MODULAR PERIODICITY OF THE EULER NUMBERS
AND A SEQUENCE BY ARNOLD

SANJAY RAMASSAMY

ABSTRACT. For any positive integer ¢, the sequence of the Euler
up/down numbers reduced modulo ¢ was proved to be ultimately
periodic by Knuth and Buckholtz. Based on computer simulations,
we state for each value of g precise conjectures for the minimal
period and for the position at which the sequence starts being
periodic. When ¢ is a power of 2, a sequence defined by Arnold
appears, and we formulate a conjecture for a simple computation
of this sequence.

1. INTRODUCTION

The sequence of Euler up/down numbers (E,),>o is the sequence
with exponential generating series

oo En
(1) Z—x” = secz + tanz.

It is referenced as sequence A000111 in [Slol7] and its first terms are
1,1,1,2,5,16,61,272,1385, 7936, 50521, 353792, 2702765, . . .

The numbers E, were shown by André [And79] to count up/down
permutations on n elements (see Section [3)).

Knuth and Buckholtz [KB67] proved that for any integer ¢ > 1, the
sequence (£, mod q),>o is ultimately periodic. For any ¢ > 1 we
define :

e s(q) to be the minimum number of terms one needs to delete
from the sequence (E,, mod ¢),>¢ to make it periodic ;
e d(q) to be the smallest period of the sequence (E,, mod ¢),>s()-

For example, the sequence (F,, mod 3) starts with
1,1,1,2,2.1,1,2,2,1,1,2,2, ...

so one might expect to have s(3) = 1 and d(3) = 4. Clearly s(1) =0
and d(1) = 1. In the remainder of this paper, we formulate precise
conjectures for the values of s(¢q) and d(q) for any ¢ > 2.
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Organisation of the paper. In Section [2| we reduce the problem to
the case when ¢ is a prime power and we conjecture the values of s(q)
and d(q) when ¢ is an odd prime power. In Section [3{ we conjecture the
values of s(¢q) and d(q) when ¢ is a power of 2, after having introduced
the Entringer numbers and a sequence defined by Arnold describing the
2-adic valuation of the Entringer numbers. In Section [ we provide a
simple construction which conjecturally yields the Arnold sequence.

2. CASE WHEN ¢ IS NOT A POWER OF 2

The following lemma implies that it suffices to know the values of
s(q) and d(q) when ¢ is a prime power in order to know the values of
s(q) and d(q) for any g > 2.

Lemma 1. Fix ¢ > 2 and write its prime number decomposition as

k
2) g=1]»"
=1

where k > 1, p1,...,pg are distinct prime numbers and o, ..., q are
positive integers. Then

(3) s(g) = max s(pi")

(4) d(q) = lem(d(pi"),...,d(py*)).

The proof is elementary and uses the Chinese remainder theorem.
When ¢ is an odd prime power, Knuth and Buckholtz [KB67] found
the following :

Theorem 2 ([KB67]). Let p be an odd prime number.
(1) If p=1 mod 4, then

d(p) =p—1.
(2) If p=3 mod 4, then
d(p) =2p -2
(3) For any k > 1,
s(p*) < k

(4) For any k > 2,
d(p")|p*d(p).

We conjecture the following for the exact values of s(¢q) and d(q)
when ¢ is an odd prime power :

Conjecture 1. Let p be an odd prime number.
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(1) For any k > 1,
s(p") = k.
(2) For any k > 2,

d(p*) = p"'d(p).

Conjecture (1] is supported by Mathematica simulations done for all
odd prime powers ¢ < 1000.

3. ENTRINGER NUMBERS AND CASE WHEN ¢ IS A POWER OF 2

Formulating a conjecture analogous to Conjecture 1| for powers of 2
requires to define, following Arnold [Arn91], a sequence describing the
behavior of the 2-adic valuation of the Entringer numbers.

3.1. The Seidel-Entringer-Arnold triangle. The Entringer num-
bers are a refined version of the Euler numbers, enumerating some sub-
sets of up/down permutations. For any n > 0, a permutation o € S,
is called up/down if for any 2 < i < n, we have (i — 1) < o(i) (resp.
o(i —1) > o(i)) if ¢ is even (resp. i is odd). André [And79] showed
that the number of up/down permutations on n elements is E,. For
any 1 <1 <n, the Entringer number e, ; is defined to be the number
of up/down permutations o € §,, such that o(n) = i. The Entringer
numbers are usually displayed in a triangular array called the Seidel-
Entringer-Arnold triangle, where the numbers (e, ;)1<i<, appear from
left to right on the n-th line (see Figure [1)).

