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• Barak-Erdős graphs (BEGs) are the directed acyclic
version of Erdős-Rényi random graphs and a special
case of last passage percolation (LPP).

• When µ is a geometric distribution, there is a coupling
between the IBM and BEGs, relating the speed of the
front of the IBM to the length of the longest path of
BEGs.

• The infinite-bin model (IBM) is an interacting parti-
cle system, whose Markovian evolution depends on a
probability measure µ on the set of positive integers.
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1 Barak-Erdős graphs and last
passage percolation



• Vertex set is {1, 2, . . . , n}.

• Fix n ≥ 1 integer and 0 ≤ p ≤ 1.

Construction of Barak-Erdős graphs

• For each pair i < j, add an edge directed from i to j
with probability p, independently for each pair (i, j).
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• Introduced by Barak and Erdős in 1984.

• The most studied feature is the length of the longest
path Ln(p).

1 2 3 4 5 6

1→ 2→ 4→ 5
1→ 2→ 4→ 6

L=3

• Applications to performance evalution of com-
puter systems (Gelenbe-Nelson-Philips-Tantawi, Isopi-
Newman), mathematical ecology (Cohen-Newman) and
queuing systems (Foss-Konstantopoulos).



• The length of the longest path grows linearly in the
number of vertices :

1
nLn(p) −−−−→

n→∞
C(p) in probability (Newman ’92)

• The growth rate C
is a function of p :



Properties of C(p)

• C(p) is continuous and C ′(0) = e (Newman ’92).

• Upper and lower bound for
C(p), yielding expansion of
C(1− q) for q tending to 0 :
1−q+q2−3q3 +7q4 +O(q5)
(Foss-Konstantopoulos ’03).



• C(p) has no second derivative at p = 0 :

C(p) = ep− eπ2p

2(log p)2
+ o

(
p

(log p)2

)
when p→ 0.

• For p > 0, C(p) is analytic and can be obtained as the
sum of a series.

New results (Mallein-R.)

• The power series expansion of C(p) centered at 1 has
integer coefficients.



Last passage percolation

• Consider a deterministic directed acyclic graph and at-
tach i.i.d. random lengths to each edge. The length of
a path is the sum of the lengths of its edges.
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Last passage percolation

• Consider a deterministic directed acyclic graph and at-
tach i.i.d. random lengths to each edge. The length of
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• How does the length of the longest path grow as the
size of the graph grows ?



LPP on the complete graph

1 2 3 4 5

• To each edge attach an i.i.d. weight/length, which is 1
with probability p and x with probability 1− p.

• The case x = −∞ is the Barak-Erdős case.

• Denote by C(p, x) the linear growth rate of the “length”
of the “longest” path.



LPP on the complete graph

• To each edge attach an i.i.d. weight/length, which is 1
with probability p and x with probability 1− p.

• The case x = −∞ is the Barak-Erdős case.

• Denote by C(p, x) the linear growth rate of the “length”
of the “longest” path.

• The function x 7→ C(p, x) is non-differentiable exactly
at values of x which are either 0 or a negative rational
or of the form n or 1/n, where n is an integer ≥ 2
(Foss-Konstantopoulos-Pyatkin ’20).



2 The infinite-bin model (IBM)



Configurations
Infinitely many balls placed inside bins indexed by Z, such
that the set of indices of nonempty bins has a maximal ele-
ment, the front.
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front
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Move of type k
Add a ball in the bin immediately to the right of the bin
containing the k-th ball, where balls are counted from right
to left.
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φk : move of type k
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Markovian evolution

• Fix an initial configuration X0 and a probability distri-
bution µ on N = {1, 2, 3, . . .}.

• The infinite-bin model with move distribution µ
(IBM(µ) for short) and initial configuration X0 is the
Markov chain (Xn)n≥0 satisfying

Xn = φξn (Xn−1) ,

where the sequence (ξn)n≥1 is i.i.d. distributed like µ.



• Introduced by Foss and Konstantopoulos in 2003 to
study the longest paths of Barak-Erdős graphs.

• Special case when µ is the uniform measure on
{1, . . . , n} already appeared in Aldous-Pitman ’83.



Speed of the front

Consider the IBM(µ) with initial configuration X0. Denote
by Fn the position of the front at time n.

Theorem (Foss-Konstantopoulos, Mallein-R.). There exists
vµ ∈ (0, 1] such that

lim
n→∞

Fn − F0

n
= vµ a.s.

vµ (independent of X0) is called the speed of the IBM(µ).



Coupling with Barak-Erdős

(Foss-Konstantopoulos ’03)

• µp : geometric distribution on {1, 2, . . .} with parame-
ter p, i.e. µp(k) = p(1− p)k−1 for k ≥ 1.

• The speed of the IBM(µp) equals the growth rate of the
length of the longest path in Barak-Erdős graphs with
edge probability p :

vµp = C(p).



