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Abstract. A Green-Kubo formula, relating the shear viscosity to
discrete time correlation functions, is derived via a Liouville equation
formalism for a class of non-deterministic lattice gas models. This
allows a Monte-Carlo calculation of the viscosity. Preliminary results
are presented for the Frisch-Hasslacher-Pomeau two-dimensicnal lat-
tice gas model.

1. Introduction

When a physical system at thermodynamical equilibrium is subject to a
weak large-scale perturbation (say a temperature gradient), a flux of a
conjugated quantity (say a heat flux) results, which is linear in the gradient.
In an isotropic newtonian fluid, a gradient of velocity creates a momentum
flux, related by a linear relation involving a fourth-order tensor. Isotropy
implies that this tensor is expressible in terms of two scalars, the shear
and bulk viscosities. Fluctuation-dissipation theory relates such transport
coefficients to time-integrated correlation functions. The earliest results in
that line was obtained by Einstein in the study of Brownian motion [1]. In
the fifties, systematic fluctuation-dissipation relations were developed for
classical and quantum mechanical systems by Green [2,3] and Kubo [4].
Cellular automata with discrete state variables attached to a lattice
and suitable conservation relations (lattice gases) present thermodynamic
equilibria, as continuous systems do, and they can display large-scale hydro-
dynamic behavior [5,6]. Fluctuation-dissipation relations for lattice gases
have been considered in references 6 through 9. Due to discreteness, there
are novel features in the theory of transport coefficients, such as “propaga-
tion viscosities” [10]. Typically, there are two possible approaches. One is
based on “noisy hydrodynamics” [6]. The other one, in the spirit of Green
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[3], uses a Liouville equation approach and is developed here for a quite
general class of D-dimensional, non-deterministic, one-speed models. For a
more restricted class of deterministic two-dimensional models, results were
already announced by Frisch and Rivet [11].

In section 2, we formulate the problem; we will use the same notation
as in reference {6]; however, in order to make the paper reasonably self-
contained, we will reintroduce briefly some of the basic concepts. In section
3, we perturbatively solve the Liouville equation around an equilibrium
state and find the discrete Green-Kubo formula for the shear viscosity. In
section 4, we show how to use the discrete Green-Kubo formula for a Monte-
Carlo calculation of the shear viscosity; numerical results are given only for
the simplest FHP model [5,6]. Comparisons are made with theoretical
values obtained from the lattice Boltzmann approximation [6,10] and with
results of numerical experiments based on relaxation of large scale shear
waves [12,13].

2. The class of models and the formalism

In order to avoid heavy notation as much as possible, we limit the following
study to the class of non-deterministic, one-speed models whose complete
definition is given in reference 6. This includes several two-dimensional
and three-dimensional (pseudo-four-dimensional) models known as HPP,
FHP-I, and FCHC. We will also give the final results for FHP models with
rest-particles, which do not belong to this class. We recall briefly the main
features of the one-speed models: unit mass particles are moving with speed
¢ along links of a regular D-dimensional Bravais lattice, where each node
is connected to its b nearest neighbors by a set of b vectors ¢;, 1 = 1,...,b
of equal modulus ¢. This set is supposed to verify some further geometric
conditions given in reference 6. The fact that two particles with the same
velocity vector are not allowed to be at the same node at the same time
(exclusion principle) enables us to describe the state of one node at any
integer time by a b-bit binary word: s = {s;, ¢ = 1,...,b} where s; = 1 if
a particle is present at the node, in the cell corresponding to the velocity
vector ¢;, and s; = O otherwise.

If initial conditions (time ¢ = 0) are taken such that all particles are
located at the nodes, the free propagation along links ensures that at any
integer time! ¢,, all particles are at the nodes. At any node, incoming
particles can perform local collisions according to a non-deterministic rule;
that is, an input state described by the binary word s will be changed
into an output state s' with the transition probability A(s — s'). These
transition probabilities are taken node-independent. A{s — s) is zero if
input and output states have different total mass (};s;) or momentum
(3 sici).

