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Abstract. We study a simple geometric model for local transformations of bipartite graphs. The state consists
of a choice of a vector at each white vertex made in such a way that the vectors neighboring each black vertex
satisfy a linear relation. The evolution for different choices of the graph coincides with many notable dynamical
systems including the pentagram map, Q-nets, and discrete Darboux maps. On the other hand, for plabic graphs
we prove unique extendability of a configuration from the boundary to the interior, an elegant illustration of the
fact that Postnikov’s boundary measurement map is invertible. In all cases there is a cluster algebra operating
in the background, resolving the open question for Q-nets of whether such a structure exists.

1. Introduction

The dynamics of local transformations on weighted networks play a central role in a number of settings
within algebra, combinatorics, and mathematical physics. In the context of the dimer model on a torus, these
local moves give rise to the discrete cluster integrable systems of Goncharov and Kenyon [17]. Meanwhile, for
plabic graphs in a disk, Postnikov transformations relate different parametrizations of positroid cells [31] which
in turn define a stratification of the totally non-negative Grassmannian.

The dimer model also manifests itself in many geometrically defined dynamical systems. We focus on
projective geometry and draw our initial motivation from the pentagram map. The pentagram map was
defined by Schwartz [34] and related in [15] to coefficient-type cluster algebra dynamics [11]. Gekhtman,
Shapiro, Tabachnikov, and Vainshtein [13, 14] placed the pentagram map and certain generalizations in the
context of weighted networks and derived a more conceptual take on the integrability property first proven by
Ovsienko, Schwartz, and Tabachnikov [30]. Although considerable work in various directions of the subject has
been undertaken, most relevant to our work is a further generalization termed Y -meshes [16].

We propose a simple but versatile geometric model for the space of edge weights of any bipartite graph
modulo gauge equivalence, with applications to the fields of both geometric dynamics and plabic graphs. The
induced dynamics of local transformations provides an analog of the pentagram map for every planar bipartite
graph and includes as special cases generalized pentagram maps, Q-nets, and discrete Darboux maps. This
common generalization resolves a long standing question [16, Remark 1.5] of how the pentagram map and Q-
nets relate. Moreover, our systems come with cluster dynamics, which is new in the Q-net case and should be of
interest to discrete differential geometers. Lastly, in the setting of plabic graphs we define a geometric version of
the boundary measurement map and its inverse. In this language, properties of the boundary measurement map
imply the unique solvability of a certain family of geometric realization problems. The geometric model story
runs parallel to the classical one of planar weighted bipartite graphs, with the concepts of gauge transformations,
local transformations and face variables of the latter bearing simple geometric interpretations (see Sections 2
and 3.2) in the former.

1.1. Overview of main definitions and results. Our main object of study is a certain collection of geometric
data, which we term a vector-relation configuration, associated to a bipartite graph. Roughly speaking, such
a configuration consists of a choice of vector (from some fixed vector space) associated to each white vertex of
the graph, with the property that the set of vectors neighboring each black vertex satisfy a linear relation. The
exact requirements vary a bit based on the context and are described in Definitions 2.1 and 6.4.

In the case of a planar bipartite graph, we additionally define evolution equations of vector-relation config-
urations under local transformations. In parallel with the dynamics of edge-weighted graphs, these operations
preserve a notion of gauge equivalence. In fact, we will show (Proposition 3.2) that these two stories are in
some sense equivalent to each other. At least locally, it is possible to go back and forth between edge weights
and vector-relation configurations (with some genericity assumptions) in a manner that commutes with local
transformations. As a result, we can import much of the theory of the dimer model to our setting. For instance
we get face weights, which are simple to define geometrically in terms of multi-ratios (Proposition 3.7) and
which satisfy simple, rational evolution equations.
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Figure 1. A plabic graph corresponding to the open cell in Gr(3, 6)

For roughly the second half of the paper, we focus our attention on plabic graphs in a disk. We assume all
boundary vertices are white, meaning that a vector-relation configuration on such a graph includes a vector
at each boundary vertex. Although local transformations are also of interest in this case, we focus on global
questions concerning the space of all configurations given fixed G. The main result, which in isolation is rather
striking, is that a configuration is uniquely determined up to gauge by its boundary vectors.

To state this result more precisely and give relevant context, we recall that each plabic graph gives rise to
a combinatorial object called a positroid and a geometric object called a positroid variety. Let G be a plabic
graph. We will let M denote the associated positroid and ΠM the associated positroid variety. A fundamental
object in this area is the boundary measurement map which takes as input an edge-weighting of G and outputs
a point of ΠM.

Theorem 1.1. Fix a plabic graph G.
(1) Given a vector-relation configuration on G, the matrix A = [v1 · · · vn] whose columns are the boundary

vectors of the configuration lies in the positroid variety ΠM.
(2) Suppose G is reduced. There is a dense subset TG ⊆ ΠM such that for A ∈ TG, the columns v1, . . . , vn

of A can be extended to a vector-relation configuration on G that is unique up to gauge at internal
vertices. In particular, each internal vector is determined up to scale.

The definition of a vector-relation configuration on a plabic graph is given in Definition 6.4. We review
the definition of reducedness for plabic graphs in Section 6.1, which contains background on various aspects
of positroid theory. Also, note that we mostly assume boundary vertices in plabic graphs have degree 1, but
in certain examples such as the following it is convenient to allow larger degree. Our main results can be
generalized to this situation, but it makes some definitions and arguments more cumbersome.

Example 1.2. Consider the plabic graph G in Figure 1. The associated positroid variety is the full Grassmannian
Gr3,6. As such, Theorem 1.1 asserts that the boundary vectors v1, . . . v6 ∈ C3 of a configuration can be chosen
generically and the last vector u is determined by them up to scale.

Indeed suppose v1, . . . v6 ∈ C3 are given and consider the possibilities for the internal vector u. The lower
black vertex forces u, v1, v2 to be dependent while the top black vertex forces u, v4, v5 to be dependent. If the vi

are generic then u must lie on the line of intersection of the planes 〈v1, v2〉 and 〈v4, v5〉. Hence u is determined
up to scale. The other two black vertices have degree 4. It is always possible to find a linear relation among 4
vectors in C3, so there are no added conditions imposed on u.

1.2. Relation to previous work. Our model of vector-relation configurations has substantial precedent in
the literature. In fact, a main selling point of our specific formulation is that it is versatile enough to tie into
previously studied ideas in a variety of areas. We outline some of the relevant previous work here for the
interested reader’s convenience.

In the plabic graph setting, Lam’s relation space [27, Section 14] is in a sense dual to our model. Let G be
a plabic graph and suppose we have vectors vw ∈ Ck at white vertices satisfying relations∑

w

Kbwvw = 0

indexed by black vertices. Our approach is to consider the boundary vectors [v1 · · · vn] as making up a point
in Grk,n. The relation space is the dual point of Grn−k,n, that is, the kernel of [v1 · · · vn]. More directly, one
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takes in the n-dimensional space of linear combinations of v1, . . . , vn the subspace consisting of valid relations.
Note that the coefficients Kbw alone determine the relation space, so the vw are replaced with formal variables.
In light of this connection, our Proposition 7.3 is equivalent to [27, Theorem 14.6] except that we give explicit
rules for the signs.

Another geometric model on plabic graphs is provided by Postnikov [32]. He associates a point of a small
Grassmannian Gr1,3 or Gr2,3 to each vertex. His setup has the advantage that there is a natural duality between
the black and white vertices. We should also note that both [27, Section 14] and [32] are attempts to put on
more mathematical footing the on-shell diagrams of physics [4].

It should be no surprise to experts that vector-relation configurations on plabic graphs have a close connection
to the boundary measurement map, see Section 7. Taking this connection as given, Theorem 1.1 can be derived
from corresponding properties of the boundary measurement map, the most difficult of which were proven
by Muller and Speyer [29]. We take a different path, proving Theorem 1.1 directly to highlight some of the
strengths of our model. For instance, the analog for us of the inverse of the boundary measurement map is a
novel reconstruction map which has a very pleasant geometric description. This all said, we do make extensive
use of a number of combinatorial and geometric results that are proven in the earlier sections of [29].

In the case of the dimer model on the torus, Kenyon and Okounkov [22] associate a section of a certain line
bundle to each white vertex of a bipartite graph. It is easy to see that said sections satisfy linear relations
in such a way as to give a configuration (in an infinite dimensional space). Fock [10] shows how to recover
this data from the line bundle. He constructs on each vertex of one color (black with his conventions) a one
dimensional space defined by a certain intersection of spaces living on zigzags. Our reconstruction map for
plabic graphs as defined by (6.5) is entirely analogous.

As already mentioned, Gekhtman et al. [13, 14] were the first to describe the pentagram map (and gener-
alizations) in terms of dynamics on networks. It is easy in retrospect to see all of the ideas of vector-relation
configurations in these papers. For instance, the authors identify the edge weights as coefficients of linear rela-
tions among lifts of the points of the polygon. Such coefficients also appear as the a, b-coordinates of Ovsienko,
Schwartz, and Tabachnikov [30]. Similarly, in the study of Q-nets [5] an important role is played by the relation
among the four coplanar points living at the vertices of each primitive square.

Finally, we note that there are many other geometric models on planar bipartite graphs compatible with
the dimer model on the torus, for instance T -graphs [24], Miquel dynamics on circle patterns [3, 21], and
Clifford dynamics [26]. The interplay between the various models is considered in [2]. That paper also includes
descriptions of both Q-nets and discrete Darboux maps in terms of cluster dynamics which differ from those in
the present paper.

1.3. Structure of the paper. The remainder of this paper is organized as follows. We begin in Section
2 by reviewing the dynamics of local transformations and providing the main definitions for vector-relation
configurations. Section 3 covers the basic properties of our vector-relation model as well as a slight modification
with the ambient vector space replaced by its projectivization. In Section 4 we illustrate how to incorporate
several previously studied systems into our framework. In Section 5 we identify what sorts of vector-relation
configurations arise from resistor and Ising networks. We tackle the plabic graph case in Section 6, building
the general theory and proving Theorem 1.1. We relate our model with the boundary measurement map in
Section 7. Finally, Section 8 examines the geometry of the space of configurations on a plabic graph.

Acknowledgments. We thank Lie Fu, Rick Kenyon, and Kelli Talaska for many helpful conversations. We
thank the anonymous referee for extensive comments and suggestions that led to several improvements to this
paper.

2. Background and main definitions

We first recall the classical setting of weighted bipartite planar graphs and their transformations, before intro-
ducing our geometric model of vector-relation configurations on bipartite planar graphs and the corresponding
transformations on such configurations.

Let G be a planar bipartite graph with nonzero edge weights. A gauge transformation at a given vertex
multiplies the weights of all edges incident to that vertex by a common scalar. A local transformation modifies
a small portion of G in the manner indicated in one of the pictures in Figure 2. There are two types of local
transformations:

• The top of Figure 2 depicts urban renewal. The new edge weights are

(2.1) a′ = a

ac+ bd
, b′ = b

ac+ bd
, c′ = c

ac+ bd
, d′ = d

ac+ bd
.

This transformation is only defined if ac+ bd 6= 0.
• The bottom of Figure 2 depicts degree two vertex addition. A vertex is split into two vertices of the

same color connected by a new degree two vertex of the opposite color. The move depends on a choice
of a partition of the neighbors of the original vertex into two cyclically consecutive blocks of size k and
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Figure 2. Local transformations applied to a graph.

l. The figure depicts addition of a degree two black vertex, but the same move is allowed with all colors
reversed producing a degree two white vertex instead.

It is common to consider the space of edge-weightings of G modulo gauge equivalence, and it is easy to see
that local transformations are well-defined on this level. Both types of local moves can be performed in either
direction, where going from right to left requires first applying gauges to make the indicated edge weights equal
to 1. The second local transformation when applied from right to left is called degree two vertex removal.

The last bit of background we need are the basics of Kasteleyn theory, see [20] for a more detailed exposition.
For a planar bipartite graph G = (B ∪W,E), call a map ε : E → {±1} a set of Kasteleyn signs if

• each 4k-gon face of G has an odd number of −1’s on its boundary, while
• each (4k + 2)-gon face of G has an even number of −1’s on its boundary.

If G is finite then a set of such signs always exists, and any two choices of Kasteleyn signs differ by a gauge
transformation. If a general edge-weighting of G is given, the associated Kasteleyn matrix K is defined as
follows. It has rows and columns indexed by B and W respectively. If b ∈ B and w ∈ W , then Kbw equals the
sum over all edges between them of the weights of these edges multiplied by the Kasteleyn signs of the edges.
In particular Kbw = 0 if there is no edge between b and w. The Kasteleyn matrix K of a planar bipartite G
plays an important role in the study of the dimer model on G: the partition function is given by | detK| and
the correlations are computed using minors of K−1 [20].

We now introduce a geometric model associated to every bipartite planar graph.
Definition 2.1. Let G be a planar bipartite graph with vertex set B ∪W . For b ∈ B let N(b) ⊆ W denote its
set of neighbors. Fix a vector space V . A vector-relation configuration on G consists of choices of

• a nonzero vector vw ∈ V for each w ∈ W and
• a non-trivial linear relation Rb among the vectors {vw : w ∈ N(b)} for each b ∈ B.

In particular, each set {vw : w ∈ N(b)} must be linearly dependent.
By a linear relation we mean a formal linear combination of vectors that evaluates to zero on {vw : w ∈ N(b)}.

For technical reasons it is best to allow G to have multiple edges in which case the N(b) are understood to be
multisets and a given vector can appear multiple times in a given relation. We often ignore this possibility,
either implicitly or by assuming G to be reduced (a certain condition that implies it lacks multiple edges). A
useful way to deal with multiple edges is to use the classical reduction rule of collapsing parallel edges and
adding their weights.
Definition 2.2. Consider a vector-relation configuration on a graph G as above and suppose λ 6= 0. The
gauge transformation by λ at a black vertex b ∈ B scales the relation Rb by λ (and keeps all other vectors and
relations the same). The gauge transformation by λ at a white vertex w ∈ W scales vw by 1/λ and scales the
coefficient of vw by λ in each relation in which it appears to compensate. Two vector-relation configurations
are called gauge equivalent if they are related by a sequence of gauge transformations.

We now wish to define dynamics with the same combinatorics as local transformations for weighted bipartite
graphs, but operating on our vector and relation data rather than on edge weights. If R is a relation among
vectors {u1, . . . , uk, v1, . . . , vl} let R|u1···uk

denote the linear combination of u1, . . . , uk appearing in R. This
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Figure 3. The vector-relation version of urban renewal.
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Figure 4. The vector-relation version of degree two vertex addition.

combination may be formal or not depending on context. For instance, as formal linear combinations we have
R|u1···uk

+R|v1···vl
= R while as vectors we have R|u1···uk

+R|v1···vl
= 0 since R evaluates to 0.

