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1. Introduction

Thermodiffusion is diffusion generated by temperature gradi-
ents and is presently the object of active research, with applica-
tions ranging from chemistry to biology and petroleum
extraction [1–5].

The first, purely macroscopic description of thermodiffusion [6]
dates back to the 19th century, and assumes that diffusion currents
are generally made up of two contributions, one proportional to
density gradients (Fick law) and the other proportional to temper-
ature gradients (Ludwig–Soret effect).

Such purely macroscopic descriptions are certainly very simple,
but they only model close to equilibrium situations; for strongly
out of equilibrium situations, as for example the short time regime
in a diffusion problem, a statistical description is needed. The sta-
tistical description of the Soret effect first proposed in the litera-
ture was developed in the context of standard kinetic theory
[7,8] and, thus, only applies to dilute gas mixtures. More general
statistical descriptions are based on stochastic processes; these
model the effective motion of a diffusing particle through a Lange-
vin-like Markov process [9–11]. In these models, the effective force
acting on the diffusing particle is made up of three distinctive con-
tributions. Two are the standard Langevin friction and stochastic
forces, with coefficients depending only on the temperature and
not on its gradient, and the third one is the so-called thermophore-
sis force, proportional to the temperature gradient, with constant
coefficient.
ll rights reserved.
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ebbasch).
In many cases, however, these stochastic models fail to repro-
duce the observed values and even orders of magnitude and signs
of the Ludwig–Soret coefficient [11]. The aim of this manuscript is
to analyze this failure and find a remedy. The main conclusion is
that the stochastic processes introduced so far [9–11] do not in-
clude all forces acting on the diffusing particle and that one must
allow the friction and noise coefficient to depend on the tempera-
ture gradient if one wants to obtain theoretical predictions of Soret
coefficients which better fit measured values.

Here is a brief outline of the manuscript. Thermodiffusion of di-
lute gases mixtures is revisited in section 2 as a particularly simple
case. An explicit expression of the effective force acting on a gas
particle diffusing in a temperature gradient is derived from the
Boltzmann equation in the context of the diffusion approximation.
The obtained expression of the force is much richer than the
expression used in traditional stochastic models. In particular, both
friction and noise coefficients contain contributions which depend
explicitly on temperature gradients.

The physical relevance of these new contributions is also ad-
dressed in section 2. The diffusion approximation is only valid
when the mass ratio between the diffusing particle and the solvent
particle is small enough. This qualitative statement is made quan-
titative by using conditional entropies and it is then shown that at
least some of the above derived new contributions to the force
experienced by the diffusing particle are comparable to the ther-
mophoresis force well inside the validity domain of the diffusion
approximation.

The results from section 2 are generalized in section 3 where
new stochastic models of thermodiffusion are presented. These
new models are not a priori restricted to dilute gas mixtures, but
have a form similar to those derived for dilute gas mixtures. The
Ludwig–Soret coefficients predicted by these new models are
computed in section 3 by a Chapman–Enskog expansion. All results
are finally summarized and discussed in section 4.

http://dx.doi.org/10.1016/j.jct.2010.09.010
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http://dx.doi.org/10.1016/j.jct.2010.09.010
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2. Dilute gas mixtures

2.1. Kinetics

Consider first a solvent gas S made of particles of mass mS (con-
veniently called S-particles). For sufficiently high dilutions, all sta-
tistical properties of S are encoded in the one-particle distribution
function f. If one neglects the internal structure of S-particles, f is a
time-dependent function of six real degrees of freedom (for exam-
ple, three position coordinates and three velocity components) and
this function obeys the Boltzmann equation [8,12].