The state of the whole lattice £ at integer time t, may be described by
the so-called Boolean field:

'As in [8], an index “star” denotes the discrete independent variables.
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n(t) = {ne(tu,ra), i = L,..b; 7 € L}. (2.1)

The time evolution of this Boolean field is governed by the microdynam-
ical equation, (see [6], section 3.1) which can be formally written using
streaming, collision, and evolution operators §, C, and &:

n(t.+1) = § o Cn(t,) = En(t,). (2.2)

For non-deterministic collision rules, the operator £ is itself non-deterministic.
The conservation laws induce two exact relations for the Boolean field:

Z ni(te + 1,1e +¢;) = Zn,-(t*,r*), (2.3)

E cini(t* +1L,r.+ ci) = Zcini(t*ar*)- (2-4)

The lattice gas may be described statistically by a probability distri-
bution P(s(.)) that gives the probability of occurrence of a configuration
s(.) = {s(r.), r« € L}. The time-evolution of this probability distribution
is given by a Liouville equation (see [6], section 3.3)

P(t.+1,85()) =

> I Als(r.) = ()] P(tns()), Vs'() €T, (2.5)

s()er r.et

where T' denotes the set of all possible configurations of the lattice £. For
further use, it is convenient to introduce a global transition probability
AW (s — §') which is [, ¢ A[s(rs) — s'(r.)] and to write equation (2.5) in
the more compact form

P(t.+1,85()) = 3 A9(s > &) P(t.,s()- (2.6)

s(.)er

The following mean? quantities will be useful in the sequel:
mean population: Ni(t.,r.) = Y s;(r*)P(t*,s(.)),
&8.€T
density: p(t.,T.) = ZN,—(t*,r*),

mass current (momentum): j(t.,T.) = 2 ¢;Ni(te,1u),
i

mean velocity: uf{t.,r.) = j(t.,T.)/p(t. 1), (2.7)

2 Averaged over the probability distribution P(s(.))
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The Liouville equation admits a family of homogeneous factorized equi-
librium solutions of the form [6]:

P (s()) _ H H.N,-"“""(l _ M(eq))(l—a,-). (2.8)

r.€l 4

For low-speed equilibria, N/°¥ may be expressed in terms of the density
and mean velocity:

blzc,,,u,. + O(u?). (2.9)
Averages over the the equilibrium distribution with u = 0 will be denoted
by angular brackets (). Local equilibria having the above form but with
slowly varying parameters p and u will be the zero-order terms of an ex-
pansion in powers of the scale separation e¢ between the lattice constant
and the smallest excited scale. As has been shown in reference 6, sections 5
through 7, when the lattice has sufficient isotropy, as we will assume here,?
hydrodynamical equations are obtained for the density and momentum.
The momentum equation involves a kinematic shear viscosity?*

N (p,u) = §+

b4 2

V(o) = —5H—5 %) — 5=

" D(D +2) 2(D+2) (2.10)

The coefficient ¥{p) relates the first-order perturbation eN,-(l) of the mean
population to the gradient of the mass current j = pu through [6]

eN = 1(p) QiapBalip),

2
where Q,'ap = C;aCig — %6,,5 (2.11)

is the {traceless) microscopic stress-tensor. To determine the viscosity, we
must find the shear-induced perturbation of the mean population. As the
mean population does not satisfy a closed set of equations,® we must revert
to the full probability distribution satisfying the Liouville equation.

3. Perturbative resolution of the Liouville equation

Global homogeneous equilibrium distributions are exact steady solutions
of the Liouville equation, but local equilibria are not.* We will look for a
solution of the Liouville equation (2.5) in the form

P(t,,5()) = PO(t.,s()) + ePU(t,,5()) + O(e?), (3.1)

3The formalism presented here is easily extended to anisotropic cases in terms of an
anisotropic viscosity tensor.

4The bulk viscosity is zero for one-speed models [6}.