First consider urban renewal, as pictured in Figure 3. We need to define the vectors and relations at the
new vertices. Let u1 = R1|v1v2 and u2 = R2|v1v2 . Note that u1 and u2 are both given as linear combinations
of v1, v2, so if the coefficient matrix is nonsingular we can formally solve for each vi in terms of u1 and u2.
Moving the uj terms to the other side we get a linear relation Si among vi, u1, and u2 for i = 1, 2. In short,
the ui, vi and Si are consistent with being part of a vector-relation configuration on the new graph. As a final
step R1 is modified to reflect that a linear combination of v1, v2 has been replaced by 1u1 and similarly with
R2. Explicitly, these new relations are

R′
i = (Ri −Ri|v1,v2) + 1ui.

Note that if the matrix mentioned above is singular then urban renewal is not defined on the configuration.
Next consider degree two vertex addition, as pictured in Figure 4. First suppose we are adding a degree two

black vertex. It is natural to set the new vectors equal to each other and to the old vector, i.e. v = w = u.
We then get a relation T = 1v − 1w. The nearby relations do not need to be modified at all. On the other
hand, suppose we are adding a degree two white vertex. Choose as the new vector w = R|u1···uk

= −R|v1···vl
.

We get the relation S by starting with R and replacing R|v1···vl
with −1w. Similarly T is obtained from R by

replacing R|u1···uk
with 1w.

As with classical local transformations, these operations preserve gauge equivalence and can be run in both
directions. Thus, gauge equivalence classes of vector-relation configurations will serve as our main object of
study.

3. Vector-relation configurations

In this section we develop the theory of vector-relation configurations on general planar bipartite graphs as
in Definitions 2.1 and 2.2. To that end, let G = (B∪W,E) be a planar bipartite graph. We will denote a vector-
relation configuration on G by (v,R) (or sometimes just v for short) where v = (vw)w∈W and R = (Rb)b∈B .

3.1. Constructing the edge weights. For b ∈ B and w ∈ W , let Kbw denote the coefficient of vw in Rb,
understood to be 0 if b, w are not adjacent in G. Performing local moves sometimes requires Kbw 6= 0 for certain
bw ∈ E, so we add that assumption when needed. If G is finite then we can view K as a |B|-by-|W | matrix.
Gauge transformations correspond to multiplying rows and/or columns of K by nonzero scalars.

The matrix K plays the part of the Kasteleyn matrix (see Section 2) in the dimer model. Here the signs are
already built into the entries of the matrix, and we need to remove them to obtain the weights. Fix a choice
of Kasteleyn signs εbw = ±1 for bw ∈ E. Let wt(e) = εbwKbw for each edge e = bw of G. The wt(e) play
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the part of the edge weights in the classical story of local transformations of the dimer model. As previously
mentioned, in the planar case any two choices of Kasteleyn signs are gauge equivalent so the gauge class of the
result depends only on the gauge class of (v,R).

Remark 3.1. The data of a gauge class of non-zero edge weights is equivalent to what Goncharov and Kenyon
refer to as a trivialized line bundle with connection on G [17].

Proposition 3.2. Let (v,R) be a vector-relation configuration on G. Apply a local transformation to obtain a
new configuration (v′,R′) on G′. Then the weight functions associated to these two configurations are related
by a classical local transformation of the dimer model.

Proof. First suppose the operation is urban renewal, and adopt the notation of Figure 3. Suppose the initial
relations are

R1 = ãv1 + d̃v2 + . . .

R2 = b̃v1 + c̃v2 + . . .

so by definition u1 = ãv1 + d̃v2 and u2 = b̃v1 + c̃v2. We assume when doing urban renewal that the v1, v2 can
be recovered from u1, u2, i.e. that ãc̃− b̃d̃ 6= 0. In this case,

v1 = c̃u1 − d̃u2

ãc̃− b̃d̃

v2 = −b̃u1 + ãu2

ãc̃− b̃d̃

The new relations are

S1 = v1 + c̃′u1 + d̃′u2

S2 = v2 + b̃′u1 + ã′u2

where

(3.1) ã′ = −ã
ãc̃− b̃d̃

, b̃′ = b̃

ãc̃− b̃d̃
, c̃′ = −c̃

ãc̃− b̃d̃
, d̃′ = d̃

ãc̃− b̃d̃
.

Let a, b, c, d, a′, b′, c′, d′ be the edge weights obtained by multiplying the associated coefficients by Kasteleyn
signs. The notation has been chosen so that these weights correspond to edges in the manner indicated in
Figure 2. On the left is a quadrilateral face which should have an odd number of −1’s. Applying gauge we can
assume specifically a = −ã, b = −b̃, c = −c̃, and d = d̃. It is consistent on the right to have the edge labeled b′

be negative, all other pictured edges positive, and all edges outside the picture keeping their original signs. So
we put a′ = ã′, b′ = −b̃′, c′ = c̃′, and d′ = d̃′. Applying this substitution to (3.1) verifies that the edge weights
evolve according to (2.1), as desired.

Now suppose the transformation is degree 2 vertex addition. There is a natural injection from edges of G
to edges of G′, and the definitions are such that coefficients living on these edges are all unchanged. Fixing
Kasteleyn signs on G, we can get valid signs on G′ by keeping the signs of all old edges and giving the two
new edges opposite signs from each other. If the new vertex is black (see top of Figure 4), the opposite signs
are reflected in the new relation T = 1v − 1w. If instead it is white (bottom of Figure 4) we have that the
new vector w appears with coefficient −1 in S and +1 in T , so again the signs are opposite. In both cases, the
unsigned weights of both new edges equal 1 in agreement with the bottom of Figure 2. □

Note that the map from vector-relation configurations to edge weightings on G has only been defined in
the one direction. Before moving on to applications, we briefly discuss the reverse problem. Suppose a planar
bipartite graph G = (B∪W,E) is given with edge weights. Applying Kasteleyn signs we obtain formal relations.
One approach to getting the vectors is to start with |W | independent vectors and quotient the ambient space
by these relations. The resulting configuration is the most general with these edge weights in the sense that any
other will be a projection of it. In particular, assuming highest possible dimension the configuration is unique
up to linear isomorphism. We explore this construction in the plabic graph case in Section 6.

A more difficult matter is the existence of a configuration for given edge weights. A fundamental family of
examples comes from taking G to be balanced (same number of white and black vertices) on a torus. In this
case, the construction from the previous paragraph applied to generic edge weights would produce a trivial
configuration with all vectors equals to 0. A partial remedy would be to allow twisted configurations in the
spirit of twisted polygons in the theory of the pentagram map, which is the approach developed in [1].
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Figure 5. The evolution equation for face weights

3.2. The face weights. For a non-zero edge weighting on G, the basic gauge invariant functions are the
monodromies around closed cycles. The monodromy of a cycle is the product of edge weights along the cycle
taken alternately to the power 1 and −1. We can pull these quantities back to get gauge invariant functions of
vector-relation configurations.

We focus on the case of the monodromy around a single face F of G. Suppose F is a 2m-gon and that
the vertices on its boundary in clockwise order are w1, b1, . . . , wm, bm. The face weight of the face F of a
vector-relation configuration is

(3.2) YF = (−1)m−1Kb1w1Kb2w2 · · ·Kbmwm

Kb1w2Kb2w3 · · ·Kbmw1

.

The sign accounts for the product of Kasteleyn signs around the face. In other words, we have arranged it so
that this face weight equals the one defined in terms of edge weights in the corresponding weighted graph.

Proposition 3.3. Under an urban renewal move, the face weights of a vector-relation configuration evolve as
in Figure 5. The face weights are unchanged by degree 2 vertex addition/removal.

Proof. The formulas follow from the case of classical local transformations, for which they are standard, see
e.g. [17, Theorem 4.7]. □

To simplify some formulas, we introduce a vector associated to each black vertex b of a given face F . Suppose
w and w′ are the neighbors of b around F . Given a vector relation configuration we define v(F, b) = Rb|ww′ =
Kbwvw +Kbw′vw′ . The vw and v(F, b) for w and b around F contain the data needed to calculate YF . Moreover,
if F is a quadrilateral and b, b′ its black vertices, then the two new vectors arising from urban renewal at F are
v(F, b) and v(F, b′).

3.3. Projective dynamics. By placing an additional assumption on our configurations, we can obtain an
elegant model for the gauge classes in terms of projective geometry. Recall a set of vectors is called a circuit
if it is linearly dependent but each of its proper subsets is linearly independent. Say that a vector-relation
configuration is a circuit configuration if each set {vw : w ∈ N(b)} is a circuit for b ∈ B. For each w ∈ W , let
Pw equal the span of vw, considered as a point in the projective space P(V ).

Proposition 3.4. The gauge class of a circuit configuration is uniquely determined by the configurations of
points Pw ∈ P(V ) for w ∈ W .

Proof. Suppose two circuit configurations both give rise to the points Pw. Then the vectors agree up to scale, so
we can gauge to get the vectors vw to agree exactly. It remains to show that for each b ∈ B the relations Rb and
R′

b on {vw : w ∈ N(b)} of the two configurations agree up to scale. If not one could find a linear combination
of Rb and R′

b with a zero coefficient and a nonzero coefficient, violating the circuit condition around b. □
As usual, we take an affine chart to visualize P(V ) as an affine space of dimension one less than V . From this

point of view, a circuit of size d consists of d points contained in a d − 2 dimensional space with each proper
subset in general position (e.g. 4 points on a plane of which no 3 are collinear).

We next describe how local transformations look on the level of the points Pw. For F a face of G and
w1, b, w2 three consecutive vertices on the boundary of F , define
(3.3) P (F, b) = 〈Pw1 , Pw2〉 ∩ 〈{Pw : w ∈ N(b) \ {w1, w2}}〉
where 〈·〉 denotes the affine span of a set of points. If b has degree d then by the preceding discussion the right
hand side is a transverse intersection inside a d − 2 space of a line and a d − 3 space. So P (F,w) is indeed a
point.

Proposition 3.5. Suppose we have a circuit configuration on G consisting of points Pw and that F is a
quadrilateral face with vertices w1, w2 and b1, b2 each having degree at least 3. If P (F, b1) 6= P (F, b2), then

• urban renewal of the configuration is defined at F ,



8 NIKLAS AFFOLTER, MAX GLICK, PAVLO PYLYAVSKYY, AND SANJAY RAMASSAMY

• the result of urban renewal is a circuit configuration, and
• urban renewal at F constructs the point P (F, bi) at the new white vertex closer to bi for i = 1, 2.

Proof. First, we show that P (F, b1) is the class of v(F, b1) in projective space (and similarly for P (F, b2) and
v(F, b2)). Indeed, v(F, b1) is by definition the linear combination of vw1 and vw2 appearing in Rb1 . Applying
Rb1 , one can equivalently express v(F, b1) as a linear combination of {vw : w ∈ N(b1) \ {w1, w2}}. We get that
v(F, b1) is on the intersection of two subspaces in a way that exactly projectivizes to the formula (3.3) (note
the circuit condition implies that v(F, b1) 6= 0).

Now, since the v(F, bi) projectivize to distinct points, they must be linearly independent. These vectors
play the role of u1, u2 in Figure 3 and their being independent is equivalent to the non-degeneracy condition
needed to perform urban renewal. It also follows that the P (F, bi) are the projectivizations of the new vectors
produced by urban renewal. All that remains is to prove the second assertion.

The circuit condition in the original graph implies that all coefficients of all relations at black vertices are
nonzero. Moreover, we know vw1 and vw2 are independent, e.g. by the circuit condition at b1 together with
the fact that b1 has degree at least 3. Now, urban renewal produces two new black vertices (the ones labeled
Si in Figure 3), and modifies the neighborhood of two others (the ones labeled R′

i). First consider a new black
vertex, say the one adjacent to the vectors v(F, b1), v(F, b2), and vw1 . We have already argued that the first
two are independent. Recall that v(F, b1) = Rb1 |vw1 vw2

and by the facts at the beginning of this paragraph is
independent of vw1 . Similarly v(F, b2) and vw1 are linearly independent. So the circuit condition holds at this
vertex.

Lastly consider one of the black vertices with a modified neighborhood, say the one originally called b1. The
set of vectors at neighboring vertices is the same after urban renewal as before except that vw1 and vw2 have
been removed, and v(F, b1) has been added. Were there a linear dependence among a proper subset of these
vectors introduced, it would have to include v(F, b1). However, v(F, b1) is a linear combination of vw1 and vw2 ,
so this would imply a dependence in the original graph contradicting the circuit condition there. □

Proposition 3.6. Suppose we have a circuit configuration on G consisting of points Pw. Consider a degree 2
vertex addition move from G to G′. If the added degree 2 vertex b is black then the point P at the white vertex
of G that got split is placed at both neighbors of b in G′. If the added degree 2 vertex w is white, let P1, . . . , Pk

and Q1, . . . , Ql be the points at the neighbors of the black vertex of G that got split, following the template of
the bottom of Figure 4. Then the new point that gets placed at w is

〈P1, . . . , Pk〉 ∩ 〈Q1, . . . , Ql〉.

In both cases, we still have a circuit configuration on G′.

Proof. The black degree 2 vertex addition case follows directly from the definitions. The proof in the white
case follows the same approach as the proof of Proposition 3.5. □

The circuit condition is preserved by the removal of a degree 2 black vertex, since the neighborhood of each
remaining black vertex did not get changed. Note however that in general, the circuit condition is not preserved
by the removal of a degree 2 white vertex. This is the case for example if the two black vertices adjacent to the
degree 2 white vertex have degrees d1 ≤ dimV +1 and d2 ≤ dimV +1, with d1 +d2 ≥ dimV +4. Nevertheless,
in all the examples we will consider in Section 4, the circuit condition will be preserved even by removals of
degree 2 white vertices, provided we start with a generic configuration, see Remark 4.1.

To sum up, for each planar bipartite graph G we have a projective geometric dynamical system dictated by
the corresponding dimer model. The state of the system is given by a choice of a point in projective space at
each white vertex so that the points neighboring each black vertex form a circuit. The points (and the graph)
evolve under local transformations, the most interesting of which is urban renewal as described by Proposition
3.5 and formula (3.3).

We will see that many systems, some in the pentagram map family some not, fit in this framework. For
each such system we get for free the set of face weights YF and their corresponding evolution equations as in
Proposition 3.3. These variables are easy to define in a projectively natural way. Suppose points P1, . . . , P2k

in an affine chart are given with the triples {P1, P2, P3}, {P3, P4, P5}, …, {P2k−1, P2k, P1} all collinear. The
multi-ratio (called a cross ratio for k = 2 and a triple ratio for k = 3) of the points is

[P1, . . . , P2k] = P1 − P2

P2 − P3

P3 − P4

P4 − P5
· · · P2k−1 − P2k

P2k − P1
.