The mean free path kS of the S-particles is defined in terms of
the total cross-section rS by kS ¼ 1

2
1
2nSrS

, where nS is the density of

S-particles (i.e. the number of S-particles per unit volume). Approx-
imating the interaction of S-particles by elastic collisions between
hard spheres of radius RS, one obtains:

kS ¼
1

2
1
2nSpð2RSÞ2

: ð1Þ

Suppose that the gas S is at rest in a reference frame R but that a
non-uniform temperature field h(r) is maintained in S; the distribu-
tion fh describing this situation is a time-independent solution of
the Boltzmann equation which reduces to the standard Maxwell
distribution for vanishing temperature gradients. This distribution
can be expanded in terms of the dimensionless quantity kSrh/h
and reads, at first order:

fhðvSÞ ¼
2pkBh

mS

� ��3
2

exp �mSv2
S

2kBh

� �
�

1� 16

5ð2pÞ
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2kBh
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� �
mS

kBh
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2

vS �
kS

dh
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h

( )
; ð2Þ

where kB is the Boltzmann constant and vS is the random velocity of
a solvent particle. Note that the kinematic shear viscosity mS(h) is
proportional to kS and to the thermal velocity of an S-particle [8]:

mSðhÞ ¼ 5ð2pÞ
1
2

16 kS
kBh
mS

� �1
2
, and that (2) is thus sometimes expressed in

terms of mS(h) [11].
We will suppose that (2) correctly describes the state of the sol-

vent S; this amounts to supposing that the temperature field h var-
ies on scales much larger than the mean free path kS, i.e. on
macroscopic scales only.

Consider now particles of mass mB, conveniently called Brown-
ian or B-particles, diffusing in the above solvent through short-
range interactions. We suppose that there are sufficiently few
Brownian particles in S to neglect interactions between B-particles
and between more than one B- and one S-particle at a time. All
properties of diffusion can then be recovered by studying the mo-
tion of a single, arbitrary B-particle and the statistical properties of
this motion are entirely characterized by expression (2) for the sol-
vent distribution fh and by a law characterizing the short-range
interaction between a B- and an S-particle. We neglect the internal
structure of B-particles and assume, in coherence with (1), that the
short-range interaction between a B- and an S-particle can be mod-
elled as an elastic collision between hard spheres and that the
associated sphere radius for B-particles is RB.

2.2. Stochastics

In the above model, the trajectory of a B-particle is a succession
of line segments started and ended by collisions with S-particles.
At a fixed initial momentum pB of the B-particle before such a
collision, the momentum loss qB ¼ pB � p0B of the B-particle during
the collision is a random variable whose distribution depends on
the collision cross-section and on the distribution of S-particles.
Langevin-like equations (Ito processes [13]) are driven by Gaussian
noises. Approximating the motion of a B-particle by a Langevin-like
equation thus comes down to approximating, for each pB, the distri-
bution of the momentum loss qB by a Gaussian. The law of a stochas-
tic process defined by such a Langevin equation is described by a
distribution function / of the time t and of the position rB and
momentum pB of a B-particle; this function obeys the Fokker–Planck
equation [13]:
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; ð3Þ

where F is the deterministic part of the force experienced by the B-
particle and D is the noise tensor. This force F and the noise tensor D
can be computed from the expectation (mean value) of qB and
qB � qB, respectively.

One finds expressions of the form:

F ¼ j h;v2
B

� �dh
dr
� a0 h;v2

B

� �
þ a1 h;v2

B

� �
vB �

dh
dr

� �
vB; ð4Þ

and

D ¼ r0 h;v2
B
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B
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; ð5Þ

where E is the (inverse) Euclidean metric tensor (Eij ¼ 1 if i = j and
0 otherwise) and vB = pB/mB is the velocity of the Brownian
particle. The tensor D depends on rh if at least one of the
coefficients r1, r3 or r4 does not vanish. Naturally, all coefficients
introduced above also depend on the masses mB and mS, and on
the characteristic radii RB and RS. The expressions of the
coefficients in (4) and (5) are more readable if the following
conventions are done:

� uB denotes the dimensionless velocity of the B-particles:
uB ¼ vBmS=kBh

2. Note that the velocity scale kBh/mS chosen to
make uB dimensionless is the thermal velocity of S-particles.
Thus, when the B-particles have a much larger mass than the
S-particles, juBj is much smaller than unity.
� uB and vB denote the moduli of uB and vB.