SExcept in the lattice Boltzmann approximation which we are not using here.

SLocal equilibria have the same dependence in p and u as a global equilibria but with
p and u allowed to be space-dependent.
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where P (t*, s(.)) is a low-speed local equilibrium distribution whose pa-
rameters have slow variations on spatial scale ¢e"!. We assume that the
perturbation P{V) vanishes initially. Using equation (2.5), we find that the
perturbation P(1) satisfies the inhomogeneous Liouville equation

PO(t, +1,84()) - 3 A9(s — &)PO(t,5()) =

s{.)er
—-e“[P(o) (t.+1,85()) = 3 AW(s - &) PO (t*,s(.))]. (3.2)
#(.)el’

We have now to make some straightforward manipulations of the r.h.s of
the above equation.
Using the fact that s} is 0 or 1 and performing for each value of ¢ the

spatial shift r, — r, + c;, we can write P(® (t* +1, Ss'(.)) in the form

PO(t, +1,84(.))

=TI [N}")(t*ﬂ, pute)s () + (1-NO (41, pu+es)) (1—3'(p*))] (3.3)

jlp*

As the mean populations N,-(O) are supposed to have slow space and time
variations, we Taylor-expand all finite differences up to the first order in
the gradients, and make the rescalings (see [6], section 5)

O — €0;, and Oy — €Oy,. (3.4)
We thereby obtain
PO(t, +1,85()) = PO(¢,,5'())
+€3 (90 + iadia) N2 (teps) (B30 (s'()) — P ()
j)P*
+ O(€). (3.5)
Here, we have introduced

P (s()

Y

=si(0)  II  [Nsa(rl) + (1- NEOY1—sa(rh)],
(#.xl)#(7.04)

PLA(s()

7

=(1-5;(p)) II [N§Vsa(rl) + (1 - NE2)(1 - sa(r))], (3.6)
(i, x)2(5.04)



844 Jean-Pierre Rivet

which have an interesting interpretation. PJ(:' ?(s(.)) (respectively P};:q) (s()))
is the probability distribution corresponding to a state where all nodes and
all cells are occupied with the zero-speed global equilibrium probability,
except the t*! cell of the node p, which is occupied with probability 1 (re-
spectively 0). These states are referred to as “SBSE” for Single Bit Set
Equilibrium (respectively, “SBCE” for Single Bit Cleared Equilibrium}.

Note that P()(s'(.)) is the same as ¥,yer AW (s — s)PO(s(.)), be-
cause P has locally the same analytic form as P“v. This allows us to
rewrite equation (3.2) for the perturbation P(!) as

PWO(t, +1,85'()) — 3 AW(s > &)PD(t,,5() =

s(.)er

= 32(3n, + ciadia) N [PHI0(s() = PLIE()],

vs'() eT. (3.7)

We can now re-express the time derivatives in terms of space derivatives
by using the macrodynamical Euler equations ([6], section 5) and the low

speed equilibrium form (2.9}; the expression (3, + c,-aa,a)N}“) becomes
then E%Q,-aﬁala(puﬂ) and equation (3.7) becomes

POt +1,86'()) = > AU (s —» s\ PO (¢,,5() =

a(.}er
Z(Pf:f“’ ) = PL(S())) Qiapdra(ps),
Fipe
Vs'() €T. (3.8)

In order to solve equation (3.8), we consider the probability distributions

Pj(th)(t,,,s( )) and P(+°q) (t.,s(.)) obtained after ¢, evolution steps, starting

from an SBSE and an SBCE. The solution of (3.8) with vanishing initial
condition is

PO (t.,s'() =

WZEMerw»

7a=0 j,pu

—P5(r, $716'())] QiapBrapus). (3.9)
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For further use, we introduce the following notation:

NG (1,54,3,]7, p2) = Zagyer $:(Ta) Py (ras '()),
N(-ed) (T*; 2, l‘*l_’f, p*) = Ea(.)el‘ Si (r*) PJ'(-;:Q)(T*’ s’('))' (3'10)
N(+ea) (T*; 7, r*lj’ P*) (respective]y, Ni-ed) (1'*; 1, r*lj, p*)) is the conditional

probability to find at time 7,, a particle at node r, in cell ¢, knowing
that at time O there was one (respectively none) at node p, in cell j.

