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a b s t r a c t

The thermal relaxation of a relativistic particle diffusing in a fluid at equilibrium is
investigated through a numerical study of the Relativistic Ornstein–Uhlenbeck Process.
The spectrum of the relaxation operator has both a discrete and a continuous component.
Both components are fully characterized and the limit between them is given a simple
interpretation. Short-time relaxation is addressed separately, and a global effective
relaxation time is also computed. The general conclusion is that relativistic effects slow
down thermalization.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Transport at effectively bounded velocities occurs in a large variety of contexts, ranging from astrophysics [1] and
fusion plasma physics [2,3] to metal [4,5] and computer engineering [6], and even tumor treatment [7,8]. Modeling such
transport phenomena is a notoriously difficult problem [9–13]. The Relativistic Ornstein–Uhlenbeck Process (ROUP) has
been introduced in 1997 [14] as the simplest possible model of relativistic particle transport and can also be used as a
blueprint [13] to construct models of non relativistic transport at bounded velocities.

Consider a relativistic particle diffusing in the absence of gravity through a fluid in a state of thermodynamical
equilibrium. The ROUP is built after the traditional, non relativistic Langevin equation [15], and splits the force acting on
the diffusing particle into a deterministic and a stochastic contribution. The deterministic contribution is a friction force and
the stochastic contribution is a Gaussian white noise in the rest frame of the fluid which surrounds the diffusing particle.

Of particular interest is the asymptotic behavior of the process in both position and momentum space. It has been
shown in Ref. [16] by a standard Chapman–Enskog argument that the asymptotic behavior of the ROUP is described, in
position space, by the usual diffusion equation. This has been confirmed in Ref. [17] by a more mathematically rigorous
method. The ROUP also thermalizes the diffusing particle with the fluid by which it is surrounded [14]. The momentum
space distribution of the ROUP thus tends towards a Jüttner distribution [18,19], which is the relativistic analogue of the
equilibrium Maxwell distribution. The temperature of this Jüttner distribution coincides with the temperature of the fluid
surrounding the diffusing particle.

Perhaps unexpectedly, the relaxation of the momentum distribution towards the equilibrium Jüttner distribution has
never been studied in detail. This relaxation is entirely controlled by a linear differential operator L but very little detailed
information is available about this operator. Previous publications [20,21] indeed offer bounds on the spectrum of L but do
not determine if the spectrum is discrete or continuous, or how the eigenvalues depend on the physical parameters?

The aim of this article is to remedy this gap in the literature and to characterize as fully as possible the relativistic thermal
relaxation of the ROUP. Here is a summary of our main results, which have all been obtained by numerical simulations in
(1 + 1) dimensions.
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The operator L controlling the relaxation towards equilibrium depends on a single dimensionless quantity Q =


mc2
kBθe

,
whose square is the ratio of the rest mass energy of the diffusing particle by the thermal energy at the equilibrium
temperature θe (kB is the Boltzmann constant). Since L describes a relaxation, its spectrum is non-positive. The Galilean
regime corresponds to Q infinite; the operator L then coincides with the standard, non relativistic Ornstein–Uhlenbeck
operator, which has a discrete spectrum [22]. We display numerical evidence that the spectrum is drastically different for
finite values of Q i.e. in the relativistic regime. The spectrum of L then displays, not only a discrete component, but also a
continuous component which lies below the discrete one. Moreover, all discrete eigenvalues seem to accumulate on the top
of the continuous component as the coefficient Q tends to zero i.e. as the problem becomes more relativistic.

The operator L also has a finite spectral gap for all values of Q , and the inverse of this spectral gap is the asymptotic
characteristic time of the thermalization process. The short-time relaxation, on the other hand, is best characterized by the
slope of the temperature at the initial time t = 0; this slope depends, not only onQ but also on the initial conditions. Natural,
physically relevant initial conditions are Jüttner distributions of various temperatures θi ≠ θe. We find that the initial slope,
at fixed initial temperature θi, increases as Q increases i.e. as the dynamics becomesmore andmore Galilean. At fixed Q , the
slope decreases with the initial temperature θi.