Each individual fraction involves 3 points on a line and is interpreted as a ratio of signed distances. It is
well-known that this ratio is independent of the chart and invariant under projective transformations, see e.g.
[5, Theorem 9.11].

Proposition 3.7. Suppose we have a circuit configuration on G consisting of points Pw. Let F be a face with
boundary cycle w1, b1, w2, b2, . . . , wm, bm in clockwise order. In terms of the points Pw, the face weight of F
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equals
YF = (−1)m−1[Pw1 , P (F, b1), Pw2 , P (F, b2), . . . , Pwm

, P (F, bm)]−1.

Proof. By definition we have lifts vwi
of Pwi

and v(F, bi) of P (F, bi) such that
v(F, bi) = Kbiwivwi +Kbiwi+1vwi+1 .

Applying gauge we can assume all 2m of these vectors lie in some affine hyperplane. Then applying a linear
functional with constant value 1 on said hyperplane to the previous yields

1 = Kbiwi
+Kbiwi+1 .

As such the above can be rewritten
Kbiwi+1(v(F, bi) − vwi+1) = Kbiwi

(vwi
− v(F, bi)).

Viewing the P ’s as points on the hyperplane this shows
P (F, bi) − Pwi+1

Pwi − P (F, bi)
= Kbiwi

Kbiwi+1

.

Multiplying across all i produces the reciprocal of the multi-ratio on the left and the defining expression (3.2)
for the face weights on the right. □

4. Examples

In this section, we consider several projective geometric systems from the literature, and explain how they
fit in our framework. For each we identify the appropriate bipartite graph as well as the sequence of local
transformations realizing the system. In some cases we also explicitly work out the associated dynamics on the
face weights.

Remark 4.1. In order to work on the level of projective geometry, all configurations in this Section are assumed
to be circuit configurations. Moreover, each individual system is only defined for a subset of such configu-
rations. Indeed, every urban renewal move requires a certain non-degeneracy condition, see Proposition 3.5.
Furthermore, for all these examples, the removal of degree 2 white vertices will preserve the circuit condition
only if one requires a genericity assumption on the starting configuration. One nice application of defining a
system this way is one can obtain a large family of inputs for which all iterates are guaranteed to be defined,
namely those with generic positive edge weights.

Remark 4.2. The examples in this Section all take place on infinite bipartite graphs in the plane. In some we
assume the points of the configuration are biperiodic with respect to some lattice in the plane. One can just
as well impose as boundary conditions that the face weights be biperiodic, but not the points themselves. This
choice lines up with the dimer model on the torus, and one in principle can use [17] to prove a lot about such
systems (Liouville integrability, spectral curve, combinatorial formulas for conserved quantities, ...). Such an
approach has been implemented in [1] for some dynamics on spaces of polygons phrased in terms of vector-
relation configurations. Another approach to integrability was proposed by Gekhtman, Shapiro, Tabachnikov,
and Vainshtein [14] for pentagram maps ; the connection with the approach of [17] was recently explained in
[18]. For other examples below, the biperiodic face weights condition gives special cases that to our knowledge
have not been rigorously studied.

4.1. The pentagram family.

Example 4.3. The Laplace-Darboux system [7] operates on a 2-dimensional array of points in P3 for which the
points of each primitive square are coplanar. It is convenient to index the points as Pi,j for i, j ∈ Z with i+ j
even. The centers of the squares are then (i, j) with i+ j odd so the condition is
(4.1) Pi,j−1, Pi−1,j , Pi+1,j , Pi,j+1 coplanar for i+ j odd.
The system produces a new array of points Qi,j for i+ j odd defined by

Qi,j = 〈Pi,j−1, Pi+1,j〉 ∩ 〈Pi−1,j , Pi,j+1〉.
To state Laplace-Darboux dynamics in our language take the infinite square grid graph G = (Z2, E), which

is bipartite with white vertices being those (i, j) with i + j even. Place the points Pi,j above at the white
vertices. For each black vertex (i, j) with i + j odd, the circuit condition says that the 4 neighboring points
should be coplanar, which is precisely (4.1).

To evolve the system, perform urban renewal at each face whose upper left corner is black. Figure 6 shows
a local picture. Taking F, b as in the picture, one of the new points is

P (F, b) = 〈P2,0, P3,1〉 ∩ 〈P1,1, P2,2〉 = Q2,1.

Eliminating all degree 2 vertices in the resulting picture recovers the square lattice except with the colors of
vertices reversed. The surviving points are precisely the Qi,j .
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P11

P20

P31

P42

P33

P22

b

F

Figure 6. The local transformations which, when followed by degree 2 vertex removals, realize
Laplace-Darboux dynamics.

A1
A2

A2
A3

A4

A5

A5 A6

F

Figure 7. A portion of the bipartite graph whose vector-relation dynamics coincide with the
pentagram map.

Example 4.4. The pentagram map takes as input a polygon in P2 with vertices Ai for i ∈ Z and outputs the
polygon with vertices

Bi = 〈Ai−1, Ai+1〉 ∩ 〈Ai, Ai+2〉.
This operation can be seen as a reduction of Laplace-Darboux dynamics. Indeed, one can check that letting

Pi,j = A(i+3j)/2, i+ j even
Qi,j = B(i+3j−1)/2, i+ j odd

gives an input-output pair for Laplace-Darboux. Note that Pi,j = Pi−3,j+1 and moreover if A is a closed n-gon
meaning Ai+n = Ai then Pi,j = Pi+2n,j .

As the bipartite graph for Laplace-Darboux was the square grid on Z2, the correct choice for the pentagram
map is the quotient of this graph by the lattice generated by (−3, 1) and (2n, 0). This is a bipartite graph on
a torus. Point Ai labels (the class of) the vertex (2i, 0). The relations are of the form “Ai−1, Ai, Ai+1, Ai+2
coplanar” which explains why the whole configuration must be in a plane. Finally, the local transformations
take the same form as for Laplace-Darboux.

The face weights of a polygon are precisely the y-parameters as defined in [15]. As an example, Figure 7
gives a portion of the bipartite graph. Applying Proposition 3.7, the variable at the face labeled F is

YF = −[A3, 〈A3, A4〉 ∩ 〈A1, A2〉, A4, 〈A3, A4〉 ∩ 〈A5, A6〉]−1.

Although this algebraic formulation of the pentagram map was known [15], there may be other insights to
be gained from the vector-relation perspective. For instance, if nearby vertices of a polygon come together it
creates a singularity for the pentagram map dynamics. Keeping track of the coefficients of the relation satisfied
by the points as they come together would be one way to try to control the behavior through the singularity.

Example 4.5. Different ways of putting the square grid graph on the torus produce different interesting systems.
The higher pentagram map of Gekhtman et al. [13] is obtained by working in RPd and identifying (i, j) with
(i − d − 1, j + d − 1). Indeed, the (−i, i) form a set of representatives of the white vertices. Placing a point
Pi at each (−i, i), the neighbors of a given black vertex are labeled by Pi, Pi+1, Pi+d, Pi+d+1. The condition
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1
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3

3
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5
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A3

A4

A5

A6

Figure 8. One step of a system that produces a pentagram spiral (left) along with the asso-
ciated bipartite graph (right).

that such four-tuples be coplanar is called the corrugated property and the sequence of moves from Example
4.3 produces points

〈Pi, Pi+d〉 ∩ 〈Pi+1, Pi+d+1〉
as in the higher pentagram map.

Example 4.6. The left of Figure 8 depicts one step of a certain pentagram spiral system [35]. The input is a
seed consisting of five points A1, . . . , A5 with A5 lying on the line through A1 and A4. The output is a new
seed A2, . . . , A6 with A6 = 〈A1, A3〉 ∩ 〈A2, A5〉. If iterated the result is a polygonal curve that spirals inwards
indefinitely.

The right of Figure 8 shows a bipartite graph whose vector-relation dynamics captures this system. As with
the pentagram map on hexagons, the vertex set of the graph G is Z2 modded out by the lattice generated by
(−3, 1) and (12, 0). However, G does not include all of the edges from the square grid. The figure shows exactly
one copy of each edge and each black vertex, while the repeats among white vertices help to visualize how the
picture repeats when lifted to Z2.

Place points Ai for i = 1, . . . , 6 at the white vertices. There are three degree 4 black vertices which give
conditions that {A1, A2, A3, A4}, {A2, A3, A4, A5}, and {A3, A4, A5, A6} are coplanar. As such, all six points
are on a common plane. There are also three degree 3 black vertices implying that the triples {A1, A4, A5},
{A1, A3, A6}, and {A2, A5, A6} are collinear. These match the defining conditions of the six points in the left
picture. In short, being a configuration on G is equivalent to being a union of two consecutive seeds of the
pentagram spiral.

We give a quick description of how to realize spiral dynamics. There is a quadrilateral face of G containing
white vertices 1 and 3. Urban renewal at this face followed by a degree 2 vertex removal will produce a graph
isomorphic to G. The points A2, . . . , A6 will remain and there will also be a new point A7 = 〈A1, A3〉∩〈A2, A4〉,
which is the next point on the spiral. So the dynamics on the graph are equivalent to the spiral map, with the
only discrepancy being that the former keeps track of six consecutive points at each time instead of five.

The graph G is a special case of the dual graph to a Gale-Robinson quiver, see [19]. It is likely that every
sufficiently large such graph models some combinatorial type of pentagram spiral.

Example 4.7. The second and third authors [16] defined a family of dynamical systems that iteratively build
up certain maps from Z2 to a projective space termed Y -meshes. Rather than give the full definition, we focus
on a single illustrative example.

The rabbit map acts on the space of triples A,B,C of polygons in P4 satisfying the conditions
Ai−1, Bi+1, Ci collinear
Ai+1, Bi, Ci collinear
Ai−1, Bi−1, Bi+1, Ci+1 coplanar

for all i ∈ Z. The map takes (A,B,C) to (B,C,D) where
Di = 〈Ai−1, Bi+1〉 ∩ 〈Bi−1, Ci+1〉

for all i. The vector-relation formulation of the rabbit map is given in Figure 9. The black vertices correspond
exactly to the conditions listed above. Propagation is carried out by applying urban renewal for each i at the
square face containing both Ai−1 and Bi+1.

In general, a Y -mesh is a map (i, j) 7→ Pi,j from Z2 to a projective space such that each translate of a fixed
4 element subset of Z2 maps to a quadruple of collinear points. For instance, the rabbit map is invertible and
a Y -mesh can be built from one of its orbits. Begin with Pi,0 = Ai, Pi,1 = Bi, Pi,2 = Ci for all i ∈ Z, and
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B0
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A3

A5

A4

A6

Figure 9. The bipartite graph corresponding to the rabbit map. The figure continues infin-
itely up and down, while the left and right sides are identified as per the labeling.

fill out the rest by performing the map in both directions, e.g. Pi,3 = Di. In this example, each quadruple
Pi−1,j , Pi+1,j+1, Pi,j+2, Pi,j+3 ends up being collinear.

We strongly suspect that every system from [16] is a special case of vector-relation dynamics. More precisely,
we showed in the former that each such system is modeled algebraically by local transformations on a certain
bipartite graph, and at least in examples the geometric dynamics can be seen to line up as well.

The vector-relation perspective represents a significant improvement in our understanding of Y -meshes. As
an example, in the original formulation only the cross ratio y-variables are easy to describe and the others
require a messy case by case analysis [16, Section 13]. Now we get a uniform description of all y-variables via
Proposition 3.7. For instance, the hexagon in Figure 9 containing A3, C2, B3 has weight

yF = [A3, B2, C2, A1, B3, 〈A3, B3〉 ∩ 〈B5, C5〉]−1.

A central question that is open in general is what minimum collections of points determine the Y -mesh and
what relations they satisfy (see [16, Section 8] for many examples including the rabbit case). There is hope that
these questions have answers in terms of graph theoretic properties of G. A result of this flavor in a different
context is given in Proposition 6.10.

4.2. Q-nets. Discrete conjugate nets, or Q-nets were introduced by Doliwa-Santini [8]; we follow the exposition
of Bobenko-Suris [5]. We shall specifically be concerned with 3-dimensional Q-nets, defined as follows.

Definition 4.8. [5, Definition 2.1] A map f : Z3 → R3 is a 3-dimensional Q-net in R3 if for every u ∈ Z3

and for every pair of indices i, j ∈ {1, 2, 3}, points f(u), f(u+ ei), f(u+ ej), f(u+ ei + ej) are coplanar (where
e1, e2, e3 are the generators of Z3).

While a Q-net is a static object, it is often convenient to think of it in a dynamical way as follows. For
u = (i, j, k) let |u| = i + j + k. A generation of vertices of a Q-net is the set of all f(u) where |u| = t. Let
us denote ft such t-th generation. Then knowing ft and ft+1 one can construct the next generation ft+2 as
follows. Consider an elementary cube consisting of eight points f(u + ε1e1 + ε2e2 + ε3e3), where each εi is
either 0 or 1. Assume |u| = t − 1. Then using the six points that belong to ft, ft+1 one can construct three
planes that have to contain f(u+ e1 + e2 + e3) ∈ ft+2. Intersecting those planes we generically get the unique
candidate for f(u+ e1 + e2 + e3).

The problem of parametrization of Q-nets, i.e. defining certain geometric quantities and giving formulas for
how they evolve from generation to generation, is discussed in [5]. The first such description goes back to the
original work [8]. Our construction suggests a new way to parametrize 3-dimensional Q-nets. Furthermore,
since our parameters are cross-ratios of quadruples of points, it is natural to view it as parametrizing projective
Q-nets, i.e. Q-nets considered up to projective equivalence.

Consider three consecutive generations ft, ft+1, ft+2 of a Q-net f . Their vertices and the edges that connect
them can be conveniently visualized as a lozenge tiling dual to the Kagome lattice, see Figure 10. Vertices of
each lozenge map into vertices of a face of one of the elementary cubes of a Q-net, and thus are coplanar. Thus,
the geometry of the three generations of points is captured by the bipartite graph we get by placing a white
vertex at each vertex of the lozenge tiling, and a black vertex at each face, see Figure 10. The set of points
of this configuration is sufficient initial data to determine the whole Q-net. In fact, the rest of the Q-net is
obtained via local transformations, which by an inductive argument boils down to the following.

Proposition 4.9. The sequence of square moves shown in Figure 11 realizes geometrically a step of time
evolution of the Q-net transitioning from vertex D to vertex D′ of one of the elementary cubes.
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Figure 10. Three generations of a Q-net and the associated bipartite graph
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Figure 11. The gentrification sequence of moves. For convenience, each black vertex is labeled
by the affine hull of the points at neighboring white vertices.

