-torsion T 1
2 on E1, but then T 1

3 “ T 1
1 `T 1

2
is rational too, so this is equivalent to E1 having full rational 2-torsion. □

If k “ Fq is a finite field, then F˚
q {F˚,2

q is of cardinal two. Pick up a λ´ P F˚
q that is not a

square, for instance if q ” 3 mod 4 we will pick λ´ “ ´1. Then if P P Er2spFqq, it is either of
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type a square (i.e. of Montgomery type) in which case we can choose λP “ 1, or not a square, in
which case we can choose λP “ λ´ and we say that P is of anti-Montgomery type. The pendant
of Corollary 6.3 is:

Corollary 6.4. If P P Er2spkq is a rational two torsion point, the following conditions are
equivalent:

(1) the type of P is not a square;
(2) E has a “anti-Montgomery” model By2 “ xpx2 `Ax` 1{λ´q with xpP q “ 0;
(3) there is a model of the Kummer line of E which has its ramification invariant by pX :

Zq ÞÑ pλ´Z : Xq with 0E sent to P
(4) there is a model of the Kummer line of E such that 0E “ p1 : 0q, P “ p0 : 1q, and the

other points of 2-torsion are given by T2 “ pα : 1q, T3 “ pλ´ : αq

(5) there does not exist a rational element gP P GpDq such that g2
P “ 1 (equivalently: the

two symmetric elements ˘gP P GpDq above P are not rational);
(6) the reduced Tate self pairing is not trivial: eT,2pP, P q “ ´1;
(7) there does not exists a rational cyclic subgroup K of degree 4 containing P ;
(8) E{xP y has only one rational point of 2-torsion;
(9) The isogeny φP : E Ñ E{xP y cannot be extended to a rational cyclic isogeny of degree 4.

The results of Corollaries 6.3 and 6.4 allow to recover the discussion on the Montgomery and
Montgomery´ models of [CD20].

6.2. Twisted theta models. We continue our reinterpretation of the results of Section 5 in
terms of the theta group.

Let, E{k be an elliptic curve, and denote, as above, D “ 2p0Eq. By definition ([Mum66]),
a symmetric theta structure on pE,Dq is a (symmetric) isomorphism between the theta group
GpDq and the Heisenberg group Hp2q of level 2. In this very particular case, an isomorphism
between GpDq and Hp2q has to be symmetric. By [Mum66], GpDq is always isomorphic to Hp2q

over k, and picking up an isomorphism amount to:
‚ Choose a basis T1, T2 of Er2s

‚ Choose two symmetric elements g1, g2 P GpDq above T1, T2. (We recall that in our case
g is symmetric if and only if g2 “ 1).

In which case, the canonical basis of theta functions θ0, θ1 can be defined as follows: we pick up
θ0 as a generator of ΓpDq invariant under the action of g1, and θ1 “ g2 ¨ θ0.

It follows:

Lemma 6.5. E admits a rational symmetric theta structure of level 2 if and only if there exists
two rational points T1, T2 P Er2spkq that are both of Montgomery type.

In particular, by Corollary 6.3, we recover the first part of Proposition 5.14. In fact, we can
refine it: if E has such a rational theta structure, let T1, T2, g1, g2 P GpDq be rational elements
given by the rational isomorphism of GpDq with Hp2q. Then T1 ` T2 is certainly rational, g1g2
is above T1 ` T2, and we have pg1g2q2 “ ´1, hence T1 ` T2 is of type ´1. It follows that T1 ` T2
is also of Montgomery type if and only if ´1 is a square in k (and then we will denote by i a
square root).

Corollary 6.6. Assume that E{k has a rational symmetric theta model of level 2. Then if ´1
is a square in k, E{k has 24 different theta models; otherwise it has 8.

(We implicitely count theta models with multiplicities if E has non trivial automorphisms.)

Proof. If ´1 is a square, all three points of 2-torsion are of Montgomery type. The choice of a
theta model amount to choosing two points pT1, T2q out ofh the three (where the ordering count),
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for a total of 6 choices, and then for each Ti to fix a choice of symmetric element ˘g1,˘g2, for
a total of 4 choices. This gives 24 possible choices. If ´1 is not a square, only two points are of
Montgomery type, and now we have 2 ˆ 4 “ 8 choices. □

Example 6.7 (The number of rational Montgomery models). More generally, if we have two
rational two torsion points T1, T2, of type λ1, λ2, then T1 ` T2 is rational of type ´λ1λ2.

Also, if T1 is of type λ1 and we select g1 P GpDq such that g2
1 “ λ1 to construct the pX,Zq

coordinates as in Remark 6.2, which gives the equation E : By2 “ x3 `Ax2 `x{λ1, then picking
up ´g1 instead changes X to ´X, and gives the equation E : ´By2 “ x3 ´Ax2 ` x{λ1

It follows that, if k “ Fq is a finite field, and ´1 is a square in Fq:
‚ If T1, T2 are of Montgomery type, T1 ` T2 too, and there are 6 rational Montgomery

models.
‚ If T1 is of Montgomery type and T2 of anti-Montgomery type, then T1 ` T2 if of anti-

Montgomery type, and there are 2 rational Montgomery models and 4 rational Montgomery´

models.
‚ If T1, T2 are of anti-Montgomery type, then T1 `T2 if of Montgomery type, and there are

2 rational Montgomery models and 4 rational Montgomery´ models.
And if ´1 is not a square in Fq:

‚ If T1, T2 are of Montgomery type, T1 ` T2 is of anti-Montgomery type, and there are 4
rational Montgomery models and 2 rational Montgomery´ models.

‚ If T1 is of Montgomery type and T2 of anti-Montgomery type, then T1 ` T2 if of Mont-
gomery type, and there are 4 rational Montgomery models and 2 rational Montgomery´

models.
‚ If T1, T2 are of anti-Montgomery type, then T1 `T2 if of anti-Montgomery type, and there

are 6 rational Montgomery´ models.

Now, if GpDq is not isomorphic to Hp2q over k, we know that it is an (étale) twist of it (since
it is isomorphic over the separable closure). Picking up such an automorphism γ, we see that for
each σ P Galpk{kq we obtain a (symmetric) automorphism ξpσq “ γσγ´1 of Hp2q, and σ Ñ ξpσq

form a cocyle.
Assume, for the sake of simplicity, that ´1 is a square in k, so that the symmetric automor-

phisms of Hp2q are rational, and the coboundaries are trivial. We can identify these automor-
phisms with Γ{Γp2, 4q where Γ “ Sp2pZq and, in our special case, and Γp2, 4q “ Γ0p4q X Γ0p4q

(see the discussion after Proposition 5.14).
In particular, ξpσq explains how σ acts on the canonical theta basis pθ0, θ1q given by γ:

unless ξpσq “ Id for all σ, this basis is not rational in general. Pick a subgroup G such that
Γp2, 4q Ă G Ă Γ. We say that GpDq is of type G if ξpσq P G for all σ P Galpk{kq. In that case, we
can try to build a basis θ1

0, θ
1
1 as a linear combination of θ0, θ1 such that θ1

0, θ
1
1 is invariant under

the action of the automorphisms in G. It follows that we obtain a rational basis of sections on
E, and we call pθ1

0, θ
1
1q a twisted theta model. We stress that in a “twisted theta model”, we still

describe a model of E (or its Kummer line), rather than a twist E1 of E. Here the twist refer
instead to the fact that for these models the theta group is a twist of the standard Heisenberg
group.

Example 6.8 (Automorphisms of the theta group). We list all 24 automorphisms of Hp2q, for
each give a representative in Γ{Γp2, 4q, and how it acts on the theta coordinates θ0, θ1 (hence
on the theta constants). We give six blocks of four automorphisms. Each block correspond to
a choice of a representative of Γ{Γp2q (which is of cardinal 3! “ 6), and where the first block
corresponds to γ “ Id. Then for these choices of γ P Γ{Γp2q, we list 4 possible lifts of γ to
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Γ{Γp2, 4q. More precisely, once we have picked up one possible lift γ1, we then give the other ones
via the action of the first block of automorphisms.

The change of coordinate follows from the explicit construction of θ0, θ1 once g1, g2 has been
chosen. Analytically, it also follows from the theta transformation formula [Igu72; Mum83]
(which is more precise since it also keep track of the theta constants as modular forms).

(1) p 1 0
0 1 q acts by pθ0, θ1q ÞÑ pθ0, θ1q.

(2) p 1 2
0 1 q acts by pθ0, θ1q ÞÑ pθ1, θ0q. This amounts to keeping g2 and changing g1 to ´g1.

(3) p 1 0
2 1 q acts by pθ0, θ1q ÞÑ pθ0,´θ1q. This amounts to keeping g1 and changing g2 to ´g2.

(4) p 1 2
2 1 q acts by pθ0, θ1q ÞÑ pθ1,´θ0q. This amounts to changing g1 to ´g1 and changing g2

to ´g2.

(5)
` 0 1

´1 0
˘

acts by pθ0, θ1q ÞÑ pθ0 ` θ1, θ0 ´ θ1q. This amounts to permuting g1, g2.
(6)

` 2 1
´1 0

˘

acts by pθ0, θ1q ÞÑ pθ0 ´ θ1, θ0 ` θ1q.
(7)

` 0 1
´1 2

˘

acts by pθ0, θ1q ÞÑ pθ0 ` θ1,´θ0 ` θ1q.
(8)

` 2 ´1
1 2

˘

acts by pθ0, θ1q ÞÑ p´θ0 ` θ1, θ0 ` θ1q.

(9) p 1 0
1 1 q acts by pθ0, θ1q ÞÑ pθ0, iθ1q. This amounts to keeping g1 and changing g2 to ig2g1.

