Multiple cluster structures for geometric dynamics

Sanjay Ramassamy CNRS / CEA-Saclay

Joint works with: Niklas Affolter (Technical University Berlin) Max Glick (Google) Pavlo Pylyavskyy (University of Minnesota)

> Clusters and geometry online seminar Yale, April 9 2021

Example: pentagram map (Schwartz '92)

Example: pentagram map (Schwartz '92)

Example: pentagram map (Schwartz '92)

- Integrability and computation of the integrals of motion (Ovsienko-Schwartz-Tabachnikov '10 and Soloviev '13).
- Coordinates that evolve according to cluster algebra mutation rules (Glick '11).

Example: pentagram map (Schwartz '92)

Follows from cluster structure + Goncharov-Kenyon '13

- Integrability and computation of the integrals of motion
 (Ovsienko-Schwartz-Tabachnikov '10 and Soloviev '13).
- Coordinates that evolve according to cluster algebra mutation rules (Glick '11).

Motivation 2: cross-ratios/star-ratios

Cross-ratio of 4 points: $\operatorname{cr}(p_1, p_2, p_3, p_4) = \frac{(p_1 - p_2)(p_3 - p_4)}{(p_2 - p_3)(p_4 - p_1)}$

Star-ratio of 5 points: $sr(p_1, p_2, p_3, p_4; p) = \frac{(p_1 - p)(p_3 - p)}{(p_2 - p)(p_4 - p)}$

- Cluster variables for geometric dynamics were mostly cross-ratios (Fock-Goncharov '06, Glick-Pylyavskyy '16).
- Star-ratio cluster variables were recently discovered for Miquel dynamics (Affolter '18, Kenyon-Lam-R.-Russkikh '18). They also work for the pentagram map.

General framework to encode geometric dynamics yielding their cluster structures (and their integrability):

Geometric dynamics arise as local transformations of the graphs and of the geometric configurations. They induce cluster mutations for both collections of variables.

Plan of the talk:

- 1. TCD maps and their two cluster structures
- 2. Examples, old and new
- 3. Operations on TCD maps and more cluster structures

1 TCD maps and their two cluster structures

Triple crossing diagrams (TCDs)

• Definition (D. Thurston): collection of directed *strands* which can intersect only 3 at a time alternating in/out.

- Each face is oriented either clockwise or counterclockwise.
- May be infinite on the whole plane or inside a disk.

From TCD to bipartite graph:

Place a black vertex at each triple point, a white vertex at each counterclockwise face. Add an edge whenever a counterclockwise face is adjacent to a triple point.

From TCD to bipartite graph:

Place a black vertex at each triple point, a white vertex at each counterclockwise face. Add an edge whenever a counterclockwise face is adjacent to a triple point.

From TCD to bipartite graph:

Place a black vertex at each triple point, a white vertex at each counterclockwise face. Add an edge whenever a counterclockwise face is adjacent to a triple point.

- TCDs are a special case of bipartite graphs where all black vertices must have degree 3.
- Starting from an arbitrary planar bipartite graph, get a TCD by contracting degree 2 black vertices and iteratively splitting black vertices of degree more than 3:

Local moves for TCDs

2-2 move at a clockwise face

For TCDs

Spider move Square move Urban renewal

For bipartite graphs

2-2 move at a clockwise face

For TCDs

2-2 move at a counterclockwise face

Spider move Square move Urban renewal

For bipartite graphs

Resplit around a white vertex

Vector-relation configurations (AGPR)

• Fix $n \ge 1$ and a bipartite graph G.

- A vector-relation configuration (VRC) for G assigns to each white vertex a point in $\mathbb{C}P^n$ and to each black vertex of degree $d \geq 2$ a subspace of dimension d-2 in $\mathbb{C}P^n$, such that each edge corresponds to an incidence relation between a point and a subspace.
- Equivalently, attach to each white vertex w a vector v_w in \mathbb{C}^{n+1} and to each black vertex b a non-trivial linear relation $\sum_{w \sim b} \mu_{bw} v_w = 0$. Attach μ_{bw} to the edge (b, w).