Proof. We verify the sequence of square moves using Proposition 3.5 on each step. For example, points G and
H are formed by intersecting line CD with affine spans of the rest of white points surrounding respectively a′

and b′, i.e. with lines BA′ and AB′. Here E = C ′D′ ∩AB′, F = C ′D′ ∩BA′, G = A′B ∩CD, H = AB′ ∩CD,
a = 〈AB′D′C ′〉 (the affine hull of these 4 points, which is a plane by the definition of Q-net), b = 〈A′BC ′D′〉,
c = 〈B′CA′D′〉, e = AB′, f = C ′D′, g = A′B, h = CD, a′ = 〈A′BDC〉, b′ = 〈AB′CD〉, c′ = 〈ADBC ′〉. □

Remark 4.10. This sequence of square moves has appeared in [21, Figure 8], without the current geometric in-
terpretation, and under the name of star-triangle move. Here we introduce the name gentrification to emphasize
its similar, but not coinciding nature with superurban renewal of [23], see below.

Denote by Qi,j,k the vertex of the Q-net with coordinates i, j, k. Let Qx
i,j,k be the edge connecting Qi,j,k

with Qi+1,j,k (thinking of the first coordinate as the x-direction). Define Qy
i,j,k and Qz

i,j,k similarly. By the
previous discussion, 3 successive generations ft, ft+1, ft+2 of the Q-net are the points of an associated circuit
configuration. Each face of the bipartite graph corresponds to an edge of the lozenge tiling, see the right of
Figure 10. Following our recipe from Proposition 3.7 (we omit the details), we get formulas for the associated
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face weights. They are
Y x

i,j,k = −[Qi,j,k, Q
x
i,j,k ∩Qx

i,j+1,k, Qi+1,j,k, Q
x
i,j,k ∩Qx

i,j,k+1]−1

for i+ j + k = t,
Ỹ x

i,j,k = −[Qi,j,k, Q
x
i,j,k ∩Qx

i,j,k−1, Qi+1,j,k, Q
x
i,j,k ∩Qx

i,j−1,k]−1

for i+ j + k = t+ 1, as well as two more copies of these formulas with the superscripts replaced by y or z, and
all subscripts cyclically shifted to the right by 1 or 2 spots respectively. To sum up:

Proposition 4.11. The collection of face weights, also known as the Y -seed, corresponding to the above setup
is

{Y ∗
i,j,k : i+ j + k = t} ∪ {Ỹ ∗

i,j,k : i+ j + k = t+ 1}.

Proposition 4.12. The variables Y evolve according to the following formulas (and their cyclic shifts):

Ỹ x
i,j+1,k+1 = (Y y

i,j,k)−1 1 + Y x
i,j,k + Y y

i,j,kY
x

i,j,k

1 + Y z
i,j,k + Y z

i,j,kY
x

i,j,k

Y x
i+1,j,k = Ỹ x

i+1,j,kY
x

i+1,j−1,kY
y

i+1,j−1,k

1 + Y z
i+1,j,k−1 + Y z

i+1,j,k−1Y
x

i+1,j,k−1

1 + Y x
i+1,j−1,k + Y x

i+1,j−1,kY
y

i+1,j−1,k

for all i+ j + k = t.

Figure 12. Q-net quiver.

Proof. One simply follows Y -variable dynamics of the associated cluster algebra, whose quiver is shown in
Figure 12. □

Remark 4.13. There is of course also X-variable cluster dynamics associated with gentrification. It is given by

Xx
i,j+1,k+1 =

Xx
i,j,kX

z
i,j+1,kX

y
i,j,k+1 +Xy

i,j,kX
z
i,j+1,kX

x
i,j,k+1 +Xz

i,j,kX
x
i,j+1,kX

y
i,j,k+1

Xy
i,j,kX

z
i,j,k

.

It is not clear if the X-variables have any geometric meaning in terms of Q-nets however.

Remark 4.14. Several cluster algebra descriptions of geometric systems, including Q-nets and discrete Darboux
maps, were found independently in [2]. A common situation that in particular holds for Q-nets is that there
are two distinct sets of geometric quantities that each evolve according to the (coefficient type) dynamics of
the same quiver. One of the goals of [2] is to better understand this phenomenon.

4.3. Discrete Darboux maps. Discrete Darboux maps were introduced by Schief [33]; we follow the exposi-
tion of Bobenko-Suris [5, Exercise 2.8, 2.9]. We identify the set of edges of a 3-dimensional cubic lattice with
Z3 × {x, y, z} in that each edge is in bijection with a node of Z3 and one of the three positive directions x, y, z
in which the edge points from that node.

Definition 4.15. [5, Definition 2.1] A map f : Z3 × {x, y, z} → R3 is a 3-dimensional discrete Darboux map
if for every face of the cubic lattice the images of its edges are collinear. In other words,

fx
i,j,k, f

y
i,j,k, f

x
i,j+1,k, f

y
i+1,j,k are collinear,

fx
i,j,k, f

z
i,j,k, f

x
i,j,k+1, f

z
i+1,j,k are collinear,

fy
i,j,k, f

z
i,j,k, f

z
i,j+1,k, f

y
i,j,k+1 are collinear.
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Remark 4.16. In Schief’s definition [33] the function takes values on faces of a cubic lattice, not edges. However,
as Schief himself observes in loc. cit. the two are equivalent since one can consider a dual cubic lattice with
vertices corresponding to elementary cubes of the original one.

One can think of discrete Darboux maps in a dynamical way in a similar fashion to Q-nets. Define the
generation of an edge in Z3 × {x, y, z} as the sum of its three coordinates. Then it is easy to see, as pointed
out in [5, Exercice 2.8], that each generation determines the next one uniquely. For example, fz

i+1,j+1,k is the
intersection of the line connecting fy

i+1,j,k to fz
i+1,j,k with the line connecting fx

i,j+1,k to fz
i,j+1,k. The fact that

six points fy
i+1,j,k, fz

i+1,j,k, fx
i,j+1,k, fz

i,j+1,k, fx
i,j,k+1, and fy

i,j,k+1 lie in one plane is a necessary condition that
is easily seen to self-propagate.

The geometry of a discrete Darboux map is captured by the bipartite graph in Figure 13. Here on each edge
of the lozenge tiling we place a white vertex signifying a point. To force the four points on the sides of a single
lozenge to lie on one line we introduce two black vertices inside. It is clear that if the two triples of points lie
on one line, then so do all four points. Figure 13 should be compared for example with [23, Figure 7].

Figure 13. The bipartite graph of a discrete Darboux map

Proposition 4.17. The sequence of square moves shown in Figure 14 realizes geometrically a step of time
evolution of the discrete Darboux map transitioning from vertices G,H,K to vertices L,M,N of the elementary
hexahedron.

Proof. We verify the sequence of square moves using Proposition 3.5 on each step. □
Remark 4.18. This sequence of square moves has appeared in [23, Figure 6], without the current geometric
interpretation, under the name of superurban renewal.

Proposition 3.7 suggests we introduce the following variables, one for each region in Figure 13. For the
variables associated with lozenges we get

Y xy
ijk = −[fx

ijk, f
y
i+1,j,k, f

x
i,j+1,k, f

y
ijk]−1,

and similar formulas for other pairs of indices. The variables associated with vertices of lozenges come in three
flavors, as there are three generations of them present in the picture.

Y in
ijk = [fx

ijk, f
y
i+1,j,k, f

y
ijk, f

z
i,j+1,k, f

z
ijk, f

x
i,j,k+1]−1, for i+ j + k = t

Y mid
ijk = −[fx

ijk, f
x
i,j,k−1, f

z
i,j,k−1, f

z
i,j+1,k−1, f

y
ijk, f

y
i−1,j,k, f

x
i−1,j,k, f

x
i−1,j,k+1,

fz
ijk, f

z
i,j−1,k, f

y
i,j−1,k, f

y
i+1,j−1,k]−1, for i+ j + k = t+ 1

Y out
ijk = [fx

i−1,j,k, f
y
i−1,j−1,k, f

y
i,j−1,k, f

z
i,j−1,k−1, f

z
i,j,k−1, f

x
i−1,j,k−1]−1, for i+ j + k = t+ 2.

The quiver is shown in Figure 15. The Y -s evolve according to the Y -dynamics formulas of the associated
cluster algebra. The formulas are too long to be written here.
Remark 4.19. The X-variable dynamics associated with this quiver and sequence of mutations has appeared in
[23, Lemma 2.3], see the formulas given there.
Remark 4.20. The notions of Q-nets and discrete Darboux maps are related by projective duality. As such,
it is interesting that we get distinct quivers for these two systems. A general notion of projective duality for
vector-relation configurations is developed in [2], capturing in particular the projective duality between Q-nets
and discrete Darboux maps.
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Figure 14. Superurban renewal.

Figure 15. Discrete Darboux map quiver.

5. Geometric configurations for resistor networks and the Ising model

Goncharov and Kenyon [17] give a recipe to go from a resistor network given by an arbitrary weighted graph
to a collection of edge weights on an associated bipartite graph. There is an analogous recipe starting from the
Ising model on a graph [9, 12, 21]. In the case that the initial graph is a triangular grid, these constructions
produce the same bipartite graphs discussed above for Q-nets (right of Figure 10) and discrete Darboux maps
(Figure 13), respectively. It turns out that the edge-weightings coming respectively from resistor networks and
the Ising model represent very natural subfamilies of these geometric configurations, namely discrete Koenigs
net and discrete CKP maps. In this section we present these two examples of vector-relation configurations
providing a link between physics and geometry.

A resistor network is a plane graph G = (V,E) with each edge assigned a positive real weight interpreted as
its conductance (i.e. reciprocal of resistance). Suppose we draw the dual graph G∗ = (V ∗, E∗) superimposed
over a drawing of G. The resulting picture can be interpreted as a bipartite graph Γ whose white vertex set
is V ∪ V ∗ and whose black vertices are the intersection points of dual edge pairs e ∈ E, e∗ ∈ E∗. Each edge
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c1

c2 c3

c1 c1

c2

c2 c3

c3

Figure 16. Constructing a bipartite graph from a resistor network. The unlabeled internal
edges on the right have weight 1.

c1
c1

c2

c2 c3

c3

u

u1

u2 u3

w1w2

w3

Figure 17. A small part of a vector-relation configuration coming from a resistor network.

of both G and G∗ is subdivided in two, and all of the resulting half edges together comprise the edge set of Γ.
Assign each half of an edge in E the same weight as the original edge, and assign each half of an edge in E∗ a
weight of 1. Figure 16 illustrates the construction starting from a portion of the triangular grid graph G.

Let G = (V,E) be the graph given by an infinite triangular grid and let Γ be the associated bipartite graph.
Comparing Figures 10 and 16, we see that vector relation configurations on Γ give three generations of a Q-net.
By Proposition 3.2, we can introduce signs to the weights coming from G to get such a configuration.

Proposition 5.1. Suppose (Qi,j,k) is a Q-net constructed from a resistor network as above. Then it is in fact
a discrete Koenigs net, meaning that the points Qi,j,k, Qi+1,j+1,k, Qi+1,j,k+1, and Qi,j+1,k+1 are coplanar for
all i, j, k ∈ Z.

Proof. The graph in Figure 17 shows a small piece of Γ. Consider each edge to have a negative sign if there
is a stroke drawn through it and a positive sign otherwise. This picture can be tiled to cover the plane and
define signs on all edges of Γ. The result satisfies the Kasteleyn condition: all faces are quadrilateral and each
has either one or three negative edges on its boundary. As such, the edge weights coming from G multiplied
by these signs give the relations of our vector-relation configuration.

The relations at the three black vertices in Figure 17 can now be read off as
u+ c1w1 − u1 − c1w2 = 0
u+ c2w2 − u2 − c2w3 = 0
u+ c3w3 − u3 − c3w1 = 0

(5.1)

Dividing relation i by ci and summing we obtain(
1
c1

+ 1
c2

+ 1
c3

)
u− 1

c1
u1 − 1

c2
u2 − 1

c3
u3 = 0.

Therefore the projectivizations of u, u1, u2, u3 all lie in a plane. These four points are precisely Qi,j,k, Qi+1,j+1,k,
Qi+1,j,k+1, Qi,j+1,k+1 for some i, j, k. The relationship between the dynamics of resistor networks and the dimer
model [17] guarantees that this property is preserved under the sequence of moves described in Section 4.2. The
equivalence of the coplanarity condition to other definitions of Koenigs nets is given in [5, Theorem 2.29]. □
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Figure 18. A bipartite graph coming from the Ising model.

Remark 5.2. The relations of (5.1) can be rearranged to be instances of the discrete Moutard equation on the
vectors at the white vertices. This description gives another path via [5, Theorem 2.32] to conclude that the
Q-net is a discrete Koenigs net.

Remark 5.3. Let G = (V,E) be a resistor network with weight function c. A discrete harmonic function is a
function f on V , say with values in a vector space, satisfying the condition∑

v′

c(vv′)(f(v) − f(v′)) = 0

for all v ∈ V . The harmonic condition is equivalent to the existence of a second function g on V ∗ satisfying

g(w) − g(w′) = c(vv′)(f(v) − f(v′))

for each dual edge pair vv′ ∈ E, ww′ ∈ E∗ (a convention needs to be fixed for the direction of the crossing
of the edges), see e.g. [21, Section 6]. If G is the hexagonal grid, so G∗ is the dual triangular grid, the above
precisely means that f and g together define valid vectors for the associated vector-relation configuration on
G. The picture is as in Figure 17 except with the non-trivial weights ci moved to the other half of the edges.
Some care with signs would be needed to extend this idea to other graphs.

We next consider the Ising model. We follow the approach of Galashin and Pylyavskyy [12]. Figure 18 gives
an example of a bipartite graph arising from an Ising network. Each unlabeled edge has weight 1 and the si, ci

are certain positive reals satisfying c2
i + s2

i = 1. Roughly speaking, the construction replaces each edge of the
original graph with a copy of the Gr2,4 plabic graph of Figure 22. In the case of Figure 18, the original graph
consisted of a single triangle whose ith edge passes through both new edges marked si.

Proposition 5.4. Consider a circuit configuration in R3 of the graph in Figure 18 with A,B, . . . ∈ P2 the
projectivizations of the points as indicated. Then the six points A,B,C,D,E, F lie on a conic.

Proof. Let Y be the face weight of the hexagonal face and let Yi for i = 1, 2, 3 be the weights of the quadrilateral
faces. On the one hand, these can be computed in terms of the edge weights

Y = c1c2c3

Yi = s2
i

c2
i

= 1
c2

i

− 1

from which we get
Y 2(1 + Y1)(1 + Y2)(1 + Y3) = 1.