The relaxation process can also be characterized by a series of intermediary characteristic times. We consider here the
family of times τϵ , defined as the times at which the temperature of the diffusing particle, which starts at θi and finishes
asymptotically at θe, has reached the value θϵ such that θϵ − θi = (1 − ϵ) (θe − θi) These times also depend on Q and θi.
Their typical dependance on these parameters is presented here on the particular case ϵ = 1/10. The overall conclusion is
that, at least in the model considered in this article, bounding velocities slows down thermalization.

2. The relativistic Ornstein–Uhlenbeck process (ROUP)

2.1. Presentation

This process describes the diffusion of a special relativistic point mass m in a fluid in a state of global equilibrium. It is
completely defined, in n space dimensions, by the following set of stochastic differential equations, which are the equations
of motion of the point mass in the rest frame of fluid:

dx =
p

mγ
dt (1)

dp = −α
p
γ

dt +
√
2D dBt , (2)

where γ =


1 + (

p
mc )

2 and p2 is the squared Euclidean norm of p. Eq. (1) is simply the definition of the relativistic n-
momentum in terms of the velocity [23]. Eq. (2) states that the force acting on the particle splits into two contributions. The
first one is a deterministic friction −αp/γ , which forces the n-momentum to relax to the vanishing n-momentum of the
fluid in which the particle diffuses, and the second one is a n-dimensional centered Gaussian white noise. The associated
Kolmogorov equation [14] reads:

∂tΠ + ∇x ·


p

γm
Π


= Lα,D Π (3)

where Π(t, x, p) is a density of the process with respect to the Lebesgue measure dnxdnp in R2n and Lα,D is the relaxation
operator:

Lα,D Π = ∇p ·


α
p
γ

Π


+ D∆pΠ . (4)

The marginal f (t, p) =


Rn Π(t, x, p)dnx obeys the simpler, relativistic Fokker–Planck equation:

∂t f = Lα,D f . (5)
The process admits an invariant measure in momentum space [14]. The density f ⋆

α,D of this measure with respect to dnp is
the following stationary solution of (5):

f ⋆
α,D(p) = a exp


−

γ m2c2α
D


, (6)

where a is a normalization factor [14] such that


Rn f ⋆
α,D(p)dnp = 1. This function is called a Jüttner distribution [18,19] and

describes an equilibrium at temperature:

θe =
D

kBmα
, (7)

where kB is the Boltzmann constant. This last equation is a fluctuation–dissipation relation for the ROUP.
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The temperature θ(t) of the diffusing particle at time t > 0 is defined by Israel [10]:

n
2
kBθ(t) =


p2

2mγ


. (8)

Here, ⟨·⟩ denotes the expectation computed with the distribution f at time t .
Let us now introduce the following dimensionless variables:

T = αt, P =


α

D
p = Q

p
mc

. (9)

In terms of the dimensionless variable P, the Lorentz factor γ reads: ΓQ (P) =

1 + (P/Q )2, where Q =


mc2
kBθe

. Note that
the Galilean limit corresponds to Q → ∞ (thermal energy small compared to mass energy).

The momentum-space density of the process, expressed as a function F of T and P then obeys the Fokker–Planck or
forward Kolmogorov equation:

∂T F = LQ F = ∇P ·


P

ΓQ (P)
F


+ ∆PF . (10)

The operator LQ is the adjoint with respect to dP of the generator of the diffusion in P space. The density F ⋆
Q of the invariant

measure dµ⋆ with respect to dnP takes the form:

F ⋆
Q (P) = A exp


−Q 2ΓQ (P)


, (11)

where A is a normalization factor.
The temperature ratio Θ(T ) = θ(T )/θe is given by:

n
2
Θ(T ) =


P2

2ΓQ (P)


, (12)

where ⟨·⟩ denotes the expectation computed with the distribution F at time T .

3. The spectrum of the relaxation operator LQ

To address this problem, we focus on the case n = 1 (one dimension in P space). Information about the spectrum of the
relaxation operator LQ can be obtained by integrating numerically the imaginary-time, Schrödinger-like equation:

i∂TΨ = LQ Ψ , (13)

and Fourier-analyzing the temporal behavior of the solution Ψ . Indeed, assume a solution (13) can be expanded on
eigenfunctions Ψλ of LQ so that, for all T and P:

Ψ (T , P) = Σλaλ(T )Ψλ(P), (14)

where the summation may be discrete or continuous. Plugging this expansion into (13) leads to

i
d
dT

aλ = λaλ (15)

or

aλ(T ) = Aλ exp(−iλT ) (16)

where the Aλ’s are integration constants. The function Ψ is then a superposition of imaginary exponentials, the λ’s are the
frequencies of these exponentials and they can thus be recovered by Fourier-analyzing the time-dependence of Ψ .