Gauge choices

The VRC is invariant if one:

- multiplies a given v_{w_0} by $1/\lambda$ and all the μ_{bw_0} by λ ;
- multiplies all $\mu_{b_0 w}$ by λ for a given black vertex b_0 .
- Let H be a hyperplane of \mathbb{C}^{n+1} containing none of the v_w . Pick coordinates on \mathbb{C}^{n+1} such that points in H have last coordinate 0. Then scale each v_w such that its last coordinate is 1.
- This is called an *affine gauge* and it satisfies around every black vertex b: $\sum_{w \sim b} \mu_{bw} = 0.$

TCD maps (AGR '21)

- Fix $n \ge 1$ and a TCD T.
- A TCD map associated with T assigns to each white vertex a point in $\mathbb{C}P^n$ and to each black vertex a line in $\mathbb{C}P^n$, such that each edge corresponds to an incidence relation between a point and a line.

• TCD maps are special cases of VRCs, but they are more flexible and give rise to a richer theory.

Theorem (AGR). For a TCD T on a disk with |W| white vertices and |B| black vertices, the maximal dimension spanned by points of a TCD map for T is |W| - |B| - 1.

Local moves for TCD maps 1/2The spider move

Local moves for TCD maps 1/2The spider move

Reparametrization move, no change in geometry

 P_3

 P_3

 P_2

Change in geometry: exchanges the two focal points P_5 and P_6 of the quadrilateral $P_1P_2P_3P_4$.

Menelaus theorem (ca. 100 AD): $\frac{(P_3 - P_4)(P_5 - P_1)(P_2 - P_6)}{(P_4 - P_5)(P_1 - P_2)(P_6 - P_3)} = -1.$

Multidimensional consistency

Theorem (AGR). Consider a TCD map with labeled strands. After a sequence of 2-2 moves leaving the labeled TCD invariant, the TCD map will also be unchanged.

- The name comes from discrete differential geometry, where lattice equations are called multidimensionally consistent if they can be unambiguously defined on any higher dimensional lattice.
- It follows from Balitsky-Wellman '20 that it suffices to prove it for cycles of 4,5 or 10 2-2 moves.

The case of a 5-cycle corresponds to Desargues theorem

Desargues' theorem (ca. 1648): Consider two triangles ABCand A'B'C' in $\mathbb{R}P^3$. Then the three points $AB \cap A'B'$, $AC \cap A'C'$ and $BC \cap B'C'$ are aligned iff the lines AA', BB' and CC' intersect at a common point.

Desargues' theorem (ca. 1648): Consider two triangles ABCand A'B'C' in $\mathbb{R}P^3$. Then the three points $AB \cap A'B'$, $AC \cap A'C'$ and $BC \cap B'C'$ are aligned iff the lines AA', BB' and CC' intersect at a common point.

Desargues' theorem (ca. 1648): Consider two triangles ABCand A'B'C' in $\mathbb{R}P^3$. Then the three points $AB \cap A'B'$, $AC \cap A'C'$ and $BC \cap B'C'$ are aligned iff the lines AA', BB' and CC' intersect at a common point.

- Works for both TCD maps and VRCs.
- The projective quiver is the dual graph of the bipartite graph, with dual edges oriented so that they turn counterclockwise around black vertices.

- Works for both TCD maps and VRCs.
- The projective quiver is the dual graph of the bipartite graph, with dual edges oriented so that they turn counterclockwise around black vertices.

- Works for both TCD maps and VRCs.
- The projective quiver is the dual graph of the bipartite graph, with dual edges oriented so that they turn counterclockwise around black vertices.

• If $w_1, v_{12}, w_2, v_{23}, \ldots, w_d, v_{d1}$ are 2d points in $\mathbb{C}P^n$ such that each $v_{i,i+1}$ is on the line $w_i w_{i+1}$, define the multiratio of these points as

$$\operatorname{mr}(w_1, v_{12}, w_2, v_{23}, \dots, w_d, v_{d1}) = \prod_{i=1}^d \frac{w_i - v_{i,i+1}}{v_{i,i+1} - w_{i+1}}.$$

- For a face $f = (b_1, w_1, \dots, b_d, w_d)$ of degree 2d of a bipartite graph, define $v_{i,i+1}$ to be the other white neighbor of b_{i+1} .
- If $w_1, v_{12}, w_2, v_{23}, \ldots, w_d, v_{d1}$ are 2d points in $\mathbb{C}P^n$ such that each $v_{i,i+1}$ is on the line $w_i w_{i+1}$, define the multiratio of these points as

$$\operatorname{mr}(w_1, v_{12}, w_2, v_{23}, \dots, w_d, v_{d1}) = \prod_{i=1}^d \frac{w_i - v_{i,i+1}}{v_{i,i+1} - w_{i+1}}.$$

• For a face $f = (b_1, w_1, \dots, b_d, w_d)$ of degree 2d of a bipartite graph, define $v_{i,i+1}$ to be the other white neighbor of b_{i+1} .