(10)
` 1 2

1 ´1
˘

acts by pθ0, θ1q ÞÑ piθ1, θ0q.
(11)

` 1 0
´1 1

˘

acts by pθ0, θ1q ÞÑ pθ0,´iθ1q.
(12)

`

´1 2
1 1

˘

acts by pθ0, θ1q ÞÑ piθ1,´θ0q.

(13) p 1 1
0 1 q acts by pθ0, θ1q ÞÑ piθ0 ` θ1, θ0 ` iθ1q. This amounts to changing g1 to ig1g2 and

keeping g2, i.e., applying (5) then (9) then (5).
(14)

` 1 ´1
0 1

˘

acts by pθ0, θ1q ÞÑ pθ0 ` iθ1, iθ0 ` θ1q.
(15)

` 1 1
2 ´1

˘

acts by pθ0, θ1q ÞÑ piθ0 ` θ1,´θ0 ´ iθ1q.
(16)

` 1 ´1
2 ´1

˘

acts by pθ0, θ1q ÞÑ pθ0 ` iθ1,´iθ0 ´ θ1q.

(17)
` 1 ´1

1 0
˘

acts by pθ0, θ1q ÞÑ pθ0 ` iθ1, θ0 ´ iθ1q. This amounts to sending g1 to ig2g1 and
g2 to g1, i.e., applying (9) then (5).

(18)
` 1 1

´1 0
˘

acts by pθ0, θ1q ÞÑ pθ0 ´ iθ1, θ0 ` iθ1q.
(19)

`

´1 1
1 2

˘

acts by pθ0, θ1q ÞÑ pθ0 ` iθ1,´θ0 ` iθ1q.
(20) p 1 1

1 2 q acts by pθ0, θ1q ÞÑ pθ0 ´ iθ1,´θ0 ´ iθ1q.

(21)
` 0 ´1

1 1
˘

acts by pθ0, θ1q ÞÑ pθ0 ` θ1, iθ0 ´ iθ1q. This amounts to changing g1 to g2 and g2
to ig1g2, i.e., applying (5) then (9).

(22)
` 2 ´1

´1 ´1
˘

acts by pθ0, θ1q ÞÑ piθ0 ´ iθ1, θ0 ` θ1q.
(23)

` 0 1
´1 1

˘

acts by pθ0, θ1q ÞÑ pθ0 ` θ1,´iθ0 ` iθ1q.
(24)

` 2 ´1
´1 1

˘

acts by pθ0, θ1q ÞÑ piθ0 ´ iθ1,´θ0 ´ θ1q.

We can use Example 6.8 to recover the families from Section 3.

Example 6.9.
‚ The coordinates θ1

0 “ θ0θ0p0q, θ1
1 “ θ1θ1p0q are invariant under the action of the auto-

morphisms (1, 3). They are thus rational when E is of type Γp2q X Γ0p4q, which is of
index 12 in Γ. We recover the coordinates of the twisted theta model from Section 3.

‚ The coordinates θ1
0 “ θ0{θ0p0q, θ1

1 “ θ1{θ1p0q are invariant under the action of the au-
tomorphisms (1, 3, 9, 11). They are thus rational when E is of type Γ0p4q, which is of
index 6 in Γ. In that case we know by Section 5 that E has a Montgomery model, and
indeed we saw in Section 4 that the Montgomery coordinates are given by the Hadamard
transform of θ1

0, θ
1
1.
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‚ The coordinates θ1
0 “ θ0θ0p0q`θ1θ1p0q θ1

1 “ pθ0θ0p0q´θ1θ1p0qq
θ0p0q

2
`θ1p0q

2

θ0p0q2´θ1p0q2 , are invariant
under the action of the automorphisms (1, 2, 3, 4). They are thus rational when E is of
type Γp2q.

And indeed, looking at the ramification in the pθ1
0 : θ1

1q we get that 0E is sent to p1 : 1q

and the other ramified points are p1 : 0q, p0 : 1q, ppa2´b2q2 : pa2`b2q2q, so it is isomorphic
to the Legendre model with λ “ pa2 ´ b2q2{pa2 ` b2q2 via the change of variable given by
the 2-torsion translation between p1 : 1q and p1 : 0q.

We now explain how to, given an elliptic curve equation over k, compute the Galois action on
a theta model defined over an extension of k. First, by Lemma 6.5, the theta model is defined
by the choice of two rational points T1, T2 P Er2spk1q, both of Montgomey type over k1, and the
choice of two symmetric elements g1, g2 above T1, T2. By Section 6.1, The choice of gi is itself
equivalent to the choice of a cyclic subgroup Ki of degree 4 containing Ti defined over k1, or (via
its generator) a choice of four torsion point ˘U 1

i above Ti (i.e. by the image T 1
i of U 1

i on the
Kummer). If E : y2 “ x3 ` a2x

2 ` a4x ` a6, and we take the standard basis of Γp2p0Eqq given
by Z “ Z2

1 (Z1 a section of Γp0Eq) and X “ xZ, then the action of the symmetric theta group
element gi associated to ˘T 1

i is given by [Dar+24, p. 9] as the matrix

1
xiwi ´ ziui

ˆ

uizi ziwi
wix

2
i {zi ´ 2uixi ´uizi

˙

,

where on the Kummer line T 1
i “ pxi : ziq, Ti “ pui : wiq. Conversely, given a choice of gi, then

T 1
i is the unique two point of 4-torsion on the Kummer above Ti such that gi ¨ pxi, ziq “ pxi, ziq

rather than p´xi,´ziq. Recall also that the choice of theta coordinate is given by θ0 is a non
trivial linear combination of X,Z invariant by g1, and θ1 “ g2 ¨ θ0. From this data, looking
at the Galois action of σ P Galpk1{kq on T 1

1, T
1
2, it is easy to check which automorphism from

Example 6.8 it induces on the theta group and so the action of σ on the theta coordinates.
For instance, if σpT 1

1q “ T 1
1, i.e. σpK1q “ K1, then σpg1q “ g1. If σpT 1

1q “ T 2
1 “ T 1

1 ` T2,
i.e. σpT1q “ T1 pour σpK1q ‰ K1, then σpg1q “ ´g1. If σpT 1

1q “ T 1
2, i.e. σpK1q “ K2, then

σpg1q “ g2. If σpT 1
1q “ T 1

2 ` T1, i.e. σpT1q “ T2 but σpK1q ‰ K2, then σpg1q “ ´g2. Finally,
if σpT1q “ T1 ` T2, we define i “ eW,4pU1, U2q (where we use the sign convention given by the
commutator of the theta group of level 4), and K3 “ xU1 `U2y, T 1

3 the image of U1 `U2 on the
Kummer. Then if σpT 1

1q “ T 1
3, i.e, σpK1q “ K3, then σpg1q “ ig2g1. Otherwise σpg1q “ ´ig2g1.

We conclude this section by combining the change of coordinates from Section 4 with the
automorphisms from Example 6.8 to give the conversion between a theta model and all 6 possible
Montgomery models.

Example 6.10 (Conversions between the theta model and the Montgomery model). We first
recall that a choice of rational symmetric element gT above a two torsion point T is the same
as a choice of 4-torsion point T 1 above T such that xpT 1q is rational. The Montgomery model
associated to gT is the one that sends T to p0 : 0q and T 1 to p1 : 1q.

A choice of theta model is the choice of two rational symmetric elements g1, g2. Once we have
fixed the theta model, the theta constant pa : bq determines the two torsion: T1 “ p´a : bq, T2 “

pb : aq, T3 “ p´b : aq, but also the 4-torsion points T 1
1, T

1
2 that induces g1, g2 respectively. We can

recover T 1
i as the 4-torsion point such that its coordinates pXpT 1

i q, ZpT 1
i qq are invariant under

the action of gi. Recall that by definition X “ θ0 is invariant by g1 while Z “ θ1 “ g ¨ θ0, so
g1 ¨ pX,Zq “ pX,´Zq and g2 ¨ pX,Zq “ pZ,Xq. We thus have (see Proposition 3.17) T 1

1 “ p1 : 0q

(while T 2
1 “ p0 : 1q induces ´g1), and T 1

2 “ p1 : 1q (while T 2
2 “ p´1 : 1q induces ´g2). Finally, we

also have, if ´1 is a square, the additional four torsion points on the Kummer line: T 1
3 “ pi : ´1q

and T 2
3 “ p´1 : iq.
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Then we let M1 be the Montgomery model where T 1
1 is sent to p1 : 1q, and so T 2

1 to p´1 : 1q.
We have θpa : bq Ñ M1 : pX : Zq ÞÑ pbX ` aZ : bX ´ aZq, and the converse is M1 Ñ θpa : bq :
pX : Zq Ñ papX ` Zq : bpX ´ Zqq.

This sends T 1
2 to pb ` a : b ´ aq, T 2

2 to pb ´ a : b ` aq, and T2 to pa2 ` b2 : b2 ´ a2q.
And T 1

3 to p´a ´ ib : a ´ ibq, T 2
3 to pa ´ ib : ´a ´ ibq, T3 to pb2 ´ a2 : a2 ` b2q. It follows

that M1 : By2 “ xpx ´ α1qpx ´ 1{α1q “ x3 ` A1x
2 ` x with α1 “ pa2 ` b2q{pb2 ´ a2q and

A1 “ 2pa4 ` b4q{pa4 ´ b4q.
Of course, if we want to send T 2

1 to p´1 : 1q, we just need to compose with M1 Ñ M 1
1 : pX :

Zq ÞÑ p´X : Zq, we have α1
1 “ pa2 `b2q{pa2 ´b2q, A1

1 “ ´2pa4 `b4q{pa4 ´b2q. The conversion is
θpa : bq Ñ M 1

1 : pX : Zq ÞÑ paZ`bX : aZ´bXq, M 1
1 Ñ θpa : bq : pX : Zq Ñ papZ´Xq : bpX`Zqq.

