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A new entropic criterium is proposed to assess the validity of the diffusion approx-
imation. This criterium is applied to particle diffusion in a dilute gaz. It is found that
the diffusion approximation is, at least in this case, quite robust and valid even if the
mass of the Brownian particle is not much larger than the mass of the solvent particles.
This result is then used to validate new stochastic models of thermodiffusion.
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1 Introduction

Diffusions are ubiquitous in scientific modelling, with applications ranging from
Physics and Chemistry[1] to Economics[2], through Biology[3, 4, 5, 6] and pop-
ulation dynamics[7]. In Physics, diffusion is only an approximate description of
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transport, valid when the mass of the transported object is much larger than the
mass of the solvent particles[8]. Though very well-known, this qualitative state-
ment still lacks a quantitative counterpart. Indeed, such a counterpart would
presuppose the existence of a method to measure or ascertain quantitatively
the validity of the diffusion approximation, and no such method has been yet
proposed in the literature.

The aim of this article is (i) to propose a new, quantitative method to measure
the validity of the diffusion approximation, (ii) to apply this method to the
problem of Brownian particle transport, in order to assess how the validity of the
approximation varies with the mass ratio r between the transported particle and
the solvent particles (iii) to use this analysis to ascertain the physical relevance of
new, recently derived contributions[9, 10] to the noise experienced by a particle
diffusing in a temperature gradient.

Here is a brief summary of how these goals are implemented and of the
conclusions that are reached. We start from a simple kinetic model of Brownian
particles diffusing in a solvent and derive from this model friction force and
a white Gaussian noise i.e. a Markov process which describe the net, global
effect of the collisions undergone by the Brownian particle. We also compute
the equilibrium distribution ΦE of this process in velocity space; this function is
different from the Maxwell-Boltzmann distribution ΦM predicted by the a priori
more precise, kinetic description. We then propose to measure the validity of the
diffusion approximation by the conditional entropy Sc of ΦM with respect to ΦE.
Roughly speaking, this entropy represents the difference of information content
between ΦM and ΦE[11, 12]. Note that Sc vanishes if ΦE = ΦM. We compute this
conditional entropy as a function of the mass ratio r between the transported
particle and the solvent particles and conclude that the diffusion approximation
is actually quite robust. For example, with a mass ratio r = 10−2 (Brownian
particle only 100 times heavier than solvent particles), the conditional entropy
Sc is as low as 2.2 10−4. As an application, we finally use the above material
to prove that the diffusion approximation is valid in the mass ratio range for
which the new, recently published [9, 10] corrections to the noise experienced
by a particle diffusing in a temperature gradient are comparable to say, the
thermophoresis force. This definitely confirms the physical relevance of these
noise corrections and their importance in building realistic stochastic models of
thermodiffusion.

2 The diffusion approximation: from kinetics to
stochastics

Consider a solvent S made of particles of mass m
S
, conveniently called S-

particles, in which particles of mass m
B

, conveniently called Brownian or B-
particles, are transported by short-range interactions with the S-particles. We
suppose that there are sufficiently few B-particles in S to neglect interactions
between B-particles and between more than one B- and one S-particle at a time.
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All the properties of transport can then be recovered by studying the motion
of a single, arbitrary B-particle and the statistical properties of this motion
are entirely characterized by the solvent one-particle distribution and the law
fixing the short-range interaction between a B and an S-particle. We neglect
the internal structure of B-particles and assume that the short-range interaction
between a B- and an S-particle can be modelled as an elastic collision between
hard spheres and that the associated sphere radii are R

S
and R

B
.

