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e Barak-Erdés graphs (BEGs) are the directed acyclic
version of Erdos-Rényi random graphs and a special
case of last passage percolation (LPP).

e The infinite-bin model (IBM) is an interacting parti-
cle system, whose Markovian evolution depends on a
probability measure o on the set of positive integers.

e When pu is a geometric distribution, there is a coupling
between the IBM and BEGs, relating the speed of the
front of the IBM to the length of the longest path of
BEGs.
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1 Barak-Erdos graphs and last
passage percolation



Construction of Barak-Erdos graphs

e Fix n > 1 integer and 0 < p < 1.
e Vertex set is {1,2,...,n}.

e For each pair 7 < j, add an edge directed from 7 to j
with probability p, independently for each pair (i, 7).
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e Introduced by Barak and Erdos in 1984.

e The most studied feature is the length of the longest
path L, (p).

L=3
l1—-2—=4-=5
> > 1—-+2—-4—6

2 3 4 D 6

e Applications to performance evalution of com-
puter systems (Gelenbe-Nelson-Philips-Tantawi, Isopi-
Newman), mathematical ecology (Cohen-Newman) and
queuing systems (Foss-Konstantopoulos).



e The length of the longest path grows linearly in the
number of vertices :

% L., (p) > C'(p) in probability (Newman ’92)

n—oo

Clp)
4

1 =

e The growth rate
is a function of p :




Properties of C'(p)

e ('(p) is continuous and C"(0) = e (Newman ’92).
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e Upper and lower bound for
C'(p), yielding expansion of P
C'(1 — q) for g tending to O : Yy
1—q+q¢* =3¢ +7¢* +0(¢°) _
(Foss-Konstantopoulos ’03). .
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New results (Mallein-R..)

e For p > 0, C(p) is analytic and can be obtained as the
sum of a series.

e The power series expansion of C'(p) centered at 1 has
integer coeflicients.

e ((p) has no second derivative at p =0 :
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Last passage percolation

e Consider a deterministic directed acyclic graph and at-
tach i.i.d. random lengths to each edge. The length of
a path is the sum of the lengths of its edges.
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Last passage percolation

e Consider a deterministic directed acyclic graph and at-
tach i.i.d. random lengths to each edge. The length of
a path is the sum of the lengths of its edges.
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e How does the length of the longest path grow as the
size of the graph grows 7



LPP on the complete graph

e To each edge attach an i.i.d. weight/length, which is 1
with probability p and x with probability 1 — p.

e The case x+ = —o0 i1s the Barak-Erdos case.

e Denote by C(p, x) the linear growth rate of the “length”
of the “longest” path.




LPP on the complete graph

To each edge attach an i.i.d. weight/length, which is 1
with probability p and x with probability 1 — p.

The case x = —o0 1s the Barak-Erdos case.

Denote by C(p, ) the linear growth rate of the “length”
of the “longest” path.

The function = — C(p, x) is non-differentiable exactly
at values of = which are either 0 or a negative rational
or of the form n or 1/n, where n is an integer > 2
(Foss-Konstantopoulos-Pyatkin ’20).



2 The infinite-bin model (IBM)



Configurations

Infinitely many balls placed inside bins indexed by Z, such
that the set of indices of nonempty bins has a maximal ele-
ment, the front.
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Move o

- type k

Add a ball in the bin immec

iately to the right of the bin

containing the k-th ball, where balls are counted from right

to left.




Move of type k
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containing the k-th ball, where balls are counted from right
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move of type k
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Markovian evolution

e Fix an initial configuration Xy and a probability distri-
bution y on N ={1,2,3,...}.

e The infinite-bin model with move distribution u
(IBM(u) for short) and initial configuration X is the
Markov chain (X,,),>0 satisfying

Xn — ¢§n (Xn—l) ’

where the sequence (&,,),>1 is i.i.d. distributed like p.



e Introduced by Foss and Konstantopoulos in 2003 to
study the longest paths of Barak-Erdos graphs.

e Special case when p is the uniform measure on
{1,...,n} already appeared in Aldous-Pitman ’83.



Speed of the tront

Consider the IBM(u) with initial configuration Xy. Denote
by F,, the position of the front at time n.

