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• Several integrable dynamical systems on spaces of poly-
gons have been studied in the last decades.

• Another class of integrable systems associated with bi-
partite dimer models on the torus was introduced by
Goncharov and Kenyon in 2013.

• The setting of triple crossing diagram maps provides a
common framework for both the geometric integrable
systems and the dimer integrable system.



1 Integrable systems from bipartite
dimer models on the torus



A model from statistical mechanics
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• Setting: planar bipartite graphs (vertices can be colored
black and white such that each edge has two endpoints
of different colors) with edge weights.

• In probability, edge weights are positive real numbers.

• For integrable systems and geometry purposes (this
talk), edge weights are complex numbers.
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Dimer coverings:

Weights: cde bcg aef

• Dimer covering : subset of edges such that each vertex
is incident to exactly one edge.

• Boltzmann probability measure: draw a dimer covering
at random with probability proportional to its weight.
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• Define face weights as alternating products of edge
weights around faces.

• Two collections of edge weights induce the same Boltz-
mann probability measure if and only if they have the
same face weights.

X1 = af
cd X2 = de
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Three moves preserving correlations
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∆ := ac+ bd

1. Spider move:



Three moves preserving correlations

1. Spider move:

• The change in the face weights is a special instance of
mutation of coefficient variables in cluster algebras.
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Three moves preserving correlations

2. Contraction/expansion of degree-two vertex:

1 1

• Face weights don’t change.

• May be recombined into a resplit move:

1 1 1

1



Three moves preserving correlations

3. Geometric R-matrix move (cyclic chain of hexagons):

add bigon delete bigon

spider at
spider at

−a a

−a −a

−ab



Three moves preserving correlations

3. Geometric R-matrix move (cyclic chain of hexagons):
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Three moves preserving correlations

3. Geometric R-matrix move (cyclic chain of hexagons):

• The new face weights are explicit functions of the old
face weights which are independent of the location
where the bigon was added (Inoue-Lam-Pylyavskyy).



• We use these moves to define discrete-time dynamics
on face-weighted bipartite graphs on the torus.

• One step of the dynamics will bring us back to the same
combinatorial graph, but the face weights will poten-
tially have changed.

Discrete-time integrable dynamics





• All these discrete-time dynamics are integrable, in the
sense that they have “enough” conserved quantities.

• These conserved quantities have a particular struc-
ture with respect to a Poisson bracket. In the
right coordinates, the motion is translation on some
high-dimensional torus (Goncharov-Kenyon, Fock-
Marshakov, Vichitkunakorn, George-Inchiostro, Inoue-
Lam-Pylyavskyy, George-R.).

• The conserved quantities are partition functions for
dimer covers on the torus with prescribed homology.



Kasteleyn matrix determinant
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• The Kasteleyn matrix K(z, w) is the signed twisted ad-
jacency matrix of a bipartite graph on the torus.

• The Laurent polynomial detK(z, w) is the generating
function of the conserved quantities.



2 Triple crossing diagram maps

(following Affolter-Glick-Pylyavskyy-R. ’19 and
Affolter-George-R. ’21)



• A triple crossing diagram (TCD) is a bipartite graph
such that all the black vertices have degree 3.

• Let m ≥ 1 and Γ be a TCD with white vertex set W
and black vertex set B. A TCD map is a map from
W to CPm such that for any b ∈ B, the three vertices
around b are mapped to three collinear points.
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P1, P2, P3 ∈ CPm



Spider move for TCD maps
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• The points of the TCD maps do not change, this is a
reparametrization.



Resplit for TCD maps

• In CP 1, we use the multi-ratio formula to define P ′.

• If the points are in CPm with m ≥ 2, the new point
P ′ is determined by Menelaus theorem for complete
quadrilaterals:
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mr(P1, P, P2, P3, P
′, P4) = −1.
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Twisted TCD maps

• It is a TCD map on an infinite cylinder such that the
graph is periodic and the points are quasi-periodic, with
some monodromy M ∈ PGLm+1(C).

· · · · · ·



Twisted TCD maps

• It is a TCD map on an infinite cylinder such that the
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Twisted TCD maps

• It is a TCD map on an infinite cylinder such that the
graph is periodic and the points are quasi-periodic, with
some monodromy M ∈ PGLm+1(C).