This method for probing numerically the spectrum of an operator is not new and is used extensively in quantum
chemistry; a traditional reference is [24]. As discussed below, the proper mathematical setting for all computations carried
out in this article is a rigged Hilbert space; there are several approaches to eigenfunction expansions and spectral theorems
in rigged Hilbert spaces; popular ones are discussed in Refs. [25–27].

The procedure just described has been implemented on Mathematica 8.0 with several initial and boundary conditions.
Various numerical integration methods have also been tested. The numerical results are consistent with the following
picture. For all finite values ofQ , the spectrumofLQ is real, negative and admits both a discrete and a continuous component.
The discrete component is bounded from below by a critical value: λc(Q ) = −Q 2/4 and the continuous component starts
at λc(Q ) and does not seem to have a lower bound.

The graph in Fig. 1 displays the first four discrete eigenvalues of the spectrum, as a function of the Q factor. The parabola
in dashed line represents the critical value λc(Q ) = −Q 2/4. These results suggest that the discrete eigenvalues accumulate
towards −Q 2/4 as Q decreases. If that is indeed the case, the spectral gap [21] of LQ is equal, for all values of Q , to the first
non vanishing eigenvalue, denoted by λ1(Q ) in Fig. 1.
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Fig. 1. The first four eigenvalues as a function of Q =

mc2/kBθe . Solid triangles: λ1; empty triangles: λ2; solid circles: λ3; empty circles: λ4 . The dashed

line is the function λc(Q ) = −Q 2/4, delimiting the discrete and continuous components of the spectrum.

Fig. 2. Modulus of the time Fourier transform of even solutions of (13) for Q = 1.0 (top-left), Q = 2.0 (top-right), Q = 4.0 (bottom-left) and Q = 10
(bottom-right). The dashed line corresponds to λ = λc(Q ), which is the limit between the continuous and discrete parts of the spectrum.

Figs. 2 and 3 offer typical examples of spectra from which the above conclusions are derived. Fig. 2 presents spectra
of even solutions of (13) for Q = 1, 2, 4 and 10, and Fig. 3 presents spectra of odd solutions. The dashed line represents
the critical value λc(Q ) = −Q 2/4. The clearly distinct spikes on the left of this line signal the discrete component of the
spectrum of L. On the other hand, the structures appearing on the right on the line, be they oscillatory or not, do not display
clearly define spikes and signal the presence of a continuous spectrum component. This interpretation is strengthened by
the following observation: by changing initial conditions or boundary conditions at fixed Q , the spikes on the left of the
dashed line do not change position. On the contrary, the structures on the right of the line do change, sometimes drastically,
and the maxima and minima (for oscillatory structures like those displayed for Q = 2 and Q = 4) change positions. For
smaller values Q , such as Q = 1, the continuous spectrum component is very clearly displayed on the right of the dashed
line, but no spikes are clearly visible on the left of the line. The spikes of the discrete spectrum get closer and closer to the line
as Q decreases (see Fig. 1 and the discussion in the above paragraph). We thus interpret the apparent absence of spikes on
the left of the dashed line, not as the absence of a discrete spectrum component, but as the presence of a discrete spectrum
component too close to the limit of the continuous one to be resolved numerically.

To get the eigenvectors corresponding to the discrete spectrum component, the eigenvalue problem λF = LQ F has been
solved numerically with the values of λ given by the spikes in the spectrum of the numerical solution of (13). The first four
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Fig. 3. Modulus of the time Fourier transform of odd solutions of (13) for Q = 1.0 (top-left), Q = 2.0 (top-right), Q = 4.0 (bottom-left) and Q = 10
(bottom-right). Here again, the dashed line corresponds to λ = λc(Q ), which is the limit between the continuous and discrete parts of the spectrum.