Theorem (Foss-Konstantopoulos, Mallein-R.). There exists
v, € (0,1] such that

. Fn — FO
lim = v, a.S.
n— 00 n

v, (independent of Xo) is called the speed of the IBM(u).



Coupling with Barak-Erdos

(Foss-Konstantopoulos '03)

® [, : geometric distribution on {1,2,...} with parame-
ter p, i.e. py(k) =p(l—p)*~1for k> 1.

e The speed of the IBM(u,) equals the growth rate of the
length of the longest path in Barak-Erdos graphs with
edge probability p :



e Grow Barak-Erdds graph one vertex after the other.

e For each vertex n, call [,, the length of the longest path
ending at n. Place a ball with label n in the bin indexed

by (.
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e Grow Barak-Erdds graph one vertex after the other.

e For each vertex n, call [,, the length of the longest path
ending at n. Place a ball with label n in the bin indexed

by (.

1 2 3 4 5 6
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Why is this random evolution of balls in bins an IBM(u,) 7

S (CIS
~®
N @



Why is this random evolution of balls in bins an IBM(u,) 7

S (CIS
~®
N @



Why is this random evolution of balls in bins an IBM(u,) 7

1 2 3 4 5
O
O
O
O/®
0lD/@@®
-2-101 2 3 4



Why is this random evolution of balls in bins an IBM(u,) 7

/
/7
4




Why is this random evolution of balls in bins an IBM(u,) 7

S (CIS
~®
SSIS)



Why is this random evolution of balls in bins an IBM(u,) 7

—_
N\
%
S
e

S (CIS
~®
N @



Why is this random evolution of balls in bins an IBM(u,) 7

S (CIS
= (OIS
N @



Why is this random evolution of balls in bins an IBM(u,) 7

S (CIS
~®
N @



Why is this random evolution of balls in bins an IBM(u,) 7

S (CIS
= (OIS
N @



Why is this random evolution of balls in bins an IBM(u,) 7

—_
N\
%
S
e




Why is this random evolution of balls in bins an IBM(u,) 7

IBM(u,): pick a ball whose rank follows the geometric dis-
tribution of parameter p and add a ball to its right.

Geometric distribution: number of trials until first success.
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Stationary version of the IBM

e How to construct a stationary process, with time in-
dexed by Z rather than Z, 7

e Given a sequence (&, )ncz, We want to construct a pro-
cess (X, )neyz satisfying

Vn € Z,Xn — ¢§n (Xn—l) .
e Given the value of &, for every n < 0, one can a.s.

reconstruct Xo up to a global shift (Foss-Konstan-
topoulos, Mallein-R..).



Fix K > 1. A word (£1,...,&n) is called k-coupling if
the content of the rightmost k£ non-empty bins at time
N is independent of the configuration at time O.

E.g. the word 1 is 1-coupling.

Fix k£ > 1. Looking at the infinite word (&, )n<0, g0
back in time until you find the first suffix which is k-
coupling. This will happen a.s. in finite time.

Define the content of the rightmost £ non-empty bins to
be that common content. This definition is compatible
for different values of k.



opeed formula for the IBM

For the bi-infinite stationary version of the IBM(u),
the speed of the front is the probability that the front
advances at time 0.

Can read this information from the sequence (&, )n<o-



e A word (&1,...,&nN) is called good (resp. bad) if it al-
ways (resp. never) makes the front advance at time N,
regardless of the configuration at time O.

e 1 is good, 23 is bad, 2 is neither good nor bad.
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A word (&1,...,&N) is called good (resp. bad) if it al-
ways (resp. never) makes the front advance at time N,
regardless of the configuration at time O.

1 is good, 23 is bad, 2 is neither good nor bad.

Looking at the infinite word (&, )n<0, go back in time
until you find the first suffix which is either good or
bad. This will happen a.s. in finite time.

The speed of the front is the probability that this suffix
is good.



e Let G, be the set of good words that have no good
strict suffix. 1 is in G,,, but 11 is not.

e Given a word «, the weight w, () is the product of
the probabilities under p of the letters of a.

E.g wu(2,1,3) = pu(2) x pu(l) x u(3).