This is the map from Proposition 4.2.

Now, if we want to send T 1
2 to p1 : 1q and T 2

2 to p´1 : 1q, we obtain the Montgomery curve
M2, and the change of variable is given by: θpa : bq Ñ M2 : pX : Zq ÞÑ pbZ ´ aX : bX ´ aZq,
and M2 Ñ θpa : bq : pX : Zq ÞÑ pbZ ´ aX : bX ´ aZq. Then α2 “ ´pa2 ` b2q{p2abq, A2 “

pa4 `6a2b2 `b4q{p2a3b`2ab3q (Of course we have a similar map θpa : bq Ñ M 1
2 where A1

2 “ ´A2,
which is the same as the map described in Remark 4.3).

And T 1
1 is sent to p´a : bq, T 2

1 to p´b : aq, T1 to pa2 ` b2 : ´2abq, T 1
3 to p´ai ` b : ´a ` biq,

T 2
3 to p´a` bi : ´ai` bq, T3 to p´2ab : a2 ` b2q.

Finally, if we want to send T 1
3 to p1 : 1q and T 2

3 to p´1 : 1q, we obtain the Montgomery curve
M3, and the change of variable is given by: θpa : bq Ñ M3 : pX : Zq ÞÑ piaX ` ibZ : aZ ´ bXq,
and M3 Ñ θpa : bq : pX : Zq ÞÑ paX ` ibZ : iaZ ´ bXq. Then α3 “ p2iabq{pa2 ´ b2q, A3 “

pa4 ´ 6a2b2 ` b4q{p´2ia3b` 2iab3q.
And T 1

1 is sent to pia : ´bq, T 2
1 to p´b : iaq, T1 to pa2 ´ b2 : 2iabq, T 1

2 to pia ` ib : a ´ bq, T 2
2

to pa´ b, ipa` bq, T2 to p2iab : a2 ´ b2q.

We remark that if we start from an elliptic curve E : y2 “ x3 `a2x
2 `a4x`a6 in Weierstrass

equation, picking a Montgomery model for E first involve finding a root of x3 ` a2x
2 ` a4x` a6

to find a two torsion point T1, then another square root to find xpT 1
1q for T 1

1 a four-torsion point
above T1. This is coherent with the fact that Γ0p4q is of index 6 in Γ. To go from the Montgomery
model to the theta model, we need another square root to find another two torsion point T2, and
a square root again to find xpT 1

2q. This is coherent with the fact that Γp2, 4q is of index 24 in
Γ. On the other hand, since the theta model is given, from the moduli point of view, by the
level structure information of T1, T2, xpT 1

1q, xpT 1
2q, it contains enough level structure information

to reconstruct 4 Montgomery models. If ´1 is a square, this above level structure is enough to
determine xpT 1

3q, which gives us the 2 other remaining Montgomery models. This explains why
the explicit conversion formulas above are rational.

Keeping track of this level structure across the change of theta models from Example 6.8,
we see that applying the automorphisms (1,3,9,11) to θpa, bq before the change of coordinates
θpa, bq Ñ M1 gives the same Montgomery curve M1, the automorphisms (2,4,10,12) give M 1

1, the
automorphisms (5,7,21,23) give M2, the automorphisms (6,8,22,24) give M 1

2, the automorphisms
(13,15,18,20) give M3, the automorphisms (16,17,19,21) give M 1

3.

Example 6.11 (Conversions between the theta model and the Legendre model). Using the last
formula of Example 6.9, we can also look at the different conversions between the theta model and
the Legendre model. Given θpa : bq, assume that we pick the conversion that gives the Legendre
parameter λ “ pa2 ´ b2q2{pa2 ` b2q2.

If we act by an automorphism before computing λ, then (1,2,3,4) give λ, (5,6,7,8) give 1 ´ λ,
(9, 10, 11, 12) give 1{λ, (13, 14, 15, 16) give λ{pλ ´ 1q, (17, 18, 19, 20) give 1 ´ 1{λ, (21, 22,
23, 24) give 1{p1 ´ λq.
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7. The point of view of isogeny volcanoes

In Sections 5 and 6, we saw conditions for when a Kummer line of E has a Montgomery model,
a Montgomery´ model, a theta model, a theta squared model etc. When that is not the case, a
natural condition is whether E is isogeneous to a curve that admits such a model.

In this section, we use the theory of volcanoes to answer this question: namely depending on
the shape of the volcano and the position of an elliptic curve in its 2-isogeny volcano we can
determine if it has a Montgomery model, a Montgomery´ model or a theta model (and even how
many).

One application is the following: if we need to use some fast arithmetic formulas that are only
available on some models, and our current Kummer line does not admit such a rational model,
we may try to find an isogeny in the volcano that leads to a curve having a rational model of the
suitable type. Such a strategy is used in [RS24b], where fast “half” differential addition formulas
are available on Montgomery models with full two torsion: if we start with a curve E with one
rational point (on the Kummer) of 8-torsion P , then E{x4P y is such a Montgomery curve.

7.1. Volcanoes. Being a Montgomery curve or having a theta model are properties that can be
easily read on isogeny volcanoes, which we will recall in this section. We refer to [IJ13; Sut13]
for the definitions and properties of these structures. Assume in this section that k “ Fq is a
finite field of odd characteristic p.
Definition 7.1. Let ℓ be a prime, an ℓ-volcano is a connected undirected graph V with vertices
partitioned in V0, . . . , Vh and such that:

(1) The subgraph V0 is regular of degree at most 2.
(2) For every i ą 0, each vertex in Vi has exactly one neighbour in Vi´1, and every edge that

is not on V0 is of this form.
(3) For every i ă h, each vertex in Vi is of degree ℓ` 1.

V0 is called the crater or the surface, Vh the floor and h the height or the depth. The height will
be denoted either h or hpV q.

Examples of 2-volcanoes are available in Fig. 3. To relate them to elliptic curves, we need to
introduce a bit more material.

We will first look at elliptic curves up to isomorphism over k, hence we will identify them by
their j-invariant. If π : E Ñ E is the Frobenius endomorphism given by πpx, yq “ pxq, yqq then
its trace t verifies t “ q ` 1 ´ #EpFqq. We are only interested in ordinary elliptic curves in this
section3, i.e. curves E such that t ‰ 0. For a given t ‰ 0, we define the set of vertices as follows:

ElltpFqq “ tjpEq | #EpFqq “ q ` 1 ´ tu.

Tate’s theorem [Tat66] states that two elliptic curves E and E1 over Fq are isogenous if and only
if they have the same cardinal. Since we want to restrict to ℓ-isogenies where ℓ ‰ p is prime, two
elliptic curves in ElltpFqq are connected by an edge if they are ℓ-isogenous over Fq. We denote
the resulting graph by Gℓ,tpFqq.

Note that the data of the j-invariant and the cardinal helps to fully recover the curve. Let
consider a curve E over Fq with trace t ‰ 0. Its quadratic twist E1 has the same j-invariant,
however its trace will be ´t ‰ t since we assumed the curve to be ordinary and the characteristic
to be odd.

Assume E is a curve with j-invariant 0 or 1728, and that it has a rational 2-torsion point T . It
then has non-trivial automorphisms φ and ψ such that Er2spkq “ tO, T,R “ φpT q, S “ ψpT qu,
see [Sil86, Chap. III, Thm. 10.1]. If f is the 2-isogeny with kernel T , then g “ f ˝φ and h “ f ˝ψ

3Although our results also hold for supersingular curves defined over the base field Fp, because they also form
a volcano structure
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Figure 3. Examples of 2-volcanoes of height 2 with the possible crater shapes
— dotted lines do not represent edges, only volcano levels.

are also 2-isogenies with kernel respectively R and S, they all share the same codomain. However,
if the codomain E1 does not have j-invariant 0 or 1728, the dual isogenies all have the same kernel
T 1, hence f̂ “ ĝ “ ĥ. This is a particular case where a 2-isogeny on E yields three rational 2-
isogenies, but only one going backward.

When j R t0, 1728u, there are no non-trivial automorphism, and therefore to one rational
2-isogeny corresponds one backward rational 2-isogeny given by the dual. Therefore, we will
not deal with connected components of Gℓ,tpFqq containing j-invariants 0 and 1728, and we will
consider the graphs undirected.

The last notion is the one of orders. If E is an ordinary elliptic curve, then EndpEq is an
order O in a quadratic imaginary field K (more precisely, K “ O bZ Q “ Qpπq). Let OK be the
ring of integers of K. Since π is an endomorphism, Zrπs Ď O Ď OK holds. Let dπ, d and dK be
respectively the discriminant of Zrπs, O and OK . Since the Frobenius satisfies π2 ´ tπ ` q “ 0,
we know that dπ “ t2 ´ 4q. Let

ω “

#

b

dK

4 if dK ” 0 mod 4,
1`

?
dK

2 if dK ” 1 mod 4.

Then OK “ Zrωs, and we can write Zrπs “ Zrfπωs and O “ Zrfωs with fπ, f ě 0, they are
respectively the conductor of Zrπs and O. We also have fπ “ rOK : Zrπss and f “ rOK : Os,
therefore f | fπ and dπ “ f2

πdK , d “ f2dK .
The following result is due to Kohel who studied isogeny graphs in his thesis [Koh96, Prop. 21–

23]:

Lemma 7.2 (Kohel, see e.g. Th 7 in [Sut13]). Let V be a connected component of Gℓ,tpFqq not
containing j-invariants 0 and 1728. Then V is an ℓ-volcano with levels V0, . . . , Vh verifying the
following properties:
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(1) Every curve in Vi has the same endomorphism ring Oi with discriminant di and conduc-
tor fi.