Fig. 4. The eigenvectors corresponding to λ1 (top-left), λ2 (top-right), λ3 (bottom-left) and λ4 (bottom-right), as a function of the momentum P , for the
Galilean case (solid line), for Q = 2.5 (short-dashed line) and Q = 4 (long-dashed line).

eigenvectors are displayed in Fig. 4. The solid line corresponds to the Galilean limit (Q → ∞). The short-dashed line and
long-dashed line correspond respectively to Q = 2.5 and Q = 4.

The appearance of the continuous component of the spectrum at λc(Q ) = −Q 2/4 can also be understood heuristically
with the following reasoning. Consider themeasure dµQ = e+Q 2ΓQ (P) dP and the Hilbert spaceH(Q ) = L2(dµQ ) containing
all functions whose squared modulus can be summed against dµQ . This Hilbert space is equipped canonically with the
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Hermitian product:

⟨F ,G⟩Q =


R
F(P)G(P)dµQ =


R
F(P)G(P)eQ

2ΓQ (P) dP, (17)

which makes the operator LQ self-adjoint. Suppose now that Fλ is an eigenvector of LQ with real eigenvalue λ. The
asymptotic behavior of Fλ can be found heuristically by expanding the operator LQ for |P| ≫ Q . One thus finds that,
asymptotically, Fλ obeys the following Fokker–Planck equation with constant coefficients:

∂PPFλ + Q ϵ(P)∂PFλ = λFλ, (18)

where ϵ(P) stands for the sign of P . Solutions of this equation are linear combinations of Ek±(P) = exp(k± P) with

k±(ϵ,Q ) =
−Q ϵ ± δ

2
(19)

where δ2
= Q 2

+ 4λ. The eigenfunction Fλ is in the Hilbert space H(Q ) if it is square integrable against the measure dµQ .
According to (19), this is possible only if δ is real i.e. if λ ≥ λc(Q ) = −Q 2/4. Thus, eigenvectors associated to the discrete
component of the spectrum do belong to H(Q ) but those associated to the continuous spectrum component do not.

This situation is typical of continuous spectra, the simplest example being furnished by the usual Laplace operator. It is
self-adjoint for the standard Hermitian product

⟨F ,G⟩ =


R
F(P)G(P)dP, (20)

defined in L2(R) (the Hilbert space of functions whose squared modulus can be integrated over R against dP), but its
spectrum is entirely continuous, the eigenfunctions being the imaginary exponentials, which are not in L2(R). Consider
now the heat (or diffusion) equation with an initial condition in L2(R). The time-evolution of the solution can be found
by expanding the initial condition on the eigenvectors of the Laplace operator i.e. by taking the spatial Fourier transform
of the initial condition. This expansion is not the expansion of a function in L2(R) on a basis of L2(R), since the imaginary
exponentials are not in L2(R). It does nevertheless furnish the correct solution to the heat equation and shows the role played
by the continuous spectrum of the Laplace operator in building the time-evolution of the solution. The proper mathematical
setting to develop the theory is not analysis in L2(R), but Schwartz distribution theory [28].

The same kind of conclusion applies to LQ ; the spectrum of the operator has both a discrete and a continuous spectrum
component; the eigenvectors of the discrete component are in H(Q ), those of the continuous one are not, but both
components contribute to thermalization process of the ROUP, even when the initial distribution is in H(Q ). The proper
mathematical setting which generalizes Schwartz distribution theory to operators other than the Laplace operator is not
analysis in Hilbert spaces, but analysis in so-called rigged Hilbert spaces a.k.a. Gelfand triplets [25].

The Galilean case corresponds to Q → +∞; λc(Q ) is then also infinite and the standard Ornstein–Uhlenbeck relaxation
operator L∞(F) = ∂P(P F)+ ∂PPF thus has a pure point spectrum. It is indeed well-known that this point spectrum is made
up of all negative integers −ν and that the eigenfunction associated to −ν is Hermite function Fν(P) = Hν(P) e−P2/2, where
Hν is the ν-th Hermite polynomial [22].

Let us conclude this section by pointing out a final qualitative analogy, which has been suggested to us by one of the
reviewers. Eq. (18) is formally identical, at least for positive values of P , to the equation of a mechanical damped harmonic
oscillator1; F plays the role of the position, P plays the role of the time, Q is the friction coefficient and −λ > 0 is the
squared pulsation of the oscillator. The discrete spectrum corresponds to λ’s which make this oscillator overdamped, while
the continuous spectrum corresponds to λ’s which make this oscillator underdamped, in which case F displays oscillations
as P tends to infinity. The Galilean regime is recovered as Q i.e. the friction coefficient tends to infinity. The oscillator is then
overdamped for all values of the pulsation i.e. for all eigenvalues and the Galilean spectrum is thus purely discrete.