� l denotes m�1
S þm�1

B

� ��1.

� n(x) stands for exp ð�x2=2Þ, and f(x) for p
2

� �1
2

erf x=
ffiffi
2
pð Þ

x , where ana-
lytical continuation is implied for x = 0.

With this notation, the exact expressions for the coefficients in
(4) and (5) are:
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� Friction coefficient:
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� Thermally induced correction to the friction term:
a1 h;v2
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� Noise coefficient:
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� Second order noise coefficient:
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� Thermally induced correction to the second order noise term:
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� Thermally induced noise term:
v / v
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FIGURE 1. Invariant measure of the diffusion process for a mass ratio r = 0.01, as a
function of the dimensionless velocity v/v0 with v0 ¼ ðkBh=mBÞ

1
2 (solid curve). The

corresponding Maxwellian distribution is plotted in dashed line. The scale of the
vertical axis is arbitrary.
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2.3. Physical relevance of the new terms

To properly assess the physical relevance of the new, gradient-
dependent contributions derived in the previous section, one first
needs to assess the validity of the stochastic approach in the ab-
sence of temperature gradients. This is done in section 2.3.1. The
newly derived contributions to the force acting on a Brownian par-
ticle diffusing in the presence of a temperature gradient are then
examined in section 2.3.2.

2.3.1. Homogeneous temperature case
Consider thus the homogeneous temperature case and focus on

the simplest regime, i.e. equilibrium. The real, physically correct
equilibrium density is then the Maxwell–Boltzmann distribution
UM defined by:

UMðvBÞ ¼
2pkBh

mB

� ��3
2

exp �mBv2
B

2kBh

� �
: ð14Þ

On the other hand, the transport equation (3) also admits a time-
independent or ‘equilibrium’ solution UE. This function obeys:
@

@v i
B

�FiUE þ
1

mB

@

@v j
B

ðDijUEÞ
 !

¼ 0: ð15Þ

By isotropy, the solution of (15) can be expressed as a function the
modulus vB of the velocity: UE(vB) = /(vB). Inserting this form into
the above equation leads to:

AðvBÞ/0ðvBÞ þ BðvBÞ/ðvBÞ ¼ 0; ð16Þ

where /0 stands for the derivative of /. In (16), the coefficients A(vB)
and B(vB) are:

AðvBÞ ¼ a0ðvBÞ þ
1

mB

r00ðvBÞ
vB

þ vBr02ðvBÞ þ 4r2ðvBÞ
� �

; ð17Þ

and

BðvBÞ ¼
1

mB

r0ðvBÞ
vB

þ vBr2ðvBÞ
� �

: ð18Þ

The solution of (16) is:

/ðvBÞ ¼ /0 exp �
Z vB

0

BðmÞ
AðmÞdm

	 

; ð19Þ

the constant /0 being determined by the normalization conditionR1
0 /ðvBÞ4pv2

B dvB ¼ 1. The function /(vB) can be determined
numerically for all values of the mass ratio r; it is plotted in
figure 1 for r = 0.01 (Brownian particle 100 times heavier than sol-
vent particles), together with the corresponding Maxwellian
distribution.

The function UE coincides with the physically correct Maxwell-
ian distribution UM only in the limit of vanishingly small mass ra-
tio mB/mS. For finite values of this ratio, UE does not coincide UM

and the above determined stochastic diffusion model is not realis-
tic. This echoes the well-known fact that the diffusion approxima-
tion is, strictly speaking, valid only in the limit of vanishing mass
ratio between Brownian and solvent particles.

