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Abstract

The one-particle distribution function is of importance both in non-relativistic and relativistic
statistical physics. In the relativistic framework, the Lorentz-invariance is possibly its most fun-
damental property. The present article on the subject is a contrastive one: we review, discuss
critically, and, when necessary, complete, the treatments found in the standard literature. c© 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the most important and fruitful concepts in statistical physics is the concept
of phase-space. If one restricts the analysis to the non-quantum level, the state of every
Galilean system consisting of N point-like particles can, at any time, be represented
by one point in a 6N -dimensional phase-space [1]. The statistical behavior of such
a system can then be described by an evolution equation for a distribution function,
often called phase-space density and notated �(t; rN ; pN ), de@ned, at @xed time t, on
this 6N -dimensional phase-space spanned by the 3N positions rN = (r1; : : : ; rN ) and the
3N momenta pN = (p1; : : : ; pN ) of the N particles. In many physically interesting cases,
however, the particles which constitute the system can be considered as weakly
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interacting only, and it then makes sense to introduce the concept of a one-particle
distribution function, often notated f(t; r; p), and de@ned—at any instant t—on a
six-dimensional (i.e., the one-particle) phase-space [2].

In relativistic physics, the concept of a one-particle distribution function f is also
widely used, and it seems even more important to relativistic statistical mechanics
than its Galilean homologue is to Galilean statistical physics [3,4]: when electromag-
netic interactions are included, it does not seem possible to introduce, at a relativistic
level, an analog for the Galilean N -particle distribution function �(t; rN ; pN ), since the
transmission of electromagnetic signals can no longer be treated as if they occurred
instantaneously. Therefore, the concept of one-particle distribution has become one
of the cornerstones of non-quantum relativistic statistical mechanics: in practice, the
one-particle distribution function f(t; r; p) is all one has in relativity.

The natural expression of the particle four-current in terms of the one-particle distri-
bution function [5] strongly suggests that the latter quantity has to be a Lorentz-scalar
for the theory to be consistent within a relativistic framework. However, the liter-
ature on the notion of relativistic one-particle distribution oHers, when submitted to
a critical reading, a rather confusing perspective. Indeed, various authors diHer on
the very de@nition of the concept of distribution function and, consequently, on what
should be proved and what has to be put in by hand. Many authors start from a
non-manifestly covariant de@nition of the one-particle distribution f that is formally
identical with the usual non-relativistic one, and then the task remains to show that
such a function is invariant under a change of reference frame, i.e., that it is a scalar
(see, e.g. Refs. [6,7,5]). To achieve this goal, these authors use methods which are
a kind of relativistic extension of the non-relativistic ones. These methods fall into
two basically diHerent types: one type based on the so-called invariance of the volume
element in phase-space [6,7], the other type based on a manifestly covariant rewriting
of the most general microscopic de@nition of the one-particle distribution f in terms
of mean values with the help of Gibbs-ensemble averages over delta functions [8,5].
What remains puzzling here is that both types of approach have very diHerent physical
and mathematical bases, and do not seem to rely on the same kind of argumentation
at all.

On the other hand, there is a more axiomatic approach to the problem of introducing
a relativistically invariant distribution function f; this other approach starts from a
concept that is manifestly relativistic and Lorentz-invariant, namely the distribution
function fw for the number of particles world-lines that cross an arbitrary space-like
hyper-surface in space–time (see, e.g., Refs. [3,4]). The authors who use such a concept
derive from it the usual concept of a particle distribution function and have then little
diJculty in proving that the standard particle distribution is also frame-independent.
However, a direct, microscopic de@nition of the distribution function for world-lines,
comparable to the standard one for the particle distribution given in terms of mean
values of delta-functions over some Gibbs-ensemble, has not yet been given in the
literature; as a consequence it has never been proven that such a world-line distribution
function even exists nor that it is frame-independent. Both assertions are indeed treated
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as postulates and this is a rather uncomfortable situation, especially considering the
fact that other authors, as mentioned earlier, seem to be able to establish as a theorem
the fact that the particle distribution function is a scalar without having to introduce
the new concept of world-line distribution.

