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ADAPTED SCALE IMAGE SUBTRACTION FOR
ACHROMATIC CORONOGRAPHY

Jean GAY1, Yves RABBIA1 and Jean-Pierre RIVET2

Abstract. The detection of a faint companion to a star with achro-
matic coronography and adaptative optics is only limited by the resid-
ual speckles. We study a method to increase the detectability of the
companion, based on the difference of two images taken in two different
wavelengths, after suitable rescaling.

1 Introduction

Adaptative optics devices, which are now available on most astronomical large
telescopes, enable diffraction-limited imaging. The images so obtained are only
damaged by residual speckles, whose spatial distribution is identical for different
wavelengths, provided the wavelength as been chosen as the space scale unit in
the focal plane.

This statement laid Racine et al. (1999) to propose a method improving the
detectability of faint companions. This method involves the subtraction of images
taken simultaneously at different wavelengths, after suitable space rescaling. The
importance of residual speckles is thereby considerably decreased, and the limiting
magnitude of a detectable companion is improved.

However, the efficiency of this method is limited by the stellar photon noise,
especially close to the main body of the Airy diffraction spot of the main star.
Moreover, the energy subtraction law varies from the center to the border of the
image. This makes the exact subtraction over the whole field impossible. To reach
sufficient damping of the residual speckles, one thus needs to perform a subtractive
combination of three images taken at three different wavelengths.

Coronographic methods, which eliminate or at least damp the stellar contri-
bution, should lead to a better efficiency of this subtractive method, provided the
residual speckles at different wavelengths remain similar after their transit through
the coronograph. The Achromatic Interferential Coronograph (AIC) (Baudoz
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1999; Baudoz et al. 2000; Gay & Rabbia 1996a; Gay, Rabbia & Baudoz 1997a)
does preserve the similarity of the speckles at different wavelengths. The extinc-
tion method proposed by Serabyn (1999) to implement achromatically Bracewell’s
interferometric nulling concept (1979) should also have this benefic property. The
sectored phase mask coronograph proposed by Rouan et al. (2000) would also have
this property, provided the phase shifts are achromatic, as it is the case for Vakili’s
implementation (achromatic phase knife coronograph) (Abe et al. 2001). In this
article, we focus our interest on the AIC, since, contrarily to the other corono-
graphic methods quoted above, this concept has already been implemented and
tested on a telescope.

We mention “en passant” that the subtraction method can also be applied
to simultaneous images taken at the same wavelength, but with two different
polarizations. The elimination of the Airy diffraction spot and of the surrounding
speckles is accurate, even without adaptative optics. A faint companion should
emerge if its light is strongly polarized (Seagers et al. 2000), and if the polarization
plane of the instrument has the right orientation with respect to the a priori
unknown direction of the observed binary system. The latter condition requires to
try at least three orientations of the instrument. However, without coronography,
the method remains limited by the photon noise of the main star, and is only
sensitive to the light diffused by the companion, which is dominated by short
wavelengths. Moreover, the polarization rate varies rapidly with the phase of the
companion, and reaches its maximum at quadratures. This is a limitation to the
observable period of the binary system. This is however a promising method to
measure the albedo of giant exo-planets.

2 Principles of the AIC

In its initial version (Baudoz 1999; Baudoz et al. 2000; Gay & Rabbia 1996a; Gay,
Rabbia & Baudoz 1997a), the Achromatic Interferential Coronograph (AIC) is a
Michelson interferometer, one arm of which includes an afocal device with a focus
crossing, so that the light passing through this arm is achromatically phase-shifted
of π, and reversed (see Figure 1). The optical path difference between both arms
is tuned to zero, so that the light of a star exactely on the axis of the afocal
device (thus invariant by reversal), will vanish by destructive interference when
recombined at the output of the interferometer. A companion which is not on
this extinction axis will lead to two images with identical intensity, and symmetric
with respect to the extinction axis (see Figure 2). It is worth noting that if the
separating plate of the Michelson interferometer is well balanced (R = T = 0.5),
each of these two images gather only one quarter of the total collected energy.
Thus, only one half of the companion photons is available at the output. The fact
that any off-axis point leads to two symmetrical images erases any asymmetry in
the image of the neighborhood of the star. This may be a drawback for a star with
an envelope since the latter would not be correctly rendered if asymmetric. For
a star with a single companion however, this symmetrization is harmless. It may
even be benefic for astrometry, since an orbital motion would emerge with twice
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Fig. 1. The principle of the AIC. To ease the understanding of this picture, the afocal

system is represented by a lens and a curved mirror. In the real implementation, only

mirrors are used, to avoid chromatic aberrations. Black rays and wave fronts : the light

of the main star. Grey rays and wave fronts : the light of the companion.

