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e Integrability and computation of the integrals of motion
(Ovsienko-Schwartz-Tabachnikov ’10 and Soloviev ’13).

e Coordinates that evolve according to cluster algebra
mutation rules (Glick '11).
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— Follows from cluster structure | .~

_|_
Goncharov-Kenyon 13

e Integrability and computation of the integrals of motion
> (Ovsienko-Schwartz-Tabachnikov "10 and Soloviev "13).

e Coordinates that evolve according to cluster algebra
mutation rules (Glick '11).



Motivation 2: cross-ratios/star-ratios

Cross-ratio of 4 points: Cr(plap27p37p4) — Eﬁ;:iiigiiﬁf%

Star-ratio of 5 points: Sr(pl,pg,pg,p4;p) — Eﬁ;:iggﬁi:g

e Cluster variables for geometric dynamics were mostly
cross-ratios (Fock-Goncharov '06, Glick-Pylyavskyy ’16).

e Star-ratio cluster variables were recently discovered
for Miquel dynamics (Affolter ’18, Kenyon-Lam-R.-
Russkikh ’18). They also work for the pentagram map.



General framework to encode geometric dynamics yielding
their cluster structures (and their integrability):

Bipartite graph/

Combinatorics triple crossing diagram
Geometry Points/lines configuration
Collection of Collection of
Algebra . .
Cross-ratios star-ratios

Geometric dynamics arise as local transformations of the
graphs and of the geometric configurations. They induce
cluster mutations for both collections of variables.



Plan of the talk:
1. TCD maps and their two cluster structures
2. Examples, old and new

3. Operations on TCD maps and more cluster structures



1 TCD maps and their
two cluster structures



Triple crossing diagrams (TCDs)

e Definition (D. Thurston): collection of directed strands
which can intersect only 3 at a time alternating in/out.

 J
e Fach face is oriented either clockwise or counterclock-
wise.

e May be infinite on the whole plane or inside a disk.






From TCD to bipartite graph:

Place a black vertex at
each triple point, a white
vertex at each counter-
clockwise face. Add an
edge whenever a counter-
clockwise face is adjacent
to a triple point.
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e TCDs are a special case of bipartite graphs where all
black vertices must have degree 3.

e Starting from an arbitrary planar bipartite graph, get a
TCD by contracting degree 2 black vertices and itera-
tively splitting black vertices of degree more than 3:




Local moves tor TCDs
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Spider move
Square move
Urban renewal

For bipartite
graphs
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counterclockwise face

For bipartite  Resplit around a
graphs white vertex



Vector-relation configurations (AGPR)

e Fix n > 1 and a bipartite graph G.

e A vector-relation configuration (VRC) for G assigns to
each white vertex a point in CP"™ and to each black
vertex of degree d > 2 a subspace of dimension d — 2 in
CP"™, such that each edge corresponds to an incidence
relation between a point and a subspace.

e LEquivalently, attach to each white vertex w a vector v,
in C™™! and to each black vertex b a non-trivial linear
relation ) ppwvyw = 0. Attach up,, to the edge (b, w).

w~b



Gauge choices

The VRC is invariant if one:
e multiplies a given v,,, by 1/X and all the pp,, by A;

e multiplies all pp,, by A for a given black vertex bg.

o Let H be a hyperplane of C*™! containing none of the
vw. Pick coordinates on C"*! such that points in H
have last coordinate 0. Then scale each v,, such that
its last coordinate is 1.

e This is called an affine gauge and it satisfies around
every black vertex b: > ppw = 0.

wn~b



TCD maps (AGR "21)

e Fixn>1and aTCD T.

e A TCD map associated with 1" assigns to each white
vertex a point in CP"™ and to each black vertex a line in
CP"™, such that each edge corresponds to an incidence
relation between a point and a line.

e TCD maps are special cases of VRCs, but they are more
flexible and give rise to a richer theory.



Theorem (AGR). For a TCD T on a disk with |W|
white vertices and |B| black vertices, the maximal dimension
spanned by points of a TCD map for T is |W| — |B| — 1.