We can now express the perturbation of mean population N,-(l)(t*,r*) =
28 )er si(r.)PM(t,,s'(.)) in the form

N,-(l) (t*, I'*) —

D t.—1
—5 2 (N (s nlip)

T‘=0 jlpﬁ

_N(_GQ) (T*; is r*lja P*)) Qjaﬁala(puﬁ)- (3-11)
We now use the two following identities:

1

N — % = N&d(r:4, 1,4, p*)% + NCa) (7,24, 1,7, p,)(l—%), (3.12)

(ni(7eo1.) 23(0,2,)) = N9 (154, 2,7, 0, ) N (0, p.). (8.13)

Equation (3.12) expresses that the equilibrium populations can be recov-
ered from transition probabilities. Equation (3.13) expresses the two-point
equilibrium probability in terms of the transition probability and the single-
point probability. Using (3.12) and (3.13), we can rewrite (3.11) as

Db s "
NP, 1) = ~ ) > E(ni(f*,l'*)nj (o, P*))Qjaﬁala(puﬂ)s
c p( p) f,:Oj'p*
~ _ P
n; = n; — (n;) =n; — E (3.14)

The average is over the zero-speed global equilibrium. From the isotropy
of fourth-order tensors, it follows that
be*(D — 1)

g; QiapQiap = — (3.15)

Using equations (2.10), (2.11), (3.15), reversal and translation invariances,
we finally obtain

ta—-1
y(p) — y(ProP) + Z F(T*), y(proP) = —

r.=0

c?

TEDI (3.16)
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bD
( _ 1)(D +2) p(b P ;;%Qiaﬂ(ni(ﬂk’p* nJ(O 0 )Q,aﬂ(3 17)

is (within a numerical factor) the correlation function of the microscopic
stress-tensor. If I'(7,) falls off sufficiently fast as 7, — oo, the summation
over 7, can be extended to infinity. This is the case in three dimensions but
not in two, where the viscosity may at best display a quasi-steady plateau
as 7, increases (see section 4), so we will keep a finite upper bound for the
time-summation.

Let us now specialize the results for the FHP-I model. We just substi-
tute 6 for b, 2 for D, and 1 for ¢ in the above formulae and get

t.—1

=——+EI‘T*

Ta=0

=303 Quap(Fis(1s: .)751(0,0) ) Qjap. (3.18)

I\(Tw) (6 P) P

For variants of FHP-I called FHP-II and FHP-III [6,14], which include rest
particles, a simple generalization leads to

t,—1
vip) = —= + > T(n),
T.=0
I'(n) = > 2> (a- _6aﬂ)QIaﬂ(nI (7w, P+)15 (0,0 )Q.Iap:
6 (7 P) pe IJ af
3
Qrap = c1at1s — 7bap- (3.19)

The capital indices I and J which take the values (x,1,2,...,6) refer to
the seven possible velocities, namely, the velocity zero (I = %) and the six
non-zero velocities of FHP-I.

4. Monte-Carlo calculation of the shear viscosity

In lattice gases as in (continuous) molecular dynamics (MD), there are
broadly two strategies for calculating transport coefficients: macroscopic
strategies involving large-scale gradients and microscopic strategies based
on Green-Kubo relations. Their relative merits in MD have been recently
discussed in reference 15. For lattice gases, macroscopic calculations of
the shear viscosity have been performed by d’Humiéres and Lallemand [13]
and by Zanetti [9]. The existence of a discrete analog for lattice gases of
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the spatial summation over p, is restricted to the domain of influence
D(r.). I we simply use (3.18), ignoring that the spatial summation
can be restricted to the domain of influence, the results will be far too
noisy for realistic values of N. Consider, for example, the 7, = 0 term
of the time-summation; its relative Monte-Carlo noise (the inverse