less observation time.
In what follows, we express the wave amplitudes in the pupil plane as functions

of normalized coordinates :

r = (x, y) = (r cosφ, r sin φ), (2.1)

rescaled by the radius of the telescope entrance aperture, with the origin at the
center of the aperture. For amplitudes in the image plane, we use angular coordi-
nates on the sky (see Figure 3) :

Θ = (α, β) = (θ cos χ, θ sinχ). (2.2)

The transmission function Π(r) of the pupil is assumed to be invariant under
central symmetry :

Π(−r) = Π(r). (2.3)

The effect of atmospheric turbulence partially corrected by the adaptative optics
(see Figure 4) is modeled by a wave front distortion, that is, by a phase shift Φ(r)
in the pupil plane, so that the complex transmission function of the pupil reads :

P (r) = Π(r)eiΦ(r). (2.4)
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Fig. 2. First test of the AIC on the 1.5 m telescope of the “Observatoire de Haute

Provence” (France), with ONERA adaptative optics and STSci camera in K-band. The

binary system observed was 72 − Peg (∆mk = 0.36, ρ = 0.53′′). Left image : the main

star is off-axis with respect of the coronograph. Right image : the main star is on-axis.

Fig. 3. The two systems of normalized coordinates for points in the pupil plane and in

the image plane.

Let us now introduce the properties of the beam splitter. R and T denote re-
spectively its reflection and transmission coefficients for the energy. The reflection
and transmission coefficients for the amplitude are respectively :

ρ =
√

Reiµ and τ =
√

Teiν , (2.5)
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Fig. 4. An illustration of a wave front distorted by turbulence, and its partial correction

by the adaptative optics device.

where the phases and the amplitudes must satisfy :

R + T = 1 and µ− ν =
π

2
+ kπ, (2.6)

for and ideal beam splitter without absorption.
Consider a star in the direction Θ, and a band of wave lengths ranging from

λ − δλ/2 to λ + δλ/2. At the output of the AIC, the amplitude in this band of
wavelengths in the pupil plane is :

AΘ,λ(r) = ρτ
(
P (r)ei 2π

λ Θ·r − P (−r)e−i 2π
λ Θ·r)√S(λ, θ)δλ . (2.7)

Here, S(λ, θ) is the spectral density of light flux incoming from the star in direction
Θ. If the star is off-axis, the total power available at the output of the AIC in the
spectral band δλ is :

W (λ, Θ) = 2RT.Σ.S(λ, θ)δλ, (2.8)

where Σ =
∫

Π(r)d2r is the area of the aperture of the collecting telescope.

3 Approximation for weak residual deformations of the wave front

If turbulence is not taken into account, the amplitude distribution in the spectral
band δλ in the image (focal) plane can be expressed in terms of Π̃, the Fourier
transform of the pupil transmission function :

AΘ,λ(Γ) =
ρτ

iλ

(
Π̃(

Γ−Θ
λ

)− Π̃(
Γ + Θ

λ
)
)√

S(λ, θ)δλ. (3.1)
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Γ denotes the vector-position of a point in the image plane. The distribution of
light intensity follows immediately :

EΘ,λ(Γ) =
RT

λ2

(
Π̃(

Γ−Θ
λ

)− Π̃(
Γ + Θ

λ
)
)2

S(λ, θ)δλ. (3.2)

This distribution vanishes if Θ = 0, that is, when the star is on the extinction
axis of the AIC. (in the sequel, the quantities related to the central star on-axis
will be labeled with the index “?”). When the star is on the axis, the effect of
residual turbulence cannot be neglected anymore, and the phase shift Φ(r) must be
incorporated. For further convenience, let us introduce the optical path fluctuation
δ(r) corresponding with the phase shift Φ(r) :

δ(r) ≡ λ

2π
Φ(r). (3.3)

The amplitude distribution in the pupil plane now reads :

A?,λ(r) = ρτ
(
Π(r)ei 2π

λ δ(r) −Π(−r)ei 2π
λ δ(−r)

)√
S?(λ)δλ. (3.4)

S?(λ) is the spectral density of light flux of the central star
If the adaptative optics device is efficient enough to bound the residual phase

shift Φ(r) below a value much smaller than one, then the exponentials can be
expanded in powers of Φ(r). Taking into account the symmetry of the pupil
transmission function Π(r) = Π(−r), Equation (3.4) reduces to :

A?,λ(r) ' ρτ
2πi

λ
Π(r)

(
δ(r)− δ(−r)

)√
S?(λ)δλ. (3.5)

The antisymmetric part ∆(r) ≡ Π(r)
(
δ(r)− δ(−r)

)
/2 of the turbulent aberration

emerges naturally in (3.5). Its Fourier transform ∆̃(f) is imaginary and antisym-
metric. We thus introduce the odd real function D(f) such that :

