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Abstract. Let p be a prime; using modular polynomial Φp, Satoh et al [Sat00; Ver03; Gau04]
developed several algorithms to compute the canonical lift of an ordinary elliptic curve E
over Fpn with j-invariant not in Fp2 . When p is constant, the best variant has complexity
Õ(nm) Bit operations to lift E to p-adic precision m. As an application, lifting E to precision
m = O(n) allows to recover its cardinality in time Õ(n2). However, taking p into account the
complexity is Õ(p2nm), so Satoh’s algorithm can only be applied to small p.

We propose in this paper two variants of these algorithms, which do not rely on the modular
polynomial, for computing the canonical lift of an ordinary curve. Our new method yield
a complexity of Õ(pnm) to lift at precision m, and even Õ(√pnm) when we are provided a
rational point of p-torsion on the curve. This allows to extend Saoth’s point counting algorithm
to larger p.
Keywords: Canonical lift of Elliptic curves, Isogeny computation, Point counting.

1. Introduction

Let E/Fq be an elliptic curve over a finite field. Schoof’s method [Sch85] gives a polynomial
time algorithm to count the number of point of E. The complexity was later improved by Atkin
and Elkies to give the SEA algorithm [Elk92; Elk98; BMS+08]. The algorithm can be seen as an
incarnation of ℓ-adic étale cohomology: if χ(t) is the characteristic polynomial of the Frobenius πq,
χ(t) mod ℓ is computed modulo several primes ℓ by looking at the action of πq on (a subgroup of)
the ℓ-torsion E[ℓ]. The CRT algorithm allows to reconstruct χ(t) once we have enough precision
(as bounded by the Hasse-Weil bound). One can compute χ mod ℓ in Õ ((ℓ+ log q)ℓ log q), hence
reconstruct χ in Õ

(
log4 q)

)
.

In 2000, a second class of algorithms was introduced by Satoh [Sat00], using the Lubin-Serre-
Tate Theorem. Let q = pn, let Zq denotes the ring of Witt vectors of Fq, and Qq = Frac(Zq)
the unique unramified extension of Qp of degree n. Then [LST64a] establishes the existence of a
unique (up to isomorphisms) elliptic curve E↑ over Zq for every ordinary elliptic curves E/Fq such
that the modulo p reduction of E↑ is E and End(E↑) ∼= End(E) as a ring. The curve E↑ is called
the canonical lift of E. Then the trace of the Frobenius morphism is deduced using crystalline
cohomology. After improvements by Harley, Satoh’s algorithm can compute the canonical lift to
precision m in quasi-linear time Õp(nm). Here the notation Õp means that we assume that p
is a constant. We can then recover the inversible eigenvalue of the Frobenius at precision m in
the same time. By Hasse’s bound, it suffices to work at precision m = O(n) to recover the full
eigenvalue, so Satoh’s algorithm gives a point counting algorithm of quasi quadratic complexity
Õp(n2).

We are interested in the dependency of p of the algorithm. We will now assume that p > 2 for
simplicity. For an ordinary elliptic curve E/Fq, Satoh’s algorithm and its improvements [Ver03;
Gau04] proceed in four steps:
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(1) Compute the canonical lift E↑/Zq at p-adic precision m by solving the equation:

Φp(j(E↑),Σ(j(E↑))) = 0

via a Newton lift. Here j is the j-invariant, Φp the modular polynomial classifying
p-isogenies, and Σ the (small) Frobenius on Zq.

(2) Lift the kernel E[p]et of the Verschiebung to E↑ via a Newton lifts. The kernel of
the Verschiebung modulo p is defined by the x-coordinates of its points: Hp(x) =∏
P∈E[p]et\0E

(x − x(P )), and its lift H̃p is the unique étale lift dividing the p-division
polynomial Ψp(E↑).

(3) Compute the isogeny E↑ → E↑/H̃p using Vélu’s formula, and an isomorphism u between
E↑/H̃ and Σ̂(E↑). Since Vélu’s isogenies are normalised, applying Σ to this isomorphism
u gives (up to a sign) the action λ0 of π̂↑ on the tangent spaces dx/y and Σ(dx/y) of E↑

and E↑σ.
(4) Compute the norm λ = NQq/Fq

(λ0). This recovers the inversible eigenvalue of the big
Frobenius πq at precision m, up to a sign. The correct sign is chosen using Hasse’s
invariant. The trace is then given by t = λ+ q/λ, and if m ⩾ (n+ 5)/2, the value of t at
p-adic precision m is enough to recover t in Z. Then χπ(x) = x2 − tx+ q.

The modular polynomial Φp(X,Y ) is of total degree p+ 1 and its logarithm height is h(Φp) ⩽
6p log p+ 18p (see [BS09]). Thus its total size is of Õ(p3), and there are quasi-linear algorithms to
compute it [Eng09]. Step 1 is done via Newton iterations, the dominating step is evaluating Φp at
precision m in Zq, for a cost of Õ(p2m log q) = Õ(p2mn). Step 2 is also done via Newton iterations,
the dominating step is evaluating the division polynomial Ψp(X), which is of degree (p2 − 1)/2
at precision m, for a total cost of Õ(p2m log q) = Õ(p2mn). Step 3 is dominated by Vélu’s
formula and costs Õ(pm log q) = Õ(pmn). In Step 4 the norm is done via a resultant, and also
costs Õ(pm log q) = Õ(pmn). Since m = O(n), the final complexity of Satoh’s algorithm is thus
Õ(p3 + p2m log q) = Õ(p3 + p2n2). By constrast, the SEA algorithm (in particular the version
of [LS08] which works in all characteristic) has a complexity of Õ(n4), so Satoh’s algorithm has
better complexity for small p and large n. We note that the complexity of Õ(p3) comes from the
computation of Φp(x, y). This polynomial only depends on p, not on the elliptic curve, so this
part may be seen as a precomputation, and the real complexity of Satoh’s algorithm is Õ(p2n2).
Alternatively one could use the techniques of [Rob21, § 5.3.8] to evaluate Φp directly.

In 2002, given an affine equation f(x, y) = 0 of E, Kedlaya proposed in [Ked01a] to use the
Monsky-Washnitzer cohomology associated to A† = Qq⟨⟨x, y⟩⟩/f̃(x, y). The difference between
these two p-adic methods is the unicity of the canonical lift in Satoh’s method in contrast to
Kedlaya’s method where the lift is arbitrary. Kedlaya’s approach [Ked01b] thus computes a
non-specific lift with linear complexity in p and then reconstructs χ with complexity in time (and
space) of Op(n3+ϵ). Havey in [Har07] improved the dependency on p of Kedlaya’s algorithm.
More precisely he shows that Kedlaya’s original algorithm can compute the Frobenius to p-
adic precision m with a complexity of Õ(pn2m), and Harvey improves the dependency on p to
Õ(√pn5/2m+ n4m log p) (at the cost of a worse dependency on n).

It is such natural to ask whether there exists an algorithm that has the Õp(nm) quasi-linear
complexity of Satoh’s algorithm with respect to n and the precision m but improves the Õ(p2)
dependency on p (which is even Õ(p3) if we take into account the precomputation of the modular
polynomial when we don’t use the direct evaluation strategy of [Rob21]) to Harvey’s Õ(√p).

Isogeny based key exchange protocols rekindled the interest of the second author on computing
canonical lifts to high precision m. (We stress that so far we are not aware of applications
other than point counting, which only require a precision m = O(n).) He proposed in [Rob21,
Chapter 6] a new approach of Satoh’s method which works by only using the modular polynomial
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Φp to both lift the curve and the isogeny. This allows to dispense with the computation of
the division polynomial Ψp, but does not change the asymptotic because of the evaluation of
the modular polynomial, so the algorithm is still in Õ(p3 + p2nm log p) (although with better
constants). He proposed another method bypassing the need for the modular polynomial in
[Rob21, Remark 6.6.2], assuming a point of p-torsion is given on E.

Indeed, we can keep the Õp(nm) complexity of Satoh’s algorithm while improving the depen-
dency on p. This is the subject of the present work.

Theorem 1.1. Let E/Fq be an ordinary elliptic curve, with j(E) ̸∈ Fp2 . Then one can compute
the canonical lift E↑/Zq and the trace of the Frobenius to p-adic precision m in time Õ(mnp).

In particular, for point counting where we need m = O(n), the complexity to compute χπ is
Õ(pn2).