In the above model, the trajectory of a B-particle is a succession of line
segments started and ended by collisions with S-particles. At a fixed initial mo-
mentum p of the B-particle before such a collision, the momentum loss q of the
B-particle during the collision is a random variable whose distribution depends
on the collision cross-section and on the distribution of S-particles. Diffusions
are by definition governed by Langevin-like equations (Ito processes [13]) and
these are driven by Gaussian noises. Approximating the motion of a B-particle
by a diffusion thus comes down to approximating, for each p , the distribution of
the momentum loss q

B
by a Gaussian. The law of a stochastic process defined

by such a Langevin equation is described by a distribution function Φ of the
time t and of the position r and velocity v of a B-particle; this function obeys
the Fokker-Planck equation [13, 1] :

∂Φ

∂t
+ v i

∂Φ

∂ri
=

1

m
B

∂

∂v i

(
−F i Φ +

1

m
B

∂

∂v j

(
Dij Φ

))
(1)

where F is the deterministic part of the force experienced by the B-particle, and
D is the noise tensor. This force F and the noise tensor D can be computed from
the expectation (mean value) of q and q⊗q respectively[10]. This delivers :

F = −α0(v)v , and D = σ0(v) E + σ2(v)v⊗v (2)

where E is the (inverse) Euclidean metric tensor (E ij = 1 if i = j and 0 other-
wise). Naturally, all coefficients introduced above also depend on the tempera-
ture of the solvent, on the masses m

B
and m

S
, and on the characteristic radii

R
B

and R
S
.

3 Expressions for the friction and noise coeffi-
cients

In what follows, the velocities and the momenta of both solvent particles (S-
particles) and Brownian particles (B-particles) need to be considered. Thus,
to avoid confusion, the subscript “B” is appended to all symbols related to
Brownian particles. For example, the notation v

B
is used for the velocity of B-

particles, instead of v as in (2). Of course v
S

denotes the velocity of S-particles.
The same convention applies to all kinetic variables introduced hereafter.

957



3.1 Kinetic model for the solvent

If S is sufficiently dilute, all statistical properties of S-particles are encoded in
the one-particle distribution function f . If one neglects the internal structure
of S-particles, f is a time-dependent function of six real degrees of freedom (for
example, three position coordinates and three velocity components) and this
function obeys the standard Boltzmann equation :

∂f

∂t
+ v · ∇rf =

∫
d3v

1

∫
|v − v

1
|
(
f(v′ )f(v′

1
)− f(v)f(v

1
)
)
dσS

(3)

where usual notations have been used [8, 14]; in particular, v′ and v′1 are the
velocities of the particles which result from the collision of two particles with
initial velocities v and v

1
, and dσS is the differential cross-section characterizing

the collisions between two S-particles.

The equilibrium solution of (3) is the standard Maxwell distribution :

fe(vS
) =

(
2πkBT

m
S

)− 3
2

exp
(
−mS

v
S
2

2kBT

)
, (4)

where kBT is the Boltzmann factor. We will suppose that (4) correctly describes
the state of the solvent particles. This comes down to assuming that the presence
of B-particles does not noticeably modify the the statistics of the incoming S-
particles.

3.2 Collisions between Brownian and solvent particles

Exact analytical expressions for these coefficients can be derived by supposing
that (i) the onteraction potential between B- and S particle has spherical sym-
metry (ii) the diffusion angle α(b) depends only on the impact parameter b. Let

µ = (m
B
−1 + m

S
−1)−1, u =

√
m

S

kBT v , and ζ(u) and ξ(u) be defined by (??).

One finds :

• Friction coefficient :

α0(v) ≡ α̃0(u) =

√
2

π
K1 nS

µ

√
kBT

m
S

×
(
−1 + 2u2 + u4

u2
ζ(u) +

1 + u2

u2
ξ(u)

)
,

(5)

958



• Noise coefficient :

σ0(v) ≡ σ̃0(u) =

√
2

π
K1 nS

µ2

√
kBT

m
S

3

1

3 + ρ
×

(
−ρ + (3 + 2ρ )u2 + (6 + ρ )u4 + u6

u2
ζ(u) +

ρ + (5 + ρ )u2 + u4

u2
ξ(u)

)
,

(6)

• Second order noise coefficient :

σ2(v) ≡ σ̃2(u) =

√
2

π
K1 nS

µ2

√
kBT

m
S

ρ

3 + ρ
×

(
3− 3u2 + 3u4 + u6

u4
ζ(u) +

−3 + 2u2 + u4

u4
ξ(u)