∆̃f = iD(f). (3.6)

The amplitude distribution in the image plane is then :

A?,λ(Γ) ' 4π
λ2

ρτD(
Γ
λ

)
√

S?(λ)δλ, (3.7)

and the corresponding light flux distribution is :

E?,λ(Γ) ' 4π2

λ4
(4RT )D2(

Γ
λ

)S?(λ)δλ. (3.8)

This is the expression of the energy distribution in the image plane of the residual
speckle pattern of the main star (on-axis), at the output of the AIC, in the limit
of small phase shifts (|Φ(r)| << 1).
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Fig. 5. A cut along a straight line through two simulated speckle patterns at two different

wavelengths. The similarity of both curves is visible.

4 The adapted scale subtraction

The residual speckles appear clearly in Equation (3.8) to be homothetic for dif-
ferent wavelengths. However, space rescaling is not sufficient to make speckles at
different wavelength identical. A rescaling of the energy is also required. To do so,
let us introduce ω?(λ), the total residual energy in the image plane at the output
of the AIC, in the spectral band considered :

ω?(λ) =
∫

E?,λ(Γ)d2Γ. (4.1)

This total residual energy is related to ∆rms, the root mean square of the anti-
symmetric part ∆(r) of the optical path fluctuation :

ω?(λ)
Σ

= 4RT (
2π∆rms

λ
)2S?(λ)δλ. (4.2)

This yields a to an expression for the light flux distribution, where both the spatial
and the energy scaling appear clearly :

E?,λ(Γ) ' ω?(λ)
λ2Σ

D2(
Γ
λ

). (4.3)

Figure 5 shows a cut along a straight line through a simulated speckle pattern a
two different wavelengths. The dashed curve can be superposed to the solid one
by a space and energy rescaling. Under the form (4.3), the subtraction of two
speckle patterns at wavelengths λ1 and λ2 leads to a vanishing contribution :

λ2
1

ω?(λ1)
E?,λ1(Γλ1)− λ2

2

ω?(λ2)
E?,λ2(Γλ2) = O(|Φ(r)|2), (4.4)
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Fig. 6. A faint companion emerges out of this cut through a simulated image, after the

residual speckles have been removed by adapted scale subtraction.

at least in the limit where the residual turbulent phase shift Φ(r) is small enough
to make terms of order |Φ(r)|2 irrelevant.

The total residual energy ω?(λ) due to the main star can be computed by
integration of the energy present in the image plane, only if the contribution of
the companion is negligible. This is actually the case in coronography. Indeed, if
a companion is bright enough to contribute significantly to the total energy in the
image plane, then, no coronograph is needed.

To take advantage of this possibility to eliminate the speckles of the main
star, we use two simultaneous images Eλ0(Γ) and Eλ(Γ) obtained in two spectral
bands around λ0 and λ respectively. Then, we propose to compute the following
quantity :

σλ0,λ(Γ) = Eλ0(Γ)− Eλ(Γ λ
λ0

)× ω?(λ0)
ω?(λ)

(
λ
λ0

)2

= Eλ0(Γ)− Eλ(Γ λ
λ0

)× S?(λ0)δλ0
S?(λ)δλ

(
λ
λ0

)4
. (4.5)

To obtain the second expression, in terms of S?(λ), we have used Equation (4.2).
As a consequence of (4.4), the contribution of the main star to σλ0,λ(Γ) vanishes,
in the limit of small residual phase shifts.

We consider now a faint companion in direction Θ. Its image at the output of
the AIC, after the adapted scale subtraction operation has been performed, is :

σΘ,λ0,λ(Γ) = EΘ,λ0(Γ)− EΘ,λ(Γ
λ

λ0
)× S?(λ0)δλ0

S?(λ)δλ

( λ

λ0

)4

(4.6)

This expression can be written in terms of the differences of magnitudes between
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the companion and the main star, in the two spectral bands :

∆m = 2.5 log10

( S?(λ)
S(λ,Θ)

)
and ∆m0 = 2.5 log10

( S?(λ0)
S(λ0, Θ)

)
, (4.7)

and of the distribution :

Mλ(Γ, Θ) =
(
Π̃(

Γ−Θ
λ

)− Π̃(
Γ + Θ

λ
)
)2

. (4.8)

The resulting expression reads :

σΘ,λ0,λ(Γ) = RT
λ2

0
S?(λ0)δλ0×

(
10−0.4∆m0Mλ0(Γ, Θ)−

(
λ
λ0

)2

10−0.4∆mMλ(Γ λ
λ0

, Θ)

)
.