Our aim is to revisit these issues and to shed some new light on them. Since the
special and general relativistic discussions exhibit mathematical and physical diJculties
which only partly overlap, we thought it would make things clearer to separate the
special and general cases. The present article is devoted to the special relativistic case
only, while its companion, which will follow, starts where this one stops and will deal
with the general relativistic case.

In this article, we start from the standard de@nition for the one-particle distribution
function in phase-space. The crucial issue is then to determine whether or not it is
possible to establish, by direct reasoning, that the one-particle-distribution function, so
de@ned, is frame-independent.

In Section 2, we review the @rst type of proof, based on the so-called invariance of
the one-particle phase-space volume under Lorentz-transformation [6,7]. We show in a
mathematically rigorous manner that the phase-space volume is not Lorentz-invariant;
we also explain why this does not contradict the fact that the one-particle distribu-
tion in phase-space may be Lorentz-invariant and that the whole argument is just
inconclusive. In Section 3, we analyze the proof originally developed by de Groot
and Suttorp [8], of which a pedagogical presentation can also be found in the book
by de Groot et al. [5]. This proof is based on the most general de@nition of the
distribution function in phase-space. As such, it makes use of the concept of an en-
semble average and presupposes this procedure to be covariant. We actually show that
this procedure is not a priori covariant because it relies on the concepts of macro-
and microstates, which are shown not to be Lorentz-invariant. We therefore intro-
duce the new covariant concepts of macroscopic and microscopic ‘histories’ and de-
@ne, in a manifestly Lorentz-invariant way, statistical ensembles. The average over
these new ensembles is de facto a scalar procedure and it provides a new de@-
nition of the one-particle distribution function which ensures that this function is
de@nitely a Lorentz-scalar. We then show that, contrarily to what might have been
expected, the average over these covariant ensembles actually comes down to the
usual average over states and that the usual relativistic one-particle distribution func-
tion is therefore, indeed, a Lorentz-scalar; this completes the validation of the proof
of [5].

In Section 4, we discuss the notion of one-particle distribution function for particles
world-lines crossing an arbitrary hypersurface in space–time. We prove that this notion
only makes sense because the particle distribution in phase-space is a Lorentz-scalar.
In other words, postulating that the world-line distribution function exists is tanta-
mount to postulating that the one-particle distribution function in phase-space is
frame-independent. Moreover, the world-line distribution function turns out to be iden-
tical with the standard particle distribution. Finally, in Section 5, we give an overview
of our results and we discuss them in some detail.
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2. Earlier attempts to de�ne the one-particle distribution function

The usual de@nition of the one-particle distribution function in special relativity is
not completely satisfactory. Strictly speaking, it is even wrong. It is one of the purposes
of this section to analyze in detail what happens exactly when one counts particles in
diHerent systems of reference, and to relate our results to the corresponding ones found
in the standard literature.

The @nal and disappointing conclusion of this section will be that the usual ap-
proaches, based on the so-called Lorentz-invariance of the phase-space volume element,
all have failed if one takes them really seriously. It is our goal to develop a better
approach. This is the subject of the next section, Section 3. In order to make the failure
of the earlier attempts as clear as possible we @rst follow, in the present section, the
usual approach as far as possible.

Let R be an arbitrary Lorentz frame, with respect to which we want to study gas
particles. Let

dN (t; x; p) (1)

be the number of particles which, at time t, in R, have positions and momenta in the
intervals (x; x+dx) and (p; p+dp), respectively. Let us denote the phase-space volume
elements corresponding to these intervals by d3x and d3p.

Now, the one-particle distribution function f(t; x; p), at time t, in R, is de@ned by
the relation:

dN (t; x; p) =f(t; x; p) d3x d3p : (2)

Obviously, the distribution function f has the dimensions of a density in position and
momentum space. We now want to prove that the function f, de@ned via Eq. (2), is a
Lorentz-scalar. To that end we introduce, next to the reference system R, a new system
of reference, R′ which moves with three-velocity C with respect to R. For reasons of
simplicity, we choose C parallel to p, the momentum of the particles within d3x d3p
on which we are now focusing our attention. Furthermore, we choose the x-axis of R

and R′ both parallel to C.
Since changes occur only in the x-directions, the y- and z-components of position

and momentum variables remain unchanged under the Lorentz-transformations relating
the reference systems R and R′. We have

ct′ = �(v)(ct − c−1vx) ; (3)

x′ = �(v)(x − vt) ; (4)

y′ =y; z′ = z (5)

with v= |C| the norm of C= (v; 0; 0), and where � is the ‘dilatation factor’. The latter
is de@ned, for arbitrary C, by