Suppose now that one wants, e.g. for simplicity reasons, to use
anyway the above determined stochastic process as diffusion mod-
el, but in a cautious manner, i.e. in knowing the error made in
assimilating the real diffusion to this simple Markov process. The
simplest and most natural way to do so is to quantify this error
by a numerical measure of the discrepancy between UE and UM.
A natural measure for this discrepancy is the conditional or Kull-
back entropy Sc[UM/UE] of UM with respect to UE, defined by the
following relation [14,15]:
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FIGURE 3. Relative importance of the thermally induced correction to the friction
term and of the thermophoresis term, as a function of the mass ratio.

F. Debbasch, J.P. Rivet / J. Chem. Thermodynamics 43 (2011) 300–306 303
Sc½UM=UE� �
Z

R3
UMðvÞ ln

UMðvÞ
UEðvÞ

� �
d3v : ð20Þ

Roughly speaking, this entropy measures the difference of informa-
tion content between UM and UE and it can serve as a quantitative
estimate of the error made in approximating the real transport by a
diffusion process. Indeed, if both distributions are close to each
other, say symbolically UE(v) = UM(v)(1 + �(v)) with �� 1, then

Sc½UM=UE� ’
Z

R3
UMðvÞð�ðvÞÞ2d3v ð21Þ

and the conditional entropy then measures the mean value or aver-
age of the squared discrepancy between the UE and UM. Thus, the
smaller the conditional entropy, the better the diffusion approxima-
tion. Note that the definition of Sc[UM/UE] is asymmetrical between
UE and UM and that Sc[UM/UE] makes more physical sense than
Sc[UM/UE] because it makes more sense to compute the above aver-
age by using the true equilibrium measure UM d3v rather than the
approximation UE d3v.

The conditional entropy Sc[UM/UE] is plotted in figure 2 against
the mass ratio r. This plot shows that the diffusion approximation
is actually quite robust. For example, with a mass ratio as high as
r = 0.01 (Brownian particles only 100 times heavier than solvent
particles), the conditional entropy Sc[UM/UE] is as low as 2.2 �
10�4. But figure 2 also displays the breakdown of the diffusion
approximation. Indeed, a mass ratio of r = 1 leads to a conditional
entropy of order 0.3, which means that, for this mass ratio, UM/
UE is of order 1.3 when v stays inside the central peak of the Gauss-
ian UM; the corresponding mean relative difference between UM

and UE is thus around 30%.

2.3.2. Relative importance of the new gradient-dependent terms
Let us now compare the magnitudes of the new, gradient-

dependent contributions to the force with the magnitude the usual
thermophoresis force. The correction a1vB � dh

dr

� �
vB to the friction

term is linear in the thermal gradient and can be compared natu-
rally with the thermophoresis force. Let us define the ratio qa(T,vB)
of the two by:

qaðT;vBÞ ¼
a1 h;v2

B

� �
vB � dh

dr

� �
vB

�� ��
j h;v2

B

� �
dh
dr

�� �� : ð22Þ

In the most ‘favorable’ case (vB parallel to dh
dr), this ratio can be ex-

pressed as a function of the dimensionless variable u2
B ¼ v2

BmS=kBh
only. A priori, B-particles can have velocities with arbitrary moduli.
However, if we assume that the B-particles are in statistical equilib-
rium with the surrounding gas, their most probable velocity scales
r
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FIGURE 2. Conditional entropy Sc[UM/UE] of UM with respect to UE, as a function of
the mass ratio r = mS/mB.
like ðkBh=mBÞ
1
2, and the dimensionless variable u2

B scales like the
mass ratio mS/mB. This yields a way to estimate the ratio qa as a
function of the mass ratio only. Figure 3 shows how this estimate
of the ratio qa varies as a function of the mass ratio mS/mB. This
shows that the correction to the friction force induced by the tem-
perature gradient cannot be neglected if the mass of B-particles is
not very large when compared with the mass of the S-particles.