The main idea behind Theorem 1.1, is that when doing a Newton lift to lift the root of a
polynomial F (X), it is not necessary to be given F , one only needs to be able to evaluate it. We
can thus circumvent computing the modular polynomial Φp and the division polynomial Ψp in
Satoh’s algorithm by directly evaluating isogenies (ie solving the equation j(Eν) = j(EΣ̂) where
Eν is computed via an isogeny) and the multiplication by [p] map.

Although we do not reach Harvey’s Õ(√p) complexity, in some cases a variant of our method
achieve such a complexity.

Theorem 1.2. Let E/Fq be an ordinary elliptic curve with j(E) ̸∈ Fp2 , and assume that we are
given a rational étale point of p-torsion P . Let I(d,m,Zq) be the cost of evaluating at precision m
an isogeny of degree d on an elliptic curve E′ over Zq given a generator P (defined over Zq) of
its kernel. Here by evaluating the isogeny, we only mean computing the equations of E′/ < P >
at precision m.

Then one can compute the canonical lift Ẽ/Zq and the trace of the Frobenius to p-adic
precision m in time Õ(mn log p+ I(p,m,Zq)).

Remark 1.3. We can also work on the Kummer line E/± 1, that is given only the x-coordinate
xP of our point P , in which case I(d,m,Zq) should be the cost of evaluating the induced isogeny
E/± 1 7→ (E/ < P >)/± 1.

Using Vélu’s formula, we have I(p,m,Zq) = Õ(pm log q) = Õ(pmn). A recent improvement of
Vélu’s formula [DeFoeBernstein] improves this complexity to Õ(√pm log q) = Õ(√pmn).

In general, the étale points of p-torsion will live in an extension of degree e ⩽ p− 1 (which we
can compute using Hasse’s formula), and to find one of them require computing a root of the
division polynomial Ψp modulo p, which can be done in time Õ(p2 log q+p log2 q) = Õ(np2 +pn2).
We explain how to improve this complexity to Õ(p log2 q) in Section 4.2 and get:

Corollary 1.4. Let e be the degree of the extension of Fq where the étale points of p-torsion
lives. Then one can compute the canonical lift Ẽ/Zq and the trace of the Frobenius to p-adic
precision m in time Õ(p log2 q +√pme log q) = Õ(pn2 +√pmen). (If χπ is already known the
complexity becomes Õ(log2(qe) +√pme log q) = Õ(e2n2 +√pmen).)

In the worst case, e = O(p) so the complexity is Õ(p log2 p+ p3/2m log q) = Õ(pn2 + p3/2mn)
is not better than Theorem 1.1. In the best cases, when e = O(log p); for instance if the trace t = 1
mod p (which implies e = 1); the complexity is Õ(p log2 q + p1/2m log q) = Õ(pn2 + p1/2mn). In
general, to compute Ẽ at high p-adic precision, we improve on the complexity of Theorem 1.1
whenever e = O(√p).

We organize this paper as follow. In Section 2, we recall the Serre-Tate theorem and Satoh’s
algorithm. We present our new approach to Newton lifts in Section 3. As a first application
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we explain how to lift the p-torsion in Section 4, then we give our canonical lift algorithm in
Section 5.

1.1. Notation and Convention. In the following p is prime and q = pn with n ⩾ 1.
We denote by Qq the unramified extension of the field of p-adic numbers Qp and by Zq is the
valuation ring of Qq; it is also the ring W (Fq) of the Witt vectors over Fq. The extension Qq/Qp
has a cyclic Galois group of order n, generated by an element Σ that reduces to the (small)
Frobenius automorphism σ on the residue field Fq. The large Frobenius (and its lift) will be
denoted by σq and Σq respectively, and sometime we will denote σ by σp to emphasize we work
with the small Frobenius. As a convenience we let σ̂ = σ−1 = σn−1, Σ̂ = Σn−1, the “Verschiebung”
Galois elements.

Explicitly Qq = Qp[X]/M(X) and also Zq = Zp[X]/M(X) with M is monic irreducible
polynomial of degree n over Zp[X] with irreducible reduction modulo p. The complexity of an
elementary operation require Õ(m log q) = Õ(mn) with Kronecker-Schönhage method at precision
m. By p-adic precision m, we mean that we are working modulo pmZq. Furthermore, fast modular
composition [KU11] allows to efficiently evaluate Σ and Σ̂ in Õ(nm); it also allows to evaluate
σ̂ in Õ(log q) = Õ(n) rather than the slower Õ(n log q) = Õ(n2) we get iterating the Frobenius
n− 1 times. It is also convenient to take for M the Teichmuller lift of an irreducible polynomial
M(X) of degree n over Fp, this allows for a fast computation of Σ without invoking modular
composition.

We recall the Frobenius σ induces an isogeny π : E → Eσ, P 7→ Pσ, and σq induces an
endomorphism πq. The Verschiebung π̂ : E → Eσ̂ is the dual of π : Eσ̂ → E (we warn that it
is not given on points by P 7→ P σ̂!). Both the Frobenius and Verschiebung lift uniquely to the
canonical lifts, we denote them by π↑ and π̂↑. In this article, we always denote E↑ the canonical
lift of E, while Ẽ will denote a candidate lift (which may or may not be canonical).

In odd characteristic any elliptic curve will be represented by its reduced Weierstrass equation
denoted y2 = x3 + a2x

2 + a6 or y2 = x3 + a4x + a6 depending on the characteristic p of the
base the field is 3 or greater.

2. Background

Let E/k be an elliptic curve, and Ψℓ its polynomial of ℓ-torsion (or ℓ-division polynomial)
associated with the equation of the curve. A point P = (x, y) on E is a point of ℓ-torsion if and
only if its coordinates constitute a solution of Ψℓ.
An isogeny ϕ is a non trivial morphism between elliptic curves which is also a group morphism.
The multiplication morphism is identified with Z then Z ⊂ End(E). Furthermore when the
base field k is Fq we have: Z[πq] ⊂ End(E) where πq is the Frobenius endomorphism. In the
case where E is ordinary: χ(X) = X2 − tX + q is the characteristic polynomial of πq where t
is the trace of πq and verifies the relation |t|⩽ 2√q called Hasse’s bound. Therefore, if we set
Dπq = t2 − 4q < 0 then : #E(k) = q + 1− t and Z[πq] ⊂ End(E) ⊂ OK where K = Q[

√
Dπq ].

2.1. Vélu’s Algorithm. According to the inputs, the algorithms for calculating isogenies can be
classified into two large groups. The first ones initiated by Vélu [Vél71] takes an elliptic curve E
and a subgroup K of E then outputs an explicit form of isogeny ϕ : E −→ E/K and an equation
of E/K. Then for every P ∈ E:

xϕ(P ) = xP +
∑

Q∈K\{O}

(xP+Q − xQ) and yϕ(P ) = yP +
∑

Q∈K\{O}

(yP+Q − yQ) .

Considering the improvements made by D. Kohel [Koh96] we arrive at the same results when
K = kerϕ is represented by a polynomial h.
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Example 2.1. When char(k) > 3 and an elliptic curve E over k is given by E : y2 = f(x) =
x3 + a4x+ a6 .
Let h be the polynomial defines the kernel K of a separable normalised isogeny ϕ of degree ℓ
with domain E Set:

Q(x) = gcd (f(x), h(x))

D(x) = h(x)2/Q(x)
= xℓ−1 − d1x

ℓ−2 + d2x
ℓ−3 − d3x

ℓ−4 + · · ·

Then for every point P (x, y) in E we have:

ϕ(x, y) = (α(x), yα(x))

where α(x) = ℓx− d1x− (3x2 + a4).D
′(x)

D(x) − 2f(x).
(
D′(x)
D(x)

)′

.

And E/K is given by the equation:

y2 = x3 + (a4 − 5v)x+ (a6 − 7w)

where v = a4(ℓ− 1) + 3(d2
1 − 2d2) and w = 3a4d1 + 2a6(ℓ− 1) + 5(d3

1 − 3d1d2 + 3d3).

On the other hand, the modular polynomial Φℓ encodes directly the j-invariants of ℓ-isogenous
elliptic curves.

2.2. Lubin Serre Tate theory.

Theorem 2.2. (Lubin-Serre-Tate) Consider E an ordinary elliptic curve over Fq, then there
exist a unique elliptic curve up to isomorphism E↑ over Zq such that.