�(v):=
1√

1 − C2=c2
: (6)
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From (3)–(5) we @nd

c dt′ = �(v)(c dt − c−1v dx) ; (7)

dx′ = �(v)(dx − v dt) ; (8)

dy′ = dy; dz′ = dz : (9)

Since, by hypothesis, the particles under consideration occupy, in the reference frame
R, a purely spatial element d3x characterized by

t = constant ; (10)

we have, in R:

dt = 0 : (11)

Hence, Eqs. (7) and (8) reduce to

dt′ = − �(v)c−2v dx (12)

dx′ = �(v) dx : (13)

En passant, we note that Eq. (13) explains the name dilatation factor for �(v). From
(9) and (13) we @nd

d3x′ = �(v) d3x : (14)

We now come to the transformation in momentum space. If we suppose, for a moment,
that p0, on the one hand, and px; py; pz on the other hand, are independent variables,
we have

p′0 = �(v)(p0 − c−1vpx) ; (15)

p′x = �(v)(px − c−1vp0) ; (16)

p′y =py; p′z =pz (17)

and thus

dp′0 = �(v)(dp0 − c−1v dpx) ; (18)

dp′x = �(v)(dpx − c−1v dp0) ; (19)

dp′y = dpy; dp′z = dpz : (20)

However, p0 and p are not independent. From the normalization of the four-momentum
p�p� =m2c2 we @nd

p02
=m2c2 + px2 + py2 + pz2 (21)
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or

dp0 =
1
p0 (px dpx + py dpy + pz dpz) : (22)

Substituting (22) in (19) we obtain

dp′x = �(v)
(

1 − v
c
px

p0

)
dpx − c−1v�(v)

py dpy + pz dpz

p0 (23)

or, equivalently, using (15)

dp′x =
p′0

p0 dpx − v
c
�(v)

py dpy + pz dpz

p0 : (24)

Hence, using also (20):

dp′x ∧ dp′y =
p′p

p0 dpx ∧ dpy − �(v)
v
c
pz

p0 dpz ∧ dpy ; (25)

since the term dp′y ∧ dpy = dpy ∧ dpy cancels. Similarly, we @nd

dp′x ∧ dp′y ∧ dp′z =
p′0

p0 dpx ∧ dpy ∧ dpz (26)

or

dp′x ∧ dp′y ∧ dp′z

p′0 =
dpx ∧ dpy ∧ dpz

p0 (27)

or, equivalently,

d3p′

p′0 =
d3p
p0 ; (28)

a well-known result.
In short, we @nd that (14) and (28) imply

d3x′ d3p′ = �(v)
p′0

p0 d3x d3p : (29)

An alternative form for p′0 (15) is

p′0 = �(v)p0
(
1 − c−1v

u
c

)
; (30)

where u is the norm of the particle three-velocity cp=p0 = (u; 0; 0). With (30) we @nd
from (29) that

d3x′ d3p′ =
1 − vu=c2

1 − v2=c2 d3x d3p ; (31)

where we used the de@nition (6) of �(v). We did not encounter the result (31) in the
literature. In the particular case in which the arbitrary reference frame R′ coincides
with the rest- or comoving-frame of the particles which move with momentum p with
respect to R; we have

u= v : (32)
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Let us denote this particular system R′ by R∗; and the position and momentum of
particles in this particular comoving system of reference by x∗ and p∗. We then @nd
from (31) and (32) that

d3x∗ d3p∗ = d3x d3p : (33)

Hence, d3x∗d3p∗ is a scalar. However, contrarily to the general belief, the phase-space
element d3x d3p is not a Lorentz-scalar, as is seen from (31). Let us digress a little
bit from this point.

