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1 The dimer model
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e Dimer covering: subset of edges such that each vertex
is incident to exactly one edge.
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e Dimer covering: subset of edges such that each vertex
is incident to exactly one edge.
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Weights:

e Boltzmann measure: draw a dimer covering at random
with probability proportional to its weight.



e Setting: planar bipartite graphs (vertices can be colored
black and white such that each edge has two endpoints
of different colors) with positive edge weights.

e Multiplying by A > 0 the weight of every edge inci-
dent to a given vertex (gauge transformation) does not
change the probability measure.

e Alternating products of edge weights around faces are
coordinates on the space of edge weights modulo gauge.
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The Kasteleyn matrix K
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o Kasteleyn signs: assign a sign to each edge such that
the number of minus signs around a face of degree 2
mod 4 (resp. 0 mod 4) is even (resp. odd).

e K: weighted signed adjacency matrix with rows (resp.
columns) indexed by white (resp. black) vertices.
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o Kasteleyn signs: assign a sign to each edge such that
the number of minus signs around a face of degree 2
mod 4 (resp. 0 mod 4) is even (resp. odd).

e K: weighted signed adjacency matrix with rows (resp.
columns) indexed by white (resp. black) vertices.
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o Kasteleyn signs: assign a sign to each edge such that
the number of minus signs around a face of degree 2
mod 4 (resp. 0 mod 4) is even (resp. odd).

e K: weighted signed adjacency matrix with rows (resp.
columns) indexed by white (resp. black) vertices.
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o Complex Kasteleyn signs: assign a unit complex num-
ber to each edge such that the alternating product of

these numbers around a face of degree 2 mod 4 (resp.
0 mod 4) is 1 (resp. —1).

e K: weighted signed adjacency matrix with rows (resp.
columns) indexed by white (resp. black) vertices.



e The partition function (sum of the weights of all dimer
coverings) is |det K|. The dimer correlations are given
by minors of K1 (Kasteleyn, Temperley-Fisher).

e Merge the complex Kasteleyn signs with the positive
edge weights to get complex edge weights (entries of K).
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e The partition function (sum of the weights of all dimer
coverings) is |det K|. The dimer correlations are given
by minors of K1 (Kasteleyn, Temperley-Fisher).

e Merge the complex Kasteleyn signs with the positive
edge weights to get complex edge weights (entries of K).

e The alternating product of complex edge weights is real
positive (resp. real negative) around a face of degree 2

mod 4 (resp. 0 mod 4).



2 Circle patterns and circle centers



o (ircle pattern for G: map from the vertex set of G to
R? sending all the vertices around any bounded face to
concyclic points.
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o (ircle pattern for G: map from the vertex set of G to

R? sending all the vertices around any bounded face to
concyclic points.
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e (rcle centers for GG: drawing of the dual graph of GG
arising as centers of some circle pattern for G.

G planar



e Recover the circle pattern from the circle centers ?

How many circle patterns have the same centers 7

e Given a drawing of the dual graph of G, how to see if
it corresponds to the centers of a circle pattern for G 7

e Answers in the case when G is bipartite.
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From now on G is bipartite.

2-parameter family of patterns with the same centers.

A drawing of the dual graph of G corresponds to circle
centers for (G if and only if around each dual vertex the
sum of every other angle is 0 mod .

An embedding of the dual graph of G corresponds to cir-
cle centers for G if and only if around each dual vertex
the sum of every other angle is equal to .
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3 Dimer models and circle centers



From circle centers to dimer weights

e Iix G a planar unweighted bipartite graph. Start with
an embedding of the dual of GG as circle centers.

e Construct complex edge weights for G associated to
that embedding which satisty the Kasteleyn condition.

e For an edge in G between b and w, the weight is the vec-
tor (complex number) of its corresponding dual edge,
oriented so that b lies to its left.
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e The complex edge weights satisty the Kasteleyn condi-
tion: the alternating product around of a face of degree
2 mod 4 (resp. 0 mod 4) is positive (resp. negative).
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e The complex edge weights satisty the Kasteleyn condi-
tion: the alternating product around of a face of degree
2 mod 4 (resp. 0 mod 4) is positive (resp. negative).

e Around every vertex, the sum of the complex edge
weights is zero, 1.e. the edge weights have zero diver-
gence.



For a bipartite graph, the geometric local condition
“being centers of a circle pattern with embedded dual”
implies the local condition

“being Kasteleyn edge weights with zero divergence”
(Kenyon-Lam-R.-Russkikh, 2018)

e The fact that circle center embeddings satisfy the Kaste-
leyn condition was also observed by Affolter (2018).

e Positive edge weights are obtained from circle centers as
distances between adjacent centers.

e Going from circle centers to dimer edge weights is a local
construction.




From dimer weights to circle centers

e Given a bipartite graph with positive edge weights, find
gauge equivalent weights coming from circle centers.
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From dimer weights to circle centers

e Given a bipartite graph with positive edge weights, find
gauge equivalent weights coming from circle centers.

dual augmented dual



Theorem (Kenyon-Lam-R.-Russkikh 2018). Let G be a pla-
nar bipartite weighted graph with outer face of degree 4. Fix
a convex quadrilateral P.