• E is the reduction of E↑ modulo p ,
• End(E↑) ∼= End(E),

E↑ is called the canonical lift of E, and is also uniquely characterised by the fact that the Frobenius
πq lifts to E↑, or that π lifts to an isogeny E↑ → E↑Σ, ie by the equation

Φp(j(E↑), j(E↑)Σ)) = 0.

E↑ E↑Σ

E Eσ

π↑

π

We refer to [LST64b] for the statements (without proofs) and [Mes72] for proofs.

Remark 2.3. If E↑/Zq is an elliptic curve, then it is the Néron model of its generic fiber E↑
η .

Furthermore, by the property of Néron models, E↑(Zq) = E↑
η(Qq). Hence it is harmless to

consider the curve over Qq.
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2.3. Modular Equations. We present Satoh’s (as improved by Harley) method to compute the
canonical lift Ẽ using the modular relation Φp(j(E↑), j(E↑)Σ)) = 0.

We know that the modular polynomial satisfies the relation:

Φp(X,Y ) ≡ (Xp − Y )(X − Y p) mod p

Let j /∈ Fp2 , the following statement is an immediate consequence (called Kronecker’s relation):
∂Φp
∂X

(j, jσ) ≡ jp − jp ≡ 0 mod p

∂Φp
∂Y

(j, jσ) ≡ jp
2 − j ̸≡ 0 mod p

Thus we deduce that the Frobenius π has multiplicity 1 and the Verschiebung π̂ has multiplicity
p. In fact we have over Qq two points (P,Q) on E↑[p] that reduce to P and 0 respectively. The
p kernels ⟨P + kQ⟩ with 0 ⩽ k < p reduce to P (ie the kernel of the Vershiebung) and the last
⟨Q⟩ reduces to ⟨O⟩ (ie the kernel of the Frobenius). So we have p isogenies on E↑ which reduces
to the Verschiebung π̂ modulo p. A more detailed analysis show that they reduce to different
isogenies modulo p2, hence:

Lemma 2.4. Let Ẽ/Zq be any lift of E/Fq where j(E) ̸∈ Fp2 . Then ∂Φp
∂X

(j(Ẽ), j(Ẽ)Σ) is of
valuation 1.

Proof. By [Nak93, Proposition 2], since j(Ẽ) ̸= 0, 1728, Φp(j(Ẽ), X) = (X − j(Ẽ)Σ)(X −
j(Ẽ)Σ̂)G(X) where G(X+ j(Ẽ)Σ̂) is an Eisenstein polynomial. Since j(Ẽ) ̸∈ Fp2 , j(Ẽ)Σ ̸= j(Ẽ)Σ̂

and the result follows. □

This provides an algorithm to compute the lifted j-invariants of the p-isogenous curves Ẽ and
ẼΣ.

We want to solve in Zq the equation Φp(j̃, j̃Σ) = 0 knowing j̃ modulo p. Suppose that we can
compute efficiently the Frobenius Σ of Qq and j ∈ Zq is an approximation of j̃ at precision k i.e
j̃ = j + pke, for some error e ∈ Zq that we want to find. Using the modular equation and Taylor
expansion of Φp we have:

0 = Φp(j + pke, jΣ + pkeΣ)

0 = Φp(j, jΣ) + pke
∂Φp
∂X

(j, jΣ) + pkeΣ ∂Φp
∂Y

(j, jΣ) + p2k(...)

Dividing by pk, we get

u+ e
∂Φp
∂X

(j, jΣ) + eΣ ∂Φp
∂Y

(j, jΣ) ≡ 0 mod pk.

If j /∈ Fp2 , the Kronecker inequality implies that ∂Φp
∂Y

(j, jΣ) ≡ 0 mod p and ∂Φp
∂Y

(j, jΣ) ̸≡ 0
mod p. Then to have the error e, we must solve over Zq the following equation:

eΣ + ae+ b = 0.

with a ≡ 0 mod p and b ̸= 0 mod p called “Artin-Schreier equation”in [Gau04]. Set
e = x + pkα with α ∈ Zq, the error α can be determine using algorithm 2.3 (a general case of
Harley’s algorithm).



Towards computing canonical lifts of ordinary elliptic curves in medium characteristic 7

Input a, b ∈ Zq with a ≡ 0 mod p and b ̸= 0 mod p and the precision m.
Output e such that eσ + ae+ b ≡ 0 mod pN with a = 0 mod p

: If N = 1 Return e the unique root of eσ + b ≡ 0 mod p.
: x← ArtinSchreier(a, b,N/2).
: Lift arbitrarily x at precision pN .
: b′ ← (xΣ + ax+ b)/pN/2.
: e← ArtinSchreier(a, b′, N/2).
: Return x+ pN/2e.

Algorithm 2.1 Artin-Schreier

2.4. Lift of the Weierstrass Equation. In odd characteristic the short Weierstrass equations
have two parameters; using the relation between them and the lifted j-invariant j(Ẽ), one can lift
the equation of the elliptic curves defined over Fq to Zq. Take an arbitrary lift of one parameter
for example a2 or a4 (depending on p), then the equation between the lifted j-invariant and the
second parameter a6 provides a simple Newton algorithm to lift it. Furthermore in characteristic
⩾ 5, Skjernaa [Skj03] has suggested to simply take a4 = 3λ and a6 = 2λ with

λ = j(E)
1728− j(E)

and then lift λ using the lifted j-invariant. This method is faster than the first. It needs only one
inversion in Zq form the lifted j-invariant.

2.5. The division polynomial. If E/k is an elliptic curve with a short Weierstrass equation,
and P = (x, y), then ℓ.P = ( ξℓ(x)

ψ2
ℓ

(x) ,
ωℓ(x,y)
ψ3

ℓ
(x,y) ) where ξℓ and ωℓ are expressible in terms of the

ψℓ−2, ψℓ−1, ψℓ, ψℓ+1, ψℓ+2, and the ψℓ satisfy a recurrence relation expression ψ2ℓ and ψ2ℓ+1 in
term of he ψℓ−2, ψℓ−1, ψℓ, ψℓ+1, ψℓ+2. In practice, the recurrence formula simply come from
computing ℓ.P formally via the double and add algorithm. In particular, when ℓ is odd, the roots
of ψℓ(x) are exactly the elements x(P ) for P ∈ E[ℓ].

In this article we will use a slightly different version of the division polynomial: we let
Ψℓ(x) = ψℓ(x) when ℓ is odd, and Ψℓ(x) = ψℓ(x)/2y when ℓ is even. This reformulation is such
that Ψℓ is always in k[x] whether ℓ is even or odd. It is easy to adapt the recurrence formula to
compute the Ψℓ directly.

In the following, we will need to compute Ψp(x) and Ψ′
p(x) for an elliptic curve Ẽ/Zq (at

precision m) modulo a polynomial H of degree d. In practice d will be equal to 1 when we want
to evaluate Ψp on a point xP (so H = (x− xP )), or d will be equal to (p− 1)/2 when we want to
evaluate Ψp modulo H̃p a candidate lift of Hp.

We remark that we can evaluate Ψp modulo H simply by evaluating the recurrence relation
modulo H. Also from the recurrence relation on Ψℓ, we get a recurrence relation on Ψ′

ℓ, so we
can also evaluate it modulo H. We obtain

Lemma 2.5. Given an elliptic curve Ẽ/Zq and a monic polynomial H(x) of degree d, we can
evaluate ΨẼ,p and Ψ′

Ẽ,p
modulo H at precision m in time Õ(dm log q log p) = Õ(dmn).

2.6. Lifting the Verschiebung. Since the Frobenius πq is inseparable, we lift the Verschiebung
π̂q over Zq by lifting its kernel.
We set En−i = Eσ

i and πi is the isogeny between Ei+1 and Ei defined by (x, y) 7→ (xσ, yσ).
Then the Verschiebung π̂q decomposes as follow:

π̂q = π̂n−1π̂n−2 · · · π̂0.
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ker(π̂) is a subgroup of order p of E[p] defined by the monic separable factor Hp of the p-division
Ψp given by :

Hp(x) =
∏

P∈ker π̂\{O}

(x− x(P ))

Let H̃p be the lift of Hp over Zq, then H̃p is a monic facteur of degree (p− 1)/2 of Ψp on Ẽ and
H̃p(x) = Hp(x) mod p is square free. Furthermore Ψp(x) ≡ Hp(x)p mod p i.e modulo p, the
factors Hp(x) and Ψp(x)/Hp(x) are not coprime.

