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• Integrability and computation of the integrals of motion
(Ovsienko-Schwartz-Tabachnikov ’10 and Soloviev ’13).

• Coordinates that evolve according to cluster algebra
mutation rules (Glick ’11).
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• Integrability and computation of the integrals of motion
(Ovsienko-Schwartz-Tabachnikov ’10 and Soloviev ’13).

• Coordinates that evolve according to cluster algebra
mutation rules (Glick ’11).

Follows from cluster structure
+

Goncharov-Kenyon ’13



Motivation 2: cross-ratios/star-ratios

Cross-ratio of 4 points: cr(p1, p2, p3, p4) = (p1−p2)(p3−p4)
(p2−p3)(p4−p1)

Star-ratio of 5 points: sr(p1, p2, p3, p4; p) = (p1−p)(p3−p)
(p2−p)(p4−p)

• Cluster variables for geometric dynamics were mostly
cross-ratios (Fock-Goncharov ’06, Glick-Pylyavskyy ’16).

• Star-ratio cluster variables were recently discovered
for Miquel dynamics (Affolter ’18, Kenyon-Lam-R.-
Russkikh ’18). They also work for the pentagram map.



Bipartite graph/
triple crossing diagram

Points/lines configuration

Collection of
cross-ratios

Collection of
star-ratios

General framework to encode geometric dynamics yielding
their cluster structures (and their integrability):

Geometric dynamics arise as local transformations of the
graphs and of the geometric configurations. They induce
cluster mutations for both collections of variables.

Combinatorics

Geometry

Algebra



Plan of the talk:

1. TCD maps and their two cluster structures

2. Examples, old and new

3. Operations on TCD maps and more cluster structures



1 TCD maps and their
two cluster structures



Triple crossing diagrams (TCDs)

• Definition (D. Thurston): collection of directed strands
which can intersect only 3 at a time alternating in/out.

• May be infinite on the whole plane or inside a disk.

• Each face is oriented either clockwise or counterclock-
wise.





Place a black vertex at
each triple point, a white
vertex at each counter-
clockwise face. Add an
edge whenever a counter-
clockwise face is adjacent
to a triple point.

From TCD to bipartite graph:
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• TCDs are a special case of bipartite graphs where all
black vertices must have degree 3.

• Starting from an arbitrary planar bipartite graph, get a
TCD by contracting degree 2 black vertices and itera-
tively splitting black vertices of degree more than 3:



Local moves for TCDs

For TCDs

For bipartite
graphs
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Square move

Urban renewal



Local moves for TCDs

For TCDs

For bipartite
graphs

2-2 move at a
clockwise face

2-2 move at a
counterclockwise face

Spider move
Square move

Urban renewal

Resplit around a
white vertex



Vector-relation configurations (AGPR)

• A vector-relation configuration (VRC) for G assigns to
each white vertex a point in CPn and to each black
vertex of degree d ≥ 2 a subspace of dimension d− 2 in
CPn, such that each edge corresponds to an incidence
relation between a point and a subspace.

• Fix n ≥ 1 and a bipartite graph G.

• Equivalently, attach to each white vertex w a vector vw
in Cn+1 and to each black vertex b a non-trivial linear
relation

∑
w∼b

µbwvw = 0. Attach µbw to the edge (b, w).



Gauge choices

The VRC is invariant if one:

• multiplies a given vw0
by 1/λ and all the µbw0

by λ;

• multiplies all µb0w by λ for a given black vertex b0.

• Let H be a hyperplane of Cn+1 containing none of the
vw. Pick coordinates on Cn+1 such that points in H
have last coordinate 0. Then scale each vw such that
its last coordinate is 1.

• This is called an affine gauge and it satisfies around
every black vertex b:

∑
w∼b

µbw = 0.



TCD maps (AGR ’21)

• A TCD map associated with T assigns to each white
vertex a point in CPn and to each black vertex a line in
CPn, such that each edge corresponds to an incidence
relation between a point and a line.

• Fix n ≥ 1 and a TCD T .

• TCD maps are special cases of VRCs, but they are more
flexible and give rise to a richer theory.



Theorem (AGR). For a TCD T on a disk with |W |
white vertices and |B| black vertices, the maximal dimension
spanned by points of a TCD map for T is |W | − |B| − 1.
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L L
L

L

L

Reparametrization move, no change in geometry



Local moves for TCD maps 2/2
The resplit
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Local moves for TCD maps 2/2
The resplit

P1

P2 P3

P4 P1

P2 P3

P4

L12 L34P5

Change in geometry: exchanges the two focal points P5 and
P6 of the quadrilateral P1P2P3P4.

L41

L23

P6
P1

P2

P4

P3

P5

L12L34

P6

L41

L23

Menelaus theorem (ca. 100 AD):
(P3−P4)(P5−P1)(P2−P6)
(P4−P5)(P1−P2)(P6−P3)

= −1.



Multidimensional consistency

Theorem (AGR). Consider a TCD map with labeled
strands. After a sequence of 2-2 moves leaving the labeled
TCD invariant, the TCD map will also be unchanged.