(2) The subgraph V0 has degree 1 `
`

d0
ℓ

˘

.
(3) If

`

d0
ℓ

˘

‰ ´1, then ℓ is split or ramified and #V0 is the order of rls in ClpO0q where l | ℓ
is prime, otherwise #V0 “ 1.

(4) The height h is the ℓ-valuation of the conductor of Zrπs.
(5) ℓ ∤ rOK : O0s, and rOi : Oi`1s “ ℓ for 0 ď i ă h, that is di “ ℓ2id0 or fi “ ℓif0.

Using (2), since the discriminant di only differs from dK by a square, the degree of V0 depends
only on whether ℓ is split, ramified or inert in OK . If ℓ is split, then V0 has degree 2, if it is
ramified V0 has degree 1, and otherwise it is inert and V0 is a point. From (4) and (5), we can
also derive h “ vℓ

´

dπ

dK

¯

{2 “ vℓ

´

dπ

d0

¯

{2 since ℓ does not divide the conductor of O0.
Lemma 7.2 justifies the following terminology, let E and E1 be two ℓ-isogenous elliptic curves

via f : E Ñ E1, and O and O1 there endomorphism rings. f is said to be horizontal if O “ O1,
descending if rO : O1s “ ℓ and ascending if rO1 : Os “ ℓ.

Formulas for the cardinal depending on its height and the size of the crater can be easily
derived:

Proposition 7.3. Let V be an ℓ-isogeny volcano with height h and levels V0, . . . , Vh. Then:

#V “

$

’

’

&

’

’

%

#V0 ℓ
h if deg V0 “ 2,

#V0

´

1 ` ℓ ℓ
h

´1
ℓ´1

¯

if deg V0 “ 1,
1 ` pℓ` 1q ℓ

h
´1

ℓ´1 if deg V0 “ 0.

Proof. If h “ 0, the formulas indeed give #V “ #V0. We will assume h ě 1. Let ui “ #Vi. We
have #V “ u0 ` ¨ ¨ ¨ ` uh. If i “ 1, then each vertex on the crater has degree ℓ ` 1, and taking
into account the degree of the subgraph V0:

u1 “

$

’

&

’

%

pℓ´ 1q#V0 if deg V0 “ 2,
ℓ#V0 if deg V0 “ 1,
pℓ` 1q#V0 if deg V0 “ 0.

Now if 1 ď i ă h, each vertex on level Vi has only one ascending isogeny, and because the degree
is ℓ ` 1, there must be ℓ descending isogenies, hence ui`1 “ ℓui. The result then comes from
summing a geometric series. □

From the theorem, one could wonder if every kind of volcano occurs. The answer is yes, even
in the degenerate cases as we can see in Table 1. We consider a connected component V of
Gℓ,tpFpq where ℓ “ 2. These examples where found by looking for convenient quadratic fields
and discriminant, using Lemma 7.2.

7.1.1. Information on the ℓ-torsion. Finally, we want to deduce information on a curve based
on its position in a volcano, notably its ℓ-torsion. If E is an ordinary elliptic curve over Fq with
endomorphism ring isomorphic to O, it is known that EpFqq » Z{MZˆZ{NZ with N | M , then
#EpFqq “ MN thanks to a Tate result stating that EpFqq » O{pπ ´ 1q. We are interested in
the ℓ-valuation of N . We can write π “ a` fπω where:

a “

#

t{2 if dK ” 0 mod 4,
pt´ fπq{2 if dK ” 1 mod 4.

If f is the conductor of the endomorphism ring O, then N “ gcdpa ´ 1, fπ{fq. It is known
[Mir+06, Thm. 1] (their proof holds for any ℓ) that vℓpa ´ 1q ě minpvℓpfπq, vℓp#EpFqqq{2q. If
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p t jpEq h degpV0q #V #V0 Fig. 3 example
450361 1094 300824 3 2 176 22 a
3049 102 591 4 16 1 b

155209 506 83458 3
1

30 2 c
521 6 354 4 31 1 d

464069 164 93759 0 2 2 —
182641 194 135674 3 0 22 1 e
159629 9 63979 0 1 1 —

Table 1. Some examples of 2-isogeny volcanoes

we further assume that vℓpNq ă vℓpMq, then vℓpNq ă vℓp#EpFqqq{2, and because of the gcd, we
must have vℓpNq “ vℓpfπ{fq.

If we go down the volcano, the conductor is multiplied by ℓ, so the ℓ-valuation of N decreases
by 1, whereas the one of M increases by 1. On the floor, because h “ vℓpfπq, ℓ does not divide
N any more. Let Erℓ8spFqq » Z{ℓmZ ˆ Z{ℓnZ denote the ℓ-Sylow of EpFqq.

7.2. Reading model of curves on a volcano. We will now focus on the case ℓ “ 2 in this
section. Let t ‰ 0, we consider a volcano V of a connected component of G2,tpFqq not containing
j-invariants 0 and 1728. The levels will be denoted V0, . . . , Vh. Preparing next proposition, we
start with a useful lemma:

Lemma 7.4. If deg V0 “ 2, then hpV q ě 1.

Proof. Let E be a curve on V0. Because deg V0 “ 2, there are two distinct rational kernels of
order 2 in E. But having a rational kernel of order 2 is equivalent to having a rational 2-torsion
point, so E has complete 2-torsion generated by T and R. But then S “ T `R is also a rational
2-torsion point, giving a third rational 2-isogeny. Because deg V0 “ 2, this isogeny must be a
descending one, hence hpV q ě 1. □

Remark 7.5. In the following proofs, we will be chaining isogenies in the volcano. One important
thing to note is that, once we consider a descending isogeny, we must chain descending ones
afterwards because there are no more horizontal isogenies at that level and the only ascending
one available is going backwards.

Legendre curves are simple to classify since they are the one with full 2-torsion.

Proposition 7.6 (Legendre curves). The elliptic curves in a 2-volcano are Legendre if and only
if they are not on the floor i.e. the don’t belong to Vh where h is the height of the volcano. In
particular, a 2-volcano has no Legendre curve if and only if h “ 0. In this case one also has
deg V0 ď 1.

Proof. If h ě 1, then for all 0 ď i ă h, every curve in Vi has degree 3, hence 3 rational 2-torsion
points, so the curve is in Legendre form. On the floor, the degree is 1, so they are not Legendre
because they only have one rational 2-torsion point. If h “ 0, because of Lemma 7.4, deg V0 ď 1
and curves have at most one horizontal 2-isogeny, and no descending one, which does not give
the full 2-torsion. □

For Montgomery curves and onwards, we will need the following lemma:

Lemma 7.7. Let f1 and f2 be two 2-isogenies that are not dual, then f “ f1 ˝ f2 is a cyclic
4-isogeny.
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Proof. f has degree 4, so its kernel is either isomorphic to Z{4Z or Z{2Z ˆ Z{2Z. But in the
second case, that would imply that f “ r2s and therefore f1 and f2 would be dual. Hence, f is
cyclic. □

Montgomery curves are described as curves with a rational cyclic 4-isogeny thanks to Propo-
sition 5.12.

Proposition 7.8 (Montgomery curves). Let V be a 2-isogeny volcano not containing curves
with j-invariant 0 and 1728 and with levels V0, . . . Vh:

(1) If deg V0 “ 2, every curve on the volcano has a Montgomery form.
(2) If deg V0 “ 1, then either h ě 1 and every curve on the volcano has a Montgomery form,

otherwise h “ 0 and no curve on the volcano has a Montgomery form.
(3) If deg V0 “ 0, then either h ě 2 and every curve on the volcano has a Montgomery form.

Otherwise, if the height is 1 then every curve on the floor V1 has a Montgomery form
and finally if h “ 0 no curve has a Montgomery form.

Proof. Lemma 7.7 helps to translate the property of having a rational 4-isogeny in terms of graph
theory on the volcano: if we can follow a path of length 2 on the volcano, then the starting curve
will have a 4-isogeny. Fig. 4 illustrates the different cases that can occur.

‚ If deg V0 “ 2 and E is a curve on V0, since the height is always greater than 1 with
Lemma 7.4 and there is always a horizontal isogeny, it is possible to chain a horizontal
and a descending one, see Fig. 4a.

‚ If deg V0 “ 2 and E is a curve on V1, it is possible to chain the ascending 2-isogeny with
a horizontal one since we land on the crater after the first step.

‚ Assume deg V0 “ 1 and E is a curve on V0. Since there is only one horizontal isogeny,
we must chain it with a descending one to get a 4-isogeny, so the height of the volcano
must be greater than 1 in that case.

‚ If deg V0 “ 0 and E is a curve on V0, since there is no horizontal isogeny, we must consider
two descending ones to build a 4-isogeny, this requires the height to be at least 2.

‚ If deg V0 “ 0 or 1 and E is a curve on V1, since curves on the crater have at least two
descending isogenies, it is possible to chain first an ascending one starting from E and
then a descending one, see Fig. 4d.

‚ Finally, assume that i ě 2 and that E is a curve on Vi. It is then possible to chain two
ascending 2-isogenies, giving a cyclic 4-isogeny.

□

Recall from Corollary 6.4 that a curve admit a Montgomery´ model if and only if there exists
a rational 2-isogeny that does not extend to a rational cyclic 4-isogeny. We leave to the reader
how to adapt Proposition 7.8 to the Montgomery´ case.