T.Satoh introduced in [Sat00, § 2] a variant of Hensel’s lift that compute H̃p over Zq.
Let p be an odd prime, and suppose that we have a polynomial G in Zq[X] and h ∈ Fq[X] a
monic factor of the reduction of G modulo p. We assume that h(x) is separable and relatively
prime with p−tG′(x) where t = ordp(G′(x)). Let u ∈ N be such that G(x) ≡ q(x)h(x) mod pu+t.
Then the polynomial :

H(x) = h(x) +
(
G(x)
G′(x)h

′(x) mod h(x)
)

is a lift of h(x) at precision p2u and G(x) ≡ Q(x)H(x) mod pv where v = 2u + min(t, u) (see
[Sat00]). This property provides an algorithm constructing a lift h̃ with O((deg h + degG)2)
arithmetic operations over Zq at precision O(n).

Satoh then applies this construction to lift Hp, by [Sat00, Lemma 3.7], in this case t = 1.
An alternative method when we are provided an étale point P of p-torsion is to lift the equation

(p′ + 1).P = p′.P where p = 2p′ + 1 as in [MR20, Proposition A.7.], or to work with only the
x-coordinate to simply use the standard Newton method to lift Ψp(xp) = 0. This is faster than
the euclidean extended GCD used in Satoh’s formula above, we will revisit this in Section 4.

2.7. Application to point counting. When we have E↑ at sufficient precision m (given by
Hasse-Weil bounds), one can evaluate the action of the Verschiebung on the differential form dx

y
as detailed by Satoh’s diagram.

E↑ E↑Σ̂

E↑ν = E↑/K̃

Σ̂

ν u

Here the isogeny ν is computed by Vélu’s algorithm from the lift H↑
p of the kernel of the

Verschiebung.
Since the isogeny ν is normalized, the action of the isogeny π̂↑ on the differential form of E↑ is

given by the isomorphism ±u on E↑ν ; let us denote it by λ1. Concretely, we have π̂↑ = ±u ◦ ν,
and if u(x, y) = (u2x, u3y), λ1 = ±u.

On the other hand, when we consider the qth-power Frobenius morphism decomposition:

E↑ −→ E↑Σ −→ · · · −→ E↑Σn−1

The action on the differential forms along the cycle will be given by the successive conjugates
of λ1. Finally, by composition, the action of the dual endomorphism π̂↑

q of π↑
q on the main

differential form of Ẽ is given by the product of all these conjugates, i.e. by the norm of λ1.
On the other hand the norm of NQq/Qp

(λ1) is simply given as the resultant of λ1 modulo M(X)
in Qp[X]. This method due to Harley can be asymptotically done in quasi-linear time in the
precision m using a fast GCD algorithm [CFA+06]. A slower alternative is to use the formula



Towards computing canonical lifts of ordinary elliptic curves in medium characteristic 9

Input Coefficients of E an elliptic curve of Fq with q = pn, n ∈ N.
Output The Trace of Frobenius endomorphism of E.

: Using algorithm 5.1, compute E↑ at precision m = (n+ 5)/2;
: Compute the action λ1 of an isomorphism u : E↑ν → E↑Σ̂ ;
: Compute λ2 = NQq/Qp

(
λ2

1
)

;
: Compute λ the correct square root from λ2 and t = λ+ q/λ mod q such that |t| < 2√q ;
: Return χ(X) = X2 − t ·X + q .

Algorithm 2.2 Computing the characteristic polynomial of ordinary elliptic curve E

NQq/Qp
(c) = exp

(
TrQq/Qp

(log c)
)

using a specific implementation to compute it in time O(m3/2n)
(available in [PAR19]).

Since we only have λ1 up to a sign, taking its norm λ and then computing the trace t = λ+q/λ
only give t up to a sign. One can use Hasse’s invariant to get the correct sign, see Section 4.2.
Let χ(X) = X2 − t ·X + q be characteristic polynomial of the Frobenius of E, Hasse-Weil bound
states |t| < 2√q. On the other hand we have #E(Fq) = χ(1). Then we deduce the following
result:

Theorem 2.6. Let E/Fq be an ordinary elliptic curve. Given the canonical lift E↑/Zq and
the lift H↑

p of the kernel of the Verschiebung to precision m, one can compute the trace of the
Frobenius to p-adic precision m in time Õ(mnp).

In particular, for point counting where we need m = O(n), the complexity to compute χπ once
we have E↑ and H↑

p to precision m is Õ(pn2).

In the rest of this paper, we will explain how we can compute E↑ and H↑
p to precision m in

time Õ(mnp) rather than in time Õ(mnp2). By Theorem 2.6, this will show that we have a point
counting algorithm in time Õ(n2p).

We also remark that we can bypass the computation of E↑Σ̂ (since Σ̂ is typically more expensive
to compute than Σ) by applying the above method to E↑Σ, the canonical lift of Eσ instead.

3. Revisiting Newton’s method

Let F (X) be a multivariate polynomial system defined over Zq, and suppose that we have
a solution x modulo p (in other words, at precision 1) of the equation F (x) = 0 (modulo p).
Assume furthermore that dF (x) is inversible modulo p. Then there is a unique lift x̃ of x in Zq
such that F (x̃) = 0 and x̃ = x modulo p. Newton’s method show that x̃ can be approximated by
the sequence

(1) x0 = x, x2k = xk − dF (xk)−1F (xk).

A standard computation shows that xk approximates x̃ to precision m = 2k and that F (xk) = 0
modulo pm.

Our trivial, but key remark which is at the core of this article, is that to use Newton’s method
we do not need to know F , we only need to be able to evaluate F at some precision m. Indeed
from Equation (1) it is clear that we only need to be able to evaluate F and dF . But we can
recover dF from evaluations of F at suitable points.

We illustrate this when F (X) is univariate. Then modulo p2m, F (x+pmy) = F (x)+F ′(x)pmy,
hence F ′(x) = (F (x+ pm)− F (x))/pm modulo pm. We can thus recover F ′(x) modulo pm from
two evaluations of F at precision 2m. The Newton process can thus be done as follow: given the
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solution xm at precision m, we evaluate F (xm) and F (xm + pm) at precision 2m. Then

x2m = xm −
F (xm)

(F (xm + pm)− F (xm))/pm

More generally, when F has N -variable, we can recover the Jacobian dF (x) at precision m in
N + 1 evaluations of F at precision 2m.

We have proved:

Lemma 3.1. Given a multivariate polynomial system F (X) in N variables and N equations,
and a solution x0 modulo p of the equation F (x) = 0 modulo p such that dF (x0) is inversible
modulo p. Let C(m,Zq) be the cost of evaluating F at a point x at precision m and M(m,Zq) be
the cost of doing the standard arithmetic operations in Zq at precision m, and assume that both
C(m) and M(m) are superlinear.

Then one can compute the unique lift x̃ of x0 such that F (x̃) = 0 to precision m in time
O(N · C(2m,Zq) +N ·M(2m,Zq)).

Remark 3.2. We note that if we have an approximation x0 of x̃ to precision m, then for our
method (and the convergence), we only need that F is analytic at x0 on the ball of center x0 and
radius ||pm||.

More generally, Newton’s algorithm will converge whenever we have a x0 modulo pe+1 such
that f(x0) = 0 modulo p2e+1 and pedF (x0) is inversible. Iterating the Newton process then gives
x̃ modulo pe+2k such that f(x̃) = 0 modulo p2e+2k .

When this is not the case, we need to push the Taylor expansion of F further:
F (x+ epk) = pkdF (x). tei + p2kei · d2F (x, x) · tei +O(p3k).

Let J(x) = dF (x) be the Jacobian, and H(x) = d2F (x, x) be the Hessian matrix, we explain
how to evaluate them to precision m. We assume here for simplicity that N = 2 and p > 2.
Set e1 = (1, 0), e2 = (0, 1) and e5 = (1, 1), set x1 = x + e1p

m, x2 = x + e2p
m, x3 = x − e1p

m,
x4 = x− e2p

m and x5 = x+ e5p
m, and evaluate F (xi) modulo p3m.

We have modulo p2m:

JX(x) = F (x1)− F (x3)
2pm and JY (x) = F (x2)− F (x4)

2pm

and modulo pm:

HX(x) = F (x1)− F (x)− JX(x)pm

p2m , HY (x) = F (x2)− F (x)− JY (x)pm

p2m

HXY (x) = F (x5)− F (x)− JX(x)pm − JY (x)pm −HX(x)p2m −HY (x)p2m

p2m .

are the vector colomns of 1
2H(x).