The comparison of the thermally induced noise terms to the
thermophoresis force is not as straightforward as for the determin-
istic terms. A glance at equation (3) suggests that the deterministic
force terms are to be compared with the derivative of the noise
terms, with respect to the momentum pB of the Brownian particle.
Consequently, to compare the new thermally induced corrections
r1 vB � dh

dr

� �
E; r3 vB � dh

dr

� �
vB � vB, and r4 vB � dh

dr þ dh
dr � vB
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=2 to the

usual thermophoresis term j T;v2
B
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B
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�� �� ; ð24Þ

and

qdðh;vBÞ ¼
1

mB
rvB � r4 h;v2

B

� �
vB � dh

dr þ dh
dr � vB

� �
=2

� ���� ���
j h;v2

B

� �
dh
dr

�� �� : ð25Þ

Proceeding as before, one can estimate these ratios by functions of
the mass ratio r only and these are plotted in figures 4 to 6.

From the plot of figure 2, the conditional entropy of UE with re-
spect to UM is only 10�2 for r = 10�1, which seems to suggest that,
at least for 0 6 r 6 0.1, the whole stochastic approach is certainly a
reasonably good approximation to the real dynamics. In this range
of mass ratios, at least three of the four new, gradient-dependent
terms are non-negligible with respect to the thermophoresis force,
the most important new contribution coming from the uB �rh
noise term (approx. 30% of the thermophoresis force for a mass ra-
tio r = 0.01 and approx. 300% for r = 0.1). This proves that the new,
gradient-dependent contributions to the force experienced by the
Brownian particle are not an artefact of the computation and are
thus physically relevant.
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3. New stochastic approach to the Ludwig–Soret effect

3.1. General stochastic models

We now want to construct general models inspired by those de-
rived in the previous section to describe thermodiffusion in dilute
gases. The key lesson from section 2 is to allow the friction coeffi-
cient and the noise tensor to depend, not only on the position of
the Brownian particle (through the temperature field h), but also
on its velocity vB through both vB � vB and vB �rh (note that the
scalars v2

B and vB � rh are the traces of these tensors).
The computations of the next section simplify greatly in the 1D

case. Let us therefore consider a Brownian particle of mass m
undergoing 1D motion with position x(t) and momentum p(t)
and diffusing through its interactions with a surrounding medium.
We suppose that the medium is ‘‘isotropic” and globally at rest in
the chosen reference frame. Let h(x) be its inhomogeneous temper-
ature field. We focus on generalized Ornstein–Uhlenbeck models of
the form:

dx ¼ p
m dt;

dp ¼ �jðx;pÞ dh
dr dt � aðSÞðx; pÞpdt þ ð2Dðx;pÞÞ

1
2dBt;

(
ð26Þ

where Bt is a standard Brownian motion. The functions j, a, and D
may depend on p through both p2 and p(dh/dx) and they depend on
x at least through the temperature field h. Previous models [9,10] al-
lowed these functions to depend on x only. A convention is needed
to interpret the multiplicative noise and we adopt the Klimontov-
itch one. This choice is non-restrictive because any Klimontovitch
process of the form (26) can be transcribed into a Stratonovich or
into an Itô one of the same form (but with different friction coeffi-
cient a). The density f(t,x,p) of the process with respect to the
phase-space measure dxdp obeys the forward Kolmogorov
equation:

@tf þ @x
p
m

f
� �

¼ @p jðx;pÞ dh
dr

f
� �

þ Lf ; ð27Þ

where

Lf ¼ @p aðx; pÞpf þ Dðx;pÞ@pf
� �

: ð28Þ

The spatial density n(t,x) of the diffusing particle is defined by:

nðt; xÞ ¼
Z

R

f ðt; x; pÞdp: ð29Þ
3.2. Ludwig–Soret coefficient

3.2.1. Scaling laws
Loosely speaking, the hydrodynamical limit corresponds to near

equilibrium situations where all considered fields vary slowly in
space and time. This definition can be made precise in the follow-
ing way. The near equilibrium character of the hydrodynamical re-
gimes is taken into account by assuming that the distribution f of
the diffusing particle in phase space can be expanded around a
Maxwellian local equilibrium distribution of density n(t,x), tem-
perature h(x) and vanishing mean velocity:

f0ðt; x;pÞ ¼ nðt; xÞ
exp � p2

2mkBhðxÞ

� �
ð2pmkBhðxÞÞ

1
2
: ð30Þ

We thus introduce an infinitesimal parameter � and a collection of
functions fk(t,x,p) for k > 0 such that the solution of the Kolmogorov
equation (27) reads:

f ðt; x;pÞ ¼
X1
k¼0

�kfkðt; x; pÞ: ð31Þ

We treat (31) as a Chapman–Enskog expansion, and therefore, im-
pose that the fk’s for k > 0 do not contribute to the particle density
in physical space:
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Z
R

fkðt; x; pÞdp ¼ 0; for k > 0: ð32Þ

The functions fk will be obtained by solving the transport equation
(27) and condition (32) implies that all fk’s depend on n and h only.

We now assume that the temperature field h(x) of the surround-
ing fluid fluctuates only weakly around its mean value. In other
words, we suppose there exists a typical temperature hw, such that
for all x, jh(x) � hwj � hw. It is thus natural to restrict the choice of
the model’s parameters a(x,p) and D(x,p) by imposing that there
exist also two quantities aw and Dw = mkBawhw, such that
ja(x,p) � awj � aw and jD(x,p) � Dwj � Dw, for any value of the par-
ticle position x and for any value of the momentum p, accessible
with non-vanishing probability.

It is then possible to define a microscopic time-scale s = 1/aw,
which can be interpreted as a mean free-flight time. In the same
manner, a microscopic momentum typical scale q can be defined
as q ¼ ðDH=aHÞ

1
2. Consequently, the typical length scale k = sq/m

emerges naturally, and can be interpreted as the mean free path
of the diffusing particle.

Let us now suppose (i) that the temperature field varies on a
typical length scale k=~� much larger than the mean free path and
(ii) that the distribution function f varies on the same length scale
as h and on a time-scale s/m much larger than the mean flight time.
The infinitesimals ~� and m are at this stage a priori unrelated to each
other and to �.

The transport equation (27) is then best solved by introducing
the dimensionless time and space variables T = mt/s and X ¼ ~�x=k
as well as the dimensionless momentum P = p/q. We also define
a dimensionless density N(T,X) as:

NðT;XÞ ¼ k
~�

n
Ts
m
;
Xk
~�

� �
; ð33Þ

and a dimensionless phase space density F(T,X,P) as:

FðT;X; PÞ ¼ kq
~�

f
Ts
m
;
Xk
~�
;qP

� �
; ð34Þ

so that the following simple normalization relations hold:Z
R

NðT;XÞdX ¼ 1; ð35ÞZ
R2

FðT;X; PÞdX dP ¼ 1: ð36Þ

In terms of the dimensionless variables, the Kolmogorov equation
(27) reads:

m@T F þ ~�@XðPFÞ ¼ ~�@P KðX; PÞ dH
dX

F
� �

þ LF; ð37Þ

where

KðX; PÞ ¼
j Xk

~� ; Pq
� �

kB
and HðXÞ ¼

h Xk
~�

� �
hH

: ð38Þ

The linear operator L is defined by:

LF ¼ @PðAðX; PÞPF þDðX; PÞ@PFÞ; ð39Þ

with

AðX; PÞ ¼
a Xk

~� ; Pq
� �

aH

ð40Þ

and

DðX; PÞ ¼
D Xk

~� ; Pq
� �

DH

: ð41Þ
The first two moments of (37) read:

m@T Nþ ~�@XJ¼ 0;
m@T Jþ~�@XS¼�~�KðX;PÞ dH

dX N�
R

R
AðX;PÞPF dPþ

R
R
@PDðX;PÞF dP;

