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1 The dimer model



• Dimer covering : subset of edges such that each vertex
is incident to exactly one edge.
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Dimer coverings:

Weights: cde bcg aef

• Boltzmann measure: draw a dimer covering at random
with probability proportional to its weight.

• Dimer covering : subset of edges such that each vertex
is incident to exactly one edge.



• Setting: planar bipartite graphs (vertices can be colored
black and white such that each edge has two endpoints
of different colors) with positive edge weights.
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• Multiplying by λ > 0 the weight of every edge inci-
dent to a given vertex (gauge transformation) does not
change the probability measure.

• Alternating products of edge weights around faces are
coordinates on the space of edge weights modulo gauge.
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• Kasteleyn signs: assign a sign to each edge such that
the number of minus signs around a face of degree 2
mod 4 (resp. 0 mod 4) is even (resp. odd).
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• K: weighted signed adjacency matrix with rows (resp.
columns) indexed by white (resp. black) vertices.

The Kasteleyn matrix K
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• K: weighted signed adjacency matrix with rows (resp.
columns) indexed by white (resp. black) vertices.
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The Kasteleyn matrix K

• Complex Kasteleyn signs: assign a unit complex num-
ber to each edge such that the alternating product of
these numbers around a face of degree 2 mod 4 (resp.
0 mod 4) is 1 (resp. −1).
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• The partition function (sum of the weights of all dimer
coverings) is |detK|. The dimer correlations are given
by minors of K−1 (Kasteleyn, Temperley-Fisher).

• Merge the complex Kasteleyn signs with the positive
edge weights to get complex edge weights (entries of K).
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• The partition function (sum of the weights of all dimer
coverings) is |detK|. The dimer correlations are given
by minors of K−1 (Kasteleyn, Temperley-Fisher).

• Merge the complex Kasteleyn signs with the positive
edge weights to get complex edge weights (entries of K).

• The alternating product of complex edge weights is real
positive (resp. real negative) around a face of degree 2
mod 4 (resp. 0 mod 4).



2 Circle patterns and circle centers



• Circle pattern for G: map from the vertex set of G to
R2 sending all the vertices around any bounded face to
concyclic points.

G planar
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• Circle centers for G: drawing of the dual graph of G
arising as centers of some circle pattern for G.

G planar



• Recover the circle pattern from the circle centers ?

How many circle patterns have the same centers ?

• Given a drawing of the dual graph of G, how to see if
it corresponds to the centers of a circle pattern for G ?

• Answers in the case when G is bipartite.



[Geogebra]



• 2-parameter family of patterns with the same centers.

• A drawing of the dual graph of G corresponds to circle
centers for G if and only if around each dual vertex the
sum of every other angle is 0 mod π.

• An embedding of the dual graph of G corresponds to cir-
cle centers for G if and only if around each dual vertex
the sum of every other angle is equal to π.

• From now on G is bipartite.
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3 Dimer models and circle centers



From circle centers to dimer weights

• Fix G a planar unweighted bipartite graph. Start with
an embedding of the dual of G as circle centers.

• Construct complex edge weights for G associated to
that embedding which satisfy the Kasteleyn condition.

• For an edge in G between b and w, the weight is the vec-
tor (complex number) of its corresponding dual edge,
oriented so that b lies to its left.

b w







• The complex edge weights satisfy the Kasteleyn condi-
tion: the alternating product around of a face of degree
2 mod 4 (resp. 0 mod 4) is positive (resp. negative).



• The complex edge weights satisfy the Kasteleyn condi-
tion: the alternating product around of a face of degree
2 mod 4 (resp. 0 mod 4) is positive (resp. negative).

• Around every vertex, the sum of the complex edge
weights is zero, i.e. the edge weights have zero diver-
gence.



For a bipartite graph, the geometric local condition

implies the local condition

(Kenyon-Lam-R.-Russkikh, 2018)

• Positive edge weights are obtained from circle centers as
distances between adjacent centers.

“being centers of a circle pattern with embedded dual”

“being Kasteleyn edge weights with zero divergence”

• The fact that circle center embeddings satisfy the Kaste-
leyn condition was also observed by Affolter (2018).

• Going from circle centers to dimer edge weights is a local
construction.



• Given a bipartite graph with positive edge weights, find
gauge equivalent weights coming from circle centers.

From dimer weights to circle centers

Coulomb gauge
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dual

• Given a bipartite graph with positive edge weights, find
gauge equivalent weights coming from circle centers.

From dimer weights to circle centers



augmented dualdual

• Given a bipartite graph with positive edge weights, find
gauge equivalent weights coming from circle centers.