Eq. (14) is a result valid for any Lorentz-transformation, from one system of refer-
ence to another, arbitrary system of reference. In particular, we thus have

d3x∗ = �(u) d3x ; (34)

Where u is the velocity R∗ with respect to R. Hence, combining (14) and (34), we
have

d3x∗ =
�(u)
�(v)

d3x′ : (35)

This relation is not always found in the existing literature. In the textbook ‘The classical
Theory of Fields’, Landau and Lifschitz claim (Section 10) that

d3x∗ = �(u) d3x′ ; (36)

basing themselves on (34) only, and thus forgetting the step leading to Eq. (14).
Misner, Thorne and Wheeler, in their textbook ‘Gravitation’, in Box 22.5, derive (33)
and then conclude that the six-dimensional phase-space element is invariant, which it
is not, as implied by (31).

The point missed in most treatments encountered in the literature is that, in any
given reference frame, the volume elements which enter de@nition (2) for the distribu-
tion function have to be considered at a Axed time in this reference frame. In other
words, the points of the volume element d3x in some system of reference R should
be points on a hypersurface of the form t = constant in that four-space R. In our
treatment this is made apparent by Eq. (10); but, if this is so in one reference frame
R; this is not so in most all other reference frames R′: the same points in space–time
occupy the space volume d3x′ in R′ but do not belong to a hypersurface t′ = constant,
since dt′ �= 0; as follows from Eq. (12). It makes therefore no sense to count these
points in R′ by using the one-particle distribution function in R′; which is a priori
suitable only for counting points on hypersurface of the form t′ = constant [see, again,
de@nition (2)].

The preceding considerations are all related to Eq. (2), the de@ning relation of the
one-particle distribution function f(t; x; p). Being a number, the left-hand side of (2)
is a scalar, which can be calculated in any reference system. This does not imply,
however, that (2) can be used as the de@ning expression of the distribution function
f(t; x; p) in an arbitrary system of reference R′. Let us discuss this point still in more
detail.
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The inverses of the Lorentz-transformations (3)–(6) and (15)–(17) may be used to
express t; x; and p in terms of t′; x′ and p′. We may thus introduce f̃ de@ned by

f̃(t′; x′; p′) :=f(t(t′; x′); x(t′; x′); p(p′)) : (37)

With (37) and (31) we can reexpress (2) in the new coordinates (t′; x′; p′); which
yields

f(t; x; p) d3x d3p= f̃(t′; x′; p′)
1 − v2=c2

1 − u2=c2 d3x′ d3p′ : (38)

In the particular frame R∗ comoving with the particles with momentum p we have

f(t; x; p) d3x d3p= f̃(t∗; x∗; p∗) d3x∗ d3p∗ : (39)

Together with (2), Eq. (39) suggests that f̃(t∗; x∗; p∗) is the one-particle distribution
function. However, this is not so, since the volume element d3x∗ in (39) should be a
part of a hyperplane t∗ = constant, which it is not, since dt∗ �= 0 [cf. Eq. (12)].

More generally, the combination f̃(t′; x′; p′)(1 − v2=c2)(1 − uv=c2)−1 is not the
one-particle distribution function in R′; since d3x′ in (38) is not a part of the hyperplane
t′ = constant [again, see Eq. (12)].

To summarize: the number dN of Eq. (2) indeed is a Lorentz-scalar, as is generally
stated. It is simply de@ned, in any reference system, as the number of particles which,
at time t in R; occupy the phase-space element d3x d3p centered around (x; p). This
number, of course, can be evaluated in any Lorentz-frame. Indeed, Eq. (38) gives
its expression in R′. However, dN cannot be interpreted as a number of particles
in R′. Therefore, it cannot be linked with the one-particle distribution function in
that reference system. Thus, the above calculations do not oHer any clue as to what
is the correct distribution in R′; and the usual approach is inconclusive. This is the
disappointing conclusion referred to in the introduction to the present section.

3. The concept of macrohistory

The only other direct proof that, in quite general a context, the relativistic one-particle
distribution function in phase-space is a Lorentz-scalar, has been proposed in [8,5]. We
will @rst review rapidly the basics of this proof and then show that, in order for it to
be fully consistent with the principles of Einstein’s relativity, one must introduce the
new concept of ‘macrohistory’ to replace the usual Galilean concept of ‘macrostate’.