4. Further characterization of the relaxation

In order to compare the relaxation speed towards equilibrium for the Galilean and relativistic regimes, we have
performed numerical integrations of the real time relativistic Fokker–Planck equation (10). We have chosen as initial
condition a Jüttner distribution with arbitrary temperature θi.

4.1. Short-time relaxation

The short-time behavior of the relaxation can be characterized by the initial slope S0 of the temperature evolution curve.
This quantity has been computed for various values of the Q parameter, and for different temperature ratios θe/θi. Fig. 5
sums up these results. It displays the initial slope as a function of the temperature ratio for various values of Q . The solid
line is the Galilean limit (Q → ∞). The crosses correspond to Q = 9 and the solid circles to Q = 1.

1 For negative values of P , Eq. (18) describes an oscillator damped in negative time.
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Fig. 5. The initial slope S0 of the curve θ(T ), as a function of the ratio θe/θi of the equilibrium temperature to the initial one, for the Galilean case (solid
line), for Q = 9 (crosses) and Q = 1 (solid circles).

Fig. 6. The time τ90 for 90% relaxation, as a function of Q =

mc2/kBθe , the cases θe/θi = 0.5 (crosses) and θe/θi = 8 (empty circles). The dashed line is

the Galilean limit.

As expected, all curves reach the value 0 for θe/θi = 1 (there is then no evolution, since the initial temperature is equal to
the equilibrium one). For any given value of θe/θi different from1, the initial slope appears to be larger and larger asQ grows.
Thus, initial relaxation seems faster in the unbounded velocity (Galilean) regime than in the bounded velocity (relativistic)
one.

It is also worth noting that the initial slope curve is very close to its Galilean limit (Q → ∞) for values of Q as low as 9
(curve with crosses).

4.2. Average global relaxation time

The initial slope of the temperature evolution curve contains only information about the short-time relaxation. To
compare long-time relaxations, we have computed numerically the time τ90 needed for the initial temperature difference
θe−θi to be damped at 90%. This characteristic time has been plotted as a function ofQ in Fig. 6, for two different temperature
ratios (θe/θi = 0.5 for crosses, and θe/θi = 8 for empty circles).

The time τ90 decreases rapidly as Q → ∞. This confirms that the relaxation process is slower in the bounded velocity
(relativistic) regime than it is in the unbounded velocity (Galilean) one.

5. Conclusion

We have investigated the thermal relaxation of a relativistic particle diffusing in a fluid at equilibrium by performing
numerical simulations of the (1 + 1) Relativistic Ornstein–Uhlenbeck Process. The relaxation operator depends on a single
parameter Q , whose square is the ratio of the rest-mass energy of the diffusing particle to its equilibrium thermal energy.
We have found that the spectrum of the relaxation operator has both a discrete and a continuous component for all values
of Q . We have investigated how the first discrete eigenvalues and the limit λC (Q ) between the discrete and continuous
components of the spectrum depend onQ . We have also recovered themeasured value of λC (Q ) through a simple analytical
computation. We have finally characterized the short-time relaxation and defined a global effective relation time, which
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has been computed for various values of Q and several initial conditions. The general conclusion is that, at least in the case
considered in this article, bounding velocities slows down thermalization.

Let us now mention a few, natural extensions of this work. It would indeed be very interesting to study relativistic
thermalization through other relativistic stochastic processes, notably the Dunkel–Haenggi process [29], and compare the
results with those presented in this article. Since all relativistic processes also exist in curved space–time versions [30,20],
one should also be able to investigate howa relativistic gravitational field influences thermalization. Relativisticmomentum-
space diffusion in the presence of a temperature or chemical potential gradient is another interesting problem, which could
be addressed by using relativistic generalizations of the stochastic processes presented in Ref. [31]. Finally, all momentum-
space studies should be seen as preludes to a full, detailed investigation of how relativistic stochastic processes behave in
space–time.
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