Local moves for TCD maps 1/2

The spider move

Py Py
0




Local moves for TCD maps 1/2

The spider move

Py Py
O O
O OP4 O OP4
P, P,
O O
Ps Ps

Reparametrization move, no change in geometry



[.ocal moves

for TCD maps 2/2

The resplit
Pl P4 P4
O O O
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[.ocal moves

for TCD maps 2/2

The resplit
Pl P4 P4
O O O
O O O
Py Ps P3

Change in geometry: exchanges the two focal points P5 and
P of the quadrilateral P; Po P3P;y.

Menelaus theorem (ca. 100 AD):
(P3s—Pa)(Ps—P1)(Pa—Ps) _ _ 1

(Py—P5)(P1—P2)(Ps—Ps)



Multidimensional consistency

Theorem (AGR). Consider a TCD map with labeled

strands. After a sequence of 2-2 moves leaving the labeled
TCD invariant, the TCD map will also be unchanged.

e The name comes from discrete differential geometry,
where lattice equations are called multidimensionally
consistent if they can be unambiguously defined on any
higher dimensional lattice.

e It follows from Balitsky-Wellman ’20 that it suffices to
prove it for cycles of 4,5 or 10 2-2 moves.



7K/ QK

7K/

4

The case of a 5-cycle corresponds to Desargues theorem



Desargues’ theorem (ca. 1648): Consider two triangles ABC
and A’B'C’ in RP?. Then the three points ABNA'B’, ACN

A’'C" and BC N B'C’ are aligned iff the lines AA’, BB’ and
C'C’ intersect at a common point.
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Projective cluster structure (AGPR)

e Works for both TCD maps and VRCs.

e The projective quiver is the dual graph of the bipar-
tite graph, with dual edges oriented so that they turn
counterclockwise around black vertices.
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Projective cluster structure (AGPR)

o If wi,vi9,wy,vo3,..., w4, v41 are 2d points in CP™ such
that each v; ;41 1s on the line w;w;4+1, define the multi-
ratio of these points as

W; — V4,441
i1 —Wit1

d
mf(w17U127w27U237---awdavdl) — H v
1=1



Projective cluster structure (AGPR)

e For a face f = (b1, wy,...,bq,wy) of degree 2d of a bi-
partite graph, define v; ;41 to be the other white neigh-
bor of b;41.
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Projective cluster structure (AGPR)

e For a face f = (b1, wy,...,bq,wy) of degree 2d of a bi-
partite graph, define v; ;41 to be the other white neigh-
bor of b;41.
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The projective cluster variable X
is defined as
V12 Xy = (-1 mr(wy,vi2,...,wqdv401)



Projective cluster structure (AGPR)

e For a face f = (b1, wy,...,bq,wy) of degree 2d of a bi-
partite graph, define v; ;41 to be the other white neigh-
bor of b;41.
U31 w3 V23

Equivalent ly,

b;,w;)
Xf :( )d_l_l H Iu,IL(LQE)z z—i—l)

The projective cluster variable X
is defined as
V12 Xy = (-1 mr(wy,vi2,...,wqdv401)



Projective cluster structure (AGPR)

The spider move
induces a mutation of
2 the projective quiver
o and of the projective
cluster variables.

O

The resplit leaves the

projective quiver and

the projective cluster
variables invariant.
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Affine cluster structure (AGR)

e Defined only for TCD maps.

e The vertices of the affine quiver of a TCD are its white
vertices. The edges form counterclockwise oriented tri-
angles around each black vertex.
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Affine cluster structure (AGR)

o If wi,w]...,wg,wl,w are 2d + 1 points in CP™ such
that w is the intersection point of the d lines w;w?,
define the star-ratio of these points as

d
Srpr(wy, W ..., we, wiw) =] 5=
i=1

e Its value depends on the choice of a hyperplane H at
infinity:.



Affine cluster structure (AGR)

o If a degree d white vertex w has neighbors bq,..., by,
define the other neighbors of b; to be w; and w; such
that ww;w, is oriented counterclockwise around b;.

o If wi,w]...,wg,wl,w are 2d + 1 points in CP™ such
that w is the intersection point of the d lines w;w?,

define the star-ratio of these points as
d

/ ! . _ w; —w
ST (Wi, W) ..., We, Wy, W) = o

1=1

e Its value depends on the choice of a hyperplane H at
infinity:.