FI1GURE 1. First five lines of the Seidel-Entringer-Arnold triangle.

The Entringer numbers can be computed using the following recur-
rence formula (see for example [Sta97]). For any n > 2 and for any
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1 <1 < n, we have

(5) e . — qu en—1; ifniseven
" iji en—1,; ifnisodd ’

3.2. Arnold’s sequence. Replacing each entry of the Seidel-Entringer-
Arnold triangle by its 2-adic valuation, we obtain an infinite triangle
denoted by T (see Figure [2)).

0
00 0
0 0 00
00 0 1 1
0 0 2 1 00

FiGURE 2. First five lines of the triangle T' of 2-adic
valuations of the Entringer numbers.

We read this triangle 7" diagonal by diagonal, with diagonals parallel
to the left boundary. For any ¢ > 1, denote by D; the i-th diagonal
of the triangle T parallel to the left boundary. For example D; starts
with 0,00,0,00,0,.... For any ¢ > 1, denote by m; the minimum
entry of diagonal D;. Arnold [Arn91] observed that the further away
one moves from the left boundary, the higher the 2-adic valuation of
the Entringer numbers becomes. In particular, he observed (without
proof) that the sequence (m;);>1 was weakly increasing to infinity. He
defined the following sequence : for any k£ > 1,

uy = max {i > 1lm; < k}.

In other words, u; is the number of diagonals containing at least one
entry that is not zero modulo 2*. The sequence (uy)>; is referenced as
the sequence A108039 in OEIS [Slo17] and its first few terms are given
in Table [

k|1]2 2016|7819 (10]11]12]13|14|15|16|17 |18

w
W

ug 214141418888 |10(12(1216|16|16|16|16| 18|20

TABLE 1. The first few values of wuy,.
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Note that the first few terms given by Arnold were incorrect, be-
cause the entry 4 appeared four times, whereas it should be appearing
only three times. We also remark that we cannot define any sequence
analogous to (ux) when studying the p-adic valuations of the Entringer
numbers for odd primes p. Indeed, the p-adic valuation 0 seems to
appear in diagonals of arbitrarily high index.

3.3. Case when ¢ is a power of 2. Using the sequence (uy)r>1, we
formulate the following conjecture for s(q) and d(q) when ¢ is a power
of 2:

Conjecture 2. For any k > 1, we have

(6) s(2%) = ..
Furthermore, if k > 1 and k # 2, we have
(7) d(2F) = 2~

Finally, we have d(4) = 2.

Numerical simulations performed on Mathematica for k£ < 12 sup-
port Conjecture [2]

4. CONSTRUCTION OF ARNOLD’S SEQUENCE

In this section we provide a construction which conjecturally yields
Arnold’s sequence (ug)>1-
We denote by Z, the set of nonnegative integers and we denote by

o d
Se=| ]z
d>1
the set of all finite sequences of nonnegative integers. We define a

map f : S — S, which maps each Zi to Z*%, as follows. Fix z =

(x1,...,2q4) € S. If all the z;’s are equal to z4, we set

flz) = (zq,...,2q,22q,...,224),
where x4 and 2z, both appear d times on the right-hand side. Other-
wise, define
s:=max{l <i<d-—1lx; # 24}
and set
f@)=(r1,..., 20,01+ Tq, ..., Ts_1 + Tq,22q,...,2x4),

where 2x; appears d — s+ 1 times on the right-hand side. For example,
we have

(8) f((2,4,4,4)) = (2,4,4,4,8,8,8,8)
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and

(9)
£(2,4,4,4,8,8,8,8) = (2,4,4,4,8,8,8,8,10, 12, 12, 16, 16, 16, 16, 16).

By iterating this function f indefinitely, one produces an infinite se-
quence :

Lemma 3. Fiz d > 1 and x € Z%. There exists a unique (infinite)
sequence (Xg)k>1 such that for any k > 1 and for any n > log,(k/d),
Xy, is the k-th term of the finite sequence f"(z).

This infinite sequence is called the f-transform of x. The lemma
follows from the observation that for any ¢ > 1 and for any y € Z%, y
and f(y) have the same first ¢ terms. B B

We can now formulate a conjecture about the construction of the
sequence (uy)g>1 :

Conjecture 3. Arnold’s sequence (uy)r>1 is the f-transform of the
quadruple (2,4,4,4).

Conjecture [3] is supported by the estimation on Mathematica of wy
for every k£ < 512.
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