Projective cluster structure (AGPR)

• For a face $f = (b_1, w_1, \dots, b_d, w_d)$ of degree 2d of a bipartite graph, define $v_{i,i+1}$ to be the other white neighbor of b_{i+1} .

Projective cluster structure (AGPR)

The spider move induces a mutation of the projective quiver and of the projective cluster variables.

The resplit leaves the projective quiver and the projective cluster variables invariant.

Projective cluster structure (AGPR)

The spider move induces a mutation of the projective quiver and of the projective cluster variables.

FG X variables

The resplit leaves the projective quiver and the projective cluster variables invariant.

- Defined only for TCD maps.
- The vertices of the affine quiver of a TCD are its white vertices. The edges form counterclockwise oriented triangles around each black vertex.

- Defined only for TCD maps.
- The vertices of the affine quiver of a TCD are its white vertices. The edges form counterclockwise oriented triangles around each black vertex.

- Defined only for TCD maps.
- The vertices of the affine quiver of a TCD are its white vertices. The edges form counterclockwise oriented triangles around each black vertex.

• If $w_1, w'_1, \ldots, w_d, w'_d, w$ are 2d + 1 points in $\mathbb{C}P^n$ such that w is the intersection point of the d lines $w_i w'_i$, define the star-ratio of these points as

$$\operatorname{sr}_{H}(w_{1}, w'_{1} \dots, w_{d}, w'_{d}; w) = \prod_{i=1}^{M} \frac{w_{i} - w}{w'_{i} - w}.$$

• Its value depends on the choice of a hyperplane H at infinity.

- If a degree d white vertex w has neighbors b_1, \ldots, b_d , define the other neighbors of b_i to be w_i and w'_i such that $ww_iw'_i$ is oriented counterclockwise around b_i .
- If $w_1, w'_1, \ldots, w_d, w'_d, w$ are 2d + 1 points in $\mathbb{C}P^n$ such that w is the intersection point of the d lines $w_i w'_i$, define the star-ratio of these points as $\operatorname{sru}(w_1, w', \ldots, w', w) = \prod_{i=1}^{d} \frac{w_i w_i}{w_i w_i}$

$$\operatorname{sr}_{H}(w_{1}, w'_{1}, \dots, w_{d}, w'_{d}; w) = \prod_{i=1}^{M} \frac{w_{i} - w}{w'_{i} - w}.$$

• Its value depends on the choice of a hyperplane H at infinity.

• If a degree d white vertex w has neighbors b_1, \ldots, b_d , define the other neighbors of b_i to be w_i and w'_i such that $ww_iw'_i$ is oriented counterclockwise around b_i .

• If a degree d white vertex w has neighbors b_1, \ldots, b_d , define the other neighbors of b_i to be w_i and w'_i such that $ww_iw'_i$ is oriented counterclockwise around b_i .

• If a degree d white vertex w has neighbors b_1, \ldots, b_d , define the other neighbors of b_i to be w_i and w'_i such that $ww_iw'_i$ is oriented counterclockwise around b_i .

Equivalently, $Y_w = (-1)^{d+1} \prod_{i=1}^d \frac{\mu(b_i, w'_i)}{\mu(b_i, w_i)}$ affine gauge wrt H

The affine cluster variable Y_w relative to H is defined as $Y_w = -\operatorname{sr}_H(w_1, w'_1, \dots, w_d, w'_d; w)$

The spider move leaves the affine quiver and the affine cluster variables invariant.

The resplit induces a mutation of the affine quiver and of the affine cluster variables.

2 Examples, old and new

Triangulations (Fomin-Shapiro-Thurston, Fock-Goncharov)

• TCD map with target space $\mathbb{C}P^1$ associated to the triangulation of a polygon.