• The name comes from discrete differential geometry,
where lattice equations are called multidimensionally
consistent if they can be unambiguously defined on any
higher dimensional lattice.

• It follows from Balitsky-Wellman ’20 that it suffices to
prove it for cycles of 4,5 or 10 2-2 moves.



The case of a 5-cycle corresponds to Desargues theorem



Desargues’ theorem (ca. 1648): Consider two triangles ABC
and A′B′C ′ in RP 3. Then the three points AB∩A′B′, AC ∩
A′C ′ and BC ∩ B′C ′ are aligned iff the lines AA′, BB′ and
CC ′ intersect at a common point.
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Projective cluster structure (AGPR)
• Works for both TCD maps and VRCs.

• The projective quiver is the dual graph of the bipar-
tite graph, with dual edges oriented so that they turn
counterclockwise around black vertices.
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Projective cluster structure (AGPR)

• If w1, v12, w2, v23, . . . , wd, vd1 are 2d points in CPn such
that each vi,i+1 is on the line wiwi+1, define the multi-
ratio of these points as

mr(w1, v12, w2, v23, . . . , wd, vd1) =
d∏
i=1

wi−vi,i+1

vi,i+1−wi+1
.
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• For a face f = (b1, w1, . . . , bd, wd) of degree 2d of a bi-
partite graph, define vi,i+1 to be the other white neigh-
bor of bi+1.
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v23

f

The projective cluster variable Xf

is defined as
Xf = (−1)d+1 mr(w1, v12, . . . , wd, vd1)

Equivalently,

Xf = (−1)d+1
d∏
i=1

µ(bi,wi)
µ(wi,bi+1)



Projective cluster structure (AGPR)

The resplit leaves the
projective quiver and
the projective cluster
variables invariant.

The spider move
induces a mutation of
the projective quiver
and of the projective

cluster variables.
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FG X variables



Affine cluster structure (AGR)

• Defined only for TCD maps.

• The vertices of the affine quiver of a TCD are its white
vertices. The edges form counterclockwise oriented tri-
angles around each black vertex.
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• If w1, w
′
1 . . . , wd, w

′
d, w are 2d + 1 points in CPn such

that w is the intersection point of the d lines wiw
′
i,

define the star-ratio of these points as

srH(w1, w
′
1 . . . , wd, w

′
d;w) =

d∏
i=1

wi−w
w′

i−w
.

Affine cluster structure (AGR)

• Its value depends on the choice of a hyperplane H at
infinity.
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define the other neighbors of bi to be wi and w′i such
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Affine cluster structure (AGR)

• If a degree d white vertex w has neighbors b1, . . . , bd,
define the other neighbors of bi to be wi and w′i such
that wwiw

′
i is oriented counterclockwise around bi.

b2

b1

b3

The affine cluster variable Yw
relative to H is defined as

Yw = − srH(w1, w
′
1 . . . , wd, w

′
d;w)

Equivalently,

Yw = (−1)d+1
d∏
i=1

µ(bi,w
′
i)

µ(bi,wi)

affine gauge wrt H



Affine cluster structure (AGR)

The resplit induces a
mutation of the affine

quiver and of the affine
cluster variables.

The spider move leaves
the affine quiver and

the affine cluster
variables invariant.



2 Examples, old and new



Triangulations
(Fomin-Shapiro-Thurston, Fock-Goncharov)

• TCD map with target space CP 1 associated to the tri-
angulation of a polygon.

• White vertices are placed at the vertices of the triangu-
lation. One black vertex is placed inside each triangle.

• The projective quiver has one vertex per edge of the tri-
angulation. Projective cluster variables are cross-ratios
of 4 points around an edge.



Triangulations
(Fomin-Shapiro-Thurston, Fock-Goncharov)

• White vertices are placed at the vertices of the triangu-
lation. One black vertex is placed inside each triangle.

• The projective quiver has one vertex per edge of the tri-
angulation. Projective cluster variables are cross-ratios
of 4 points around an edge.



Z2 Q-nets
• Fix n,N ≥ 2. A ZN Q-net is a map from the vertices of

ZN to CPn such that the images of any 4 points around
a 2-cell are coplanar.

• The (horizontal) Laplace transform ∆h(T ) of a Z2 Q-
net T is obtained by assigning to each quad the inter-
section of its horizontal sides.



Z2 Q-nets
• Fix n,N ≥ 2. A ZN Q-net is a map from the vertices of

ZN to CPn such that the images of any 4 points around
a 2-cell are coplanar.

• The (horizontal) Laplace transform ∆h(T ) of a Z2 Q-
net T is obtained by assigning to each quad the in-
tersection of its horizontal sides. ∆h(T ) is again a Z2

Q-net.



Z2 Q-nets

spider moves resplits

Draw inside each quad



Z2 Q-nets

spider moves resplits

Theorem (AGPR,AGR). The Laplace transform dynamics
for Z2 Q-nets is captured both by the projective and the affine
cluster structure.



