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The diffusion approximation replaces a real transport dynamics by an approximate
stochastic Markov process. It is proposed that, when both dynamics have invariant
measures, the conditional entropy of the invariant measure of the real dynamics with
respect to the invariant measure of the Markov process be used to assess quantitatively
the validity of the approximation. This proposal is tested on particle transport; the
diffusion approximation is found to be quite robust, valid for an unexpectedly large
range of mass ratios between the solvent and the Brownian particle.
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1. Introduction

Markov processes are ubiquitous in scientific modeling, with applications ranging

from physics and chemistry1 to economics,2 through biology3–6 and population

dynamics.7 In physics, Markov processes can be used as an approximate description

of diffusive transport, valid when the mass of the transported object is much larger

than the mass of the solvant particles.8 Though very well-known, this qualitative

statement still lacks a quantitative counterpart. Indeed, such a counterpart would

presuppose the existence of a method to assess quantitatively the validity of the

diffusion approximation, and no such method has been proposed yet.

The aim of this letter is twofold: (i) to propose a new, quantitative method

to assess theoretically the validity of the diffusion approximation, (ii) to use this

method to determine how the mass ratio r between the transported particle and

the solvent particles influences the validity of the approximation.
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Here is a brief summary of how these two goals are implemented and of

the conclusions that are reached. According to kinetic theory,8,10 diffusion is

induced by collisions between the solvent particles and the transported ones.

In the diffusion approximation,8 the net, global effect of these collisions on

a transported particle is modeled by a Markov stochastic process11 which

is fully determined by the underlying kinetic model. This process generally

admits a certain equilibrium distribution ΦE in velocity space, while the more

precise, kinetic description (typically, the Boltzmann equation) admits the usual

Maxwell–Boltzmann distribution ΦM as equilibrium law.10 The difference of

information content between ΦM and ΦE can be measured theoretically12,13 by the

conditional entropy Sc of ΦM with respect to ΦE . We propose to assess the validity

of the diffusion approximation by the numerical value of this conditional entropy.

Goal (ii) is then implemented by explicitly computing the conditional entropy Sc

as a function of the mass ratio r between the transported particle and the solvent

particles. This reveals that the diffusion approximation is actually quite robust.

For example, with a mass ratio r = 10−2 (transported particles are only 100 times

heavier than solvant particles), the conditional entropy Sc is as low as 2.2× 10−4.

2. The Diffusion Approximation

Consider a solvent S made of particles of mass mS , conveniently called S-particles,

in which particles of mass mB, conveniently called Brownian or B-particles, are

transported by short-range interactions with the S-particles. We suppose that there

are sufficiently few B-particles in S to neglect interactions between B-particles

and between more than one B- and one S-particle at a time. All the properties

of transport can then be recovered by studying the motion of a single, arbitrary

B-particle and the statistical properties of this motion are entirely characterized by

the solvent one-particle distribution and the law fixing the short-range interaction

between a B and an S-particle. We neglect the internal structure of B-particles

and assume that the short-range interaction between a B- and an S-particle can be

modeled as an elastic collision between hard spheres and that the associated sphere

radii are RS and RB. We also assume, in accordance with standard kinetic theory,

that the solvent one-particle distribution is Maxwellian.

In the above model, the trajectory of a B-particle is a succession of line segments

started and ended by collisions with S-particles. At a fixed initial momentum p

of the B-particle before such a collision, the momentum loss q of the B-particle

during the collision is a random variable whose distribution depends on the collision

cross-section and on the distribution of S-particles. Diffusions are by definition

governed by Langevin-like equations (Ito processes11) and these are driven by

Gaussian noises. Approximating the motion of a B-particle by a diffusion thus

comes down to approximating, for each p, the distribution of the momentum loss

qB by a Gaussian. The law of a stochastic process defined by such a Langevin

equation is described by a distribution function Φ of the time t and of the position
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r and velocity v of a B-particle; this function obeys the Fokker–Planck equation1,11:

∂Φ

∂t
+ vi

∂Φ

∂ri
=

1

mB

∂

∂vi

(

−F iΦ +
1
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∂

∂vj
(Dij Φ)

)

, (1)

where F is the deterministic part of the force experienced by the B-particle, and

D is the noise tensor. This force F and the noise tensor D can be computed from

the expectation (mean value) of q and q⊗ q respectively.9 This delivers:

F = −α0(v)v, and D = σ0(v)E + σ2(v)v⊗v (2)

where E is the (inverse) Euclidean metric tensor (E ij = 1 if i = j and 0 otherwise).

Naturally, all coefficients introduced above also depend on the masses mB and mS ,

and on the characteristic radii RB and RS . The expressions of the coefficients in (2)

are more readable if the following conventions are done:

• u denotes the dimensionless velocity of the B-particles: u = v
√

mS/kBT . Note

that the velocity scale kBT/mS chosen to make u dimensionless is the thermal

velocity of S-particles. Thus, when the B-particles have a much larger mass than

the S-particles, |u| is much smaller than unity.

• u and v denote the moduli of u and v.

• µ denotes (mS
−1 +mB

−1)−1.
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x
2

2 , and ζ(x) for
√

π
2
erf(x/

√
2)

x , where analytical continuation is

implied for x = 0.

With this notation, the exact expressions for the coefficients in (2) are:

• Friction coefficient:
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• Noise coefficient:
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• Second-order noise coefficient:
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Fig. 1. Invariant measure of the diffusion process for a mass ratio r = 0.01, as a function of the
dimensionless velocity v/v0 with v0 =

√

kBT/mB (solid curve). The corresponding Maxwellian
distribution is plotted on the dashed line. The scale of the vertical axis is arbitrary.