Meanwhile, by Proposition 3.7

Y = [G,B,H,D,K,F ]−1

Y1 = −[F,G,K,E]−1 1 + Y1 = [F,K,E,G]
Y2 = −[G,A,B,H]−1 1 + Y2 = [G,B,H,A]
Y3 = −[H,C,D,K]−1 1 + Y3 = [H,D,K,C]

so
[G,B,H,D,K,F ]2 = [F,K,E,G][G,B,H,A][H,D,K,C].
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Every factor occurring in [G,B,H,D,K,F ] appears once in the right hand side, and when canceled out, what
remains is a triple ratio [G,E,K,C,H,A]. Therefore

[G,B,H,D,K,F ] = [G,E,K,C,H,A].

The relative position of the points is as in the top left of Figure 14 and it follows from Carnot’s Theorem [6]
that A,B,C,D,E, F lie on a conic. □

Now suppose we begin with an infinite triangular grid. The associated bipartite graph is the one in Figure
13 whose configurations correspond to discrete Darboux maps. What we have shown is that, in the notation
of Definition 4.15, a Darboux map arising from the Ising model has the property that for all i, j, k the points

fy
i+1,j,k, f

z
i+1,j,k, f

x
i,j+1,k, f

z
i,j+1,k, f

x
i,j,k+1, f

y
i,j,k+1

lie on a conic. This reduction of Darboux maps has been studied by Schief under the name discrete CKP maps
[33].

Proposition 5.5. Any discrete Darboux map arising from the Ising model on an infinite triangular grid is in
fact a discrete CKP map.

6. Configurations on plabic graphs

We now consider the plabic graph case, including the main definition in this setting (Section 6.2) and the
proof of Theorem 1.1 (Sections 6.3–6.5). An alternate point of view for this story in terms of the boundary
measurement map will be given in Section 7. For a quicker summary of how these pieces fit together see
Remark 6.5.

6.1. Background on positroid varieties. The proof of Theorem 1.1 utilizes a significant amount of the
theory of positroid varieties. We begin by reviewing the relevant material, generally following [29] and [27].

A plabic graph is a finite planar graph G = (B ∪ W,E) embedded in a disk with the vertices all colored
black or white. We assume throughout that G is in fact bipartite, that all of its boundary vertices are colored
white, and that each boundary vertex has degree 1 or 0. An almost perfect matching of G is a matching that
uses all internal vertices (and some boundary vertices). Assume always that G has at least one almost perfect
matching.

Remark 6.1. The most common formulation these days [27, 29] is to assume that G is bipartite with the
boundary vertices being uncolored and all having degree 1. Starting from such a graph, one can use degree
2 vertex addition where needed on boundary edges to get each boundary vertex adjacent to a black vertex.
At that point, boundary vertices can be colored white to adhere to our conventions. The exception is if the
original graph has a degree 1 white vertex attached to the boundary. The above procedure would produce a
graph that is not reduced, a condition we will eventually require. For us, an isolated boundary vertex models
this situation.

Fix for the moment a plabic graph G = (B ∪ W,E). Let M = |B|, N = |W |, and let n be the number of
boundary vertices. As all boundary vertices are white that leaves N − n internal white vertices. Number the
elements of B and W respectively 1 through M and 1 through N in such a way that the boundary (white)
vertices are numbered 1 through n in clockwise order. Let k = N −M . Each almost perfect matching uses all
M black vertices and all N − n internal white vertices. As such it must use M − (N − n) = n − k boundary
vertices, from which we conclude 0 ≤ k ≤ n, with the interesting case being 0 < k < n.

The totally nonnegative Grassmannian is the set of A ∈ Gr(k, n) for which the Plücker coordinate ∆J(A) is
real and nonnegative for all J . The matroid of any A ∈ Gr(k, n) is

M = {J : ∆J(A) 6= 0}.

A positroid is a set of k-element subsets of {1, . . . , n} that arises as the matroid of a point in the totally
nonnegative Grassmannian. We also denote a positroid by M even though this is a more restrictive notion
than a matroid.

Let M be a positroid. For j = 1, . . . , n, consider the column order j < j+1 < . . . < n < 1 < . . . < j−1. Let
Ij be the lexicographically minimal element of M relative to this order. The collection of sets (I1, . . . , In) is
called the Grassmann necklace of M. The positroids index a decomposition of the complex Grassmannian by
open positroid varieties Π◦

M, defined as intersections of cyclic shifts of Schubert cells encoded by (I1, . . . , In).
The positroid variety ΠM is defined to be the Zariski closure of Π◦

M. In order to give quicker definitions, we
fall back on the literature.

Theorem 6.2 (Knutson–Lam–Speyer [25]). The positroid variety ΠM is a closed irreducible variety defined in
the Grassmannian by

ΠM = {A ∈ Grk,n : ∆J(A) = 0 for all J /∈ M}.
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Taking this result as given we can define Π◦
M as the set of A ∈ ΠM whose Plücker coordinates ∆Ij

(A)
coming from the Grassmann necklace are all nonzero.

Let G = (B ∪ W,E) be a plabic graph. Following our conventions, all boundary vertices are white. An
almost perfect matching is a matching in G that uses all internal vertices. Hence it is a matching of B with
W \ J for some J ⊆ {1, . . . , n} (identified with the boundary vertices) satisfying |J | = k. The positroid of G,
denoted MG is the set of J that arise this way as the unused vertices of an almost perfect matching.

The boundary measurement map is a function that takes as input a set of nonzero edge weights on G and
outputs a point A ∈ Π◦

M, where M = MG. If wt : E → C∗ is the weight function then A is defined by its
Plücker coordinates via

(6.1) ∆J(A) =
∑

π

∏
e∈π

wt(e)

where the sum is over matchings π of B with W \J . The result is unchanged by gauge transformations at internal
vertices. The boundary measurement map plays a key role in the study of the nonnegative Grassmannian as it
proves that the individual strata therein are cells.

The situation is more complicated in the complex case as the boundary measurement map is not surjective.
Its image, which will play a key role for us, was identified by Muller and Speyer [29]. First, they define a
remarkable isomorphism τ : Π◦

M → Π◦
M called the right twist. Suppose A = [v1 · · · vn] and τ(A) = [v′

1 · · · v′
n].

We do not give the full definition of the twist, but instead state a key property (that defines the v′
j up to scale).

Specifically for each j, v′
j is orthogonal to vi for all i ∈ Ij \ {j}.

The last piece of technology we need, both in relation to the boundary measurement map and for other
purposes, is the notion of zigzag paths in G. A zigzag path is a path of G that turns maximally left (respectively
right) at each white (respectively black) vertex and either starts and ends at the boundary or is an internal
cycle. Each directed edge can be extended to a zigzag path, so there are two zigzag paths through each edge.
Define an intersection of two zigzags to be such an edge that they traverse in opposite directions. Say that G
is reduced if

• each zigzag path starts and ends at the boundary,
• each zigzag of length greater than two has no self intersections
• no pair of distinct zigzags have a pair of intersections that they encounter in the same order.

If G is reduced then there are exactly n zigzags, one starting at each boundary vertex. Call j the number
of the zigzag starting at vertex j. A zigzag that does not self intersect divides the disk into two regions. For
F a face of G, let SF denote the set of j for which F lies to the left of zigzag number j. There are two corner
cases. If j is attached to a degree 1 black vertex b then zigzag j goes from j to b and back to j. In this event
all faces are considered to be to the right of the zigzag. On the other hand, if j is an isolated boundary vertex
then zigzag j is an empty path that all faces are considered to lie to the left of. With these conventions one
can show that all SF have size k.

Theorem 6.3 (Muller-Speyer [29], Theorem 7.1). The image of the boundary measurement map is the set of
A ∈ Π◦

M whose twist A′ = τ(A) satisfies
∆SF

(A′) 6= 0

for all faces F of G. This set is dense in Π◦
M and in fact the coordinates ∆SF

(A′) give it the structure of an
algebraic torus.

6.2. The boundary restriction map. Theorem 1.1 should be understood with respect to a modified defi-
nition of vector-relation configurations specifically catered to plabic graphs. In this section, we first provide
this definition, then we reformulate Theorem 1.1 to clarify the connection with the various notions described
in Section 6.1.

Let G = (B ∪ W,E) be a plabic graph with all the notation of Section 6.1. In defining a vector-relation
configuration on G, we will see the natural ambient dimension is k = N − M . As such, we simply fix as our
vector space V = Ck. It is also natural to allow boundary vectors to be zero, and to add some genericity
assumptions. In the following, let Kij denote the coefficient of the vector vj in relation Ri where 1 ≤ i ≤ M
and 1 ≤ j ≤ N .

Definition 6.4. A vector-relation configuration on a plabic graph G is a choice of vector vw ∈ V = Ck for each
w ∈ W and a non-trivial linear relation Rb among the neighboring vectors of each b ∈ B such that

• the vector vw at each internal white vertex w is nonzero,
• the boundary vectors v1, . . . , vn span V , and
• the M ×N matrix K = (Kij) is full rank.

Two configurations are called gauge equivalent if they are related by a sequence of gauge transformations, in
the sense of Definition 2.2, at internal vertices.



VECTOR-RELATION CONFIGURATIONS AND PLABIC GRAPHS 21

Let CG denote the space of gauge equivalence classes of vector-relation configurations on G modulo the action
of GLk(C). If (v,R) ∈ CG then by assumption v1, . . . , vn span V = Ck. The vi are defined up to a common
change of basis so A = [v1 · · · vn] is a well-defined point of Grk,n. We use Φ to denote the map Φ : CG → Grk,n

taking (v,R) to A, and we call Φ the boundary restriction map.
In this language, Theorem 1.1 asserts that Φ maps CG into ΠM and that generic points in this positroid

variety have unique preimages. We next identify a set TG ⊂ Π◦
M whose elements are sufficiently generic for this

purpose. Specifically, let
(6.2) TG = {A ∈ Π◦

M : ∆S(F )(A′) 6= 0 for all faces F of G}

where A′ = τ(A) is the result of applying the right twist to A.

Remark 6.5. Note that TG is precisely the image of the boundary measurement map, as demonstrated by
Muller and Speyer [29] and reviewed in Theorem 6.3. In fact, the boundary restriction map and the boundary
measurement map are very closely related, a connection we explore in Section 7. Once that is done many of
our results follow from analogous ones in [29]. We focus first on presenting a derivation of Theorem 1.1 which
uses neither the connection between the boundary restriction map and the boundary measurement map nor
Theorem 6.3. We will however make extensive use of background material developed in [29], specifically in
Sections 2 – 6 and Appendix B of that paper. After proving Theorem 1.1, we provide a proof of Theorem 7.8
(a stronger version of Theorem 1.1), which does make use of Theorem 6.3.

As an example, we prove without appealing to Theorem 6.3 that TG ⊆ ΠM is dense. It suffices to show
TG is dense in Π◦

M since the latter is dense in ΠM. By (6.2), we have a collection of open conditions and it
remains to show that each is satisfiable, i.e. that no ∆S(F )(A′) is uniformly zero on Π◦

M. Let F be a face of
G. By [29, Theorem 5.3], there is an almost perfect matching of G avoiding the set S(F ) of boundary vertices.
Hence, applying the boundary measurement map (see (6.1)) to any choice of positive edge weights gives a point
A′ ∈ Π◦

M with ∆S(F )(A′) 6= 0. By [29, Corollary 6.8] the twist is invertible on Π◦
M and we can recover A.

6.3. Identifying the target. We begin with the first part of Theorem 1.1, namely that the positroid variety
ΠM can be taken to be the target of the boundary restriction map Φ.

Lemma 6.6. Let v ∈ CG. There is a surjective linear map φ : CN → V with kernel equal to the row span
row(K) such that each vw ∈ V is mapped to by the corresponding coordinate vector ew ∈ CN .

Proof. We can define a linear map φ via φ(ew) = vw for all w ∈ W . As v1, . . . , vn span V , this map is surjective.
Any given row of K is indexed by some b ∈ B, and equals

∑
w Kbwew. As such it gets mapped to

∑
w Kbwvw

which equals zero by relation Rb. So row(K) ⊆ ker(φ). But
dim row(K) = M

since K is full rank and
dim ker(φ) = N − dim(V ) = N − k = M

since φ is surjective so ker(φ) = row(K). □

The previous establishes that a configuration in this setting is completely determined by K. More precisely,
say two vector-relation configurations on the same graph are isomorphic if

• there is an isomorphism of their ambient spaces that identifies corresponding (at the same white vertex)
vectors, and

• the corresponding (at the same black vertex) relations are equal.
Then, K determines a configuration in the ambient space CN/row(K) as above whose vectors are projections
of the coordinate vectors and which is isomorphic to any other configuration giving rise to K.

Lemma 6.7. Let v ∈ CG and let S = {w1, . . . , wk} ⊆ W . Then
det[vw1 · · · vwk

] = ±λ∆W \S(K)

where λ is a nonzero scalar not depending on S and ∆J denotes the determinant of a submatrix consisting of
all rows and a specified set J of columns of a matrix.

Proof. By Lemma 6.6, v is isomorphic to the configuration of the projections of coordinate vectors in U =
CN/row(K). Viewing elements of U as equivalence classes of row vectors in CN , there is a well-defined,
multilinear, alternating map

(u1, . . . , uk) ∈ Uk 7→ det


u1
...
uk

K

 ∈ C.
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Applied to ew1 , . . . , ewk
, the result equals ±∆W \S(K) (if S is in increasing order the sign is determined by the

parity of (w1 − 1) + . . .+ (wk − k)). Pulling back via the isomorphism, this map corresponds to some nonzero
multiple of the determinant and in particular gives the desired formula for det[vw1 · · · vwk

]. □
Corollary 6.8. Let v ∈ CG and A = Φ(v). Let J = {j1, . . . , jk} with 1 ≤ j1 < . . . < jk ≤ n. Then the Plücker
coordinates of A are
(6.3) ∆J(A) = ±∆W \J(K)
with the sign determined by the parity of (j1 − 1) + . . .+ (jk − k).
Proof. A representing matrix for A is [v1 · · · vn], and we can compute its minors using Lemma 6.7. The Plücker
coordinates are only defined up to multiplication by a common constant so we can ignore the λ’s. □

Unfolding (6.3), we have
∆J(A) = ±

∑
f

sgn(f)
∏
b∈B

Kb,f(b)

where the sum is over bijections f from B to W \ J and sgn(f) is defined by thinking of f as a permutation
(we assumed linear orders on B and W , and the latter restricts to a linear order on W \ J). In fact Kbw = 0
unless bw is an edge, so we only get a nonzero term if the set of bf(b) forms an almost perfect matching of G
avoiding the vertex set J . So we can rewrite the formula as

(6.4) ∆J(A) = ±
∑

π

sgn(π)
∏

bw∈π

Kbw,

the sum being over such almost perfect matchings π.
Proposition 6.9. If v ∈ CG then Φ(v) ∈ ΠM.
Proof. Let J ⊆ {1, . . . , n} with |J | = k and suppose J /∈ M. By definition of M there is no almost perfect
matching of G avoiding J . Therefore the sum in (6.4) is empty and we get ∆J(Φ(v)) = 0. So Φ(v) satisfies the
defining equations of ΠM. □

The last result identifies linear dependent sets of size k among the boundary vectors. The result generalizes
easily.
Proposition 6.10. Let v ∈ CG and let S ⊆ W be any set of white vertices. Suppose there is no matching of
B with a subset of W disjoint from S. Then the vectors vw for w ∈ S are linearly dependent.
Proof. First suppose |S| = k. Then the vw for w ∈ S form a square matrix whose determinant can be calculated
using Lemma 6.7. There is no matching of B with W \ S so the right hand side is zero and the vectors are
dependent. If |S| < k then we can augment S arbitrarily to get a set of size k satisfying the same hypotheses and
hence corresponding to a dependent set. In other words {vw : w ∈ S} cannot be extended in the configuration
to a basis of V . All vectors together span V so it follows that the set is dependent. □
Remark 6.11. Restricting to the |S| = k case, one might hope for the stronger statement that {vw : w ∈ S} is a
basis if and only if there is a matching of B with W \ S. The if direction only holds for generic v ∈ CG. In the
generic case, the matroid of the vectors of v is dual to the so-called transversal matroid of the bipartite graph
G. This result is very similar to one of Lindström [28]. The similarity comes as no surprise as Lindström’s
famed lemma, which he introduced in that paper, is an essential ingredient in the boundary measurement map.
6.4. The reconstruction map. In this subsection, we begin to prove the second part of Theorem 1.1. Specif-
ically, we define a map Ψ on a dense subset of ΠM which will turn out to be a right inverse of Φ. As Ψ has the
effect of reconstructing the entire configuration from just the boundary vectors, we term it the reconstruction
map. We temporarily add an assumption on G that there is no isolated boundary vertex and no boundary
vertex attached to a vertex of degree 1. Since G is reduced this condition is equivalent to saying M has a basis
containing j and one excluding j for each j = 1, . . . , n. It follows that j ∈ Ij and j /∈ Ij+1.