A direct consequence is the characterization of curves having a theta squared model:

Proposition 7.9 (Theta squared model). Let V be a 2-isogeny volcano not containing curves
with j-invariant 0 and 1728 and with levels V0, . . . Vh:

(1) If deg V0 “ 2, every curve in V0 Y . . .Y Vh´1 has a theta squared model.
(2) If deg V0 “ 1, then either h ě 1 and every curve in V0 Y . . . Y Vh´1 has a theta squared

model, otherwise h “ 0 and no curve on the volcano has a theta squared model.
(3) If deg V0 “ 0, then either h ě 2 and every curve in V0 Y . . . Y Vh´1 has a theta squared

model. Otherwise, h ď 1 and no curve on the volcano has a theta squared model.

Proof. Thanks to Proposition 5.14, an elliptic curve E has a theta squared model if and only if
it has a Montgomery form with full rational 2-torsion, hence it also has a Legendre form. The
result is then deduced from Propositions 7.6 and 7.8. □
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‚

(a) deg V0 “ 2, using horizontal isogenies

‚

(b) deg V0 “ 2, using endomorphisms

‚

(c) deg V0 “ 2, using only descending isogenies

‚

(d) deg V0 “ 0, going through the crater

Figure 4. Some examples of cyclic 4-isogenies on different volcanoes

Finally, having a theta model is the most restrictive proposition since the curve requires two
independent 4-isogenies thanks to Proposition 5.14. There is a particular case to address before
looking at characterizing curves with a theta model.

Lemma 7.10. Assume #V0 “ 1, let E be the elliptic curve in V0. If deg V0 “ 2, then E
admits exactly two non-trivial endomorphisms f and f̂ of degree 2, where f̂ is the dual of f . If
deg V0 “ 1 then E admits exactly one non-trivial endomorphism f of degree 2 which is self-dual,
i.e. f “ f̂ .

Proof. When deg V0 “ 2, there are two 2-isogenies on the crater with domain and codomain
E. Denote them f and g, and their kernel generators P and Q. They are distinct rational
2-torsion points, hence generators of Er2s. The last 2-isogeny with kernel P ` Q can’t be an
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endomorphism because of the volcano structure, it must be descending. Because f̂ is also a non-
trivial endomorphism, we must have f̂ “ f or f̂ “ g. But in the first case, if f̂ “ f , looking at
isogenies as ideals thanks to Deuring correspondence [Deu41], this would imply that 2OK “ p2

where p is the ideal corresponding to f , so 2 would be ramified in OK . But this is not the case
according to Lemma 7.2, 2 is split when deg V0 “ 2. Hence, g “ f̂ .

When deg V0 “ 1, there is only one 2-isogeny on E that is a non-trivial endomorphism, we
denote it by f . Then f̂ is also a non-trivial endomorphism and by uniqueness must verify
f̂ “ f . □

Proposition 7.11 (Theta model). Let V be a 2-isogeny volcano not containing curves with
j-invariant 0 and 1728 and with levels V0, . . . Vh:

‚ If h ě 2, then every curve in V0 Y V1 Y . . .Y Vh´2 have a theta model.
‚ If deg V0 “ 2 and h “ 1, only curves on V0 have a theta model.
‚ If deg V0 ď 1 and h ď 1, no curve on the volcano has a theta model.

Proof. For 4-isogenies to be independent, they must not share an edge in the same direction,
but they can share a vertex. Because of Lemma 7.7, they will be cyclic. We once again refer to
Fig. 4 for several illustrations.

‚ If E is a curve not on the crater — say E is in Vi with i ě 1 — since there is only one
edge ascending, this implies that the second isogeny must start by descending, and by
Remark 7.5, at least one of the two isogenies will descend two levels. In that case if E
admits a theta model we must have h ě i` 2, i.e. 1 ď i ď h´ 2.

‚ If E is in V0 and deg V0 “ 2, there are two horizontal 2-isogenies starting from E.
– Assume #V0 ě 2, in that case there are two horizontal 2-isogenies starting from E.

Since the height is at least 1 thanks to Lemma 7.4, it is possible to build the first
4-isogeny by chaining a horizontal one and a descending one. The second 4-isogeny
is obtained by chaining two horizontal 2-isogenies, which is always possible because
#V0 ě 2, see Fig. 4a.

– Otherwise, if #V0 “ 1, Lemma 7.10 shows that there are two 2-isogenies on the
crater that are endomorphisms and dual one another. Hence, if f and f̂ are those
two endomorphisms, f ˝ f and f̂ ˝ f̂ are two independent cyclic 4-isogenies, and E
has a theta model, see Fig. 4b.

‚ If E is in V0 and deg V0 ď 1, there are two descending branches stemming from E.
Moreover, there is at most one horizontal isogeny, therefore one of the 4-isogeny must
start with a descending 2-isogeny. Hence, either h ě 2 and E has a theta model, or h ď 1
and it is not possible to construct both 4-isogenies, E does not have a theta model in
that case.

□

All these properties are summarized in Table 2.

Remark 7.12 (The number of Montgomery and Montgomery´ models). Using Example 6.7, we
can refine the discussion about whether a curve, depending on its position in the volcano, admit
a Montgomery or Montgomery´ or theta model, to how many such models it may admit.

Consider the case when the volcano is not a single point, which happens when the cardinal of
EpFqq is odd, and so there is not even a rational 2-torsion point.

On the bottom of the volanco, the 2-Sylow is cyclic so there is only one rational 2-torsion point
T1. Depending on whether the isogeny generated by T1 extends to a rational 4-isogeny (which
can be read as above from the shape of the volcano), then E admit 2 Montgomery models or 2
Montgomery´ models. And E does not have a rational theta model.
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deg V0

Legendre curves Montgomery curves Theta squared model Theta model

h
Volcano
Levels h

Volcano
Levels h

Volcano
Levels h

Volcano
Levels

2 ě 1 t0, . . . , h´ 1u ě 1 t0, . . . , hu ě 1 t0, . . . , h´ 1u
ě 2 t0, . . . , h´ 2u

1 t0u

1 ě 1 t0, . . . , h´ 1u ě 1 t0, . . . , hu ě 1 t0, . . . , h´ 1u ě 2 t0, . . . , h´ 2u

0 ∅ 0 ∅ 0 ∅ ď 1 ∅

0 ě 1 t0, . . . , h´ 1u
ě 2 t0, . . . , hu ě 2 t0, . . . , h´ 1u ě 2 t0, . . . , h´ 2u

1 t1u
ď 1 ∅ ď 1 ∅0 ∅ 0 ∅

Table 2. Curves on a volcano V “ V0 Y . . .Y Vh with different models

When not on the bottom, then E has full rational 2-torsion T1, T2, T3. It admits 6 Montgomery
+ Montgomery´ model, and the exact number of Montgomery vs Montgomery´ model depends
on the type of T1, T2, T3, which again can be read from the volcano.

Remark 7.13 (The supersingular case). We conclude by a discussion about the supersingular
case. If E{Fp is a supersingular curve its 2-isogeny graph behaves similarly to the ordinary curve
and in particular it has a volcano structure.

If p ” 1 mod 4, the volcano has height 1 (and 2 split in the maximal order), and if p ” 3
mod 4, the volcano has height 2. If p ” 3 mod 8, 2 is inert in the maximal order, so the volcano
consist of one node on the top and three nodes on the bottom (all 2-isogenies from the top are
descending), whereas if p ” 7 mod 8, 2 splits in the maximal order, so we have a cycle at the
top, and each curve on the top has two horizontal 2-isogenies, and one descending 2-isogeny.

The arguments from Remark 7.12 counting the number of Montgomery and Montgomery´

models recover the results from [CD20, Figs. 1-2]. We also see that E admits a rational theta
model if and only if p ” 1 mod 4, or p ” 7 mod 8 and E is at the top of the volcano (and the
2-cycle is not degenerate).

If E{Fp2 is a maximal or minimal supersingular curve, then the 2-torsion is rational, and the
self Tate pairings are trivial. It follows that E always has a rational theta model, and in fact all
24 possible theta models on E are rational.

8. Application to the Elliptic Curve Method

As it is shown in [RS24a], combining arithmetic of theta squared and Montgomery models
can speed up the Montgomery ladder. However, while the ladder is useful when constant time is
required — for instance in cryptographic protocols — PRAC is preferred in other contexts, like
Elliptic Curve Method. If the arithmetic can be improved using theta squared model, we are
interested in finding curves with small coefficients and good torsion properties for ECM.

8.1. Elliptic Curve Method. ECM is an algorithm for integer factorization inspired by Pol-
lard’s p ´ 1 method, whish is due to Lenstra [Len87]. The initial algorithm is called "stage 1"
because it has been continued with a procedure called the "stage 2". Consider the factorization
of an odd integer N which is not a prime power.

(1) One chooses A, x, y P Z{NZ and set B so that By2 “ x3 ` Ax2 ` x. One calls E the
corresponding scheme over Z{NZ and P the point px, yq P EpZ{NZq.

(2) One chooses a positive integer M and compute M ¨ P “ pX : Y : Zq using the elliptic
curve addition formulas.
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There are two possible outcomes:
(1) In the usual addition law, divisions occurs and may not be defined modulo N , that means

we have an element d which has a common factor with N . In that case, one computes
gcdpd,Nq ‰ 1, if it is not N , then this is a non-trivial factor.

(2) Otherwise, no error is raised while computing M ¨ P . If there is a prime factor p | N
such that M ¨ P reduces to O “ p0 : 1 : 0q modulo p, then gcdpZ,Nq may yield a factor
greater than 1 (a carefull analysis [Len87] shows that it is almost certainly not N).

The major difference with the p ´ 1 method is that if no factor is found on a curve, it can
be iterated again by choosing a new curve. Note that since it is possible to compute multiples
on the Kummer line with operations defined in Section 3, ECM stage 1 is usually done on the
Kummer line. Note that in theta squared coordinates pθpa2 : b2q, the origin is pa2 : b2q, so if
rM ¨ P s “ pX : Zq, we will look at the quantity gcdpb2X ´ a2Z,Nq.