3.1. A manifestly covariant expression for the distribution function

The basic idea behind the proof proposed in [5] is to @nd a manifestly covariant
expression for the distribution function in phase-space, without having to introduce the
concept of world-line distribution function. To achieve this goal, the authors start from
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the standard, apparently frame-dependent de@nition:

f(t; x; p) =

〈∑
r

�(x− xr(t))�(p− pr(t))
〉

; (40)

where the sum extends to all particles in the system and the outer brackets indi-
cate ‘an ensemble average’. In a relativistic context, it is natural to introduce an
eight-dimensional one-particle phase-space, where a point has typically (t; x; p0; p) as
co-ordinates. In such a phase-space, p0 is understood as an independent quantity, not
necessarily related to p. Relativistic calculations are usually carried out most easily in
this space; at the end, physical results can be recovered by restricting every equation to
the mass-shell or, more precisely, to the sub-manifold of the mass-shell where p0 ¿ 0.
In this spirit, de Groot and Suttorp [8], introduce another function, F; de@ned over
the eight-dimensional one-particle phase-space by

F(t; x; p0; p) = 2�(p0)�(p2 − m2c2)f(t; x; p) (41)

and prove that F is actually the ensemble average of a Lorentz-scalar. More precisely,
their basic result is that F can be written as

F(t; x; p) = c
∑
!∈�

w!

∑
i

∫
�(4)(x − Xi!(si))�(4)(p − Pi!(si)) dsi ; (42)

where the index i labels the particles in the system as well as their trajectories
(Xi!(si); Pi!(si)) in the extended phase-space, each trajectory being parameterized by
its proper time si. The sum over ! corresponds to the mathematical expression for the
statistical averaging and w! represents the weight associated with each element ! in
the statistical ensemble �.

Since the product of the theta-function by the delta-distribution, as it appears on the
right-hand side of (41), is a Lorentz-scalar, the authors conclude that the distribution
function f itself is Lorentz-scalar. This conclusion is valid only if the ensemble aver-
aging procedure in itself does not change the transformation character of the quantity
to which it is applied, which is the case if the statistical ensemble � and the coeJ-
cients w! are Lorentz-scalars. We will now @rst show that this is not a priori the case
for ensemble averages de@ned in the usual, Galilean way, since the very notions of
macro- and microstate are not covariant themselves. Consequently, one might expect
that averages over microstates would also not be covariant. However, we will show
that, by replacing the notions of macro- and microstates by macro- and microhistories,
we are unable to de@ne ensemble averages that are covariant.

3.2. Relativistic covariant ensembles

In Galilean statistical physics, ensembles are de@ned via the concept of macrostate. A
macrostate of a system is de@ned by the values taken by certain macroscopic quantities
or macroscopic @elds. The nature and number of the macroscopic quantities are, to a
certain extent, arbitrary, although some usual or natural choices exist. If, for instance,
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one wants to study a perfect gas out of equilibrium, macroscopic quantities often used
to de@ne a macrostate are the particle density @eld, the velocity @eld and an arbitrary
‘thermodynamical’ @eld, such as the temperature @eld. In some contexts, it seems
useful to extend the number of @elds, as is commonly done within the framework of
an extended thermodynamic theory.

To any macrostate of a given system correspond many systems that are macroscop-
ically the same, but are diHerent on a microscopic scale. A collection of systems that
diHer microscopically, but are identical macroscopically, is what is called an ensemble.

The essential point to realize is that, in Galilean Physics, the values of the various
macro@elds de@ne the macrostate of the system at a given time in that reference
frame in which the statistical study is carried out. Similarly, microstates in Galilean
physics are always states of the system at a given time in a chosen reference frame.
In the Galilean world, this poses no problem since time is invariant under a change
of reference frame. However, this is not the case anymore in a relativistic context. To
render this discussion more precise, let A�:::� be one of the macro@elds, the value of
which de@nes a macrostate of the system under consideration. Classical examples in
relativistic hydrodynamics are the particle current density j�; the entropy Oux density
S� and the stress-energy tensor T��. To begin with, let us choose to study the system
in a given inertial frame R. The macrostate of the system in R at time t is de@ned by
the values taken by the macro@eld A�:::� and all other macro@elds on the hypersurface
of space–time de@ned by the equation t = constant. The macrostate of the system, at
a @xed time t in R; is therefore de@ned by the collection of numbers