More generally, in N variables we may compute dkF (x) at precision m by O(k + Nk+1)
evaluations of F at precision km when p is large enough.

4. Lifting the étale points of p-torsion

Let Ẽ/Zq be a (non necessarily canonic here) lift of an ordinary elliptic curve E/Fq.
In this section, we explain how to compute the polynomial Hp which parametrizes E[p]ét (this

is also the kernel of the Verschiebung) and how to lift it to Ẽ using Section 3. We also explain
how to find an étale point P ∈ E[p] and how to lift it.

We first note that when Ẽ is an arbitrary lift of E, there is an obstruction to lifting an étale
point of p-torsion P : in general Ẽ[p] may not have points living in an unramified extension of Zq,
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in particular even if P is rational, a lift of P to Ẽ[p](Zq) will not exist. This obstruction vanish if
and only if j(Ẽ) = j(E↑) mod p2:
Proposition 4.1. Let Ẽ/Zq be an arbitrary lift of E/Fq, and let E↑/Zq be the canonical lift of
E. Let Zur

q be the maximal unramified extension of Zq. The following are equivalent:
(1) Ẽ[p](Zur

q ) ̸= {0E};
(2) Ẽ[p](Zur

q ) is a lift of E[p]et;
(3) Zq(Ẽ[p]) is tamely ramified;
(4) j(Ẽ) = j(E↑) mod p2.

If these conditions are satisfied, and Fqe is the smallest extension of Fq where the points of
E[p]et are defined, then Ẽ[p] = Ẽ0[p]⊕ Ẽ[p](Zqe) where Ẽ0 is the relative connected component of
E (ie the kernel of the reduction map Ẽ → E), and the points of Ẽ0[p] live in the tamely ramified
extension of Zqe given by adjoining a p-root of unity ζp. Furthermore, if P ∈ Ẽ[p](Zur

q ), then
Ψ′
P (P ) is of valuation 1.

Proof. We have a connected étale exact sequence [Tat97]:
0→ Ẽ0 → Ẽ → Ẽet → 0.

This exact sequence commutes with specialisation, so since SpecZq is connected, Ẽ0 is exactly the
kernel of the projection map Ẽ → E. In particular, since Ẽet[p] is étale and Zq is complete hence
Henselian, it is the unique étale lift of E[p]et, and Ẽ0[p] is a lift of E[p]loc which is of multiplicative
type (since it is the Cartier dual of E[p]et), hence its points live in a ramified extension of Zq. So
if P̃ ∈ Ẽ[p](Zur

q ) ̸= 0Ẽ , the subgroup generated by P̃ induces a splitting Ẽ[p] = Ẽ0[p]⊕ Ẽet[p], in
particular P̃ ̸∈ Ẽ0[p]. This proves the equivalence of (1) and (2). The rest of the equivalences
are from [Sat00, Theorem 3.1]. Furthermore we have Ẽ[p](Zur

q ) = Ẽet[p](Zur
q ) = Ẽet[p](Zqe), and

since Ẽ0[p] is the Cartier dual of Ẽet its points live in Qq(ζp).
Finally, Ψ′

p(P ) = 1 by Satoh’s lemma [Sat00, Lemma 3.7]. □

4.1. Computing the kernel of the Verschiebung. To apply Section 2.6, we first need to
compute the kernel Hp of the Verschiebung (or a rational point in this kernel).

We have Ψp = Hp
p , so an easy method is to compute Ψp using the recursive formula for division

polynomials to get Hp. But Ψp is of degree p2, so this will cost Õ(p2n) operations.
Let π̂ be the Verschiebung. By definition [p] = ππ̂ = π̂π, so we have π̂(π(P )) = [p].P . In

particular we can efficiently evaluate the Verschiebung on the point π(P ). We can thus recover
the Verschiebung by interpolation, from which we get the kernel.

More precisely we only need to work with x-coordinates. We can then sample p-random
points xp ∈ Eσ̂(Fq)/± 1, and compute the values p.xp in x-coordinates only. Let R(x) be the
rational fraction of degree O(p) interpolating the points (π(xp), p.xp). Then the kernel Hp of the
Verschiebung is simply the denominator of R.

In summary:
Lemma 4.2. Let E/Fq be an ordinary elliptic curve. The kernel Hp(x) of the (small) Ver-
schiebung can be computed in time Õ(p log q) = Õ(pn).
4.2. Finding an étale point of torsion. If we furthermore need the x-coordinate of an étale
point P of p-torsion, we need to find a root of Hp. First we need to compute the degree e of
the extension where the étale points of p-torsion live. Assume that we know λ, the inversible
eigenvalue of the Frobenius modulo p. Then σ(P ) = λ.P , so e is the order of λ.

There are two methods to find λ to precision 1. The first one is to use Hasse’s formula.
Using the recurrence formula to compute the Hasse invariant Aq (see [Sil86, p. V.4.1]), this costs
Õ(n2 + np) operations: Õ(np) to compute Ap, then Õ(log2 q) = Õ(n2) to compute Aq.
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The other approach evaluates the Verschiebung from its kernel Hp using Vélu’s formula, and
look at the action on the differentials (i.e we apply Satoh’s algorithm at precision m = 1, so
without lifting), as in Section 2.7. This costs Õ(np) operations, but this only recovers ±λ.

Indeed, we compute an isomorphism u : E/Hp ≃ Eσ̂, (x, y) 7→ (u2x, u3y), so if ϕ : E → E/Hp

is given by Vélu’s formula, the Verschiebung is equal to ±u ◦ ϕ. To know the correct sign, we
need to stop working in x-coordinate only and take a random point P ∈ E(Fq) and check whether
[p]σ̂(P ) = u ◦ ϕ(P ) or [p]σ̂(P ) = −u ◦ ϕ(P ). Then replacing u by −u if necessary, we have
that λ = NFq/Fp

(u) since ϕ is normalised. To take P we need to compute a square root, so this
costs Õ(log2 q) = Õ(n2), and the total cost to recover e exactly (rather than potentially 2e) is
Õ(n2 + np) operations, like the computation of the Hasse invariant.

The factorisation of Hp using an equal degree factorisation algorithm then costs Õ(p log2 q) =
Õ(pn2). We note that without the knowledge of e, we would need to use a distinct degree
factorisation algorithm insted, which would cost Õ(p1.5n+ pn2) by [KU11]. In summary:

Lemma 4.3. Let E/Fq be an ordinary elliptic curve. The kernel Hp(x) of the (small) Ver-
schiebung can be computed and factorized in time Õ(pn2).

There is a faster method when we already know N = #E(Fq). Compute e as above, and
Ne = #E(Fqe). Take a random point Q ∈ E(Fqe) and multiply by the cofactor: P = Ne/p ·Q.
If P ̸= 0E we have found a point of p-torsion. A random point Q can be taken by taking a
random xQ and trying to find a square root of x3

Q + a4xQ + a6 (when p > 3). We can also
work in x-coordinates only, this gains a square root. In any case, the total cost of this method is
Õ(log2 qe) = Õ(e2n2).

4.3. Lifting a point of p-torsion. We now assume that we are given a lift Ẽ that satisfy the
equivalent conditions of Proposition 4.1.

Given a point P of p-torsion on E, to lift it to Ẽ we apply Lemma 3.1 to the equation p.P̃ = 0E .
To stay in affine coordinates, we can rewrite this equation as (p′ + 1).P̃ = −p′.P̃ for p = 2p′ + 1.

Evaluating this equation by a double and add algorithm takes O(log p) operations in Zq (at a
given precision m), hence by Lemma 3.1 we can compute P̃ to precision m in time Õ(nm).

Remark that the p-torsion P points is defined equivalently by systems of the form:{
f(x, y) = 0
Ψp(x) = 0 or

{
f(x, y) = 0
g(x, y) = 0

where g(x, y) is one of the equation [p′ + 1]P = −[p′]P such that p = 2p′ + 1.
Since p ̸= 2, we have ∂f

∂y
(P ) non null modulo p. The Jacobian of the system is given by: ∂f

∂x
(x, y) ∂f

∂y
(x, y)

Ψ′
p(x) 0


Then using Satoh’s lemma [Sat00, Lemma 3.7], we conclude that the determinant of the

Jacobian of those system at P has p-valuation 1:

it has the form
(
⋆ ⋆
p 0

)
at P

Thus in the Newton’s lifting steps, we lost 1 precision on the coordinates of P̃ . Also to boostrap
at precision 1, it seems like we would need to compute the Hessian.