There are two circle center embeddings of the augmented dual
of G which produce weights that are gauge equivalent to the
original weights and such that the four outer dual vertices are
mapped to the vertices of P.



o Given
— an unweighted bipartite planar graph G with
boundary of length 4
— a convex quadrilateral (boundary condition)
there is a 2-to-1 correspondence between embeddings

of the augmented dual of G as circle centers and dimer
Boltzmann measures on G.

e Expected to hold in some form for other boundary
lengths.



e Other setting: infinite planar bipartite graphs, periodic
in two directions with edge weights also periodic.
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e Other setting: infinite planar bipartite graphs, periodic
in two directions with edge weights also periodic.
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Let GG be an infinite periodic weighted graph.

Gibbs measure: probability measure on the dimer co-
verings of G, whose restriction to finite subgraphs are
Boltzmann measures induced by the edge weights.

Ergodic Gibbs measure: not a convex combination of
other Gibbs measures.

Liquad: correlations decay polynomially.

The interior points of the amoeba (log-log represen-
tation of the spectral curve of G) parametrize the li-

quid ergodic Gibbs measures on G (Kenyon-Okounkov-
Sheffield).
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Theorem (Kenyon-Lam-R.-Russkikh 2018). Let G be an in-
finite weighted bipartite graph, periodic in two directions. Pe-
riodic circle center embeddings of the dual of G producing
edge weights that are gauge equivalent to the original ones
are in bijection with liquid ergodic Gibbs measures on G.

e In both the finite and the infinite case, the construction
of a circle center embedding associated with a weighted
planar graph G depends globally (not locally) on G.



4 Motivation and perspectives



Miquel’s theorem

Theorem (Miquel, 1838). In this setting,
A,B,C, D concyclic & A',B',C", D" concyclic.
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Theorem (Miquel, 1838). In this setting,
A,B,C, D concyclic & A',B',C", D" concyclic.



Miquel dynamics

e Discrete-time dynamics on the space of square-grid cir-
cle patterns: alternate Miquel moves on all the white
faces then on all the black faces.

e Invented by Kenyon, first properties studied in |R. 2018]
and |[Glutsyuk-R. 2018|.
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Dimer local move

e Urban renewal:
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Theorem (Affolter 2018, Kenyon-Lam-R.-Russkikh, 2018).
The Miquel mowve for circle patterns commutes with the urban
renewal for dimer models.

e The identification with the Goncharov-Kenyon dimer
dynamics yields the integrability of Miquel dynamics.



Miquel’s theorem revisited
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Miquel’s theorem revisited
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Theorem (Affolter 2018, Kenyon-Lam-R.-Russkikh 2018).
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Discrete Schwarzian KP equation



Miquel move and cluster algebras

Xo X4 X variables evolution
for a Miquel move:




FEmbeddings in statistical mechanics

e Consider an infinite planar graph periodic in two direc-
tions on which we study a statistical mechanical model
(random walk, dimers, Ising,...).

¢ Find an embedding of it such that universal conformally
invariant objects appear in the scaling limit.

e Same issue for formulating the convergence to Liouville
quantum gravity of random planar maps decorated with
some statistical mechanical model.



FEmbeddings in statistical mechanics

Theorem (Kenyon-Lam-R.-Russkikh, 2018). Circle center
embeddings for dimers generalize the Tutte embedding

adapted to spanning trees and the s-embeddings adapted to
the Ising model.



Tutte embeddings and circle centers
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s-embeddings and circle centers

(Chelkak 2017)
embedding of

V(G)UF(G)UE((G)
planar Wﬁighted » s-embedding of G
grap .
Wu-Lin
Dubédat R
v ? Y
H

planar bipartite
weighted graph G

~

F(G) <
V(G)UF(G)UE((G)

» circle centers for GG



s-embeddings and circle centers

(Chelkak 2017)
embedding of

V(G)UF(G)UE(G)
planar Wﬁighted » s-embedding of G
ra,
S M
Wu-Lin \
Dubédat ' -
Y \\\\ i //,/ Y
W

planar bipartite
weighted graph G

~

F(G) <
V(G)UF(G)UE((G)

» circle centers for GG



s-embeddings and circle centers

(Chelkak 2017)
embedding of

V(G)UF(G)UFE(G)
planar Wﬁighted » s-embedding of G
ra,
S s
Wu_Lln /,f. .. ; "y {}{\
Dubédat ~ 1
v v
|

planar bipartite
weighted graph G

~

F(G) <
V(G)UF(G)UE((G)

» circle centers for GG



What to expect 7

e Local formulas for the correlations and the free energy
(Kenyon, Boutillier, de Tiliere, Raschel).

e Limit shape results.
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What to expect 7

e Local formulas for the correlations and the free energy
(Kenyon, Boutillier, de Tiliere, Raschel).

e Limit shape results.

e Notion of a discrete holomorphic function on such em-

beddings and conditions for converging to a continuous
holomorphic function (Chelkak-Laslier-Russkikh, 2019).
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