Generally, M “ lcmptprlogp Bs:păBuq where B is a positive integer. This amounts to expecting
the cardinal of the curve reduced modulo a prime p | N to be B-smooth, i.e. every prime factor
is less than B. This is reasonable because of the Hasse bound, see [Sil86, Thm V.1.1]: for any
elliptic curve E over Fp, |#EpFpq ´ p´ 1| ď 2?

p.

8.2. Curves with fast arithmetic and large success probability. We are interested here
in finding elliptic curves E which are ECM-friendly i.e. with a fast arithmetic and a large success
probability (see e.g. [Mon92, Sec 6.3], [Ber+13, Fig 9.1] and [Bar+13]). An analysis based on the
Galois representation [BS22] estimated how the success probability of several families compares
to each other.

We represent in Fig. 5 the subgroups of GL2pZ{4Zq which contain Xspp4q, in particular those
which characterize elliptic curves having a Montgomery, theta and respectively theta squared
model (the data is extracted from the LMFDB site). For the full diagram of subgroups of
GL2pZ{4Zq, see Fig. 6.

Kubert (see e.g. [Mon92, Th 6.2.4]) parametrized the elliptic curves whose rational torsion
contains Z{2Z ˆ Z{4Z or equivalently those corresponding to Xp2, 8q, as depicted in Table 3.

Equation Kummer model or torsion
y2 “ xpx2 ´ Ax` γq Torsion Z{2Z
y2 “ xpx2 ´ Ax` 1q Montgomery model

y2 “ xpx´ a
b qpx´ b

a q, a ‰ b Theta squared model
y2 “ xpx´ a2

b2 qpx´ b2

a2 q, a ‰ b Theta model
y2 “ xpx´ a2

b2 qpx´ b2

a2 q, a2 ` b2 “ ˝ Torsion Z{2Z ˆ Z{8Z

Table 3. Different elliptic curves and their corresponding Kummer line model
or torsion

We search for small integer values of a and b to exploit the fact that the multiplication by
very small constants as 2 and 3 can be done by additions and is negligible compared to a full
multiplication.

In a numerical experiment, we first generated a set of curves with a2 ` b2 a square, a starting
point for ECM P “ pX : Y : Zq, and with the constraint that a2, b2, X and Z are less than a
computer word. We found around 3 million of Pythagorean triplets, but by testing only 120000
of them, we got 91 curves with small constants. We then dropped the constraint a2 ` b2 is a
square. This was giving a lot of tuples pa, bq, so we tested only the first 15600 and got 2861 more
curves. Finally, we tried to set b2 “ 1, and out of 60000 tuples pa, bq, we found 90 more curves.
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Xp1q

Xnsp2qX0p2q

40
6b X0p4q 40

6d Xp2q 40
6e

X˘p2, 4q 40
12 X`

spp4q

Xspp4q

Figure 5. The diagram of the subgroups of GL2pZ{4Zq containing Dp4q “

Γp2, 4q “ Xspp4q. The subgroups which characterize the elliptic curves having
Kummer models studied in this article are as follows: Xp1q is the set of all
the curves, X0p2q corresponds to the curves with a rational point of order 2,
Xp2q corresponds to the Legendre curves (Proposition 5.10) X0p4q corresponds
to the Montgomery model M (Proposition 5.12), Dp4q “ Xspp4q corresponds to
the theta model θ (Proposition 5.14), Xp2, 4q coresponds to the theta squared
model pθ (Proposition 5.14(2)).

Given the number of curves found in the second case, we’d like them to be as efficient as
the first family. To do so, we will compare the following quantity, where G is a subgroup of
Z{2nZ ˆ Z{2nZ: ProbpEpFpqr2ns » Gq. If we have equal probabilities for 2 and 4-torsion,
because we are working on level 4 modular curves, this will be sufficient to say that the efficiency
will be similar for these two families. Thanks to Chebotarev density theorem and [Bar+13, Thm.
2.7.1], we know that this quantity is written (with a P N):

ProbpEpFpqr2ns » Gq “
a

# GL2pZ{4Zq
“

a

96 .

To achieve that, we compute an experimental probability over many primes for each family of
curves, and then look for the closest fraction in the form a

96 . If we choose a large enough number
of primes — which is known thanks to an effective version under GRH of Chebotarev theorem
by Lagarias and Odlyzko [LO77, Thm. 1.1] and with explicit constants by Winckler [Win13,
Thm. 1.2] — we then know that this is the exact value.
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Results are given in Table 4. We can conclude that the second family, i.e. torsion Z{2ZˆZ{8Z,

Subgroup G of Z{2nZ ˆ Z{2nZ Prob with a2 ` b2 “ ˝ Prob with generic a2 ` b2

2-torsion
Z{2Z ˆ Z{2Z 1 1

4-torsion
Z{4Z ˆ Z{2Z 0.75 0.75
Z{4Z ˆ Z{4Z 0.25 0.25

Table 4. Comparison of the 2 and 4-torsions of the two families of curves

has the same success probability as the first one, i.e. curves with a theta model. One can therefore
use the theta model if it has a better arithmetic cost.

Remark 8.1. We studied ECM with theta coordinates in the first place because of its genus 2
generalization HECM [Cos11, Ch. 4]. Indeed, we believe there is a small mistake in [Cos11,
Tab. 3.2], the first column about genus 1 should be 2M ` 6S ` 1mP ` 3m on the first line, which
is the sum of the cost of Algorithms 5 and 6. With this complexity, two instances of ECM should
be a little bit faster than one pass of HECM, contrary to what is claimed in [Cos11].

9. Perspectives

This paper concludes, with [RS24a; RS24b] a trilogy of papers looking at models of Kummer
lines and their arithmetic. (Or a tetralogy if one also counts [Rob24] which deals with pairings
on Kummer lines, but that papers also deal with higher dimension and other levels than two).

This study can be recast as a study of models of elliptic curves of level 2, that is given by a
choice of basis of ΓpE, 2p0Eqq. All coordinates of level 2 are even, so descend to the Kummer
line.

Through this study, a unifying theme was the role that the theta group Gp2p0Eqq of level 2
played, along with its action on our sections, to understand the arithmetic of our models.

There are two natural generalisations we plan to tackle in the future. The first one is to stay in
dimension 1 but to increase the level, in particular to obtain models of the elliptic curve itself. It
is shown in [LR16] that if π : E Ñ E{˘1 » P1 is the projection, and P0 P Epkq is not a point of 2-
torsion, then P ÞÑ pπpP q, πpP`P0qq P P1ˆP1 is an embedding. If P0 is a point of n-torsion, taking
coordinates on E{˘1 of level 2, this gives coordinates of level 2_n. The most well known example
of this embedding is given by Edwards curves [BL07a], or more precisely the completed Edwards
curve [Ber+13, § 2.7]. Indeed, up to a small change of variable, the completed Edwards model
is precisely given by the embedding E Ñ P1 ˆ P1, P ÞÑ ppXpP q : ZpP qq, XpP ` T q : ZpP ` T qq

where pX,Zq are the Kummer line coordinates of a Montgomery model, and T “ p1 : 1q is the
canonical point of 4-torsion (this seems to have been first noticed by Kohel in [Koh11]). It is
therefore natural to look at similar level 4 embeddings via the other Kummer models studied in
Section 3.

The other natural generalisation will be to stay in level n “ 2 but to move from dimension
g “ 1 to g “ 2. In that case the Kummer surface A{ ˘ 1 (where A is an abelian surface) can be
described as a surface in P3. In a similar manner to the Kummer lines, there is a combinatorial
description of the Kummer surfaces [Gau07], namely via the p16, 6, 2q-design induced by their
two torsion points and (translation) of their Θ-divisor. However, this is less tractable than the
simple 4 points of ramification in P1 we had in dimension 1. Still, the theta model is characterised
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by symmetry conditions on the (ramification locus of) the Kummer surface: this time it has to
satisfy four different symmetries at the same time. Then it could be useful to look at models of
Kummer surfaces where the theta group is a twist of the Heisenberg group, as in Section 6.2.
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Appendix A. Kummer lines as stacky curves

In this section, we reinterpret the definitions of Section 2 in term of stack quotients. We will
assume that we are not in characteristic two.

If E is an elliptic curve, the group scheme µ2 “ t1,´1u acts via ´1 ¨ P “ ´P . The scheme
quotient E{µ2 (both as a geometric and categorical quotient) is the projective line P1.

This means that we cannot recover E directly from E{µ2. In particular, although the action
of µ2 is ramified on the points of two torsion, E{µ2 is still smooth. By the Nagata-Zariski purity
theorem, this can happen only because the ramification locus is of codimension 1. And indeed,
in dimension g ě 2, the scheme quotient A{µ2 of an abelian variety is no longer smooth: the non
smooth locus is precisely the image of the 2-torsion.

A way to remember the ramification points is to take the stack quotient rE{µ2s. Its coarse
moduli space is E{µ2. Hence rE{µ2s is a smooth stacky curve, and so is completely determined
by the data of the coarse space E{µ2 » P1, the ramification points on P1, and for each ramified
points Pi its associated (non trivial) inertia [VZ22, Lemma 5.3.10] (the tameness condition is
automatic in our case since we are not in characteristic two). In our case the inertia can only be
µ2, so it follows that rE{µ2s is completely determined by the image of the 2-torsion points on
P1. We recover the more elementary definition from Definition 2.3.