• Grow Barak-Erdős graph one vertex after the other.

• For each vertex n, call ln the length of the longest path
ending at n. Place a ball with label n in the bin indexed
by ln.
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• Grow Barak-Erdős graph one vertex after the other.

• For each vertex n, call ln the length of the longest path
ending at n. Place a ball with label n in the bin indexed
by ln.
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length of longest
path in BEG

=
position of front in

ball/bin process
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Why is this random evolution of balls in bins an IBM(µp) ?

IBM(µp): pick a ball whose rank follows the geometric dis-
tribution of parameter p and add a ball to its right.

Geometric distribution: number of trials until first success.



Stationary version of the IBM

• Given a sequence (ξn)n∈Z, we want to construct a pro-
cess (Xn)n∈Z satisfying

∀n ∈ Z, Xn = φξn (Xn−1) .

• How to construct a stationary process, with time in-
dexed by Z rather than Z+ ?

• Given the value of ξn for every n ≤ 0, one can a.s.
reconstruct X0 up to a global shift (Foss-Konstan-
topoulos, Mallein-R.).



• Fix k ≥ 1. A word (ξ1, . . . , ξN ) is called k-coupling if
the content of the rightmost k non-empty bins at time
N is independent of the configuration at time 0.

• E.g. the word 1 is 1-coupling.

• Fix k ≥ 1. Looking at the infinite word (ξn)n≤0, go
back in time until you find the first suffix which is k-
coupling. This will happen a.s. in finite time.

• Define the content of the rightmost k non-empty bins to
be that common content. This definition is compatible
for different values of k.



Speed formula for the IBM

• For the bi-infinite stationary version of the IBM(µ),
the speed of the front is the probability that the front
advances at time 0.

• Can read this information from the sequence (ξn)n≤0.



• A word (ξ1, . . . , ξN ) is called good (resp. bad) if it al-
ways (resp. never) makes the front advance at time N ,
regardless of the configuration at time 0.

• 1 is good, 23 is bad, 2 is neither good nor bad.



• A word (ξ1, . . . , ξN ) is called good (resp. bad) if it al-
ways (resp. never) makes the front advance at time N ,
regardless of the configuration at time 0.

• 1 is good, 23 is bad, 2 is neither good nor bad.



• A word (ξ1, . . . , ξN ) is called good (resp. bad) if it al-
ways (resp. never) makes the front advance at time N ,
regardless of the configuration at time 0.

• 1 is good, 23 is bad, 2 is neither good nor bad.



• A word (ξ1, . . . , ξN ) is called good (resp. bad) if it al-
ways (resp. never) makes the front advance at time N ,
regardless of the configuration at time 0.

• 1 is good, 23 is bad, 2 is neither good nor bad.



• A word (ξ1, . . . , ξN ) is called good (resp. bad) if it al-
ways (resp. never) makes the front advance at time N ,
regardless of the configuration at time 0.

• 1 is good, 23 is bad, 2 is neither good nor bad.



• A word (ξ1, . . . , ξN ) is called good (resp. bad) if it al-
ways (resp. never) makes the front advance at time N ,
regardless of the configuration at time 0.

• 1 is good, 23 is bad, 2 is neither good nor bad.



• A word (ξ1, . . . , ξN ) is called good (resp. bad) if it al-
ways (resp. never) makes the front advance at time N ,
regardless of the configuration at time 0.

• 1 is good, 23 is bad, 2 is neither good nor bad.



• A word (ξ1, . . . , ξN ) is called good (resp. bad) if it al-
ways (resp. never) makes the front advance at time N ,
regardless of the configuration at time 0.

• 1 is good, 23 is bad, 2 is neither good nor bad.



• A word (ξ1, . . . , ξN ) is called good (resp. bad) if it al-
ways (resp. never) makes the front advance at time N ,
regardless of the configuration at time 0.

• 1 is good, 23 is bad, 2 is neither good nor bad.



• A word (ξ1, . . . , ξN ) is called good (resp. bad) if it al-
ways (resp. never) makes the front advance at time N ,
regardless of the configuration at time 0.

• 1 is good, 23 is bad, 2 is neither good nor bad.



• A word (ξ1, . . . , ξN ) is called good (resp. bad) if it al-
ways (resp. never) makes the front advance at time N ,
regardless of the configuration at time 0.

• 1 is good, 23 is bad, 2 is neither good nor bad.



• A word (ξ1, . . . , ξN ) is called good (resp. bad) if it al-
ways (resp. never) makes the front advance at time N ,
regardless of the configuration at time 0.

• 1 is good, 23 is bad, 2 is neither good nor bad.

• Looking at the infinite word (ξn)n≤0, go back in time
until you find the first suffix which is either good or
bad. This will happen a.s. in finite time.

• The speed of the front is the probability that this suffix
is good.



• Let Gm be the set of good words that have no good
strict suffix. 1 is in Gm but 11 is not.