· · · · · ·

P M.P M2.PM−1.PM−2.P



Geometric R-matrix move for twisted

TCD maps

P1 P2 P3 M.P1 = P4

Q1 Q2 Q3

R1 R2 R3

P ′1 P ′2 P ′3

R1 R2 R3M.R1 = R4

M.Q1 = Q4 Q1 Q2 Q3

· · · · · · · · · · · ·
M.P ′1 = P ′4

M.R1 = R4

M.Q1 = Q4

• Given an infinite strip of hexagons in a twisted TCD
map, with M -quasi-periodic points Pi, Qi, Ri as above,
there is a unique choice of points P ′i 6= Pi that can
replace the points Pi.



• One can associate edge variables to a TCD map by
lifting the points Pi ∈ CPm to vectors vi ∈ Cm+1.

P1

P2 P3

P1, P2, P3 ∈ CPm

v1, v2, v3 ∈ Cm+1

collinear

coplanar

From TCD maps to dimers



• One can associate edge variables to a TCD map by
lifting the points Pi ∈ CPm to vectors vi ∈ Cm+1.

P1

P2 P3

P1, P2, P3 ∈ CPm

v1, v2, v3 ∈ Cm+1

collinear

coplanar

• There exist λ1, λ2, λ3 ∈ C such that

λ1v1 + λ2v2 + λ3v3 = 0.

λ1

λ2 λ3

From TCD maps to dimers



• One defines face weights on the bipartite graph by tak-
ing the alternating products of such edge variables (up
to some technical sign).

• The evolution of these face weights under the three
moves defined for TCD maps is the same as the evo-
lution of the face weights under the counterpart moves
for the dimer model.

• Each face weight can be expressed as a multi-ratio of
points attached to white vertices.

• There is some ambiguity (gauge freedom) for the choice
of edge variables.



• Part 1: bipartite graphs with face weights, evolving
according to some moves.

• Part 2: bipartite graphs with a point in CPm attached
to each white vertex. These decorated graphs evolve
according to some moves.

• From the points in CPm, one can compute face weights,
which evolve like in part 1.

• Dimer integrable systems (part 1): bipartite graph on
the torus.

• Geometric integrable systems (part 2): bipartite graph
on an infinite cylinder, the graph is periodic, the points
are quasi-periodic.



3 Application: dynamics on polygons



Twisted polygons

• If M ∈ PGLm+1(C), a twisted n-gon with mon-
odromy M is defined as a bi-infinite sequence of points
(. . . , P−1, P0, P1, P2, . . .) in CPm such that for every
i ∈ Z, Pi+n = M.Pi.
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Twisted polygons

• Many integrable dynamics on polygons (e.g. penta-
gram map, cross-ratio dynamics) are defined on spaces
of twisted polygons.

• A generating function for the conserved quantities of
these integrable systems on twisted polygons is usually
given as a simple function of the monodromy M .

• These twisted polygons can be realized as twisted TCD
maps.



Results of Affolter-George-R. ’22

• For twisted TCD maps, we show that the monodromy
matrix M can be obtained from the Kasteleyn matrix
of a fundamental block of the infinite cylinder.

• This relates the generating function of conserved quan-
tities for dimer integrable systems to the generat-
ing function of conserved quantities for dynamics on
twisted polygons.



• We thus recover the Ovsienko-Schwartz-Tabachnikov
conserved quantities for the pentagram map and the
Arnold-Fuchs-Izmestiev-Tabachnikov conserved quan-
tities for cross-ratio dynamics as conserved quantities
for the dimer model.

Results of Affolter-George-R. ’22

• We define twisted TCD maps for the pentagram map
and cross-ratio dynamics.

• The iterations of both dynamics are realized as some
sequences of moves on the respective TCD maps.



Cross-ratio dynamics

• Two twisted n-gons (Pi)i∈Z and (Qi)i∈Z in CP 1

are related if they have the same monodromy and
cr(Pi, Pi+1, Qi, Qi+1) = −1 for all i.

• For a generic twisted n-gon Q, there exist two twisted
n-gons P and R that are related to Q. Cross-ratio
dynamics is the iteration of the map (P,Q) 7→ (Q,R).

· · · · · ·
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• Dimer integrable systems possess a unified theory, valid
for any bipartite graph on the torus.

• Taking TCD maps for different choices of graphs, we
recover a wealth of seemingly disparate examples, com-
ing from either geometric dynamics or from discrete
differential geometry.

• Provides a powerful machinery to prove integrability
and find a cluster algebra structure for even more geo-
metric systems.

Conclusion
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