Now the stack quotient rE{µ2s “remembers” E. More precisely, the map E Ñ k yields a
canonical map φ : rE{µ2s Ñ Bµ2 “ rk{µ2s. Recall that Bµ2 is the classifying stack of (étale)
µ2-torsors: a µ2-torsor T Ñ S is the same as a point S Ñ Bµ2, where T can be recovered as the
pullback of the trivial torsor i0 : Spec k Ñ Bµ2 by S Ñ Bµ2. Likewise, a S-point S Ñ rE{µ2s

corresponds to a µ2-torsor T Ñ S with an µ2-equivariant map T Ñ E. Like above T is given
by the pullback of E Ñ rE{µ2s by the point S Ñ rE{µ2s. We remark also that T is also the
µ2-torsor associated to the S-point S Ñ rE{µ2s Ñ Bµ2. If k is perfect, by Hilbert 90 and
Kummer theory, we have H1

etpk, µnq » k˚{k˚,n, and if µn Ă k, to give a µn-torsor X is the same
as giving the smallest field extension k1{k that trivializes it (i.e. the subfield of k invariant by the
inertia of the map Galpk{kq Ñ µn associated to the torsor), whose Galois group is isomorphic
to a subgroup µd of µn, and also to give the induced isomorphism Galpk1{kq Ñ µd. If n “ 2,
there are only two possibilities, either d “ 1 and k1 “ k (X is the trivial torsor), or k1{k and k1

uniquely determines X, since Autµ2 “ tIdu.
A schemeX{S can be recovered from its stack quotient rX{Gs via the pullbackX » rX{GsˆBG

S. Thus we have that E “ rE{µ2s ˆBµ2 k is the pullback of rE{µ2s Ñ Bµ2 by the canonical
map i0 : Spec k Ñ Bµ2 associated to the trivial torsor.

It is important to note that the reconstruction of E depends on the forgettnig map φ :
rE{µ2s Ñ Bµ2. For instance, consider k1{k the étale µ2-torsor associated to a quadratic extension
of k, then we have a corresponding map i1 : Spec k Ñ Bµ2. This time, the pullback of i1 by the
canonical map φ gives a quadratic twist E1 of E, precisely the quadratic twist associated to the
µ2-torsor k1{k.

Now, the stack quotient rE1{µ2s is isomorphic to rE{µ2s. However, the isomorphism is not
above their respective canonical maps φ,φ1 to Bµ2. Instead, we have the following diagram,
where the leftmost and rightmost squares are pullbacks:

E ˆ µ2 E E1 E1 ˆ µ2

E rE{µ2s rE1{µ2s E1

Spec k Bµ2 Bµ2 Spec k

π π1

π „

φ φ1

π1

i0 „

α
i0
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Recall that if we have a G-torsor X{k corresponding to a map x : Spec k Ñ BG, then x
factors through Spec k Ñ BG Ñ BG where the first map is the canonical one x0 : Spec k Ñ BG
corresponding to the trivial torsor Spec k ˆ G Ñ Spec k, and the second one sends a G-torsor
T Ñ S to the G-torsor T ˆG XS Ñ S. Here, α : Bµ2 Ñ Bµ2 is the isomorphism constructed as
above for the µ2-torsor k1{k, so that i1 “ α ˝ i0. Since pulling back the torsor Spec k1 Ñ Spec k
to itself trivializes it, if we pullback the diagram above by Spec k1 Ñ Spec k, α becomes trivial
and we obtain an isomorphism E1 Ñ E over k1.

In elementary terms, given the description of rE{µ2s in terms of the ramification locus
α1, α2, α3, α4 in P1 the choice of forgetting map rE{µ2s Ñ Bµ2 (hence of elliptic curve E)
amount to the choice of B P k˚{k˚,2: given E : By2 “ px´ α1qpx´ α2qpx´ α3qpx´ α4q “ hpxq,
the map rE{µ2s Ñ Bµ2 is simply the map that sends rP s : Spec k Ñ rE{µ2s to the µ2-torsor
defined by By2 “ hpxpP qq (i.e. by π´1pxpP qq where π : E Ñ E{ ˘ 1 is the canonical projection),
where xpP q is the image of rP s composed with the forgetting map rE{µ2s Ñ E{µ2 » P1 (this as-
sumes that xpP q is not in the ramification locus, in which case rE{µ2s is étale locally isomorphic
to E{µ2 around rP s).

Once we have fixed E, hence the map rE{µ2s Ñ Bµ2, then given rP s : Spec k Ñ rE{µ2s (not
above the ramification), the torsor π´1prP sq “ π´1pxpP qq associated to the map i : Spec k Ñ

rE{µ2s Ñ Bµ2 determines if xpP q lifts to two rational points ˘P in Epkq. This is the case
precisely when the torsor is trivial, i.e. isomorphic to Spec kˆµ2. In the other cases it corresponds
to a quadratic extension k1{k, and ˘P live in Epk1q. Alternatively, by the diagram above, xpP q

lifts to a rational point in the quadratic twist E1 defined by k1 (because the map i1 : Spec k Ñ

rE{µ2s Ñ Bµ2 Ñ Bµ2, where the last map is the isomorphism induced by the torsor k1{k,
corresponds to the trivial torsor). In particular, this quadratic twist E1 is the unique one to
which xpP q lifts (over k).

In summary, the fibers of E Ñ rE{µ2s Ñ E{µ2 are as follows. If P is not above the ramifica-
tion, we have the following pullback diagram:

π´1prP sq “ π´1pxpP qq “ tP,´P u E

Spec k rE{µ2s

Spec k E{µ2

π

rP s

xpP q

And if P “ T is a point of two-torsion, we have instead the pullback diagram:
Spec k E

Bµ2 rE{µ2s

Spec k E{µ2

T

π

xpT q

Appendix B. Modular curves

In Section 5.2, we used the construction of modular curves over Q from [Zyw15], using the
Galois theory of the étale fundamental group.

In this section we briefly describe modular curves as stacks, and refer to [DR73] for more
details. First we start with the modular curves Xpnq as the fine moduli space (Deligne-Mumford
stack) parametrizing elliptic curves with a level-n structure. There are two definition in the
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literature: the first one is that of a basis pP1, P2q of Erns such that the Weil pairing eW,npP1, P2q “

ζ for ζ P µn a fixed primitive n-root of unity. The corresponding curve is then defined (and
smooth) over Z1{npµnq.

The second definition, more general, is to instead ask for an isomorphism Erns Ñ Z{nZˆµn.
The resulting curve Xpnq is this time defined (and smooth) over Z1{n, but it is not geometrically
connected: each choice of primitive n-th root gives a connected geometric component.

Now, if Γ Ă Γp1q is some level subgroup of Γp1q “ SL2pZq, let n such that Γpnq Ă Γ, and define
XpΓq as the stacky quotient rXpnq{pΓ{Γpnqqs. It is not hard to see that XpΓq is independent of
the choice of n.

In particular, this gives a construction, valid over Zr1{2s, of XpΓ0p4qq, XpΓ0p4q X Γp2qq and
XpΓp2, 4qq as used in Section 5.

Since our moduli curves are now fine moduli space, we have a universal elliptic curve (stack)
with Γ-level structure over XpΓq. Its automorphism group (preserving the level structure) is
either µ2 if ´1 R Γ, or trivial if ´1 P Γ. In the later case, the generic inertia of XpΓq is then
trivial, hence XpΓq is a scheme, étale locally at all points that do not admit extra automorphisms,
so concretely for all elliptic curves (with level structure) with j-invariant different from 0, 1728.
If we require furthermore that detpΓ{Γpnqq “ pZ{NZqˆ, then XpΓq is geometrically connected.
We recover the conditions from Theorem 5.6.

It remains to tackle the question of fields of moduli vs field of definition. In general, if X
is a fine Deligne-Mumford moduli stack parametrizing a class of objects, then by definition to
give such an object C{k is the same as giving a point Spec k Ñ X. We say that k is a field of
definition of C. The fine space X also admit a coarse space X0 (an algebraic space in general,
but for our modular curves their coarse spaces are schemes), and the point Spec k Ñ X induces
a point x0 on X0; we call the field of moduli the residual field k0 of x0. For instance for an
elliptic curve E{k, its field of moduli is given by its j-invariant jpEq.

In general, the field of moduli is not a field of definition. Assume that we have two models
C1{k1, C2{k2 that become isomorphic over a common algebraic closure of k1, k2 (so gives points
on X above the same point x0 on X0). Let’s call C{k a representative of the isomorphism class
of C1, C2 over k, then by descent theory (assuming all our fields are perfect and our inertia tame
to avoid complications with inseparability) C1{k1 is given by a descent data from C{k. But the
two descent data defining C1, C2 may not be compatible with each other, hence may not “glue”
to define a curve over k1 X k2.

From the stack point of view the way to understand the situation is as follows: we have a
residual gerbe Gx0 above x0; informally this gerbe is the category of all models Ci{ki that are
isomorphic to C over k. If C1, C

1
1{k1 correspond to two elements of the gerbe above the same

field, then by definition they are twist of each others. So étale locally around our field of definition
k1, our category is equivalent to the category of AutpC1q-torsors (AutpC1q is precisely the inertia
of the corresponding point Spec k1 Ñ X): indeed the category of twists of C1 is equivalent to
the category of AutpC1q-torsors. But our gerbe Gx0 itself may not be equivalent to a category
of torsor (i.e. neutral), unless k0 is also a field of definition, not only a field of moduli.

Now, a very nice feature of modular curves, is that all their residual gerbes are neutral:

Proposition B.1. Let XpΓq be as above the modular stack of elliptic curves with a Γ-level
structure, and x : Spec k Ñ XpΓq a point. Then the residual gerbe at x is trivial: the field of
moduli is a field of definition.