)
,

(7)

where the collision-dependent coefficients K1 and ρ are :

K1 ≡ 2π

∫ +∞

0

(
1 + cosα(b)

)
bdb (8)

and :

ρ ≡

∫ +∞

0

(
1 + 4cosα(b) + 3cos2 α(b)

)
bdb

∫ +∞

0

sin2 α(b) bdb

. (9)

For hard spheres, K1 = π(R
B

+ R
S
)2 and ρ = 3. Note that, for conciseness,

the B subscripts have been omitted for the variables u and v in the above
expressions.

4 Invariant measure of the diffusion process in
velocity space

The density ΦE of this invariant measure with respect to the Lebesgue measure
d3v obeys :

∂

∂v i

(
−F i ΦE +

1

m
B

∂

∂v j

(
Dij ΦE

))
= 0. (10)
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Figure 1: Invariant measure of the diffusion process for a mass ratio r = 0.01, as
a function of the dimensionless velocity v/v0 with v0 =

√
kBT/mB (solid curve).

The corresponding Maxwellian distribution is plotted in dashed line. The scale of the
vertical axis is arbitrary.

By isotropy, the solution of (10) can be expressed as a function the modulus v
of the velocity : ΦE(v) = φ(v). Inserting this form into the above equation leads
to :

A(v)φ′(v) +B(v)φ(v) = 0 (11)

where φ′(v) stands for the derivative of φ with respect to v . In (11), the coeffi-
cients A(v) and B(v) are :

A(v) = α0(v) +
1

m
B

(σ′0(v)

v
+ vσ′2(v) + 4σ2(v)

)
, (12)

and

B(v) =
1

m
B

(σ0(v)

v
+ vσ2(v)

)
. (13)

The solution of (11) is :

φ(v) = φ0 exp

[
−
∫ v

0

A(ν)

B(ν)
dν

]
, (14)

the constant φ0 being determined by the normalization condition∫∞
0
φ(v)4πv2dv = 1. The function φ(v) can be determined numerically

for all values of the mass ratio r; it is plotted in Figure 1 for hard-sphere
collisions and r = 0.01 (Brownian particle 100 times heavier than solvent
particles), together with the corresponding Maxwellian distribution.
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5 Conditional Entropy

The real, physically relevant equilibrium distribution of a B-particle in velocity
space is not ΦE but the standard Maxwell-Boltzmann distribution :

ΦM(v) =
(2πkBT

m
B

)− 3
2

exp
(
−mB

v2

2kBT

)
. (15)

The conditional or Kullback entropy Sc [ΦM/ΦE] of ΦM with respect to ΦE is
defined by the following relation[11, 12] :

Sc [ΦM/ΦE] ≡
∫

IR3

ΦM(v) ln

(
ΦM(v)

ΦE(v)

)
d3v. (16)

Roughly speaking, this entropy measures the difference of information content
between ΦM and ΦE and it can serve as a quantitative estimate of the error
made in approximating the real transport by a diffusion process. Indeed, if both
distributions are close to each other, say symbolically ΦE(v) = ΦM(v)

(
1 + ε(v)

)

with ε� 1, then

Sc [ΦM/ΦE] '
∫

IR3

ΦM(v)
(ε(v))

2

2
d3v (17)

and the conditional entropy then measures the mean value or average of the
squared discrepancy between the ΦE and ΦM

1. Thus, the smaller the conditional
entropy, the better the diffusion approximation. Note that the definition of the
conditional entropy Sc [ΦM/ΦE] is asymmetrical between ΦE and ΦM and that
Sc [ΦM/ΦE] makes more physical sense than Sc [ΦM/ΦE] because it makes more
sense to compute the above average by using the true equilibrium measure ΦMd

3v
rather than the approximation ΦEd

3v.
The conditional entropy Sc [ΦM/ΦE] is a function of the mass ratio r only

(no dependence on the temperature) and is plotted in Figure 2 for hard-sphere
collisions. Moreover, using Equations (14) to (16), it is possible to show that
for small mass ratios, Sc [ΦM/ΦE] scales as the square of the mass ratio, and to
derive the following asymptotic expression for the conditional entropy :