Â
�:::�

(x) : =A�:::�(t; x) : (43)

The change of the macrostate under a Lorentz-transformation characterized by the tensor
#$

� can be investigated by applying # directly to (43). One obtains immediately:

A′$:::%(t′; x′) =#$
� : : : #%

� Â
�:::�

(x) ; (44)

where t′ and x′ are related to t and x by the same Lorentz-transformation. In partic-
ular, t′ in (44) depends on both t and x or, equivalently, on t and x′. The variable
t′ is therefore not constant in (44), but varies with x′; consequently, (44) does not
de@ne a macrostate of the system in R′. In other words, the concept of macrostate
is not Lorentz-invariant; indeed, specifying the macrostate of a system in a given
inertial frame does not @x the macrostate for the same system in other inertial frames.
From the preceding discussion, it should be clear that the same conclusion also applies
to microstates. Since the usual ensemble average is an average over all microstates
corresponding to a given macrostate, it is not therefore obvious that the procedure is
Lorentz-invariant. To analyze further the situation, it is necessary to introduce the new
concepts of macro- and microhistories.

Since the root of the apparent problem lies in the fact that the concept of state is
not Lorentz-invariant, the natural idea is to replace that very concept by another one
which is Lorentz-invariant. Let us therefore introduce the concept of history and de@ne



F. Debbasch et al. / Physica A 301 (2001) 181–195 191

the macrohistory of a system by the values taken by various macroscopical @elds at
every point in space–time where the system exists. In a given inertial frame R, this
typically amounts to @xing the value of any of the retained macroscopical @elds at
every point x in R3 for any value of t. The concept of microhistory will be de@ned
accordingly. It is clear from the discussion in the preceding paragraph that these new
concepts are Lorentz-invariant, i.e., specifying the macro- or microhistory of a system
in a given inertial frame is suJcient to determine the macro- or microhistory of the
same system in any other inertial frame. If one then de@nes a relativistic statistical
ensemble � as the collection of systems with microhistories ! that correspond—for a
suBciently short period of time in the local comoving system—to one and the same
macrohistory, the ensemble averaging procedure is, by construction, Lorentz-invariant
and the distribution function de@ned by (40) is, therefore, indeed, a Lorentz-scalar.
Hence, we suppose that there exists collections of system that are microscopically
diHerent, but macroscopically identical for some limited amount of time. This seems
not too unrealistic an assumption.

Let us now prove that the covariant ensemble average over histories gives back the
results obtained by the usual average over states. In ordinary statistical mechanics, the
macroscopical @elds always obey deterministic equations and one can, in principle,
given an inertial reference frame R, reconstruct the whole macrohistory of the system
from its macrostate at an arbitrary time t0 in R through the evolution equations. On the
other hand, the microscopic degrees of freedom may obey deterministic equations or
stochastic equations. If these equations are deterministic, the covariant average over all
microhistories corresponding to a given macrohistory should coincide with the usual en-
semble average over all the microstates corresponding to the given macrostate at time
t0 in R. Indeed, through the deterministic microscopic evolution equations, one can
then reconstruct the whole microhistories of the system from its microstates in R at an
arbitrary time. In other words, deterministic evolution equations establish a one-to-one
correspondence between the histories and the states of the system at a given time in
R. Thus, averaging over histories comes down in such cases to averaging over states.
The matter is more complicated if the microscopic evolution equations are stochastic,
typically involving some random ‘noise’ (for an example of stochastic process in the
relativistic framework, we refer the reader to [9,10]). For a given realization of the
noise, i.e., ‘freezing’ the randomness, the stochastic evolution equations act as deter-
ministic ones and it is then possible to establish a one-to-one correspondence between
histories and states. Naturally, this correspondence depends on the chosen realization.
Keeping this realization @xed for the moment, the average over histories again comes
down to an average over states. To get a full ensemble average, one usually also aver-
ages over the various realizations of the noise. Obviously, this @nal average does not
change the variance of the quantity to which it is applied. Thus, the total ensemble
average, including the average over the realization of the noise, is a covariant operation
in this case too.