Theorem (Mallein-R.). For any p which is not a Dirac
mass, the speed of the IBM () is

U = Z wy ()

oacG .,



Pertect simulation

e Sampling exactly from the stationary distribution of a
Markov process, unlike MCMC methods which sample
from a distribution close to the stationary distribution.

e Perfect simulation is possible for any finite-dimensional
marginal of the IBM (Foss-Konstantopoulos, Mallein-
R.).

e Work in progress with Foss-Konstantopoulos-Mallein:
perfect simulation for LPP on complete graphs with
weights 1 and .



3 Properties of Barak-Erdos graphs
via the 1BM



Analyticity of C'(p)

e The special case when p is p,, the geometric distribu-
tion of parameter p, gives a formula for v, = C(p):

Clp)= Y p"(1—p)")

acG .,

where the height H(a) (resp. length L(«)) of a word
a = (aq,...,qy) is defined to be ay +- - - +a,, —n (resp.

e Proving the existence of finite exponential moments for
the time one has to wait before discovering a good or
bad word implies that C'(p) is analytic for p > 0.



Power series expansion around p = 1

Theorem (Mallein-R.). C(1—¢q) can be expanded as a power

VvV2—1
2

series in q with radius at least and its coefficients are

integers.

Fix a positive integer h. Then

Cl—q)= > (1—gHg

aceG
— Z (1 — g)F(@gH(@) 4 Z (1 — g)L(e)gH ()
acG,, aceGm,

H(a)<h H(a)>h



p — 0 limit

Theorem (Mallein-R., 2016).

erp ( D
-0
2(log p)? (log p)?

In particular, C'(p) has no second derivative at p = 0.

C(p) =ep — ) when p — 0.



Proof strategy

. Compare to an IBM(u) where p is the uniform distri-
bution on {1,...,n} and n is large.

. The IBM with uniform distribution is coupled with a
branching random walk with selection.

. Use known estimates on branching random walks.



Step 1 : reduction to uniform case

e Want the speed of the IBM(u,), where p, is geometric
with parameter p small.

opr:%:
k|1 2 3 n
)] 3 [E 0= DlE -0 Ea-m]

e Roughly equal to v,,, the uniform distribution on

{1,...,n}.



Step 2 : branching random
walk analogy

e IBM(v,,) first studied by Aldous and Pitman in 1983 :
speed behaves like = when n — oo.

e Use a coupling with a continuous-time branching ran-
dom walk on Z with selection of the rightmost n indi-

viduals :
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Step 3 : use branching
random walk estimates

e Discrete-time branching random walk with selection
widely studied : Brunet-Derrida 97, Bérard-Gouéré
'10, Bérard-Maillard 14, Mallein ’15...

e Translate these discrete-time results to the continuous
setting.

e Conjecture for next term (after Brunet-Derrida) :

3em?plog (— log p)
(—logp)”




4 Perspectives



Integer coetficients around p =1

Cl—q)=1—q+q¢* -3¢ +7¢" —15¢° + -

— Z(—l)kaqu.

k>0

Foss-Konstantopoulos (’03): first 5 terms
Mallein-R. (’16): first 17 terms
Terlat (’21): first 24 terms

Was not in the Online Encyclopedia of Integer Sequences
before I added it (sequence A321309).



e Show that (ax) forms an increasing sequence of positive
integers and find a class of objects counted by them.

e Is there a simple direct proof of all the results on C(p)
using just graphs and not the IBM?

e Can one find some more or less explicit formula for

C(p)?



If u; is an integer sequence, write its generating function as

Z qu

F(q) is rational if it is a quotient of two polynomials in q.

F(q) is algebraic if it satisfies G(q, F'(q)) = 0 for some bivari-
ate polynomial G.

F(q)is D-finite if it satisfies H(q, F(q), F'(q), - , F("™(q)) =
0 for some H which is polynomial in its first variable and
linear in its other variables.

F(q) is D-algebraic if it satisfies a similar equation with H
polynomial in every variable.



e Because of the singularity in p/(log p)? we found around
p = 0, C'(p) cannot be neither rational, nor algebraic,
nor D-finite.

e Is C'(p) D-algebraic ?

e Maple package called gfun developped by Salvy: if you
enter “enough” terms of the sequence wu, it will guess
the generating function if it falls in one of the four cat-
egories.



THANK YOU !