Affine cluster structure (AGR)

o If a degree d white vertex w has neighbors bq,..., by,
define the other neighbors of b; to be w; and w; such
that ww;w, is oriented counterclockwise around b;.

wy
The affine cluster variable Y,,

relative to H is defined as
/ /.
Y = —srg(w,w] ..., wg, w;w)
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o If a degree d white vertex w has neighbors bq,..., by,
define the other neighbors of b; to be w; and w; such
that ww;w, is oriented counterclockwise around b;.
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Affine cluster structure (AGR)

o If a degree d white vertex w has neighbors bq,..., by,
define the other neighbors of b; to be w; and w; such
that ww;w, is oriented counterclockwise around b;.

Equivalently,
_ d—l—l U(bzpw )
Yw T ( ) H Iu(b,“wZ
/

Wi affine gauge wrt H —T

The affine cluster variable Y,,
relative to H is defined as
Yy = —srg(wi,w] ..., wq, wh;w)




Affine cluster structure (AGR)

The spider move leaves
the affine quiver and
the affine cluster
variables invariant.

The resplit induces a
mutation of the affine
quiver and of the afline
cluster variables.




2 Examples, old and new



Triangulations
(Fomin-Shapiro-Thurston, Fock-Goncharov)

e TCD map with target space CP! associated to the tri-
angulation of a polygon.

e White vertices are placed at the vertices of the triangu-
lation. One black vertex is placed inside each triangle.

e The projective quiver has one vertex per edge of the tri-
angulation. Projective cluster variables are cross-ratios
of 4 points around an edge.



Triangulations
(Fomin-Shapiro-Thurston, Fock-Goncharov)

Q O Q O

O O O O

e White vertices are placed at the vertices of the triangu-
lation. One black vertex is placed inside each triangle.

e The projective quiver has one vertex per edge of the tri-
angulation. Projective cluster variables are cross-ratios
of 4 points around an edge.



7 Q-nets

o Fixn,N > 2. AZ" Q-net is a map from the vertices of
ZN to CP™ such that the images of any 4 points around
a 2-cell are coplanar.

e The (horizontal) Laplace transform Ay (T) of a Z* Q-
net 7' is obtained by assigning to each quad the inter-
section of its horizontal sides.



7 Q-nets

o Fixn,N > 2. AZ" Q-net is a map from the vertices of
ZN to CP™ such that the images of any 4 points around
a 2-cell are coplanar.

e The (horizontal) Laplace transform Ap(T) of a Z* Q-
net T’ is obtained by assigning to each quad the in-
tersection of its horizontal sides. Ay (T) is again a Z*
Q—Ilet. O _—0



7 Q-nets

inside each quad

spider moves resplits



7 Q-nets

Theorem (AGPR,AGR). The Laplace transform dynamics

for 72 Q-nets is captured both by the projective and the affine
cluster structure.

Q
I
\ I
I A
4 A\
\ J
A
I
|
I . JE e
I

spider moves resplits



The pentagram map

Schief (’09) observed that the
pentagram map could be ob-
tained as the following spe-
cialization of a Z? Q-net:




The pentagram map

Schief (’09) observed that the
pentagram map could be ob-
tained as the following spe-
cialization of a Z? Q-net:

Qo1 | Q23 | Qus
P P P P,
Q12 | @31 | Os6




77 Q-nets

e The dynamics is obtained by prescribing the points of
the Z° Q-net along a stepped surface (Cauchy data)
and propagating to obtain the points on the next layer.
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Realization as a TCD map

Theorem (AGPR,AGR). The cube flip producing the point

associated to the new cube vertexr arises as a composition of
seven resplits and four spider mowves.






A large portion of the projective quiver for Z? Q-nets




Taking its dual graph, we recognize the bipartite graph asso-
ciated with spanning trees on the hexagonal lattice.




S
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The dual graph of the affine quiver for Z? Q-nets
(NOT the VRC for Z° Q-nets !)