- White vertices are placed at the vertices of the triangulation. One black vertex is placed inside each triangle.
- The projective quiver has one vertex per edge of the triangulation. Projective cluster variables are cross-ratios of 4 points around an edge.

Triangulations (Fomin-Shapiro-Thurston, Fock-Goncharov)

- White vertices are placed at the vertices of the triangulation. One black vertex is placed inside each triangle.
- The projective quiver has one vertex per edge of the triangulation. Projective cluster variables are cross-ratios of 4 points around an edge.

- Fix $n, N \ge 2$. A \mathbb{Z}^N Q-net is a map from the vertices of \mathbb{Z}^N to $\mathbb{C}P^n$ such that the images of any 4 points around a 2-cell are coplanar.
- The (horizontal) Laplace transform $\Delta_h(T)$ of a \mathbb{Z}^2 Qnet T is obtained by assigning to each quad the intersection of its horizontal sides.

- Fix $n, N \ge 2$. A \mathbb{Z}^N Q-net is a map from the vertices of \mathbb{Z}^N to $\mathbb{C}P^n$ such that the images of any 4 points around a 2-cell are coplanar.
- The (horizontal) Laplace transform $\Delta_h(T)$ of a \mathbb{Z}^2 Qnet T is obtained by assigning to each quad the intersection of its horizontal sides. $\Delta_h(T)$ is again a \mathbb{Z}^2 Q-net.

Theorem (AGPR,AGR). The Laplace transform dynamics for \mathbb{Z}^2 Q-nets is captured both by the projective and the affine cluster structure.

The pentagram map

Schief ('09) observed that the pentagram map could be obtained as the following specialization of a \mathbb{Z}^2 Q-net:

The pentagram map

Schief ('09) observed that the pentagram map could be obtained as the following specialization of a \mathbb{Z}^2 Q-net:

Realization as a TCD map

Theorem (AGPR,AGR). The cube flip producing the point associated to the new cube vertex arises as a composition of seven resplits and four spider moves.

A large portion of the projective quiver for \mathbb{Z}^3 Q-nets

Taking its dual graph, we recognize the bipartite graph associated with spanning trees on the hexagonal lattice.

A large portion of the affine quiver for \mathbb{Z}^3 Q-nets

The dual graph of the affine quiver for \mathbb{Z}^3 Q-nets (NOT the VRC for \mathbb{Z}^3 Q-nets !)

Dubédat bipartite graph for Ising on the hexagonal lattice

3D circular nets

• Assume the Cauchy data of a Z³ Q-net is such that any four points around a quad are concyclic and not just coplanar. Then this property is preserved after doing cube flips (Miquel, ca. 1850). This is called a 3D circular net.

Theorem (AGR). We recover the Poisson bracket (and probably the quantization) for 3D circular nets of Bazhanov-Mangazeev-Sergeev via the affine cluster structure for \mathbb{Z}^3 Q-nets.
- Fix $n \ge 2$. A (\mathbb{Z}^3) Darboux map is a map from the edges of \mathbb{Z}^3 to $\mathbb{C}P^n$ such that the images of any 4 points around a 2-cell are collinear.
- The dynamics consists in propagating some Cauchy data starting from a stepped surface.

- Fix $n \ge 2$. A (\mathbb{Z}^3) Darboux map is a map from the edges of \mathbb{Z}^3 to $\mathbb{C}P^n$ such that the images of any 4 points around a 2-cell are collinear.
- The dynamics consists in propagating some Cauchy data starting from a stepped surface.

- Fix $n \ge 2$. A (\mathbb{Z}^3) Darboux map is a map from the edges of \mathbb{Z}^3 to $\mathbb{C}P^n$ such that the images of any 4 points around a 2-cell are collinear.
- The dynamics consists in propagating some Cauchy data starting from a stepped surface.

- Fix $n \ge 2$. A (\mathbb{Z}^3) Darboux map is a map from the edges of \mathbb{Z}^3 to $\mathbb{C}P^n$ such that the images of any 4 points around a 2-cell are collinear.
- The dynamics consists in propagating some Cauchy data starting from a stepped surface.