Fortunately, the situation simplifies if we only try to lift the x-coordinate of P , the system
then becomes Ψp(x) = 0. We never compute Ψp but evaluate it on x directly via the double
and add formula for x-coordinates (in other words via the standard recurrence formula for the
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division polynomials) by Lemma 2.5. However, our lift is such that Ψ′
p(xP̃ ) is of valuation 1 and

Ψp(xP̃ ) is only of valuation 2 (by Proposition 4.1), not 3 as needed to bootstrap the Newton
method, see Remark 3.2. But since Ψ”p(xP̃ ) = 0 modulo p (because Ψp = Hp

p , the first iteration
of the Newton method does still allow to go to precision 3, as remarked in [MR20, Section A.3.]
and [Maï22, Section 1.2]. We can then apply Remark 3.2: we compute xP̃ modulo pk such that
Ψp(xP̃ ) = 0 modulo pk+1. We can then lift yP by solving the square root via Newton’s algorithm.

In summary:
Lemma 4.4. Let Ẽ/Zq be a lift of E that satisfy the conditions of Proposition 4.1, and let P be
an étale point of p-torsion on E which lives in Fqe . Then P can be lifted to a point of p-torsion
P̃ ∈ Ẽ[p](Zqe) to precision m in time Õ(m log q log p) = Õ(mn).
4.4. Lifting all the étale p-Torsion. An alternative is to lift directly the kernel of the Ver-
schiebung Hp. Suppose that we are given H̃p at precision k, and we want to compute it at
precision 2k.

First we note that by employing the same strategy as in Section 4.3 but working over the
algebra Ap = Fq[u]/Hp(u) rather than over Fqe , we can find a lift P̃ = u+p.a1(u)+p2.a2(u)+ · · ·
of the formal point of p-torsion P : x = u. Notably, P̃ encodes simultaneously the lifts of all
points of p-torsion: if Pλ is the point of p-torsion with x-coordinate given by the root λ of Hp, its
lift P̃λ is given by λ+ p.u1(λ) + p2.u2(λ) + · · · .

Then H̃p(x) is given by the resultant Resu(x− u, P̃ ). But it is not clear if this resultant can
be computed in quasi-linear time (the best generic algorithm in [Vil18] is not quasi-linear, but in
our situation the roots of H̃p are deformations of the roots of Hp so there may be more efficient
algorithms.)

So rather than lifting the formal point P : x = u over Ap, we simply lift H̃p directly. We give
two methods.

The first is to use Section 3 applied to the equation Ψp mod H̃p = 0 mod p2k (where 2k is
our target precision).

Indeed by Lemma 2.5, Ψp can be evaluated modulo our candidate polynomial H̃∗
p via the

recurrence formula in quasi-linear time (so we never need to compute it fully, only modulo a
polynomial of degree p).

The Newton formula is as follow: take an arbitrary lift H̃∗
p , let a = Ψp mod H̃∗

p and b = Ψp

mod (H̃∗
p + pk). Then the derivative of our Newton process is given by c = (b− a)/pk, and we

solve the equation a+ cpkQ = 0 mod (H̃∗
p , p

2k) (since the equation is valid at precision k, this
equation does not depend on the choice of H̃∗

p ). The correct lift is then H̃p = H̃∗
p + pkQ.

The second one is to use the strategy of Section 2.6. Given H̃p at precision k, take an arbitrary
lift H̃∗

p to precision 2k + 1, then we have

H̃p = H̃∗
p + e with e =

Ψp.H̃
∗′
p

Ψ′
p

mod H̃∗
p .

We can use Lemma 2.5 to compute e in quasi-linear time.
In summary both methods give:

Proposition 4.5. Given an ordinary elliptic curve E/Fq, and a lift (not necessarily canonical) Ẽ
at precision m that satisfies the conditions of Proposition 4.1, the kernel Hp of the Verschiebung
can be lifted to precision m in quasi-linear time Õ(mp log q) = Õ(pmn).
Remark 4.6. As for Section 4.3, when Ẽ is given at precision m, H̃p is only determined to
precision m− 1.

It is easy to see that we can extend the methods of this section to lift to Ẽ a subgroup G
of degree d of E[ℓ], when p ∤ ℓ. (In this case there is no restriction on Ẽ since E[ℓ] is étale.)
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This subgroup is defined by a polynomial HG(x) (say when ℓ is odd) of degree (d− 1)/2. The
standard method would be to lift HG(X) as a factor of χℓ,Ẽ(X), which would cost Õ(ℓ2m log q)
at precision m. Our method only computes χℓ modulo (potential) lifts of HG, hence only cost
Õ(d log ℓm log q) = Õ(d log ℓmn) (where the log ℓ comes from the recurrence formula for Ψℓ may
not be absorbed in the Õ notation here).

5. Computing the Canonical Lift without using Modular Polynomials

In this section we will focus on the case where p is odd for simplicity.

Lemma 5.1. Let E be an ordinary elliptic curve over Fq, then E↑ is the unique elliptic curve up
to isomorphism over Zq such that.

• E is the reduction of E↑ modulo p ,
• Let K ⊂ E↑(Qun

q ) be such that K reduces to E[p]et modulo p and ν : E↑ → E↑/K. Then
j(E↑ν) = j(E↑)Σ̂.

Proof. Immediate by Section 2 and Theorem 2.2, □

We can then apply Lemma 3.1 to the equation of Lemma 5.1 to compute the j-invariant J↑ of
the canonical lift. We first note that Proposition 4.1 gives a convenient criteria to compute the
canonical lift E↑ to precision 2.

Lemma 5.2. Let E/Fq be an ordinary elliptic curve, P a point of p-torsion on E, and Hp the
kernel of the Verschiebung. Let Ẽ/Zq be a lift of E. Then j(Ẽ) = j(E↑) mod p2 if and only if
ΨẼ,p(P ) = 0 modulo p2, if and only if ΨẼ,p = 0 modulo (p2, Hp).

Proof. We first note that the value of ΨẼ,p(P ) does not depend on the choice of lift P̃ of P to
precision 2 since Ψ′

p(P ) = 0 mod p. The same hold for ΨẼ,p modulo Hp.
By Section 4, is ΨẼ,p(P ) = 0 modulo p2 then Newton’s method lifts P to a point of p-torsion

on Ẽ, alternatively the existence of a point of p-torsion on Ẽ is given by [Sat00, Theorem 3.1].
The lemma is then a direct application of Proposition 4.1. □

So Ẽ mod p2 corresponds to the unique elliptic curve (up to isomorphism) such that ΨẼ,p(P ) =
0. Such we look for an equation of Ẽ : y2 = f̃(x) mod p2 such that ΨẼ,p(P ) = 0. Taking an
arbitrary lift for the first parameter (for example a2 or a4), we look for ã6 = a6 +pr1, and we solve
for r1 by using the methods of Section 3. If we have Hp instead, we do the same computation
using the equation ΨẼ,p%Hp = 0 mod p2 (as remarked in [Maï22, Page 47]).

Assume that we have J at p-adic precision k ⩾ 2, we want to find it at precision 2k. We
assume here that we are given Hp, we explain how to adjust the algorithm when we are given a
point of p-torsion P instead afterwards.

We let F (X) be the following process (at precision 2k): given x such that x = j(E) modulo p,
we construct the elliptic curve E with j-invariant x, we let H̃p be the lift of Hp to E , and Eν the
isogenous variety E/H̃p. Then x = j(E) is the lift we look for whenever F (x) = xΣ̂.

We can evaluate F (X) using Vélu’s formula and Section 4, hence we can also evaluate F ′(X)
by Section 3.