To sum up these results: the notions of macro- and microhistories are necessary
to prove that the usual ensemble-averages over states are indeed covariant operations.
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This result is not trivial because, contrary to the concept of history, the notion of state
is not a covariant concept.

4. The concept of world-line distribution function

As we indicated in the introduction to this article, some authors introduce ab initio
a new object in relativistic kinetic theory, the so-called distribution function for the
world-lines of the particles and consider it to be the fundamental relevant concept
for relativistic situations. We would like, in this section, to prove that the existence
of such a distribution is, somewhat counter-intuitively, not trivial; we will notably
show that the world-line distribution, as it is usually de@ned in the literature, ex-
ists only because the standard particle distribution function is a Lorentz-scalar. In
other words, to assume from the start that the world-line distribution function exists
comes down to assuming that the usual one-particle distribution in phase-space is a
Lorentz-scalar.

4.1. DeAnition of the world-line distribution function

Let & be any space-like hypersurface in space–time and d&� its normal four-vector
at point M (x�). Let d3p be also a volume element in momentum space, centered on a
given three-momentum p. The world-line distribution function fw at point Q = (t; x; p)
is usually de@ned in such a way that the number of world-lines dNw with momentum
in the range (p; d3p) that cross d&� in the direction of its normal is given by

dNw =fw(Q)p� d&�
d3p
p0 ; (45)

where p0 is the time component of the four-vector p� associated with p by Eq. (21).
Since dNw, p� d&� and d3p=p0 are Lorentz-scalars, it follows from Eq. (45) that fw,
if it exists, is also a Lorentz-scalar. What makes de@nition (45) not trivial is that the
hyper-surface &, aside from being space-like, is arbitrary. In particular, in any given
reference frame, one can choose to apply Eq. (45) to an hyper-surface which does not
coincide with the constant-time hyper-surfaces of this frame. This is the reason why
dNw is not, in general, the number of particles present in some in@nitesimal volume
of the phase-space at a given time in the chosen reference frame, but a number of
world-lines.

4.2. The reason for the existence of fw

Let Q be any point in the one-particle phase-space, M its projection on the
space–time manifold and R, an arbitrary inertial frame. It is always possible to
@nd a space-like hyper-surface & which contains M and the time-like normal vector of
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which, d&, has vanishing space-components at M in R:

d&� = d3x�0
� : (46)

Rewritten in this reference-frame, Eq. (45) reads as

dW =fw(t; x; p) d3x d3p : (47)

Since the surface element d& is, by construction, a constant-time surface element in
R, the number of world-lines dW is also the number of particles which, in this frame,
occupy at time t the phase-space volume d3x d3p. This proves that, if it exists, fw acts
as (and is) the standard one-particle distribution function in R at point Q.

Since R is arbitrary, this also proves that the de@nition of fw only makes sense
because the particle distribution function is frame-independent, i.e., because it is a
Lorentz-scalar. To phrase it slightly diHerently, if one has not yet proven that the
one-particle distribution function is a Lorentz-scalar, assuming that fw exists comes
down to assuming that the particle distribution function is a scalar. On the con-
trary, if one has proven [as was done in Section 3] that the particle distribution is
a Lorentz-scalar, one can then introduce the invariant world-line distribution, prove
that it exists and use it as a particularly elegant tool in manifestly covariant calcula-
tions. Let us also recall once more that the very concept of world-line distribution, as
opposed to particle distribution, seems to imply the concept of statistical average over
histories, as opposed to average over states. All this is naturally perfectly coherent.
Indeed, we have just seen that the concept of world-line distribution function only
makes sense because the particle distribution function is a Lorentz-scalar, and it was
proven in Section 3 that the most natural and general way to ensure that the particle
distribution is a Lorentz-scalar is precisely to use covariant statistical ensembles that
are actually not ensemble of states, but ensembles of histories.

