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e Several integrable dynamical systems on spaces of poly-
gons have been studied in the last decades.

e Another class of integrable systems associated with bi-
partite dimer models on the torus was introduced by
Goncharov and Kenyon in 2013.

e The setting of triple crossing diagram maps provides a
common framework for both the geometric integrable
systems and the dimer integrable system.



1 Integrable systems from bipartite
dimer models on the torus



A model from statistical mechanics

e Setting: planar bipartite graphs (vertices can be colored
black and white such that each edge has two endpoints
of different colors) with edge weights.
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e In probability, edge weights are positive real numbers.

e For integrable systems and geometry purposes (this
talk), edge weights are complex numbers.



e Dimer covering: subset of edges such that each vertex
is incident to exactly one edge.

e [T T T

Weights:

e Boltzmann probability measure: draw a dimer covering
at random with probability proportional to its weight.



e Multiplying by A > 0 the weight of every edge inci-
dent to a given vertex (gauge transformation) does not
change the probability measure.

e Alternating products of edge weights around faces are
coordinates on the space of edge weights modulo gauge.
They are called face weights.
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Kasteleyn edge weights

e To each edge, one can associate a Kasteleyn sign, such
that the product of these signs around a face of degree

2k is (—1)%*1,

e Multiplying the edge weights by the Kasteleyn signs,
one gets Kasteleyn edge weights.
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Kasteleyn edge weights
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o If a face of degree 2k has face weight X, then the alter-

nating product of Kasteleyn edge weights around the
face equals (—1)*T1 X,

e The Kasteleyn matrix is the adjacency matrix of the
oraph with Kasteleyn edge weights. It is used to com-
pute the partition function and correlations for the
dimer model (Kasteleyn, Temperley-Fisher, 60s).



'T'wo local moves

e These moves preserve the Boltzmann measure.

1. Spider move:




'T'wo local moves

e These moves preserve the Boltzmann measure.

1. Spider move:

X/:X—].
X =X1(1+X)
Xo
X! =
2 14+ X1
X =X3(1+X)
X4
X/ =
1 x!

e The change in the face weights is a special instance of
mutation of coefficient variables in cluster algebras.



'T'wo local moves

e These moves preserve the Boltzmann measure.

2. Contraction/expansion of degree-two vertex:
ol X

e Face weights don’t change.

e May be recombined into a resplit move:



Discrete-time integrable dynamics

e We use these moves to define discrete-time dynamics
on face-weighted bipartite graphs on the torus.

e One step of the dynamics will bring us back to the same
combinatorial graph, but the face weights will poten-
tially have changed.



e An equivalent way of working with torus graphs is to
consider infinite planar graphs that are periodic in two
directions, with weights also periodic in two directions.
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e An equivalent way of working with torus graphs is to
consider infinite planar graphs that are periodic in two
directions, with weights also periodic in two directions.
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Square grid example
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Square grid example
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Square grid example



e For any given bipartite graph on the torus, this discrete-
time dynamics is integrable, in the sense that it has
“enough” conserved quantities.

e These conserved quantities have a particular struc-
ture with respect to a Poisson bracket. In the
right coordinates, the motion is translation on some
high-dimensional torus (Goncharov-Kenyon ’13, Fock-
Marshakov 16, Vichitkunakorn ’18 and George-
Inchiostro ’22).

e The conserved quantities are partition functions for
dimer covers on the torus with prescribed homology.



Homology group of the torus

e One associates to a collection of directed loops on the
torus T its homology, which measures how many times
it winds around each direction of the torus.

homology (1,1) I I homology (0, —2)



e Pick a reference dimer covering (orange) and orient it
from white vertices to black vertices.

e An arbitrary dimer covering (blue) gives rise to directed
loops by orienting it from black to white and concate-
nating it with the reference dimer covering.
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a C homology (0, 0)

e Pick a reference dimer covering (orange) and orient it
from white vertices to black vertices.

e An arbitrary dimer covering (blue) gives rise to directed
loops by orienting it from black to white and concate-
nating it with the reference dimer covering.
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nating it with the reference dimer covering.















2 'The pentagram map



e points at time 0



e points at time 0



e points at time 0

o points at time 1



e points at time 0

o points at time 1



e points at time 0

o points at time 1



e points at time 0

o points at time 1



n==~06

® points at time —1

e points at time 0

o points at time 1



n==~06
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e Discrete-time dynamics on the space of n-gons with ver-
tices in CP?, considered up to PG L3(C) (Schwartz ’92).



Reminders on projective geometry

e Fix m > 1. Points of the projective space CP™ are
defined to be lines in the vector space C™ 1.

e If v is a vector in C™'! and P is the point of CP™
associated with the line Cv, then v is called a lift of P.

e A line in CP™ is defined to be a plane in C"™ 11!,



Reminders on projective geometry

e Any A € GL,,,1(C) acts on the lines of C"™*!. For any
A € C, MA has the same action as A on these lines.

e The automorphisms of CP™ are given by the elements
of PGL,,.1(C), which is the quotient of GL,,1(C) by
the subgroup of scalar matrices.

e An affine chart of CP™ is given by the affine space C™.



Reminders on projective geometry

If (P, Ps,...,P) are 2k points in CP™ such that each
Py; lies on the line (Py;_1P5;11), their multi-ratio is
defined by

mr(Pl, P, .. . (Pl—P2)(P3_P4)"'(P2k:—1_PQk:).

o Pok) = SRR (Pim Py (o =P

The definition is independent of the afline chart chosen
to compute the ratios along each line.