Lemma 5.3. Let J satisfies F (J) = J Σ̂ at precision k ⩾ 2, and take an arbitrary lift at
precision 2k. Let A = F (J) and B = F ′(J). Then F (J + epk) = A + Bpke, where B is of
valuation −1.
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Proof. By definition of F , if J ′ = J + pke, we have Φp(J ′, F (J ′)) = 0 modulo p2k. Write F (J ′) =
F (J) + pke′, then Φp(J, F (J)) + ∂Φp/∂x(J, F (J))pke + ∂Φp/∂y(J, F (J))pke′ = 0 modulo p2k,
hence B = ∂Φp/∂x(J, F (J))/∂Φp/∂y(J, F (J)) is of valuation −1 by Kronecker’s formula (see
Section 2.3 and Lemma 2.4). □

We look for a lift of the form J + pke, and we want:

F (J + pke) = A+B.e.pk = J Σ̂ + eΣ̂.pk = AΣ̂ +BΣ̂pkeΣ̂.

Since B is of valuation −1, evaluating F (X) only make sense modulo p2k−1. Concretely this stems
from the fact that given Ẽ at precision 2k, we can only compute H̃p at precision 2k − 1, so the
corresponding isogeny at precision 2k− 1. So we solve F (J + pke) = A+ (Bp)pk−1e = J Σ̂ + eΣ̂pk

mod p2k−1.
By applying the Frobenius Σ, we get:

AΣ +BΣ.eΣ.pk = J + e.pk+1

So dividing by (pB)pk−1 (recall that pB is inversible), we obtain an equation of the form:
eΣ + a.e+ b = 0 mod pk+1.

where a = 0 modulo p. We then solve this equation using algorithm Section 2.3.
This proves Theorem 1.1. The resulting algorithm is as follows, depending on whether the

étale p-torsion is rational or not.

Computing the canonical lift from lifting a non-rational p-torsion. We are considering
the p-torsion Hp non rational over Fq and we want to compute the canonical lift E↑ of E/Fq
without taking any extension to factor Hp. In practice, we can also bypass the computation of
p-th division polynômial in order to deal with lifting only coefficient instead off lifting the full
polynomial (like in Satoh’s lemma [Sat00, Lemma 3.7] ).
Example 5.4. Let consider an elliptic curve (E) : y2 = x3 + a4x + a6 over Fq = Fp/ < m > such that :
p = 43 with m = T 13 + 4T + 40, a4 = T 3 + T and a6 = 45 + T ;
The p-torsion is given by :
Hp = x21 + (15T 12 + 29T 11 + 14T 9 + 17T 8 + 36T 7 + 24T 6 + 36T 5 + 26T 4 + 26T 3 + 30T + 16)x20 + (36T 12 + 30T 11 + 13T 10 + 31T 9 +
15T 8 +5T 7 +24T 6 +7T 5 +22T 4 +26T 3 +21T 2 +27T +16)x19 +(17T 12 +4T 11 +17T 10 +41T 9 +16T 8 +14T 7 +38T 5 +42T 4 +38T 3 +
12T 2 +23T +40)x18 +(31T 12 +29T 11 +20T 10 +21T 9 +20T 8 +2T 7 +8T 6 +9T 5 +12T 4 +30T 3 +29T 2 +6T +32)x17 + · · · · · · · · · · · ·
· · · · · · · · · · · ·+(19T 12 +8T 11 +36T 9 +20T 8 +5T 7 +T 6 +39T 5 +26T 4 +4T 3 +11T 2 +34T +25)x2 +(4T 12 +28T 11 +28T 10 +29T 9 +
11T 8 +11T 7 +28T 6 +4T 5 +18T 4 +25T 3 +41T 2 +22T +13)x+(6T 12 +39T 11 +2T 10 +2T 9 +5T 8 +7T 7 +42T 5 +17T 4 +22T 3 +7T +27);
The teichmuler polynomials of m is M :
M = T 13 + 114384547890216406603135684T 12 + 88967137152271530525028366T 11 + 126406081376404358544543410T 10

+ 70522505892296739689094603T 9 + 123490241010463260981288680T 8 + 28636681671366040021952538T 7

+ 44760382449174633337078459T 6 + 70285320025405028680604383T 5 + 117572780660116767368899264T 4

+ 99094442330017863331719218T 3 + 92812711788579857799001418T 2 + 88644590187856563635463386T
+ 82975367541598755937211742;

At the initialization step we get at precision 2 :
a

↑
6 = 1075T 12 + 1462T 11 + 86T 10 + 1462T 9 + 1419T 8 + 1591T 7 + 1333T 6 + 989T 4 + 301T 3 + 473T 2 + 44T + 1206

H
↑
p = x21 + (1649T 12 + 889T 11 + 301T 10 + 1132T 9 + 318T 8 + 853T 7 + 282T 6 + 1498T 5 + 284T 4 + 1101T 3 + 731T 2 + 890T +

489)x20 + (1670T 12 + 632T 11 + 744T 10 + 1794T 9 + 1778T 8 + 5T 7 + 970T 6 + 953T 5 + 409T 4 + 757T 3 + 795T 2 + 70T + 1478)x19 +
(1608T 12 + 90T 11 + 1135T 10 + 557T 9 + 274T 8 + 315T 7 + 946T 6 + 597T 5 + 816T 4 + 253T 3 + 485T 2 + 883T + 685)x18 + (504T 12 +
674T 11 + 1439T 10 + 1354T 9 + 966T 8 + 2T 7 + 180T 6 + 525T 5 + 571T 4 + 1535T 3 + 545T 2 + 1167T + 1838)x17 + · · · · · · · · · · · ·
· · · · · · · · · · · · + (1094T 12 + 223T 11 + 1154T 9 + 1697T 8 + 650T 7 + 517T 6 + 512T 5 + 1144T 4 + 1337T 3 + 871T 2 + 163T + 713)x2 +
(1638T 12 + 286T 11 + 716T 10 + 1190T 9 + 183T 8 + 527T 7 + 544T 6 + 47T 5 + 835T 4 + 971T 3 + 1847T 2 + 22T + 271)x + (565T 12 +
1415T 11 + 389T 10 + 1206T 9 + 478T 8 + 1512T 7 + 1118T 6 + 343T 5 + 1135T 4 + 1140T 3 + 1333T 2 + 265T + 1145)
At precision 5
a

↑
6 = 89370641 ∗ T 12 + 31831997 ∗ T 11 + 88053164 ∗ T 10 + 131452419 ∗ T 9 + 34842126 ∗ T 8 + 69363128 ∗ T 7 + 117235329 ∗ T 6 +

50131937 ∗ T 5 + 73112298 ∗ T 4 + 130025679 ∗ T 3 + 137852668 ∗ T 2 + 74788396 ∗ T + 128867261
H

↑
p = x21 + (13554174 ∗ T 12 + 36600038 ∗ T 11 + 64815104 ∗ T 10 + 67687647 ∗ T 9 + 59582451 ∗ T 8 + 134006827 ∗ T 7 + 49244011 ∗ T 6 +

118940100 ∗ T 5 + 2516945 ∗ T 4 + 46906060 ∗ T 3 + 69650669 ∗ T 2 + 124782289 ∗ T + 47939684) ∗ x20 + (90938500 ∗ T 12 + 88285953 ∗ T 11 +
6661186 ∗ T 10 + 146103281 ∗ T 9 + 55222808 ∗ T 8 + 55217423 ∗ T 7 + 146968778 ∗ T 6 + 18353912 ∗ T 5 + 33075536 ∗ T 4 + 77858707 ∗ T 3 +
51544852 ∗ T 2 + 13709545 ∗ T + 109684846) ∗ x19 + . . . . . . . . . . . . . . . . . . . . . · · · + (123394582T 12 + 51380192T 11 + 136676618T 10 +
100271263T 9 + 1787057T 8 + 131033604T 7 + 118802895T 6 + 93268845T 5 + 76848465T 4 + 38498549T 3 + 57899855T 2 + 56771386T +
56131494)x2+(34498474T 12+78144530T 11+105348953T 10+32496161T 9+106847830T 8+135578968T 7+66380160T 6+55349948T 5+
47217372T 4 +50491786T 3 +123934340T 2 +127599985T +100834884)x+(97736340T 12 +19082364T 11 +129429400T 10 +70719178T 9 +



16 ABDOULAYE MAIGA AND DAMIEN ROBERT

Input E an elliptic curve of Fq with q = pn, n ∈ N.
Output The canonical lift of E at precision m.