5. Discussion

In this article, we have given a fresh look at the notion of relativistic distribu-
tion function commonly used in relativistic kinetic theory. Let us sum up our main
results. As already assumed by various authors, the standard Galilean de@nition for
the one-particle distribution function in phase-space can be imported safely into the
special-relativistic realm. It is then possible to prove that this distribution is a Lorentz-
scalar. However, the two direct proofs that exist in the literature have been found crip-
pled or incomplete. The @rst one is based on the so-called invariance of the volume
element in one-particle phase-space; we have proven by direct calculation that, contrary
to earlier claims made by various authors, this volume element is not Lorentz-invariant,
and the whole proof has been shown to rest on a misconception of the problem. The
second proof, due to de Groot and Suttorp (and later on incorporated in de Groot’s
et al. book on Relativistic Kinetic Theory), starts from the most general de@nition of
the one-particle distribution function. We have shown that, to be fully convincing, this
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proof needs the introduction of the new manifestly covariant (relativistic) concepts of
micro- and macrohistories. With these notions, new, covariant statistical ensembles can
be introduced and the one-particle distribution function can be shown to be indeed
a Lorentz-scalar. We have also revisited the axiomatic approach to relativistic kinetic
theory, which starts by introducing the non-Galilean concept of distribution function
for the world-lines crossing an arbitrary space-like hypersurface in space–time. We
have shown that introducing this new concept ab initio in the relativistic theory is
tantamount to assuming axiomatically that the usual particle distribution in phase-space
is frame-independent. Since this is a fact which can be proven, as can be clearly seen
from the argument of the present article, it seems to us that assuming it from scratch
is unnecessary. On the other hand, building on the scalar nature of the one-particle dis-
tribution to construct the distribution function for world-lines is certainly interesting,
since the world-line distribution function is a most useful tool in manifestly covariant
calculations.

This article would not be complete without a mention of another proof that the
relativistic one-particle distribution in phase-space is a Lorentz-scalar. This proof [10]
is actually rather particular because it has been given in the context of relativistic
stochastic processes only, and more precisely for the distribution function associated
with the so-called relativistic Ornstein-Uhlenbeck process, which is a toy-model of
relativistic diHusion. As such, this proof makes extensive use of stochastic calculus.
How this can be related to the general proof envisaged in this article is not absolutely
clear yet and we hope to shed further light on this question in a forthcoming publication.

As also mentioned in the Introduction, this article tackled with the special relativistic
situation only. The general relativistic case is addressed in the article companion to the
present one; envisaging the problem in an arbitrary reference frame naturally contributes
to a deeper understanding of the simpler, special-relativistic case, where the discussion
is restricted to inertial frames only.

Acknowledgements

The authors wish to acknowledge fruitful discussions with CSecile Barbachoux.

References

[1] L.D. Landau, E.M. Lifschitz, Statistical Physics, Vol. 5, 3rd Edition, Pergamon Press, Oxford, 1980.
[2] K. Huang, Statistical Mechanics, Wiley, New York, 1963.
[3] J. Ehlers, in: R.K. Sachs (Ed.), General Relativity and Kinetic Theory in General Relativity and

Cosmology, Academic Press, New York, 1971.
[4] W. Israel, in: A. Anile, Y. Choquet-Bruhat (Eds.), Relativistic Fluid Dynamics, Springer, Berlin, 1989.
[5] S.R. de Groot, W.A. van Leeuwen, Ch.G. van Weert, Relativistic Kinetic Theory, North-Holland,

Amsterdam, 1980.
[6] L.D. Landau, E.M. Lifschitz, The Classical Theory of Fields, Vol. 2, 4th Edition, Pergamon Press,

Oxford, 1975.
[7] C.W. Misner, K.S. Thorn, J.A. Wheeler, Gravitation, W.H. Freeman and Co., New York, 1973.



F. Debbasch et al. / Physica A 301 (2001) 181–195 195

[8] S.R. de Groot, L.G. Suttorp, Foundations of Electrodynamics, North-Holland Publishing Company,
Amsterdam, 1972.

[9] F. Debbasch, K. Mallick, J.P. Rivet, J. Stat. Phys. 88 (3=4) (1997) 945.
[10] C. Barbachoux, F. Debbasch, J.P. Rivet, The spatially one-dimensional relativistic Ornstein-Uhlenbeck

process in an arbitrary inertial frame, Eur. Phys. J. B 19 (2001) 37–47.