It is convenient at this point to introduce an alternate representation of zigzag paths known as strands. A
strand is obtained from a zigzag by taking each turn of the zigzag and replacing it with an arc connecting
the midpoints of two edges involved. Based on the zigzag rules, the arc appears to go clockwise around a
white vertex and counterclockwise around a black vertex. The strand is obtained by combining all arcs of a
zigzag as well as small pieces at the beginning and end to connect it to the boundary of the disk. The strands
together form an alternating strand diagram, one example of which is given in Figure 19. Note that strand
number i begins slightly clockwise relative to boundary vertex i. An intersection of zigzags as defined previously
translates to an intersection in the usual sense of strands.

Each region of an alternating strand diagram has boundary oriented clockwise, counterclockwise, or in an
alternating manner, and the region corresponds respectively to a white vertex, black vertex, or face of G. Use
the notations Sw, Sb, and SF to denote the set of strands that the region in the strand diagram associated to
w, b, or F lies to the left of. For F a face, this definition agrees with the previously given zigzag one.
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Figure 19. The alternating strand diagram for a plabic graph (left) and the associated labeling
by sets of the faces and vertices of the graph (right).

Remark 6.12. To avoid strands altogether, one could define Sw and Sb in terms of the face labels via Sw = ∩FSF

and Sb = ∪FSF where both formulas range over all faces containing the vertex in question.

Proposition 6.13. Let F be a face of G, b ∈ B, and w ∈ W .
• |SF | = k, |Sw| = k − 1, and |Sb| = k + 1.
• If b and w are on the boundary of F then Sw ⊆ SF ⊆ Sb.

Proof. It is standard that each SF has size k. If w is a white vertex of F then there is a zigzag through w that
enters and exits along the boundary of F and turns left at w. The corresponding strand divides the regions
corresponding to F and w with the region corresponding to F on the left. Therefore Sw equals SF less that
one strand. In particular Sw ⊆ SF with |Sw| = k − 1. A similar argument applies to black vertices. □

We begin to construct the inverse of the boundary restriction map on TG as defined in (6.2). Fix A ∈ TG ⊆
ΠM and in fact fix a particular matrix representative so that the columns v1, . . . , vn of A all live in V = Ck.
Let Hj ⊆ V denote the linear span of {vi : i ∈ Ij \ {j}}. For each w ∈ W , define

(6.5) Lw =
⋂

j∈Sw

Hj .

Recall in the following that v′
j denotes column j of the right twist of A.

Lemma 6.14.
(1) Each Hj is a hyperplane with orthogonal complement spanned by v′

j.
(2) The k hyperplanes of the set {Hj : j ∈ SF } are in general position for each face F .
(3) Each Lw is a line.

Proof.
(1) Since A ∈ TG ⊆ Π◦

M we know that ∆Ij
(A) 6= 0 so the vi with i ∈ Ij form a basis of V . We know that

j ∈ Ij so Hj is a span of all but one of these vectors and is hence a hyperplane. The twist is defined
in such a way that v′

j is nonzero and orthogonal to each vi for i ∈ Ij \ {j}, so v′
j is the orthogonal

complement of Hj .
(2) It is equivalent to say that the orthogonal vectors v′

j for j ∈ SF form a basis of V . This holds true
since, by definition of TG in (6.2), ∆SF

(A′) 6= 0.
(3) By Proposition 6.13, for every w, |Sw| = k− 1. So Lw is an intersection in V = Ck of k− 1 hyperplanes

in general position and is hence a line.
□

Proposition 6.15. Let b ∈ B and choose nonzero vectors vw ∈ Lw for each neighbor w of b. Then these vw

satisfy a unique linear relation up to scale, and this relation has all coefficients nonzero.

Proof. Suppose b has degree d and let j1, . . . , jd be the numbers of the strands around b in counterclockwise
order. For i = 1, . . . d there is a face Fi separated from b by strand ji. There is an edge shared by Fi−1 and Fi

(indices modulo d) whose endpoints are b and some wi. Then w1, . . . , wd are the neighbors of b and we have
• SFi

= Sb \ {ji},
• Swi = Sb \ {ji−1, ji}.
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Let S = Sb \ {j1, . . . , jd}. Then for each i, S ⊆ Swi
so

vwi
∈ Lwi

⊆ ∩a∈SHa.

Also, S ⊆ SF1 so the hyperplanes in this intersection are in general position. As |S| = k + 1 − d we have that
∩a∈SHa has dimension d− 1. Therefore the d vectors vwi

in this space must satisfy a relation.
Now suppose c1vw1 + . . . + cdvwd

= 0 is a non-trivial relation. Note that j1 ∈ Swi for all i = 3, . . . , d,
so vwi ∈ Hj1 for these i. On the other hand, vw1 /∈ Hj1 because otherwise we would have vw1 ∈ Ha for all
a ∈ Sw1 ∪ {j1} = SFd

which would imply vw1 = 0. A similar argument shows vw2 /∈ Hj1 . Therefore, we can
apply a linear functional vanishing at Hj1 (e.g. the dot product with v′

j1
) to the above relation and precisely

the first two terms survive. It follows that c1 and c2 are either both zero or both nonzero and have a prescribed
ratio. The same is true by symmetry for each pair of consecutive coefficients. We cannot have all ci = 0 so the
ci are all nonzero and are unique up to multiplication by a common factor. □

Proposition 6.16. Let A ∈ TG. Then there exists a unique configuration (v,R) ∈ CG such that Φ(v,R) = A
and vw ∈ Lw for all w ∈ W . This configuration has the property that the set of vectors neighboring each black
vertex is a circuit.

Proof. Let vj equal column j of A. First we show vj ∈ Lj holds for these eventual boundary vectors. Consider
the boundary face F of G containing the boundary segment between j and j + 1. By [29, Proposition 4.3], SF

equals the set Ĩj in the so-called reverse Grassmann necklace of M. The strand separating face F from white
vertex j is in fact strand number j so Sj = Ĩj \{j}. Here Sj is shorthand for Swj , where wj is the jth boundary
white vertex. To prove vj ∈ Lj it is equivalent to show that vj is orthogonal to v′

i for each i ∈ Ĩj \ {j}. This
fact is part of the characterization of the inverse of the right twist (also known as the left twist) provided by
Muller and Speyer [29].

To extend to a configuration with the desired properties, each internal vw is determined up to scale since
Lw is a line. Fixing a nonzero vw for each w, we get by Proposition 6.15 that the associated relations Rb are
also determined up to scale. In short, the whole configuration is determined up to gauge at internal vertices,
giving us the uniqueness. Also by Proposition 6.15, the relations have nonzero coefficients which gives us the
circuit condition.

It remains to show that the vectors and relations (v,R) as above comprise a valid configuration on G. The
only property not clear at this point is that the Kasteleyn matrix K is full rank. As already mentioned, all
coefficients Kbw with bw ∈ E are nonzero. By the general theory, there is a unique almost perfect matching
of B with W \ I1 (one reference is [29, Proposition 5.13] and we also describe a construction of this matching
later on). Therefore the polynomial ∆W \I1(K) of the coefficients is in fact a monomial and hence nonzero. □

We now have our definition of the reconstruction map Ψ : TG → CG, namely it maps A to the configuration
given by Proposition 6.16. Clearly Φ ◦ Ψ is the identity. In plainer terms we have existence of an extension of
generic A ∈ ΠM to a full configuration. In principle, there could be other extensions with vw /∈ Lw for some
w, a possibility we rule out in the next subsection.

Example 6.17. Consider the plabic graph G in Figure 19. As discussed in Example 1.2, G corresponds to the
uniform matroid in Gr3,6, and it follows that Ij = {j, j + 1, j + 2} with indices modulo 6. Given A = [v1 · · · v6]
then, Hi = 〈vi+1, vi+2〉. The unique internal white vertex w has Sw = {3, 6}, so

Lw = H3 ∩H6 = 〈v4, v5〉 ∩ 〈v1, v2〉.
Hence our general recipe reproduces the result argued in Example 1.2.

6.5. Uniqueness. Fix A ∈ TG. We now know Φ(Ψ(A)) = A. On the other hand, suppose (v,R) ∈ CG and
that Φ(v,R) = A. We want to show (v,R) = Ψ(A) in order to establish that preimages are unique. In light
of Proposition 6.16, it is sufficient to show vw ∈ Lw for all internal white vertices w. The proof is in a sense
recursive, utilizing a certain acyclic orientation on G.

A perfect orientation on G is an orientation with the property that each internal white vertex has a unique
incoming edge and each (internal) black vertex has a unique outgoing edge. Given such an orientation, the
set of edges oriented from black to white always gives an almost perfect matching. We focus on one particular
perfect orientation which we denote O and which is defined as follows. Each edge of G is part of two zigzags
that traverse it in opposite directions. Declare each edge to be oriented in the direction of its smaller numbered
zigzag.

Let π be the almost perfect matching associated with O. More directly, an edge is in π if and only if the
smaller numbered zigzag through the edge traverses it from black to white. It is easy to see that π is among the
extremal matchings defined by Muller and Speyer [29] in terms of downstream / upstream wedges. Specifically,
π is the set of edges e for which the face of G containing the boundary segment from n to 1 lies in the upstream
wedge of e. We stick with our characterization of O and π, but make use of some previously established
combinatorial properties.
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Proposition 6.18 ([29, Theorem 5.3 and Corollary B.7]). The orientation O on G defined above has the
following properties:

(1) It is a perfect orientation.
(2) The corresponding matching π uses precisely the boundary vertices {1, . . . , n} \ I1.
(3) The matching uses exactly m− 1 edges from each internal 2m-gon face.
(4) The orientation is acyclic.

Proof. The first three parts amount to a special case of [29, Theorem 5.3]. The last one follows quickly from
the cited corollary, which states that π is the unique almost perfect matching using its set of boundary vertices.
Indeed, suppose for the sake of contradiction that the orientation had an oriented cycle. Half of the edges of
the cycle, namely those going from black to white, appear in π. Another matching is obtained by taking out
all of these edges and including the other half of the edges of the cycle. The result is another almost perfect
matching using the same boundary vertices, a contradiction. □
Corollary 6.19. Suppose (v,R) ∈ CG and that {vj : j ∈ I1} is a basis for V . Then Kbw 6= 0 for each edge bw
in the matching π.

Proof. By Corollary 6.8, we know ∆W \I1(K) 6= 0. As mentioned in the proof of Proposition 6.18, π is the
unique matching of W \ I1 with B. As such the determinant equals (up to sign) the product of the weights
Kbw of the edges of the matching. Therefore each such weight must be nonzero. □
Proposition 6.20. Suppose (v,R) ∈ CG and that {vj : j ∈ I1} is a basis for V . Recall H1 is the span of the
vectors vj for j ∈ I1 \ {1}. If w is a white vertex and there is no oriented (relative to O) path from boundary
vertex 1 to w then vw ∈ H1.

Proof. Let b be the black vertex such that bw is the unique edge incident to and directed towards w. By
Corollary 6.19, Kbw 6= 0. As

∑
w′ Kbw′vw′ = 0, we have that vw lies in the span of the vw′ for w′ the other

neighbors of b. Note that all edges w′b with w′ 6= w are oriented towards b so there is a length 2 path from
each w′ to w. We can apply the same argument recursively to each w′. Since the orientation is acyclic the end
result is that vw lies in the span of those vj with j a source (i.e. j ∈ I1) for which there exists a path from j
to w. By assumption there is no such path from 1 so vw ∈ H1 as desired. □
Lemma 6.21. Let w be any white vertex, internal or boundary. If w lies strictly left of the zigzag starting at
1 then there is no oriented path from 1 to w in the orientation O.

Proof. First note that every edge of zigzag 1 is oriented in the direction of zigzag 1. In other words, zigzag 1 is
an oriented path. We claim there is no oriented edge starting weakly right of the zigzag and ending strictly left
of the zigzag. The proof is case by case depending on the start vertex of the edge. If the edge starts strictly
right of the zigzag then it must end weakly right of the zigzag (otherwise it would cross it and break planarity).
If the edge starts on the zigzag at a black vertex b then it must be the unique edge oriented away from b. We
know that this edge is part of the zigzag so it ends on the zigzag. Lastly, suppose our given edge starts at a
white vertex w on the zigzag. The zigzag locally looks like b, w, b′ where b′ is reached by turning maximally
left at w. As such, all the edges incident to w lie weakly to the right of the zigzag. □

Combining Proposition 6.20 and Lemma 6.21, we have that vw lies on H1 if w is strictly left of the zigzag
starting at 1. By cyclic symmetry the statement from the previous sentence holds with 1 replaced by any start
vertex j (note that to give a direct proof one would use a different perfect orientation for each j). We are now
ready to prove the uniqueness result.

Proposition 6.22. Let (v,R) ∈ CG and suppose A = Φ(v) ∈ TG. Then (v,R) = Ψ(A).