- Fix $n \ge 2$. A (\mathbb{Z}^3) Darboux map is a map from the edges of \mathbb{Z}^3 to $\mathbb{C}P^n$ such that the images of any 4 points around a 2-cell are collinear.
- The dynamics consists in propagating some Cauchy data starting from a stepped surface.

AGPR,AGR: The TCD map for Darboux maps is obtained by gluing pieces like this one.

- Its projective quiver is the Ising quiver and its affine quiver is the spanning tree quiver.
- In terms of TCDs, a cube flip is realized by seven spider moves and four resplits.

Lines complexes

- Fix $n \ge 4$. A (\mathbb{Z}^3) line complex is a map from the 2cells of \mathbb{Z}^3 to $\mathbb{C}P^n$ such that the images of any 6 points associated with 6 2-cells around a cube are colinear.
- Again a local propagation rule, described in terms of 2-2 moves for TCDs.
- AGR: both the projective and the affine quivers for line complexes are the spanning tree quiver.

Lines complexes

• Fix $n \ge 4$. A (\mathbb{Z}^3) line complex is a map from the 2cells of \mathbb{Z}^3 to $\mathbb{C}P^n$ such that the images of any 6 points associated with 6 2-cells around a cube are colinear.

Cross-ratio dynamics

Given an ideal *n*-gon P_0 in the hyperbolic plane there are two *n*-gons P_{-1} and P_1 with sides pairwise orthogonal to those of P_0 .

Work in progress with Niklas Affolter and Terrence George: cluster structure for this dynamics

3 Operations on TCD maps and more cluster structures

Projective vs affine cluster structures

- Given a planar quiver Q with alternating orientations in/out around each vertex, construct a bipartite graph G such that Q is the projective/affine quiver of G.
- For a projective quiver, one can reconstruct G_p up to resplits.
- For an affine quiver, one can reconstruct G_a up to spider moves.
- Combinatorial relation between G_p and G_a ? Geometric relation between TCD maps associated with G_p and G_a ?

- "black" vertex
- "white" vertex

- "black" vertex
- "white" vertex
- dual vertex

edge

- "black" vertex
- "white" vertex
- dual vertex

edge

Section of a TCD map

- Let T be a TCD map to $\mathbb{C}P^n$ and let E be a hyperplane of $\mathbb{C}P^n$. Denote by L_b the line at black vertex b.
- The section $\sigma_E(T)$ is the TCD map obtained by "rotating the colors" and placing at each black vertex b of T the point $L_b \cap E$.

Faces of T induce relations among points of $\sigma_E(T)$.

Theorem (AGR). The affine cluster structure of T relative to E is equal to the projective cluster structure of $\sigma_E(T)$ (quivers and variables coincide).

• Iterated sections are well-defined. If H and H' are two hyperplanes of $\mathbb{C}P^n$, one can unambiguously define $\sigma_{H\cap H'}(T)$.

 \mathcal{T}_4

 \mathcal{T}_3

 \mathcal{T}_2

 $\sigma_{E_3}\downarrow$

 $\sigma_{E_2} \downarrow$

 $\sigma_{E_1} \downarrow$

• Associated to a single TCD map to $\mathbb{C}P^n$, we obtain n + 1 cluster structures. • A section of a \mathbb{Z}^2 Q-net is a \mathbb{Z}^2 Q-net.

• A section of a \mathbb{Z}^3 Q-net is a Darboux map.

• A section of a Darboux map is a line complex.

• A section of a line complex is a \mathbb{Z}^3 Q-net.

Projective duality

- Another operation on flags of TCD maps, produces a dual flag.
- All the affine cluster structures of the dual flag are related to those of the primal flag by reverting quiver arrows and inverting variables.

• In total, n + 2 cluster structures associated with a TCD map to $\mathbb{C}P^n$.

 \mathcal{T}_4^* \mathcal{T}_4 $\downarrow \sigma_{E_3^*}$ $\sigma_{E_3}\downarrow$ \mathcal{T}_3^* \mathcal{T}_3 $\downarrow \sigma_{E_2^*}$ $\sigma_{E_2}\downarrow$ \mathcal{T}_2^* \mathcal{T}_2 $\sigma_{E_1^*}$ $\sigma_{E_1} \downarrow$ \mathcal{T}_1 \mathcal{T}_1^*

THANK YOU !