The pentagram map

Schief (’09) observed that the
pentagram map could be ob-
tained as the following spe-
cialization of a Z2 Q-net:
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P1 P3 P5 P1

P2 P4 P6 P2

P6 P2 P4 P6

Q12 Q34 Q56

Q61 Q23 Q45



Z3 Q-nets

• The dynamics is obtained by prescribing the points of
the Z3 Q-net along a stepped surface (Cauchy data)
and propagating to obtain the points on the next layer.
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Z3 Q-nets

• The dynamics is obtained by prescribing the points of
the Z3 Q-net along a stepped surface (Cauchy data)
and propagating to obtain the points on the next layer.



Realization as a TCD map

Theorem (AGPR,AGR). The cube flip producing the point
associated to the new cube vertex arises as a composition of
seven resplits and four spider moves.





A large portion of the projective quiver for Z3 Q-nets



Taking its dual graph, we recognize the bipartite graph asso-
ciated with spanning trees on the hexagonal lattice.



A large portion of the affine quiver for Z3 Q-nets



The dual graph of the affine quiver for Z3 Q-nets
(NOT the VRC for Z3 Q-nets !)

Dubédat bipartite graph for Ising on the hexagonal lattice



3D circular nets

• Assume the Cauchy data of a Z3 Q-net is such that
any four points around a quad are concyclic and not
just coplanar. Then this property is preserved after
doing cube flips (Miquel, ca. 1850). This is called a 3D
circular net.

Theorem (AGR). We recover the Poisson bracket (and
probably the quantization) for 3D circular nets of Bazhanov-
Mangazeev-Sergeev via the affine cluster structure for Z3 Q-
nets.



Darboux maps

• Fix n ≥ 2. A (Z3) Darboux map is a map from the
edges of Z3 to CPn such that the images of any 4 points
around a 2-cell are colinear.

• The dynamics consists in propagating some Cauchy
data starting from a stepped surface.

Cube flip:
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• Fix n ≥ 2. A (Z3) Darboux map is a map from the
edges of Z3 to CPn such that the images of any 4 points
around a 2-cell are colinear.

• The dynamics consists in propagating some Cauchy
data starting from a stepped surface.

Cube flip:



AGPR,AGR: The TCD map
for Darboux maps is obtained
by gluing pieces like this one.

• Its projective quiver is the Ising quiver and its affine
quiver is the spanning tree quiver.

• In terms of TCDs, a cube flip is realized by seven spider
moves and four resplits.



Lines complexes

• Fix n ≥ 4. A (Z3) line complex is a map from the 2-
cells of Z3 to CPn such that the images of any 6 points
associated with 6 2-cells around a cube are colinear.

• Again a local propagation rule, described in terms of
2-2 moves for TCDs.

• AGR: both the projective and the affine quivers for line
complexes are the spanning tree quiver.



Lines complexes

• Fix n ≥ 4. A (Z3) line complex is a map from the 2-
cells of Z3 to CPn such that the images of any 6 points
associated with 6 2-cells around a cube are colinear.

TCD for line complexes



Cross-ratio dynamics
Given an ideal n-gon P0 in the hyperbolic plane there are two
n-gons P−1 and P1 with sides pairwise orthogonal to those of
P0.

Picture from the Arnold-Fuchs-
Izmestiev-Tabachnikov paper

Work in progress with
Niklas Affolter and Terrence
George: cluster structure for
this dynamics



3 Operations on TCD maps
and more cluster structures



Projective vs affine cluster structures

• Given a planar quiver Q with alternating orientations
in/out around each vertex, construct a bipartite graph
G such that Q is the projective/affine quiver of G.

• For a projective quiver, one can reconstruct Gp up to
resplits.

• For an affine quiver, one can reconstructGa up to spider
moves.

• Combinatorial relation between Gp and Ga? Geometric
relation between TCD maps associated with Gp and
Ga?
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Section of a TCD map

• Let T be a TCD map to CPn and let E be a hyperplane
of CPn. Denote by Lb the line at black vertex b.

• The section σE(T ) is the TCD map obtained by “ro-
tating the colors” and placing at each black vertex b of
T the point Lb ∩ E.

Faces of T induce relations
among points of σE(T ).



Theorem (AGR). The affine cluster structure of T rela-
tive to E is equal to the projective cluster structure of σE(T )
(quivers and variables coincide).

• Iterated sections are well-defined. If H and H ′ are
two hyperplanes of CPn, one can unambiguously de-
fine σH∩H′(T ).

• Associated to a single TCD map to CPn,
we obtain n+ 1 cluster structures.



• A section of a Z2 Q-net is a Z2 Q-net.

• A section of a Z3 Q-net is a Darboux map.

• A section of a Darboux map is a line complex.

• A section of a line complex is a Z3 Q-net.



Projective duality

• Another operation on flags of TCD maps, produces a
dual flag.

• All the affine cluster structures of the dual flag are re-
lated to those of the primal flag by reverting quiver
arrows and inverting variables.

• In total, n + 2 cluster struc-
tures associated with a TCD
map to CPn.



THANK YOU !