Sc [ΦM/ΦE] ' 27(1 + ρ )2

5(3 + ρ )2
r2, when r << 1. (18)

In the hard sphere case, ρ = 3 and thus, Sc [ΦM/ΦE] ' 12
5 r

2. On Figure 2, this
asymptotic behavior is plotted as a dashed line.

Historically, the Langevin approach has been introduced to model the ran-
dom motion of small but macroscopic particles. The resulting mass ratios were
thus extremely small (lower than 10−8). However, the scaling law (??) shows
that this stochastic approach seems to be robust, and that its application range
spreads over a much wider domain of mass ratios. For example, with a mass

1The first order tem in ε vanishes because both because ΦE and ΦM are normed to unity.
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Figure 2: Conditional entropy Sc [ΦM/ΦE] of ΦM with respect to ΦE, as a function
of the mass ratio r = mS/mB . The dashed line is the asymptotic behavior for small
values of the mass ratio : Sc [ΦM/ΦE] ' 12

5
r2

ratio as high as r = 0.01 (Brownian particles only 100 times heavier than solvent
particles), the conditional entropy Sc [ΦM/ΦE] is as low as 2.2 10−4.

But Figure 2 also displays the breakdown of the diffusion approximation.
Indeed, a mass ratio of r = 1 leads to a conditional entropy of order 0.3, which
means that, for this mass ratio, ΦM/ΦE is of order 1.3 when v stays inside the
central peak of the Gaussian ΦM; the corresponding mean relative difference
between ΦM and ΦE is thus around 30%.

6 New stochastic models for thermodiffusion

Thermodiffusion[17, 18] is diffusion induced by temperature gradients. Earlier
stochastic models[19, 20] take these gradients into account by adding a single,
deterministic term to the Langevin equation of motion; this term is called the
thermophoresis force and is proportional to the temperature gradient. It has
been argued recently[9, 10] that such models are incomplete, and that a tem-
perature gradient not only introduces a thermophoresis term, but also modifies
the friction term and the noise tensor. These modifications can be computed
explicitely if the, as already assumed, the collisions between B- and S-particles
exhibit shperical symmetry and if the diffusion angle depends only on the im-
pact parameter. The deterministic force F and the noise tensor D then take the
form :

F = κ(v)∇T −
(
α0(v) + α1(v)v · ∇T

)
v , (19)
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and

D =
(
σ0(v) + σ1(v)v · ∇T

)
E

+
(
σ2(v) + σ3(v)v

B
· ∇T

)
v⊗v

+ σ4(v)
v⊗∇T +∇T⊗v

2

(20)

In addition to the usual thermophoresis coefficient κ(v), these expressions for F
and D involve four new coefficients : α1(v), σ1(v), σ3(v), and σ4(v) to account
for the modifications of the friction term and of the noise term induced by a
temperature gradient. Analytical expressions for these new coefficients in the
hard-sphere collision case can be found in [10].

An important question is : are these new terms comparable to the well known
thermophoresis term ? In the limit of very low mass ratios (Brownian particles
much heavier than solvent particles), all these new effects become negligible.
However, for intermediate mass ratios, the new terms have noticeable contri-
butions, especially the σ4 term (see [10]). For example, when the mass ratio r
ranges from 10−2 to 10−1, the relative effect of the σ4 term, compared to the
usual thermophoresis term, ranges from 0.29 to 2.8, which is far from being neg-
ligible. In this range of mass ratios, the conditional entropy Sc [ΦM/ΦE] varies
from 2.2 10−4 to 1.3 10−2. Thus, modelling thermodiffusion with stochastic pro-
cesses definitely makes sense in this range of mass ratios, and it does require the
introduction of the new terms introduced in [9, 10].