• Given a word α, the weight wµ(α) is the product of
the probabilities under µ of the letters of α.

E.g. wµ(2, 1, 3) = µ(2)× µ(1)× µ(3).

Theorem (Mallein-R.). For any µ which is not a Dirac
mass, the speed of the IBM(µ) is

vµ =
∑
α∈Gm

wµ(α)



Perfect simulation

• Sampling exactly from the stationary distribution of a
Markov process, unlike MCMC methods which sample
from a distribution close to the stationary distribution.

• Perfect simulation is possible for any finite-dimensional
marginal of the IBM (Foss-Konstantopoulos, Mallein-
R.).

• Work in progress with Foss-Konstantopoulos-Mallein:
perfect simulation for LPP on complete graphs with
weights 1 and x.



3 Properties of Barak-Erdős graphs
via the IBM



• The special case when µ is µp, the geometric distribu-
tion of parameter p, gives a formula for vµp

= C(p):

C(p) =
∑
α∈Gm

pL(α)(1− p)H(α),

where the height H(α) (resp. length L(α)) of a word
α = (α1, . . . , αn) is defined to be α1+ · · ·+αn−n (resp.
n).

Analyticity of C(p)

• Proving the existence of finite exponential moments for
the time one has to wait before discovering a good or
bad word implies that C(p) is analytic for p > 0.



Power series expansion around p = 1

Fix a positive integer h. Then

C(1− q) =
∑
α∈Gm

(1− q)L(α)qH(α)

=
∑
α∈Gm

H(α)≤h

(1− q)L(α)qH(α) +
∑
α∈Gm

H(α)>h

(1− q)L(α)qH(α)

Theorem (Mallein-R.). C(1−q) can be expanded as a power

series in q with radius at least
√
2−1
2 and its coefficients are

integers.



p→ 0 limit

Theorem (Mallein-R., 2016).

C(p) = ep− eπ2p

2(log p)2
+ o

(
p

(log p)2

)
when p→ 0.

In particular, C(p) has no second derivative at p = 0.



Proof strategy

1. Compare to an IBM(µ) where µ is the uniform distri-
bution on {1, . . . , n} and n is large.

2. The IBM with uniform distribution is coupled with a
branching random walk with selection.

3. Use known estimates on branching random walks.



Step 1 : reduction to uniform case

• Want the speed of the IBM(µp), where µp is geometric
with parameter p small.

• If p = 1
n :

k

µp(k) 1
n

(
1− 1

n

)21
n

1
n

(
1− 1

n

)
1
n

(
1− 1

n

)n−11 2 3 n

• Roughly equal to νn, the uniform distribution on
{1, . . . , n}.



Step 2 : branching random

walk analogy

• IBM(νn) first studied by Aldous and Pitman in 1983 :
speed behaves like e

n when n→∞.

• Use a coupling with a continuous-time branching ran-
dom walk on Z with selection of the rightmost n indi-
viduals :
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Step 3 : use branching

random walk estimates

• Discrete-time branching random walk with selection
widely studied : Brunet-Derrida ’97, Bérard-Gouéré
’10, Bérard-Maillard ’14, Mallein ’15...

• Translate these discrete-time results to the continuous
setting.

• Conjecture for next term (after Brunet-Derrida) :

3eπ2p log (− log p)

(− log p)
3



4 Perspectives



Integer coefficients around p = 1

C(1− q) = 1− q + q2 − 3q3 + 7q4 − 15q5 + · · ·

=
∑
k≥0

(−1)kakq
k.

Foss-Konstantopoulos (’03): first 5 terms
Mallein-R. (’16): first 17 terms
Terlat (’21): first 24 terms

Was not in the Online Encyclopedia of Integer Sequences
before I added it (sequence A321309).



• Is there a simple direct proof of all the results on C(p)
using just graphs and not the IBM?

• Can one find some more or less explicit formula for
C(p)?

• Show that (ak) forms an increasing sequence of positive
integers and find a class of objects counted by them.



If uk is an integer sequence, write its generating function as

F (q) =
∑
k≥0

ukq
k.

F (q) is rational if it is a quotient of two polynomials in q.

F (q) is algebraic if it satisfies G(q, F (q)) = 0 for some bivari-
ate polynomial G.

F (q) is D-finite if it satisfiesH(q, F (q), F ′(q), · · · , F (m)(q)) =
0 for some H which is polynomial in its first variable and
linear in its other variables.

F (q) is D-algebraic if it satisfies a similar equation with H
polynomial in every variable.



• Maple package called gfun developped by Salvy: if you
enter “enough” terms of the sequence uk, it will guess
the generating function if it falls in one of the four cat-
egories.

• Because of the singularity in p/(log p)2 we found around
p = 0, C(p) cannot be neither rational, nor algebraic,
nor D-finite.

• Is C(p) D-algebraic ?



THANK YOU !