Proof. Suppose A = Φ(v) ∈ TG. Then A is in the open positroid variety so the set of columns of A corresponding
to Ij is a basis of V for all j. Fix w ∈ W internal. For each j ∈ Sw we have the assumptions of Proposition
6.20 (with 1 replaced by j), so vw ∈ Hj . Therefore vw ∈ Lw. By Proposition 6.16, (v,R) is in fact the same as
Ψ(A). □
Proof of Theorem 1.1. Part 1 was proven in Proposition 6.9. For part 2, we showed existence of an extension
of A to ψ(A) in Proposition 6.16 and uniqueness of this extension in Proposition 6.22.

We have assumed at various points that G has no isolated boundary vertex and no boundary vertex attached
to a degree 1 vertex. We briefly describe modifications needed to handle these cases. First suppose j is an
isolated boundary vertex of G. One can consider the strand of j to be a simple arc disjoint from G starting at
a point clockwise from j and ending at a point counterclockwise from j. All definitions and proofs go through.

Now suppose j is attached to a degree 1 vertex b. The strand for j loops around b and self-intersects before
returning to the boundary, causing a few problems including in the definition of the reconstruction map. It
is consistent to have all other SF , Sw, Sb′ omit j, but there is no clear definition for Sj and Sb. That said, j
is part of every almost perfect matching so it is part of no basis of M. Hence any A ∈ ΠM has jth column
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Figure 20. Example illustrating the terminology for different types of faces of a plabic graph.
Here faces i through iv are internal and faces v through x are external with face x being the
infinite face.

vj = 0. As such, we can define Ψ(A) to have vj = 0 and Rb = 1vj , and define all other vectors and relations
in a manner independent of the index j. Elsewhere, the orientation we define is ambiguous regarding how to
orient the edge jb. In fact it must be oriented towards j to get a perfect orientation, and this choice does not
cause any other issues. □

7. Connection to the boundary measurement map

The boundary measurement map and boundary restriction maps are both functions landing in ΠM. The
input to the former is given by a collection of nonzero edge weights on G. The input to the latter is a vector-
relation configuration v on G. However, we have seen (paragraph after Lemma 6.6) that v is determined up to
isomorphism by the matrix K whose potentially nonzero entries are in bijection with edges of G. We will see
that applying the boundary measurement map to a set of edge weights is the same as applying the boundary
restriction map to K with entries equal to the edge weights multiplied by certain signs. This fact explains why
the formulas (6.1) and (6.4) take the same form and only differ in the signs of the individual terms. To rectify
these equations, we introduce a version of Kasteleyn signs for plabic graphs.

7.1. Kasteleyn signs for plabic graphs. Let G be a plabic graph as above. By a face of G, we mean a
connected component of the complement of the graph in the disk in which it is embedded. A face is internal if
its boundary is a closed walk in G and external otherwise. The boundary of an external face is an interlacing
collection of walks in G and segments of the boundary of the disk. There is a unique external face including
the boundary segment of the disk from n to 1. We call this face the infinite face and all other faces finite faces.
See Figure 20 for an example of this terminology.

Let εbw = ±1 for each edge bw of G. Say these constitute a choice of Kasteleyn signs if
• the product of the signs along the boundary of each internal 2m-gon face is (−1)m−1 and
• the product of the signs along the walk(s) on the boundary of each finite external face is (−1)m+a−1,

where a is the number of said walk(s) and 2m is the total number of edges along them.
Several notes are in order. Each walk on the boundary of an external face starts and ends at a boundary
vertex and hence has even length as we assume boundary vertices are white. No assumption is made about
the product of the signs around the infinite face. Lastly, the most common case is that G is connected. In
that event each finite external face is cut out by a single (a = 1) path from i to i+ 1 and the second condition
becomes that the product of signs along this path is (−1)m where 2m is its length.
Remark 7.1. One reference for Kasteleyn signs on plabic graphs is a short note of Speyer [36]. He does not
directly identify the conditions above. Instead he defines the signs implicitly so that a certain result (along the
lines of our Proposition 7.3) holds and then proves that such signs exist with a topological argument.
Proposition 7.2. A choice of Kasteleyn signs on G exists.

Proof. Extend G to a new graph G̃ by adding a single black vertex b∞ and n edges connecting b∞ to the
boundary vertices 1, . . . , n. Then G̃ can be embedded in a sphere and the faces of G̃ in the standard sense
biject in a natural way with the faces of G as defined above. Consider the faces of G̃ finite or infinite as dictated
by this bijection. By ordinary Kasteleyn theory signs can be chosen on the edges of G̃ so that each finite 2m-gon
face has a product of signs equal to (−1)m−1. This property is preserved by gauge transformations wherein all
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signs adjacent to a given vertex are flipped. Applying gauge as needed at vertices 1 through n we can assume
that all signs of edges adjacent to b∞ are positive. Restricting the signs to the subgraph G yields precisely the
right properties. □

7.2. The translation. We are ready to precisely state the procedure that translates between the boundary
restriction and boundary measurement maps.

Proposition 7.3. Let v ∈ CG and suppose that all coefficients Kbw for bw ∈ E are nonzero. Define wt : E → C∗

by wt(bw) = εbwKbw for a fixed choice of Kasteleyn signs. Then Φ(v) equals the output of the boundary
measurement map applied to this weight function.

Proof. Substitute Kbw = εbwwt(bw) into (6.4). Let εJ = ±1 as per the sign in the front of the summation,
which as previously mentioned is based on the parity of (j1 − 1) + . . .+ (jk − k). So given J and a matching π
of B with W \ J , the sign of the corresponding term is

(7.1) εJsgn(π)
∏

bw∈π

εbw.

To match (6.1) we need to show all these signs are equal (it is okay if they are all negative as the Plücker
coordinates are only defined up to a common multiple) as J and π vary. For two matchings with the same J
this property is standard for Kasteleyn theory. One possible reference is [20, Theorem 2], and in fact we will
follow the same outline in our proof of the general case.

We will compare the signs from (7.1) corresponding to the pair J1, π1 and the pair J2, π2. The disjoint union
of the edges of π1 and π2 gives a multigraph for which each internal vertex has degree 2 and each boundary
vertex has degree 0, 1, or 2. Each component (not counting isolated boundary vertices) is a doubled edge, a
cycle, or a path starting and ending at the boundary. Each path and cycle alternates between edges of π1 and
π2. Starting from π1 one can flip along such a component by switching to the other half of the edges to obtain a
matching with greater overlap with π2. By induction it suffices to consider the case when π1 and π2 are related
by a single flip. As already mentioned, the case of flipping a cycle in the graph is classical, so we focus on the
path case.

Suppose π1 and π2 are related by a flip of a path from i to j with i < j. Without loss of generality, π2
contains the edge of the path incident to i. It follows that J2 = J1 \ {i} ∪ {j}. Therefore

(7.2) εJ2

εJ1

= (−1)j−i.

We next consider the signs of the matchings. To make comparison easier, pass to the graph G̃ from the
proof of Proposition 7.2. Extend the matchings to π̃1 = π1 ∪ {ib∞} and π̃2 = π2 ∪ {jb∞}. Both are matchings
of B ∪ {b∞} with W \ (J1 ∩ J2). They are related by a flip in G̃ about a cycle consisting of the original path
from i to j along with the edges from i and j to b∞. It follows that sgn(π̃2) = (−1)m−1sgn(π̃1) where 2m is
the number of edges of this cycle. Now consider π1 as an M × M permutation matrix with columns indexed
by W \ J1. Then π̃1 is obtained by adding a row to the end corresponding to b∞, adding a column in the
appropriate place corresponding to i, and putting a 1 where the new row and column intersect. The columns
right of the new one are indexed by {i+ 1, . . . , N} \ J1, so

sgn(π̃1) = (−1)|{i+1,...,N}\J1|sgn(π1).
By a similar argument

sgn(π̃2) = (−1)|{j+1,...,N}\J2|sgn(π2).
Putting the pieces together

(7.3) sgn(π2)
sgn(π1)

= (−1)m−1+|{i+1,...,j}\J1|

using the fact that J1 and J2 agree beyond j.
The last consideration is the sign coming from the weights on the edges where π1 and π2 differ, i.e. along

the path from i to j. As in the previous paragraph we complete this to a cycle of length 2m passing through
b∞. This addition has no effect on signs because, as in the proof of Proposition 7.2 we take all edges adjacent
to b∞ to have sign +1. We have a cycle in G̃, a graph with ordinary Kasteleyn signs, so by [20, Lemma 1] the
signs around it come to (−1)1+m+l where l is the number of vertices properly inside the cycle, “inside” referring
to the component that does not include the infinite face. By our conventions, this inside region includes the
boundary vertices i + 1, . . . , j − 1 and not the others. Restricted to this region, the matching π1 includes all
vertices other than {i + 1, . . . , j − 1} ∩ J1. The vertices covered by π1 come in pairs so l has the same parity
as |{i+ 1, . . . , j − 1} ∩ J1|. Therefore

(7.4)
∏

bw∈π2
εbw∏

bw∈π1
εbw

= (−1)1+m+|{i+1,...,j−1}∩J1|.
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Multiplying (7.2), (7.3), and (7.4), we get that the ratio of the signs of the two terms is governed by the
parity of

2m+ j − i+ |{i+ 1, . . . , j} \ J1| + |{i+ 1, . . . , j − 1} ∩ J1|.
which equals 2m+ j − i+ j − i = 2(m+ j − i) (using that j /∈ J1). This number is even so the terms have the
same sign as desired.

□

7.3. Geometric interpretation of edge weights. The reconstruction map allows to construct a gauge class
of vector relation configurations on a plabic graph from a suitable point in the Grassmannian. One could then
fix a representative of the gauge class and a choice of Kasteleyn signs to determine the edge weights, obtaining
the preimage of the original point under the boundary measurement map. The edge weights are not unique,
but in this subsection we describe how to calculate one valid set of edge weights directly. Our method uses
an efficient recursive formulation of the boundary measurement map. We assume for this subsection that all
edge weights are positive reals. Note that the problem of recovering the edge weights was solved previously
for Le-diagrams by Talaska [37] and in general by Muller and Speyer [29] (the latter also allowing for complex
weights).

Assume throughout that G is oriented using the perfect orientation O from Section 6.5. The set of sources
of this orientation is I1. Suppose positive real edge weights are given on G. Fix a basis {ṽi : i ∈ I1} of Rk. For
any non-source white vertex w, define ṽw as follows. Let b be its unique neighbor such that e = bw is directed
towards w. All other neighbors w′ of b are such that bw′ is directed towards b. Let

(7.5) ṽw = 1
wt(e)

∑
w′

wt(bw′)ṽw′ .

As the orientation is acyclic, this is a sensible recursive definition.
Now let

σj = (−1)|I1∩{1,2,...,j}|−1.

and vj = σj ṽj for j = 1, . . . , n. Let A = [v1 · · · vn].

Proposition 7.4. The point A ∈ Grk,n agrees with the output of the boundary measurement map applied to
the weighted graph.

Proof sketch. There is a solution to the defining recurrence of the ṽw expressing each such vector as

ṽw =
∑
i∈I1

Miwvi

where Miw is the sum of weights of paths from i to w with respect to a certain notion of weight. The
matrix [ṽ1 · · · ṽn] nearly agrees with Postnikov’s original definition (which is made simpler in this case since our
orientation is acyclic) of the boundary measurement map [31]. The discrepancy is that Postnikov multiplies
each entry by a sign ((−1)s in his notation where s depends on i and j). Our approach of multiplying column
j by σj produces the same point of the Grassmannian. We choose to omit the details of Postnikov’s original
construction and of the equivalence with our choice of signs. □

Now, the ṽw are the vectors of a vector-relation configuration with the (7.5) being the relations. Using
acyclicity again, we can apply gauges at internal vertices so that the sum of the weights of incoming edges to
each internal vertex equals 1. In the notation above, e is the unique incoming edge to w so if w is internal then
wt(e) = 1 and the coefficients in (7.5) sum to 1. So ṽw is a convex combination of the ṽ′

w in this case. This is
our motivation to choose this representative of the gauge class.

Example 7.5. Figure 21 shows a plabic graph G for Gr3,6. As I1 = {1, 2, 3} only σ2 = −1 so we can suppress
the ∼’s in the ṽj except for j = 2. Let u be the vector at the interior white vertex. Let v1, ṽ2, v3 be any basis
of R3. Following the arrows we construct

u = a1v1 + a2ṽ2

v4 = 1
b0

(b1ṽ2 + b2v3 + b3u)

v5 = 1
c0

(c1v4 + c2u)

v6 = 1
d0

(d1v1 + d2v5 + d3u)

The output of the boundary measurement map is [v1v2 · · · v6] where v2 = −ṽ2.
If we allow gauge at boundary vertices, which corresponds to modding out by the torus action on the

Grassmannian, we can additionally arrange b0 = c0 = d0 = 1. Each vector is constructed as a convex
combination of its predecessors with coefficients given by the edge weights. It is easier to draw the picture in
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Figure 21. A plabic graph with an acyclic perfect orientation (left) and a configuration that
results from the associated sequence of convex combinations (right)

the projective plane replacing the vectors v1, ṽ2, . . . v6, u with points P1, P̃2, . . . , P6, Q (see the right of Figure
21). The points are constructed in the same way: start with P1, P̃2, P3, pick Q on segment P1P̃2, pick P4 in
triangle 4P̃2P3Q, pick P5 on segment P4Q, and pick P6 in 4P1P5Q.

The above all concerns the forward boundary measurement map. Going in the other direction, let A =
[v1 · · · vn] ∈ GRk,n be totally positive, meaning that all its Plucker coordinates are positive. Consider the
problem of reconstructing the positive edge weights. Let Ã = [ṽ1 · · · ṽn] ∈ Π◦

M where ṽj = σjvj for σj as before.
Finally, let ṽ = ψ(Ã) where the gauge class is chosen recursively so that each ṽw for w internal is a convex
combination of the ṽw′ for w′ two steps upstream from w.

Proposition 7.6. Define edge weights on G as follows. Given b ∈ B, let w be the target of the unique edge e
directed away from b. Below let w′ range over the other neighbors of b.

• Suppose w is internal. Then put wt(e) = 1 and let the wt(bw′) be the barycentric coordinates of ṽw

with respect to the ṽw′ .
• Suppose w is on the boundary. Then put wt(e) = λ where λ is chosen so that λṽw is a convex

combination of the ṽw′ . Let the wt(bw′) be the associated barycentric coordinates of λṽw.
Then, this edge weighting is a representative of the inverse of the boundary measurement map applied to A.

The proof is immediate as we are just undoing the boundary measurement map as described in this section.
The recipe for the edge weights is purely geometric: form and intersect some hyperplanes (as in the definition
of Ψ), do some projections, and take some barycentric coordinates.