When £ = 2, the multi-ratio of four aligned points is
called their cross-ratio.



T'wisted polygons

e A closed n-gon can be seen as a bi-infinite sequence
of pOiIltS ( . o ,P_l,Po, Pl, PQ, . o ) in (CP2 which is n-
periodic, i.e. such that for every ¢ € Z, P;.,, = F;.
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of pOiIltS ( . o ,P_l,Po, Pl, PQ, . o ) in (CP2 which is n-
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Ps = P,



T'wisted polygons

o If M € PGL3(C), a twisted n-gon with monodromy
M is defined as a bi-infinite sequence of points
(...,P_1,Py,P1,P5,...) in CP? such that for every
1€ 4y, Py, = M.F;.




T'wisted polygons

e The pentagram map is defined on the space of twisted
n-gons considered up to the action of PGL3(C): (P;)cz
is identified with (APZ)ZEZ if A e PGLg (C)

e The monodromy M of a twisted n-gon is thus well-
defined only up to conjugation: M is identified with

AMA—1if A € PGLg((C)



Results on the pentagram map

e The dynamics is integrable, with explicit formu-
las for the conserved quantities (Ovsienko-Schwartz-

Tabachnikov ’10, Soloviev '13). This follows from the
conservation of the monodromy:.

e However, the majority of these conserved quantities
lack a geometric interpretation.

e (Certain multi-ratios of points of two consecutive gen-
erations (times ¢t and t 4+ 1) evolve like mutations of
coefficient variables of cluster algebras (Glick "11).



3 'Triple crossing diagram maps

Following mostly Affolter-Glick-Pylyavskyy-R. '19



o A triple crossing diagram (TCD) is a bipartite graph
such that all the black vertices have degree 3.

o et m > 1 and I' be a TCD with white vertex set W
and black vertex set B. A TCD map is a map from
W to CP™ such that for any b € B, the three vertices
around b are mapped to three collinear points.




e One can associate edge variables to a TCD map by
lifting the points P; € CP™ to vectors v; € C™+1.
These edge variables are only well-defined up to gauge
transformations.

g P, Py, P € CP™ collinear

|

V1, V9, v3 € C™TL coplanar
Py P
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There exist A1, Ao, A3 € C such that A\jvy + Ayvg + A3v3 = 0.



e One can associate edge variables to a TCD map by
lifting the points P; € CP™ to vectors v; € C™+1.
These edge variables are only well-defined up to gauge
transformations.

P, Py, P € CP™ collinear

|

b, V1U2,U3 c C™*! coplanar
3

There exist A1, Ao, A3 € C such that A\jvy + Ayvg + A3v3 = 0.

Gauge at a white vertex: choose a different litt.
Gauge at a black vertex: multiply the linear combination by
an overall factor.



e One can associate edge variables to a TCD map by
lifting the points P; € CP™ to vectors v; € C™+1.
These edge variables are only well-defined up to gauge
transformations.

P, Py, P € CP™ collinear

|

V1, V9, v3 € C™TL coplanar

e These edge variables will play the role of Kasteleyn edge
weights when looking at the underlying dimer model.



e Consider a face with vertices (w1, b1, ws, ba, ..., wg, bx).
Define its face weight to be (—1)*T1 times the alternat-
ing product of edge variables around the face.

e Calling w, the other white vertex adja-
cent to b;, then the face weight equals
(—1)k+1mr(Pw1 , owl ) PwQ, Pwéa N 7Pwk ; Pw;c)

w w1 wh
bl b3
Wwo w3
b2



Spider move for TCD maps

e The points of the TCD maps do not change, but the
face weights change. This is a reparametrization.

e The face weights change according to the same formula
as for the dimer spider move.



Resplit tor TCD maps

e If the points are in CP™ with m > 2, the new point P’
or P is determined by Menelaus theorem for complete
quadrilaterals:

mI'(Pl,P,PQ,Pg,P/,P4):—1.

e One point changes but face weights don’t change.
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TCD map for the pentagram map
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Results of Affolter-George-R. 22

e We recover the pentagram cluster variables of Glick as
dimer face weights.

e We recover the pentagram conserved quantities of
Ovsienko-Schwartz-Tabachnikov as conserved quanti-
ties for the dimer dynamics.

e To do so, we build a general framework for twisted TCD
maps living on infinite cylinders.



Results of Affolter-George-R. 22

e The monodromy of twisted polygons (generating func-
tion of the conserved quantities for the geometric dy-
namics) gets identified with the polynomial defining the
dimer spectral curve (generating function of the con-
served quantities of the dimer dynamics).

e We apply the general framework to obtain similar re-
sults for cross-ratio dynamsics on polygons.



Conclusion and outlook

e Dimer integrable systems possess a unified theory, valid
for any bipartite graph on the torus.

e Taking TCD maps for different choices of graphs, we
recover a wealth of examples, coming from either geo-
metric dynamics or from discrete differential geometry,
which previously didn’t form a unified theory (Affolter-
Glick-Pylyavskyy-R. '19).

e We find multiple cluster algebra structures for TCD
maps, which are related by natural geometric opera-
tions. This creates new connections between geometric

systems (Affolter-Glick-R. '22).
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