7 Conclusion

7.1 Summary

In this article, we have suggested that the validity of the diffusion approxima-
tion can be measured quantitatively by the conditional entropy of the physically
correct equilibrium distribution ΦM with respect to the spurious distribution ΦE

predicted by the approximation. The smaller this entropy, the better the ap-
proximation. This entropy has been computed for spherically symetric collisions
models (including hard sphere collisions) as a function of the mass ratio between
the transported particle and the solvent particles. The main conclusion is that
the diffusion approximation is actually quite robust; for example, assuming hard
sphere collisions, a mass ratio of 0.01 corresponds to a conditional entropy of
2.2 10−4. FInally, this entropic measure has also been used to validate the phys-
ical relevance of new correction terms recently derived in stochastic models of
the Soret effect[9, 10].

7.2 Discussion

Let us now discuss the various approaches to the diffusion approximation that
can be found in the physics literature on particle transport and how these artic-
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ulate with each other and with the material presented in this article. Particle
transport is usually modelled, either by differential or integro-differential kinetic
equations [27, 26], or by stochastic processes [11, 1]. The Boltzmann integro-
differential equation [14] is considered to be the most precise transport model.
The diffusion approximation replaces this equation, for particle transport, by
a substantially simpler, differential equation called a Kolmogorov or Fokker-
Planck equation [13]. This is done [8] by expanding the collision kernel in the
Boltzmann model, assuming that, statistically, the momentum of the diffusion
particle does not change substantially during one collision. This is true only if
the mass of the diffusing particle (B-particle) is much larger than the mass of
the particles it collides with (S-particles). This is the validity condition of the
diffusion approximation.

Consider now [25] a B-particle and follow its motion over a time interval ∆t
during which it undergoes Nc collisions. Let p be the initial momentum of this
B-particle in the rest frame of the solvent and let ∆p1, ..., ∆pNc

be the momen-
tum changes of the diffusing particle during the Nc collisions. By Boltzmann
‘Stosszahl Ansatz’ [14], all these collisions are statistically independent. The law

of collision k depends on the momentum p+
∑k−1

i=1 ∆pi of the diffusing particle
just before this collision. However, if p 6= 0, all relative momentum changes
| ∆pi | / | p | tend to zero as the mass ratio between the diffusing particles
and the fluid particles tends to infinity. Since the total number of collisions Nc

remains bounded in this limit, all individual collisions then have the same law,
which is fixed by ∆t and p; note that the total number Nc of collisions then
depends only on ∆t and p. If Nc(∆t,p) is large enough, the total momentum

change ∆p =
∑Nc

i=1 ∆pi during ∆t is then the sum of a large number of iden-
tically distributed indepedent random variables; by the central limit theorem
[28], the law of ∆p is then approximately Gaussian. Of course, this approach is
only consistent if the mean value of ∆p2 is much smaller than the mean value
of p2 for most statistically relevant values of p. The motion of the diffusing
particle can then be approximated, over time intervals much larger than ∆t, by
a stochastic process driven by a Gaussian white noise [25] i.e. an Itô process.

Note that the above reasoning clearly shows that the noise coefficient then
generally depends on the momentum p. By the fluctuation-dissipation theorem
[8, 25], so does the friction coefficient. If the mass ratio between the B-particle
and the S-particles is not much greater than unity the relative momentum change
during one collision cannot be a priori neglected and the whole above argument
collapses. Modelling the stochastic force acting on the diffusing particle by a
Gaussian white noise then becomes an assumption.

7.3 Future developments

Let us conclude by listing a few natural extensions to this work. One should first
extend all computations to collision models more general than those investigated
in this first publication; this can only be carried out numerically. One should also
investigate if the validity of the diffusion approximation can be quantitatively
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assessed by other measures than equilibrium conditional entropies and, if that is
the case, how these measures compare with each other. The material presented in
this article should also be extended to deal with situations where the basic kinetic
model is more general than the Boltzmann one. Finally, assessing the validity of
the diffusion approximation is also important in the relativistic regime, to deal
for example with runaway electrons[21, 22] and transport in both astrophysical
and non astrophysical plasmas[23, 24].
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