(4.9)

Since Mλ(Γ λ
λ0

, Θ) = Mλ0(Γ,Θλ0
λ ), the contribution of the companion is :

σΘ,λ0,λ(Γ) = RT
λ2

0
S?(λ0)δλ010−0.4∆m0×

(
Mλ0(Γ, Θ)−

(
λ
λ0

)2

10−0.4(∆m−∆m0)Mλ0(Γ,Θλ0
λ )

)
.

(4.10)

Figure 6 shows the result of the adapted scale subtraction method applied to the
two one-dimensional simulated speckle patterns in Figure 5. The speckles are
eliminated, and a faint companion emerges.

Up to a photometric multiplicative factor, the image resulting from the adapted
scale subtraction method depends on the discrepancy between the magnitude dif-
ferences in the two spectral bands under consideration. The distribution Mλ(Γ,Θ)
is characteristic of AIC images. It is symmetric with respect to the center of ex-
tinction, and displays two distinct bright spots at Γ = ±Θ if the separation θ is
larger than the first dark Airy ring. Otherwise, the two spots almost merge and
takes the appearance of a pair of “bean-like” structures.

Figure 7 is a graphical summary of the adapted scale subtraction procedure.
The results of this method, applied to simulated images, appears in Figure 8. The
individual images differ by the details of the turbulent wave front distortion, but
obey to the same statistics. The Strehl ratio for the first wavelength λ0 = 3.5 is
0.90. For the second wavelength λ = 4.9, it reaches 0.96.

5 The limitations

We only mention these limitations, and postpone to a further publication the
detailed study of their influence on the efficiency of the method.
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Fig. 7. A graphic illustration of the adapted scale subtraction method.

Fig. 8. test

5.1 The validity of the expansion

We have assumed that the expansion at the first order in the optical path turbulent
fluctuation could render correctly the reality. The contribution of the second order
terms should be studied. They involve the even part of the wave front distortion :

Ω(r) =
1
2
Π(r)

(
δ(r) + δ(−r)

)
.

On can show that it contributes by fourth order corrections to the residual light
flux distribution. It vanishes near the center of the field, but spreads over the
remainder of the field. A rapid estimate shows that it leads to a very smooth
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background, ten magnitudes below the level of the off-axis star, for the conditions
of the simulation in Figure 8.

5.2 Spectral decorrelation of the turbulence

This problem, that merely affects high space frequencies, is only relevant relatively
far from the extinction center. The origin of this phenomenon is to be found in the
chromaticity of Fresnel’s propagation through the atmospheric layers. Simulations
performed by Carbillet et al. (2002) show that its consequences are even weaker
than those of the aforementioned limitation.

In the case of a space telescope, the wave front distortions are rigorously achro-
matic, since they originate from the mirror defects only.

5.3 Misalignments

The theory presented in this article assumes that the pupil of the telescope is
invariant under central symmetry. This is only the case if the mechanical posi-
tions and orientations of the optical elements in the AIC is such that the axis of
extinction runs exactly through the center of the telescope pupil. Achieving this
condition is one of the major difficulties in the implementation of the AIC.

6 The implementation

A compact implementation of the AIC concept has been designed and realized. It
has been running on the the 3.6 m Canada-France Hawaiian Telescope (CFHT).
It delivers simultaneously two coronographic images in the sub-bands K1 and K2

of the K band (2.1 µm and 2.3 µm). The K1 band is outside of the methane ab-
sorption lines, whereas K2 encompasses them completely. The long term purpose
of this choice is the detection of methane, which is expected in the atmosphere of
giant exo-planets.

Figure 9 shows a schematic diagram of the compact AIC designed for CFHT.
The afocal arm of the Michelson interferometer is visible on the left side. the
neutral arm (without focus crossing) appears on the right side. Figure 10 is a
photograph of the AIC (highlighted inside the white rectangle), and of its sur-
rounding optics. The keys have been put on top of it, just to give the scale of
the photograph. Figure 11 is a coronographic image of the binary star HIP97339
recorded at CFHT. The dotted circle highlights the first dark Airy ring. The com-
panion appears under the “bean-like” shape, since the separation (0.13′′) is below
the Airy radius at 2.2 µm (0.15′′).

7 Conclusion

Simultaneous imaging at several (at least two) wavelengths through an AIC with
adapted scale image subtraction should increase of about ten magnitudes the ex-
tinction capabilities of the AIC itself. However, this technique has to be validated
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Fig. 9. A perspective view of the AIC in the configuration tested on the 3.6m Canada-

France Hawaiian Telescope (CFHT).

Fig. 10. Left : The AIC in the spacer between the PUEO adaptative optics and the KIR

infrared camera at CFH. Right : a photograph of the AIC and of its surrounding optics,

ready to be inserted in the spacer.

and evaluated quantitatively on the real astronomical images taken during the four
observation runs already performed at CFHT.
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