Dubédat bipartite graph for Ising on the hexagonal lattice



3D circular nets

e Assume the Cauchy data of a Z> Q-net is such that
any four points around a quad are concyclic and not
just coplanar. Then this property is preserved after

doing cube flips (Miquel, ca. 1850). This is called a 3D
circular net.

Theorem (AGR). We recover the Poisson bracket (and
probably the quantization) for 3D circular nets of Bazhanov-

Mangazeev-Sergeev via the affine cluster structure for Z° Q-
nets.



Darboux maps

e Fix n > 2. A (Z?) Darboux map is a map from the
edges of Z> to CP" such that the images of any 4 points
around a 2-cell are colinear.

e The dynamics consists in propagating some Cauchy
data starting from a stepped surtace.

Cube flip: >
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e Fix n > 2. A (Z?) Darboux map is a map from the
edges of Z> to CP" such that the images of any 4 points
around a 2-cell are colinear.

e The dynamics consists in propagating some Cauchy
data starting from a stepped surtace.
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AGPR,AGR: The TCD map
for Darboux maps is obtained
by gluing pieces like this one.

e Its projective quiver is the Ising quiver and its afline
quiver is the spanning tree quiver.

e In terms of TCDs, a cube flip is realized by seven spider
moves and four resplits.



Lines complexes

e Fix n > 4. A (Z7) line complex is a map from the 2-
cells of Z? to CP"™ such that the images of any 6 points
associated with 6 2-cells around a cube are colinear.

e Again a local propagation rule, described in terms of
2-2 moves tor TCDs.

e AGR: both the projective and the affine quivers for line
complexes are the spanning tree quiver.



Lines complexes

e Fix n > 4. A (Z7) line complex is a map from the 2-
cells of Z? to CP"™ such that the images of any 6 points
associated with 6 2-cells around a cube are colinear.

TCD for line complexes




Cross-ratio dynamics

Given an ideal n-gon Fj in the hyperbolic plane there are two

n-gons P_1 and P; with sides pairwise orthogonal to those ot
=3

Work in progress with
Niklas Affolter and Terrence
George: cluster structure for
this dynamics

Picture from the Arnold-Fuchs-
Izmestiev-Tabachnikov paper



3 Operations on TCD maps
and more cluster structures



Projective vs affine cluster structures

e Given a planar quiver () with alternating orientations
in/out around each vertex, construct a bipartite graph
G such that @) is the projective/affine quiver of G.

e Lor a projective quiver, one can reconstruct G, up to
resplits.

e For an affine quiver, one can reconstruct GG, up to spider
moves.

e Combinatorial relation between G, and G,7 Geometric
relation between TCD maps associated with G, and

Gg?
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Tutte’s trinity

“black” vertex ° “black” vertex
“white” vertex ® “white” vertex
|
dual vertex e dual vertex
edge edge
?
‘ o
o o
o



Section of a T'CD map

e Let T'bea TCD map to CP™ and let E be a hyperplane
of CP™. Denote by L; the line at black vertex b.

e The section og(T) is the TCD map obtained by “ro-
tating the colors” and placing at each black vertex b ot
T" the point Ly N E.

Faces of T induce relations — > @/K
among points of og(T).



Theorem (AGR). The affine cluster structure of T rela-
tive to E s equal to the projective cluster structure of og(T)
(quivers and variables coincide).

e [terated sections are well-defined. If H and H’ are
two hyperplanes of CP™, one can unambiguously de-
fine OHNH' (T)

e Associated to a single TCD map to CP",
we obtain n + 1 cluster structures.



A section of a Z? Q-net is a Z? Q-net.

A section of a Z3 Q-net is a Darboux map.

A section of a Darboux map is a line complex.

A section of a line complex is a Z° Q-net.



Projective duality

e Another operation on flags of TCD maps, produces a

dual flag.

e All the affine cluster structures of the dual flag are re-
lated to those of the primal flag by reverting quiver

arrows and inverting variables.

e In total, n 4+ 2 cluster struc-
tures associated with a TCD
map to CP".

{OE;
75*

{OE;
7;*

{ OF;
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