From dimer weights to circle centers



Theorem (Kenyon-Lam-R.-Russkikh 2018). Let G be a pla-
nar bipartite weighted graph with outer face of degree 4. Fix
a convex quadrilateral P .
There are two circle center embeddings of the augmented dual
of G which produce weights that are gauge equivalent to the
original weights and such that the four outer dual vertices are
mapped to the vertices of P .



• Expected to hold in some form for other boundary
lengths.

• Given

− an unweighted bipartite planar graph G with
boundary of length 4

− a convex quadrilateral (boundary condition)

there is a 2-to-1 correspondence between embeddings
of the augmented dual of G as circle centers and dimer
Boltzmann measures on G.



• Other setting: infinite planar bipartite graphs, periodic
in two directions with edge weights also periodic.
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• The interior points of the amoeba (log-log represen-
tation of the spectral curve of G) parametrize the li-
quid ergodic Gibbs measures on G (Kenyon-Okounkov-
Sheffield).

• Gibbs measure: probability measure on the dimer co-
verings of G, whose restriction to finite subgraphs are
Boltzmann measures induced by the edge weights.

• Ergodic Gibbs measure: not a convex combination of
other Gibbs measures.

• Liquid : correlations decay polynomially.

• Let G be an infinite periodic weighted graph.



amoeba



• In both the finite and the infinite case, the construction
of a circle center embedding associated with a weighted
planar graph G depends globally (not locally) on G.

Theorem (Kenyon-Lam-R.-Russkikh 2018). Let G be an in-
finite weighted bipartite graph, periodic in two directions. Pe-
riodic circle center embeddings of the dual of G producing
edge weights that are gauge equivalent to the original ones
are in bijection with liquid ergodic Gibbs measures on G.



4 Motivation and perspectives



Miquel’s theorem

Theorem (Miquel, 1838). In this setting,
A,B,C,D concyclic ⇔ A′, B′, C ′, D′ concyclic.
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Miquel dynamics

• Discrete-time dynamics on the space of square-grid cir-
cle patterns: alternate Miquel moves on all the white
faces then on all the black faces.

[Mathematica]

• Invented by Kenyon, first properties studied in [R. 2018]
and [Glutsyuk-R. 2018].



Dimer local move

• The identification with the Goncharov-Kenyon dimer
dynamics yields the integrability of Miquel dynamics.

• Urban renewal:
a
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∆ = ac+ bd

c/∆

d/∆ b/∆

a/∆

Theorem (Affolter 2018, Kenyon-Lam-R.-Russkikh, 2018).
The Miquel move for circle patterns commutes with the urban
renewal for dimer models.



Miquel’s theorem revisited
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Miquel’s theorem revisited

n

w

s

e
c

c′ n,w, s, e, c, c′ ∈ C

Theorem (Affolter 2018, Kenyon-Lam-R.-Russkikh 2018).

(c− w)(s− c′)(e− n)

(w − s)(c′ − e)(n− c)
= −1

Discrete Schwarzian KP equation
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Miquel move and cluster algebras

X variables evolution
for a Miquel move:



Embeddings in statistical mechanics

• Consider an infinite planar graph periodic in two direc-
tions on which we study a statistical mechanical model
(random walk, dimers, Ising,...).

• Find an embedding of it such that universal conformally
invariant objects appear in the scaling limit.

• Same issue for formulating the convergence to Liouville
quantum gravity of random planar maps decorated with
some statistical mechanical model.



Embeddings in statistical mechanics

Theorem (Kenyon-Lam-R.-Russkikh, 2018). Circle center
embeddings for dimers generalize the Tutte embedding
adapted to spanning trees and the s-embeddings adapted to
the Ising model.



Tutte embeddings and circle centers
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s-embeddings and circle centers

planar weighted
graph G

planar bipartite
weighted graph G̃

Wu-Lin
Dubédat

F (G̃)↔
V (G)∪F (G)∪E(G)

s-embedding of G

circle centers for G̃

embedding of
V (G)∪F (G)∪E(G)

(Chelkak 2017)
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What to expect ?

• Local formulas for the correlations and the free energy
(Kenyon, Boutillier, de Tilière, Raschel).

• Limit shape results.
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What to expect ?

• Local formulas for the correlations and the free energy
(Kenyon, Boutillier, de Tilière, Raschel).

• Limit shape results.

• Notion of a discrete holomorphic function on such em-
beddings and conditions for converging to a continuous
holomorphic function (Chelkak-Laslier-Russkikh, 2019).
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