(

ð42Þ

where J is the dimensionless particle current
R

R
PF dP, and S isR

R
P2F dP. Since all odd-order momenta of the Maxwell distribution

vanish, all odd-order momenta of the distribution F given by (31)
are Oð�Þ. Thus, J and the integrals in the right-hand side of (42)
are Oð�Þ, but S is Oð1Þ. The first equation in (42) thus implies that
m ¼ ~�� but the second one does not enforce any particular relation
between � and ~�. Three types of scalings are thus compatible with
(42). The first one is ~� < �, the second one is ~� > � and the third
one is evidently ~� ¼ �. Solutions which obey this last scaling law
will exhibit a richer macroscopic physics because the choice ~� ¼ �
maximizes the number of term of equal order in (42). We, therefore,
focus on this scaling law and thus retain:
~� ¼ � and m ¼ �2 ð43Þ

for the remainder of this contribution. Note that these scaling laws
are identical to those obeyed by the hydrodynamic regimes of the
Ornstein–Uhlenbeck process in uniform temperature fields.

3.2.2. First order Chapman–Enskog expansion
We now write down the Kolmogorov equation at first order in �.

According to (37), we need K at zeroth order and L, i.e. A and D, at
first order. We suppose that K, at zeroth order in �, is a constant K0

independent of x and p. The force proportional to dh
dr is then exactly

identical to the standard thermophoresis force. The friction and
noise coefficients are expanded into:

AðX; PÞ ¼ A0ðX; P2Þ þ �A1ðX; P2ÞP dH
dX

; ð44Þ

and

DðX; PÞ ¼ D0ðX; P2Þ þ �D1ðX; P2ÞP dH
dX

: ð45Þ

We further assume that A0 and D0 obey the local fluctuation–dissi-
pation relation:

D0ðX; P2Þ
A0ðX; P2Þ

¼ HðXÞ; for all P and X: ð46Þ

The termsA1 and D1 have been omitted by previous authors but are
clearly necessary if one wants to ensure the consistency of the first
order treatment.

The Kolmogorov equation then reads, at first order in �:

�@XðPFÞ � �K0
dH
dX

@PF ¼ L0F þ � dH
dX
L1F ð47Þ

with

L0F ¼ @PðA0ðX; P2ÞPF þD0ðX; P2Þ@PFÞ ð48Þ

and

L1F ¼ @PðA1ðX; P2ÞP2F þD1ðX; P2ÞP@PFÞ: ð49Þ

The dimensionless local equilibrium distribution:

F0ðT;X; PÞ ¼ NðT;XÞ expð�P2=2HðXÞÞ
ð2pHðXÞÞ

1
2

ð50Þ

solves (47) at order zero in �. The first order terms of (47) collect
into:

L0F1 ¼ @XðPF0Þ �
dH
dX
ðK0@PF0 þ L1F0Þ; ð51Þ

where F1 is the dimensionless version of f1, the first order term of
the Chapman–Enskog expansion (31). Equation (51) can be inte-
grated over P to deliver:
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A0ðX; P2ÞPF1 þD0ðX; P2Þ@PF1 ¼ �@XðHðXÞF0ðT;X; PÞÞ�
dH
dX
ðK0F0 þA1ðX; P2ÞP2F0þ

D1ðX; P2ÞP@PF0Þ: ð52Þ

The function H1(T,X,P), defined by:

H1ðT;X; PÞ ¼ F1ðT;X; PÞ
ð2pHðXÞÞ

1
2

expð�P2=2HðXÞÞ
; ð53Þ

for all T, X, and P, verifies:

@PH1 ¼ �
HðXÞ
D0ðX; P2Þ

@XN �
1
2þ K0 þ P2A1ðX; P2Þ

D0ðX; P2Þ

 !
N

dH
dX
�

1
2�D1ðX; P2Þ
D0ðX; P2Þ

 !
P2 N

HðXÞ
dH
dX

: ð54Þ

The first order contribution J1 to the particle current can be ex-
pressed in terms of the function H1 as:

J1ðT;XÞ ¼
Z

R

H1ðT;X; PÞ
expð�P2=2HðXÞÞ
ð2pHðXÞÞ

1
2

P dP

¼ HðXÞ
Z

R

@PH1ðT;X; PÞ
expð�P2=2HðXÞÞ
ð2pHðXÞÞ

1
2

dP: ð55Þ

Taking into account expression (54) for @PH1, the first order contri-
bution to the particle current can be related as follows to the gradi-
ents of the particle density and of the temperature:

J1ðT;XÞ ¼ �UðXÞ @N
@X
�WðXÞNðT;XÞdH

dX
; ð56Þ

where the diffusion coefficient U and the thermal diffusion coeffi-
cient W have the following expressions:

U ¼ H2ðXÞ
R

R
1

D0ðX;P2Þ
expð�P2=2HðXÞÞ

ð2pHðXÞÞ
1
2

dP;

W ¼ HðXÞ
R

R

1
2þK0

D0ðX;P2Þ
expð�P2=2HðXÞÞ

ð2pHðXÞÞ
1
2

dP þ

HðXÞ
R

R

A1ðX;P2Þ
D0ðX;P2Þ

expð�P2=2HðXÞÞ

ð2pHðXÞÞ
1
2

P2 dP þ
R

R

1
2�D1ðX;P2Þ
D0ðX;P2Þ

expð�P2=2HðXÞÞ

ð2pHðXÞÞ
1
2

P2 dP:

8>>>>>>>>>><
>>>>>>>>>>:

ð57Þ

The first term in (56) is the usual contribution of the particle
density gradient to the particle current (Fick’s law). The second is
the traditional macroscopic description of the Ludwig–Soret effect.
Previous stochastic models [10] neglect the A1 and D1 contribu-
tions to W and also assume that D0 is independent of P2. It is clear
that the new models are much more flexible and allow, for exam-
ple, for positive as well as negative values of the Soret coefficient.

To fully test these new models, one should have experimental
access, not only to Soret coefficients and to A0 and D0 coefficients,
but also to A1 and D1 coefficients. To the best of our knowledge, no
A1 and D1 coefficient has yet been measured, if only because
previous theoretical efforts had not taken these coefficients into
account and thus, presumably, drawn the attention of experimen-
talists away from measuring them. A less satisfactory alternative
would be to compute these coefficients from molecular dynamics
models. Unfortunately, no such computation exists at present in
the literature.
4. Conclusion

We have used the Boltzmann equation to obtain new effective
stochastic descriptions of dilute gas diffusions in the presence of
temperature gradients. These new descriptions have then been
used as templates to construct new, more general Markov pro-
cesses of thermodiffusion and the Ludwig–Soret coefficient has
been computed for these models. Our main results are that tem-
perature gradients induce new contributions to the friction coeffi-
cient and noise tensor acting on the diffusing particle and that
these contributions must be taken into account if one wants to
achieve a realistic theoretical prediction of the Ludwig–Soret
coefficient.

This work can be prolonged in various directions. First and fore-
most, one should compute the new contributions to the friction
coefficient and noise tensor outside the dilute gas regime; this will
be probably best achieved through molecular dynamics simula-
tions. One also wonders how the results presented in this article
are modified if the temperature gradient driving the diffusion de-
pends on time. For dilute gases, the first step in addressing this
problem would be to find non-stationary solutions of the Boltz-
mann equation describing the evolution of the solvent under the
time-dependent temperature gradient. Finally, a relativistic exten-
sion of this work is also mandatory, if only to develop realistic sto-
chastic models of diffusions in relativistic stars [16]; this extension
should be based upon the purely kinetic description of relativistic
thermodiffusion presented in [17–19].
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