Proof. This is [DR73, Proposition 3.2 p. 274]. For the convenience of the reader we summarize
the proof. First the result is well known for Γ “ tIdu: we have explicit formulas that give an
equation of an elliptic curve from its j-invariant (over the same field).
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Now if we add a level structure, then x corresponds to a curve with level structure, pE,Gq,
and we distinguish several cases. If AutpE,Gq “ AutpEq, then the obstruction for the residual
gerbe at pE,Gq being neutral, which lives in H2pk,AutpE,Gqq is the same (via the isomorphism
above) to the obstruction for the residual gerbe at E to be neutral, which lives in H2pk,AutpEqq.
But the latter is trivial by the first point, so the former too.

Otherwise, we at least have an injection AutpE,Gq Ă AutpEq, and a map H2pk,AutpE,Gqq Ñ

H2pk,AutpEqq. The image of the obstruction related to pE,Gq in H2pk,AutpEqq is zero by the
first point. But a difficulty is that the map on the H2 need not be injective.

If AutpEq “ µn is isomorphic to a group of roots of unity, then it is easy to see using the
long exact sequence of cohomology and Hilbert’s 90 that H2pk,AutpE,Gqq Ñ H2pk,AutpEqq is
injective in that case.

The other cases are all induced by jpEq “ 0, 1728 and the characteristic is p “ 2, 3, in which
case E is defined over Fp, hence pE,Gq is defined over a finite field Fq. But finite fields have
cohomological dimension 1, hence do not admit non trivial gerbes. □

This finishes the generalisation of Theorem 5.6. We stress that this feature is specific to the
dimension 1 case, in [BL24] it is shown that moduli space of abelian varieties can have arbitrary
bad obstruction: any gerbe (over one point) lives in the moduli stack Ag of principally polarised
abelian variety of dimension g for g large enough.

We conclude this section about a discussion on twists. If E Ñ Xp1q is the universal elliptic
curve, then AutpEq “ µ2: the generic inertia of a point Spec k Ñ Xp1q is µ2. One can then form
(using the construction from [AOV08, Appendix A]) the quotient E{µ2 Ñ Xp1q{µ2 to obtain the
universal Kummer line; we remark that Xp1q and Xp1q{µ2 have the same coarse moduli space
(which is isomorphic to P1 via the j-invariant). A similar construction holds for the universal
elliptic curve with level structure over XpΓq when ´1 R Γ.

So for a generic Kummer line E{ ˘ 1, AutpE{ ˘ 1q “ AutpEq{ ˘ 1 is trivial (this also holds
in higher dimension). So a (generic) Kummer line does not have twists: if we have two models
of Kummer lines defined over k and isomorphic over k, then this isomorphism is automatically
rational.

The exceptions are as always the Kummer lines associated to the elliptic curves of j-invariant
0, 1728.

Example B.2 (Twists of Kummer lines). We first look at the twists of the Kummer line of
E : y2 “ x3 ´x of j-invariant 1728; we will assume that k is not of characteristic 2 for simplicity.
Its ramification is given by, along the point at infinity, x “ ´1, 0, 1. The map x ÞÑ ´x is a non
trivial automorphism of E{ ˘ 1, so the Kummer line admits quadratic twists.

Explicitly, the curves Ea : y2 “ x3 ` ax are all isomorphic to E over k. The corresponding
Kummer line has ramification given by x “ 0, a1{2,´a1{2 (and the point at infinity).

If ξ “ pa2{a1q1{2, then the map x ÞÑ ξx is an isomorphism between the Kummer line of Ea1

and the Kummer line of Ea2 . But this isomorphism is rational if and only if ξ is rational. So
each element in k˚{k˚,2 » H1pk, µ2q gives a different quadratic twist.
E{ ˘ 1 has a Legendre form with λ “ ´1, the other Legendre invariants are λ “ 2, 1{2 (we

only have 3 invariants because of the extra automorphism). The other quadratic twists of this
Kummer line do not have rational 2-torsion, hence no Legendre form (nor theta form). It also
have a theta model (possibly over an extension) with theta constants pζ8 : 1q, where ζ8 is a
primitive 8-root of unity. The other theta constants are: pζ3

8 : 1q, pζ5
8 : 1q, pζ7

8 : 1q, pζ8 ` 1 :
ζ8 ´ 1q, pζ3

8 ` 1 : ζ3
8 ´ 1q, pζ5

8 ` 1 : ζ5
8 ´ 1q, pζ7

8 ` 1 : ζ7
8 ´ 1q, pζ8p1 ` ζ8q : ζ8p1 ´ ζ8qq, pζ3

8 p1 ` ζ3
8 q :

ζ3
8 p1 ´ ζ3

8 qq, pζ5
8 p1 ` ζ5

8 q : ζ5
8 p1 ´ ζ5

8 qq, pζ7
8 p1 ` ζ7

8 q : ζ7
8 p1 ´ ζ7

8 qq.
We can recover possible Montgomery models (possibly over an extension) associated to these

three Legendre models of E{ ˘ 1 by letting α “
?
λ and A “ ´α ´ 1{α. For λ “ ´1, we find
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α “ i and A “ 0. For λ “ 2, we find α “
?

2 and A “ ´3
?

2{2, or α “ ´
?

2 and A “ 3
?

2{2.
But E{ ˘ 1 can be isomorphic to the first Montgomery model over the base field only if ´1 is a
square in k, and to the second and third only when 2 is a square in k.

Now we look at the twists of the Kummer line of E : y2 “ x3 ´ 1 of j-invariant 0; we will
assume that k is not of characteristic 3 for simplicity. The ramification is given by the point at
infinity and x “ 1, j, j2 where j is a third root of unity.

If µ3 Ă k, then x ÞÑ jx is an automorphism of the Kummer line, so it admits cubic twists.
The curves Eb : y2 “ x3 ` b are all isomorphic to E over k. The corresponding Kummer line has
ramification given by b1{3, jb1{3, j2b1{3 (and the point at infinity). If ξ “ pb2{b1q1{3, then the map
x ÞÑ ξx is an isomorphism between the Kummer line of Eb1 and the Kummer line of Eb2 . But
this isomorphism is rational if and only if ξ is rational. So each element in k˚{k˚,3 » H1pk, µ3q

gives a different cubic twist.
If µ3 Ć k, then over k the Kummer line does not have automorphisms and do not admit twists

over k; but it will admit twists over kpjq.
E{ ˘ 1 has a Legendre form with λ “ ζ6, where ζ6

6 “ 1 is a primitive 6th root of unity. The
other Legendre invariant is ζ5

6 (the automorphism is of order 3 so there are only 2 Legendre
invariants).

Appendix C. Graph of the subgroups of SL2pZ{4Zq

Let f : SL2pZq ↠ SL2pZ{4Zq be the reduction map modulo 4. For M,N ě 1 two integers, we
will deal with the following groups:

‚ ΓpNq “ tg P SL2pZq | g ” I mod Nu

‚ Γ1pNq “ tg P SL2pZq | g ” p 1 ˚
0 1 q mod Nu

‚ Γ0pNq “ tg P SL2pZq | g ” p ˚ ˚
0 ˚ q mod Nu

‚ ΓpM,MNq “ tg P SL2pZq | g ” p ˚ ˚
0 ˚ q mod MN, g ” I mod Mu “ ΓpMq X Γ0pMNq

Column on the left list the order of the groups. The notations on the Fig. 6 are as follows for
a group cGidx:

‚ The relevant G will be of the form fpHq where H is a subgroup of Γp4q.
‚ For the groups that are not of this form, they are written Ga where a is the index in

Magma when listing subgroups of SL2pZ{4Zq.
‚ c is the number of conjugacy classes of G in SL2pZ{4Zq.
‚ If present, idx is the label of the corresponding modular curve on the LMFDB (beta

feature as of writing).

Remark C.1. Note that, aside from level 2 groups which can be seen as subgroups of GL2pZ{2Zq

(and therefore trivially verifies ´I P G and detG “ pZ{2Zq˚), none of these respect the conditions
of Theorem 5.6 (indeed, detG “ t1u ‰ pZ{4Zq˚, and some of them doesn’t have ´I P G, like
Γ1p4q). It is then implicit that we consider the smallest subgroup H in GL2pZ{4Zq that contains
G, ´I and such that detH “ pZ{4Zq˚.

This amounts to looking at the following representation rρE,4 : GalpQ{Qpζ4qq Ñ SL2pZ{4Zq

rather than ρE,4 : GalpQ{Qq Ñ GL2pZ{4Zq as defined in Definition 5.5.

SL2pZ{4Zq is labelled 48.30 on LMFDB and GL2pZ{4Zq is 96.195 (beta feature as of writing).
Red nodes correspond to the models studied in this paper, which are from top to bottom:

Montgomery, Theta twisted, Theta.
We also have:

‚ G18 “ xp 1 2
0 1 q, p 1 1

1 2 q, p 3 0
2 3 q, p 3 2

0 3 qy.
‚ G16 “ xp 1 3

2 3 q, p 3 0
0 3 q, p 1 1

1 2 qy.

https://beta.lmfdb.org/
https://beta.lmfdb.org/Groups/Abstract/48.30
https://beta.lmfdb.org/Groups/Abstract/48.30
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‚ G15 “ xp 1 1
1 2 q, p 3 0

2 3 q, p 3 2
0 3 qy.

‚ G13 “ xp 1 3
2 3 q, p 1 2

0 1 q, p 3 2
0 3 qy.

‚ G11 “ xp 3 0
0 3 q, p 1 1

1 2 qy.
‚ G9 “ xp 1 3

2 3 q, p 3 0
0 3 qy.

‚ G8 “ xp 1 2
0 1 q, p 3 0

2 3 qy.
‚ G6 “ xp 3 0

2 3 q, p 3 2
0 3 qy.

‚ G5 “ xp 1 1
1 2 qy.

‚ G4 “ xp 3 0
2 3 qy.
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Figure 6. Subgroups of SL2pZ{4Zq
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