Example 7.7. Continue with G as in Figure 21 and Example 7.5. Let A = [v1 · · · v6] ∈ Gr3,6 with all minors
positive. Consider the problem of determining the edge weights a1 and a2.

Let ṽ2 = −v2. As discussed in previous examples, the internal vector u satisfies

u ∈ 〈v1, v2〉 ∩ 〈v4, v5〉.

Positivity will ensure that u can be scaled to be a convex combination of v1 and ṽ2. Then, a1, a2 are the
corresponding barycentric coordinates.

Alternately, a direct formula for a1, a2 can be derived as follows. There is a determinantal identity

|v2v4v5|v1 − |v1v4v5|v2 = −|v1v2v5|v4 + |v1v2v4|v5

giving a vector on the desired line 〈v1, v2〉 ∩ 〈v4, v5〉. We want a convex combination

a1v1 + a2ṽ2 = a1v1 − a2v2

so we scale down to get

a1 = |v2v4v5|
|v1v4v5| + |v2v4v5|

, a2 = |v1v4v5|
|v1v4v5| + |v2v4v5|

.

These values are positive when the minors of A are positive as expected.
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7.4. The circuit condition. We conclude this section with a discussion of configurations v ∈ CG satisfying
the circuit condition at each black vertex.

Define C◦
G ⊆ CG to be the set of configurations (up to gauge and GLk action) with all coefficients of all

relations nonzero. The statement of Proposition 7.3 can be summarized by saying there is an identification of
C◦

G with the set of gauge classes of nonzero weights on G such that Φ|C◦
G

agrees with the boundary measurement
map. We now give a slightly stronger formulation of Theorem 1.1.

Theorem 7.8. Let G be a reduced plabic graph.
(1) The image of Φ is contained in ΠM.
(2) The restriction of Φ to C◦

G is an isomorphism with its image TG.
(3) C◦

G = Φ−1(TG).

Proof. The first part is a restatement of the first part of Theorem 1.1. From the second part of Theorem 1.1
we have that each A ∈ TG has a unique preimage under Φ. More precisely, we know by Proposition 6.16 that
the preimage Ψ(A) has nonzero coefficients in all its relations, i,e, Ψ(A) ∈ C◦

G. All that remains for both the
second and third parts of the current theorem is to show that Φ(C◦

G) ⊆ TG. As Φ has the same image as the
boundary measurement map, the previous follows from Theorem 6.3. □

Proposition 7.9. Let (v,R) ∈ CG. Then (v,R) ∈ C◦
G if and only if the vw neighboring each b ∈ B are a

circuit.

Proof. Any non-trivial linear relation on the elements of a circuit must have nonzero coefficients, so the if
direction is easy. On the other hand, if v ∈ C◦

G, then by Theorem 7.8 we have Φ(v) ∈ TG so v = Ψ(Φ(v))
satisfies the circuit condition by Proposition 6.16. □

8. Structure of the space CG

Let G be a plabic graph with all of the conventions and notation of Section 6. We have defined CG as the
set of vector-relation configurations on G modulo gauge transformations at internal vertices and the action of
GLk(C). We now consider the algebraic-geometric structure both of CG and of the function Φ : CG → ΠM.
We know TG ⊆ ΠM is dense, and by Theorem 7.8 the difference of these sets is mapped to by CG \ C◦

G. The
main result of this Section is that CG is a smooth algebraic variety. Unfortunately, the map Φ is not always
surjective, but we will see that it does resolve singularities of the positroid variety in some cases.

First, consider a configuration v ∈ CG. We will describe explicitly a bijection between a neighborhood of v
and an open subset of an affine variety. Since the boundary vectors v1, . . . , vn span V , there must be a basis
{vj : j ∈ I} among them. Acting by GLk we can arrange for this to equal the standard basis in order. Next,
each internal vector vw is nonzero so we can pick one of its nonzero entries and apply a gauge so that the entry
equals 1. Finally, by Lemma 6.7 we know that

∆W \I(K) 6= 0.

It follows that there is an almost perfect matching of B with W \ I with all Kbw along the matching nonzero.
Apply gauge at the black vertices to scale all these Kbw to 1.

We have exhausted the allowable operations, so the collection of remaining variables gives a well-defined
map to affine space. Specifically, the coordinates are the entries of the boundary vectors vj with j /∈ I, each
entry of each internal vector vw except the one scaled to 1, and all the Kbw for edges bw not in the matching.
The map to affine space is injective and it is easy to describe the image. For each b ∈ B the vector relation∑

w Kbwvw = 0 amounts to k quadratic relations in the variables. The only other condition is that the matrix
K has full rank. Restricting the chart a bit, we can replace the full-rank condition with the single inequality
∆W \I(K) 6= 0 which as already mentioned holds for v.

Example 8.1. The graph G in Figure 22 is one of the standard plabic graphs for the open cell in Gr2,4. Suppose
a point v ∈ CG is given such that {v1, v3} is a basis of C2, v2 appears non-trivially in the relation on v2, v3, v4,
and v4 appears non-trivially in the relation on v1, v2, v4. The normalization described above produces the
configuration in the figure where the edge variables indicate the coefficients of the relations. From the vector
relations v2 + av3 + bv4 = 0 and cv1 + dv2 + v4 = 0 we obtain the system

x2 + bx4 = 0
y2 + a+ by4 = 0
c+ dx2 + x4 = 0

dy2 + y4 = 0

The Kasteleyn matrix is [
0 1 a b
c d 0 1

]
.
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Figure 22. One chart on CG with G a plabic graph corresponding to Gr2,4.

Taking the columns not in our basis we want ∆24(K) = 1 − bd 6= 0. The image of the chart is defined in affine
space C8 by the four equations above and this one inequality.

In fact, a more efficient chart is obtained by taking just a, b, c, d as coordinates. The other variables can be
reconstructed as

x2 = bc

1 − bd
x4 = − c

1 − bd

y2 = − a

1 − bd
y4 = ad

1 − bd

and as before we assume 1 − bd 6= 0. The image of the chart is an open subset of C4, so in particular it is
smooth.

Theorem 8.2. The space CG of configurations on any reduced plabic graph G is smooth.

The images of the charts defined above have lots of defining equations which make analysis somewhat
difficult. Generalizing Example 8.1, we introduce more intricate charts which have the advantage of landing in
open subsets of affine space. The atlas that results is indexed by certain subgraphs of G.

Say a subgraph F = (B ∪W,E′) of G = (B ∪W,E) is a system in G if
• F is a forest,
• each component of F includes exactly one boundary vertex of G, and
• each component of F either contains exactly one edge or has the property that all of its black vertices

have degree 2.
We choose the name because F has the appearance of a system of rivers connecting various points on an island
to the surrounding ocean.

Proposition 8.3. Let F = (B ∪ W,E′) be a system in G. Suppose a configuration v ∈ CG has the property
that Kbw 6= 0 for all bw ∈ E′. Then there is a unique representative of the gauge class of v so that Kbw = 1
for all bw ∈ E′.

Proof. There is a unique simple path in F from each internal vertex to the boundary. Define a partial order
on the set of internal vertices via a � a′ if a lies on the path from a′ to the boundary. Go through the internal
vertices in a manner consistent with this order. At each a apply gauge to set equal to 1 the coefficient at the
first edge on the path from a to the boundary. Each Kbw will be set to 1 after the gauge at whichever of b or w
is larger in the order, and it will remain unchanged thereafter. It is easy to see that all choices for this gauge
were forced, so the outcome is unique. □

We now have a rational map φF : CG → C|E\E′|. The map takes as input a configuration v, performs the
gauge described in Proposition 8.3, and outputs the remaining coefficients Kbw for bw /∈ E′. On the other
hand, given a point in c ∈ C|E\E′| we can construct a matrix K by setting

Kbw =


1, if bw ∈ E′

cbw, if bw ∈ E \ E′

0, otherwise

As explained in the paragraph following Lemma 6.6, an element of CG is determined by its Kasteleyn matrix
so we can recover v. Therefore φF is injective.

Proposition 8.4. The image of φF is dense in C|E\E′|.
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Proof. Given c ∈ C|E\E′| we can construct K as above and then use Lemma 6.6 to build a configuration v in
CN/row(K). The only difficulty would be if v violated one of the conditions in the definition of CG, each of
which is easily seen to be stated in terms of an inequality. Specifically we need

• K is full rank, i.e. some ∆S(K) 6= 0,
• the boundary vectors v1, . . . , vn span V (equivalently some subset of them is a basis), i.e. some

∆W \J(K) 6= 0 with J ⊆ {1, . . . , n}, and
• for all w internal vw is nonzero (equivalently vw is part of a basis with other vectors of v), i.e. some

∆S(K) 6= 0 with w /∈ S.
□

Everything so far has only used the first two conditions of a system, namely that it is a forest with exactly
one boundary vertex per component. The next result, which identifies the origin of each chart, clarifies the
significance of the third condition.

Proposition 8.5. The origin 0 ∈ C|E\E′| is in the image of φF . It represents a configuration where certain k
boundary vectors form a basis, the other boundary vectors are 0, and each internal vector is proportional to the
boundary vector in the same component.

Proof. First note each single edge component of F is balanced as it has 1 black and 1 white vertex. Meanwhile,
every other component has exactly one more white vertex than black. Indeed the number of edges of the
component is one less than the number of vertices (since it is a tree) and twice the number of black vertices
(since each black vertex has degree 2). So the number of non-single edge components must equal N −M = k.
Let J be the set of boundary vertices of these components.

Let Fj be the component of F containing boundary vertex j. Fix j ∈ J and w a white vertex of Fj . Then
there is a unique matching in Fj of all vertices other than w. Indeed, each white vertex is paired with its
neighbor on the unique path in Fj from it to w and each black vertex b is paired with the one of its two
neighbors not on the path from b to w. Letting j vary, we get a characterization of every matching of B into
W (using only edges of F ):

• for each j ∈ J , the matching restricted to Fj equals the matching described above excluding w for some
white vertex w of Fj ,

• for each j /∈ J , the matching must include the single edge of Fj .
Let π be the matching where we choose to exclude the boundary vertex j of Fj for each j ∈ J . Then π is an

almost perfect matching involving the white vertices W \ J . Similarly, let w ∈ W be any internal vertex. Then
w is in Fj for some j ∈ J . Define πw to be the matching that excludes w as well as the boundary vertices of J
other than j. Then πw is a matching of B with W \ S where S = (J \ {j}) ∪ {w}.

Consider the point 0 ∈ C|E\E′| which corresponds to the zero-one matrix K with Kbw = 1 precisely for
bw ∈ E′. The matchings π and πw witness the conditions from Proposition 8.4 for this point to be in the image
of φF . Consider the associated configuration v. If j ∈ {1, . . . , n} \ J then j is part of a single edge component.
The black vertex of this component gives the relation vj = 0. It follows that the vj for j ∈ J must be a basis.
Each internal black vertex gives a relation u + u′ = 0 among its two neighbor vectors in F . By induction, all
vectors in a given component of F are proportional to each other. □

Proof of Theorem 8.2. Let v ∈ CG. We will construct a system F so that φF is defined at v. As such we get
an identification of a neighborhood of v with an open set in affine space proving that CG is smooth at v.

Let J ⊆ {1, . . . , n} be such that {vj : j ∈ J} is a basis of V . Then there is an almost perfect matching π of
B with W \ J such that Kbw 6= 0 for all bw ∈ π. We will start from the graph F = (B ∪W,π) and add edges
one at a time maintaining the properties

• F is a forest
• each component of F includes at most one boundary vertex
• each non-single edge component of F is connected to the boundary and has all its black vertices degree

2
• each edge of F has a nonzero coefficient Kbw

until all vertices are connected to the boundary. The result will be a system F with φF defined at v.
Suppose we are at a stage where not all vertices of F are connected to the boundary. There are never

isolated black vertices, so there must be a white vertex w not connected to the boundary. Since vw 6= 0, it can
be swapped into {vj : j ∈ J} so that the result is still a basis. Suppose j ∈ J is such that vj is the vector that
got swapped out. Then there is a matching π′ of B that avoids the white vertices (J \ {j}) ∪ {w} and that has
all edge variables nonzero. The disjoint union of π and π′ has degree ≤ 2 at each vertex and degree 1 at only
w and j. As such it contains a path from w to j which we consider oriented in that direction. Let e be the first
edge of this path whose target is connected to the boundary in F . Then the source of e is not connected to the
boundary in F , so e is not in F and in particular e is not in π. Therefore e is in π′ from which it follows that
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Figure 23. An example of a coordinate chart on CG coming from a system in G.

e goes from black to white. Adding e to F merges a single edge internal component to a boundary-connected
component along a black vertex of the former. All the properties listed above are easily verified.

As it is always possible to find an additional edge, the above process does not terminate until all vertices are
connected to a boundary. It follows at that point that F is a system as desired. □

Combining with results from the previous section, we have that Φ : CG → ΠM maps a smooth variety to the
positroid variety and restricts to an isomorphism from C◦

G to TG. It would be interesting to characterize the
image of CG under Φ. As suggested by the referee, a possible candidate could be the union of several Deodhar
strata [38], which are a refinement of positroid strata and are indexed by weighted networks resembling the
coordinate charts associated to our systems. Although Φ is not surjective, it can resolve certain singularities of
ΠM as the next example illustrates.

Example 8.6. Consider the plabic graph G in Figure 23. The four edges of a system F have been labeled with
1’s and the other three edges assigned coordinates a, b, c. We have that J = {3, 4} are the boundary vertices
of the non-single edge components of F so we can take v3, v4 as a basis. It is then possible to determine the
vectors at the other three white vertices. In these coordinates, the map Φ takes the form

(a, b, c) ∈ C3 7→
[
b c 1 0
ab ac 0 1

]
∈ ΠM ⊆ Gr2,4.

The target ΠM of Φ in this case is a Schubert variety defined in Gr2,4 by the single equation ∆12 = 0. This
variety has a unique singular point given in matrix form by

Asing =
[

0 0 1 0
0 0 0 1

]
.

If A = [v1v2v3v4] 6= Asing then v1, v2 are dependent but not both zero, so they span a line. The rightmost two
black vertices in the plabic graph force the vector u at the internal white vertex to lie on this line. One can
check, then, that the three relations of a configuration are always determined up to scale. So A has a unique
preimage in CG.

On the other hand, let A = Asing. Then v1 = v2 = 0 and the internal vector u ∈ C2 becomes arbitrary. As
we only consider u up to scale, we have a P1 worth of preimages. This is the standard picture of the blowup of
a variety at a point. Alternately, we can analyze the situation in coordinates. Restricting to the above chart
we get a set {(a, 0, 0) : a ∈ C} of preimages of A. The last preimage, corresponding to the point at infinity in
P1, lies outside the chart.
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