3. Invariant Measure of the Diffusion Process

The density ΦE of the invariant measure with respect to the Lebesgue measure d3v

obeys:

∂

∂vi

(

−F iΦE +
1

mB

∂

∂vj
(DijΦE)

)

= 0 . (6)

By isotropy, the solution of (6) can be expressed as a function of the modulus v of

the velocity: ΦE(v) = φ(v). Inserting this form into the above equation leads to:

A(v)φ(v) +B(v)φ′(v) = 0 , (7)

where φ′(v) stands for the derivative of φ with respect to v. In (7), the coefficients

A(v) and B(v) are:

A(v) = α0(v) +
1

mB

(

σ′
0(v)

v
+ vσ′

2(v) + 4σ2(v)

)

, (8)

and

B(v) =
1

mB

(

σ0(v)

v
+ vσ2(v)

)

. (9)

The solution of (7) is

φ(v) = φ0 exp

[

−

∫ v

0

A(ν)

B(ν)
dν

]

, (10)

the constant φ0 being determined by the normalization condition
∫∞
0

φ(v)4πv2dv =

1. The function φ(v) can be determined numerically for all values of the mass ratio

r; it is plotted in Fig. 1 for r = 0.01 (Brownian particles are 100 times heavier than

solvent particles), together with the corresponding Maxwellian distribution.
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4. Conditional Entropy

The real, physically relevant equilibrium distribution of a B-particle in velocity

space is not ΦE but the standard Maxwell-Boltzmann distribution:

ΦM (v) =

(

2πkBT

mB

)− 3

2

exp

(

−
mBv

2

2kBT

)

. (11)

The conditional or Kullback entropy Sc [ΦM/ΦE] of ΦM with respect to ΦE is

defined by the following relation12,13:

Sc

[

ΦM

ΦE

]

≡

∫

R3

ΦM (v) ln

(

ΦM (v)

ΦE(v)

)

d3v . (12)

Roughly speaking, this entropy measures the difference of information content

between ΦM and ΦE and it can serve as a quantitative estimate of the error made in

approximating the real transport by a diffusion process. Indeed, if both distributions

are close to each other, say symbolically ΦE(v) = ΦM (v)(1 + ε(v)) with ε � 1,

then

Sc

[

ΦM

ΦE

]

'

∫

R3

ΦM (v)(ε(v))2d3v , (13)

and the conditional entropy then measures the mean value or average of the squared

discrepancy between the ΦE and ΦM . Thus, the smaller the conditional entropy,

the better the diffusion approximation. Note that the definition of Sc[ΦM/ΦE] is

asymmetrical between ΦE and ΦM and that Sc[ΦM/ΦE ] makes more physical sense

than Sc[ΦM/ΦE] because it makes more sense to compute the above average by

using the true equilibrium measure ΦMd3v rather than the approximation ΦEd
3v.

The conditional entropy Sc[ΦM/ΦE] is plotted in Fig. 2 against the mass ratio

r. This plot shows that the diffusion approximation is actually quite robust. For
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Fig. 2. Conditional entropy Sc[ΦM/ΦE ] of ΦM with respect to ΦE , as a function of the mass
ratio r = mS/mB .
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example, with a mass ratio as high as r = 0.01 (Brownian particles are only 100

times heavier than solvent particles), the conditional entropy Sc[ΦM/ΦE] is as low

as 2.2×10−4. But Fig. 2 also displays the breakdown of the diffusion approximation.

Indeed, a mass ratio of r = 1 leads to a conditional entropy of order 0.3, which means

that, for this mass ratio, ΦM/ΦE is of order 1.3 when v stays inside the central

peak of the Gaussian ΦM ; the corresponding mean relative difference between ΦM

and ΦE is thus around 30%.

It is interesting to notice that neither ΦM nor ΦE depend on the radii of the

Brownian and solvant particles. This is seen explicitly from (11) for ΦM . As for ΦE ,

the coefficients α0, σ0 and σ2 entering the definition of A and B all depend linearly

on the square (RB +RS)
2 and this dependence thus cancels form the quotient A/B

and, therefore, from ΦE too. Consequently, the conditional entropy Sc [ΦM/ΦE]

does not depend on the radii of the Brownian and solvant particles.

5. Conclusion

The diffusion approximation comes down to modeling diffusive transport by a

Markov stochastic process. In dilute gas, the real equilibrium Maxwell–Boltzmann

distribution ΦM is then replaced by another distribution, say ΦE . We have

suggested that the validity of the diffusion approximation can be measured

quantitatively by the conditional entropy of ΦM with respect to ΦE . This entropy

has been computed as a function of the mass ratio between the transported particle

and the solvent particles. The conclusion is that the diffusion approximation is

actually quite robust; for example, a mass ratio of 0.01 corresponds to a conditional

entropy of 2.2× 10−4.

Let us conclude by listing a few natural extensions to this work. One should

first investigate if the validity of the diffusion approximation can be quantitatively

assessed by other measures than equilibrium conditional entropies and, if that is

the case, how these measures compare with each other. The computation presented

in this letter should also be extended to deal with situations where the basic kinetic

model is more general than the Boltzmann one. Finally, assessing the validity of

the diffusion approximation is also important in the relativistic regime, to deal

for example with runaway electrons18,19 and transport in both astrophysical and

non-astrophysical plasmas.20,21
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