of the signal to noise ratio) is O(y/L?/N); this tends to zero when
N — oo but far too slowly: it is still about 30 for a 64 x 64 lattice
filled with a density p = 1.2, averaged over N = 50 shots. On the
other hand, if the summation is restricted to the domain of influence,
namely p, = 0 for the 7, = 0 term, the relative Monte-Carlo noise
becomes O(1/+/N L?) which is far smaller. We see how important
it is not to sum over terms which are known by P2 to be zero. For
7. # 0, this is also true, although to a lesser extent since the size of
the domain of influence grows like |7, |.

Numerical results

The characteristics of the numerical experiments were:

lattice size: 64 x 64 nodes
averaging over N = 40 independent realizations
number of time steps 7,,,, = 15.

Three independent experiments (with different seeds for the pseudo-
random generator) have been done in order to have an experimental esti-
mate of the Monte-Carlo noise. The function I'(7,) in the expression 3.18 of
the kinematic shear viscosity will be referred to as the correlation function.
The cumulated correlation function up to time t, — 1 plus the propaga-
tion viscosity (—1/8) will be referred to as the viscosity. Figures la and
b present for a density per node p = 1, the correlation function and the
viscosity for 7, between 0 and 15. The black circles are averages over the
three experiments. The absolute Monte-Carlo noise grows in a way con-
sistent with our theoretical estimate. Clearly, beyond 7, = 10, the results
are too noisy to be significant, but for our purpose there is no need to go
beyond 7, = 10. The viscosity exhibits beyond r, = 8 a plateau defined
with an accuracy of about 3 percent at the value v = 0.7 £+ 0.02. Simi-
larly, evaluated viscosities for various values of the density are represented
as black circles (with error bars) on figure 2. The stars (also with error
bars) are the viscosities observed by d’Humiéres and Lallemand [13] from
macroscopic simulations with relaxation of shear waves. Whenever both
data are available, the error bars overlap except at very low densities. This
probably reflects a pathology of the FHP-I model: at low densities, triple
collisions are so rare that the dynamics are affected by a spurious invariant
that would be present in the absence of triple collisions.

The continuous curve of figure 2 is the viscosity calculated from the
lattice Boltzmann approximation [6,10]
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Figure 1: (a) Monte-Carlo simulation of the correlation function of
the microscopic stress-tensor for the FHP-I model at density p = 1.
Black circles are data points with error bars. The dashed line is a
least square fit of an exponential to the first five points. (b) Viscosity
with error bars in the same conditions as figure 1a. The plateau gives
the effective kinematic shear viscosity.
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Figure 2: Density dependence of viscosities for the model FHP-L
Black circles with error bars: Monte-Carlo simulations. Black stars
with error bars: shear wave simulations of d’Humiéres and Lallemand
[13]. Continuous line: Lattice Boltzmann approximation.
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We see that the Boltzmann results are 10 to 30 percent higher than the
Green-Kubo values. The Boltzmann approximation for the viscosity im-
plicitly assumes an exponentially decaying correlation function. It is of
interest to see how well the Monte-Carlo values for the correlation function
fit an exponential. The dashed line on figure 1a is an exponential obtained
by a least square fit on the low noise data for r, =0, 1, 2, 3, 4. If we now
assume that the exponential behavior holds all the way to infinity and sum
the geometric series, we obtain a value of the viscosity which lies within a
few percent of the Boltzmann value.

The correlation function T'(7.) cannot be exponential all the way to
infinity; theoretical arguments on “long time tails” predict that the viscos-
ity for very long times and very large systems is logarithmically divergent
[6,7,16,17]. There have been various attempts to find long time tails in
lattice gas correlation functions [7,18]. To unambiguously reveal long time
tails in simulations of the FHP model is definitely beyond the scope of the

v=-—
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present work.
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