: Compute Hp over Fq using Section 4.1 ;
: Compute E↑ at precision 2 using the equation Ψ↑

p mod Hp = 0 at precision 2 ;
: Compute H↑

p mod p2.
: k = 1
: while k < ⌈(m+ 1)/2⌉ ;

a. Compute at precision 2k two lifts Ẽr1 = (a4, A6r1) and Ẽr2 = (a4, A6r2) of the curve E↑ ;
b. Compute H̃p mod p2k+1 on these two curves using Section 4.4.
c. Compute the j-invariants Jvr1 and Jvr2 of the curves (Ẽr1)ν and (Ẽr2)ν at precision p2k ;
d. Set Jr1 =Jinvariant(Ẽr1) and Jr2 =Jinvariant(Ẽr2)

Then R1 = Jr1 − J and R2 = Jr2 − J at precision p2k ;

e. Solve the system of equations
{

Jvr1 = A+B.R1.p
k−1

Jvr2 = A+B.R2.p
k−1 at precision p2k−1 ;

f. a = −p.
(
BΣ)−1 and b = AΣ − J

pk−1 .
(
BΣ)−1 at precision pk+1 ;

g. e =Artin-Schreier(a, b, k) ;
h. J = J + e.pk−1 at precision p2k−1;
i. Compute the correct coefficient a↑

6 of E↑;
j. k = 2k − 1;

: Return E↑ at precision m .

Algorithm 5.1 Computing the canonical lift by lifting the étale p-torsion

98744474T 8 + 51160676T 7 + 106856462T 6 + 69941993T 5 + 106515661T 4 + 86377734T 3 + 41992682T 2 + 119635682T + 34063380)
We get sufficient precision at precision 9 to extract the invertible eigenvalue of the Frobenius :

χ(X) = X
2 − 18505011142X + 1718264124282290785243

Then the cardinality of E/Fq is given by χ(1) :

#E(Fq) = 1718264124263785774102
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Input Coefficients (a4, a6), p-torsion P and integer m the precision.
Output Coefficients (a↑

4, a
↑
6) at precision m.

: k = 1;
: Use Initialization Phase (Lemma 5.2) to compute E↑ = (a4, a

↑
6) and J↑ at precision 2;

: While (2 ⩽ k ⩽ (m+ 1)/2) ;
a. Choose r1 and r2 and set A6r1 = a↑

6 + r1.p
k and A6r2 = a↑

6 + r2.p
k ;

b. Compute the lift of Pri on the curve (a↑
4, A6ri) using Lemma 4.4 and equation

(p′ + 1)P = −p′.P for i = 1, 2 ;
c. Compute the j-invariants Jvri

of the curves (a↑
4, A6ri

)ν at precision p2k for i = 1, 2 ;
d. Set Jri =Jinvariant(a↑

4, A6ri) then Ri = Jri − J at precision p2k for i = 1, 2 ;

e. Solve the system of equations
{

Jvr1 = A+B.R1.p
k−1

Jvr2 = A+B.R2.p
k−1 at precision p2k−1 ;

f. a = −p.
(
BΣ)−1 and b = AΣ − J

pk−1 .
(
BΣ)−1 at precision pk+1 ;

g. e =Artin-Schreier(a, b, k) ;
h. J = J + e.pk−1 at precision p2k−1;
i. Compute the lift (a↑

4, a
↑
6) of coefficients at 2k − 1 using J↑ and the method Section 2.4 ;

j. k = 2k − 1;
: Return (a↑

4, a
↑
6) .

Algorithm 5.2 Computing the canonical lift via a rational p-torsion point .

Computing the canonical lift from lifting a point of p-torsion. Instead of lifting Hp

to compute the isogeny, we could also lift a point of p-torsion P directly and use an isogeny
algorithm that takes a point of the kernel as input to compute the isogenous curve Eν . This
second strategy gives the complexity stated by Theorem 1.2, the algorithms are summarized in
Algorithm 5.2.

To illustrate the flexibility of Section 3, rather than working with the j-invariant, we also
illustrate a variant which works directly with the coefficients of Ẽ.
Example 5.5. Let consider an elliptic curve (E) : y2 = x3 + a4x + a6 over Fq = Fp/ < m > such that :
p = 211;
m = t15 + 8t14 + 206t13 + 49t12 + 45t11 + 55t10 + 32t9 + 96t8 + 189t7 + 95t6 + 9t5 + 177t4 + 16t3 + 97t2 + 81t + 1;
a4 = 110t14 + 100t13 + 192t12 + 200t11 + 154t10 + 165t9 + 160t8 + 33t7 + 175t6 + 180t5 + 39t4 + 67t3 + 26t2 + 100t + 201
and a6 = 7;
Set P a p-torsion on E/Fq defined by :
xP = 209t14 + 191t13 + 50t12 + 39t11 + 12t10 + 67t9 + 175t8 + 56t7 + 143t6 + 8t5 + 21t4 + 120t3 + 195t2 + 208t + 143,
yP = 92t14 + 175t13 + 200t12 + 8t11 + 126t10 + 210t9 + 163t8 + 196t7 + 71t6 + 150t5 + 132t4 + 80t3 + 174t2 + 22t + 65;
M = t15+5014573003526249771092844833030631692t14+250825067381179019835670159078330505t13+12461860950267527063067749557738448867t12+
13351281210916388766618807255497055379t11+14574297177749812777165744835955759876t10+13968172740626834170042958704238035034t9+
11959193518517769133846943903751712396t8+14080772563481554246350833862901058192t7+4329361002368013574474146544749055085t6+
3600448955644966285034050267654638135t5+10859183703290584349715258254689167500t4+1379018997603023337453423249311698569t3+
15384382802016088362543219242389550854t2 + 13866543145981282254887307294428271201t + 1;
Set ã6 a lift of a6, then the p-torsion P can be lifted using the revisiting Newton’s method on the affine equation: F (P ) = 0 where

F (P ) =
{

x3
P + a4xP + ã6 − y2

P
x210P − xP

is defined with [210]P = −P . We can use the binary decomposition 210 = 2(23(22(22 + 1) +

1) + 1). At the initialization step we get at precision 2 :
a

↑
4 = 20155t14 + 24787t13 + 23402t12 + 42189t11 + 37079t10 + 17045t9 + 38984t8 + 4464t7 + 11147t6 + 31830t5 + 8268t4 + 42267t3 +

8677t2 + 38924t + 2944;
x

P ↑ = 8649t14 + 36905t13 + 15453t12 + 33588t11 + 27864t10 + 12516t9 + 43008t8 + 43100t7 + 28417t6 + 18787t5 + 11837t4 +
22486t3 + 38597t2 + 8015t + 41921,

y
P ↑ = 35540t14 + 40054t13 + 24043t12 + 44107t11 + 37262t10 + 37979t9 + 22107t8 + 20452t7 + 28345t6 + 2260t5 + 24186t4 +

13584t3 + 12623t2 + 15847t + 17578,
Hence we get at precision 12
a

↑
4 = 2671718397668446896245970571t14+7060110570574242483425506768t13+1863467057625922197202091330t12+7578341423072727332831284825t11+

1225584654390802694047832384t10+4288054694853384905571233211t9+439406344227382885416462219t8+980698818722652628347617393t7+
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1700324042934565374791389575t6+4159936551553945984408369135t5+5744396478240046766966965230t4+4001643821057362004394876054t3+
3873451890089346457847128654t2 + 139462860954623680746482877t + 4968440206433640486316965944,

x
P ↑ = 4446916850782394358861409451t14+4330220999418990698699272696t13+5308979423975087666818733490t12+3705566609929340947479439845t11+

6223359622880788382339154388t10+2132250830138068751534690002t9+4857610651598985078850902892t8+7063120582039236210401691172t7+
4389340046238299658479497034t6+1701146282179561848855628863t5+1012321137697066878509823253t4+5340655651549791715821694921t3+
3777597162001370872110467946t2 + 7001961475794151633283686228t + 1435755778615985441497624964,

y
P ↑ = 2477305725884587529844928487t14+689440921426598008784924785t13+4467264683540606352595210873t12+2758217319636590617986800899t11+

100767616517440182491135440t10+6494765071129798930344648655t9+1576910752234224180897967589t8+6745328242851815254809112088t7+
3143851716850320603234935821t6+1560608638027421125966158938t5+6150931329336162774631347274t4+7666601798563957936348691372t3+
6218874202007780879605860308t2 + 3975286049416045993013712520t + 1519162756670746362559746819,

This precision is sufficient to extract the invertible eigenvalue of the Frobenius :

χ(X) = X
2 + 450017538940817098X + 73153789697653178440420401869338651

Then the cardinality of E/Fq is given by χ(1) :

#E(Fq) = 73153789697653178890437940810155750
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