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Abstract

This paper explains how the Alloy model-finding method has
been used to check the specification of an electronic purse
(also called smart card) system, called the Mondex case
study, initially written in Z. After describing the payment
protocol between two electronic purses, and presenting an
overview of the Alloy model-finding method, this paper
explains how technical issues about integers and conceptual
issues about the object layout in Z have been tackled in
Alloy, giving general methods that can be used in most
case studies with Alloy. This work has also pointed out
some significant bugs in the original Z specification such as
reasoning bugs in the proofs, and proposes a way to solve them.
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1 Introduction

1.1 The Mondex case study

In 1994, National Westminster Bank developed an electronic
purse (or smart card) system, called Mondex [MCS, Mon]. An
electronic purse is a card-sized device intended to replace “real”
coins with electronic cash. In contrast to a credit or debit card,
an electronic purse stores its balance in itself, thus does not nec-
essarily require any network access to update a remote database
during a transaction. So, electronic purses can be used in small
stores or shops, such as bakeries, where small amounts of money
are involved.

But everything regarding cash requires a critically high security
level. So, in 1998, National Westminster Bank asked researchers
to verify security properties about Mondex :

• any value must be accounted; in particular, in case of a
failed transaction, lost value must be logged (it is necessary,
but the converse is not true);
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• no money may suddenly appear on a purse without being
debited from another purse through an achieved transac-
tion.

In fact, the loss of money is a global property that cannot be
considered at the local scale of one purse.

This research led to a formal proof by hand of the Mon-
dex electronic purse system1 with the Z specification language
[Spi92, WD96]. This proof has been published in 2000 by Su-
san Stepney, David Cooper and Jim Woodcock [SCW00]. It has
critically helped the Mondex system be granted ITSEC security
level 6 out of 6.

This proof consists in a specification relying on a refinement
relation between two models:

• the abstract model, a very simple model with an atomic
transaction, and each purse storing the amount of its bal-
ance and the amount it has lost;

• the concrete model, which corresponds to the actual imple-
mentation with a non-atomic transaction protocol based
on message exchange through an insecure communications
channel.

Several security issues are raised by the Concrete protocol:

• a purse can be disconnected from the system too early;

• a message can be lost by the communications channel;

• a message can be replayed several times in the communi-
cations channel, but has to be read only at most once;

• a message can be read by any purse.

A Concrete transaction follows a 5-step protocol:

1. The “from” purse receives a initialization message.

2. The “to” purse receives a initialization message and sends
a request message.

3. The “from” purse receives the request message, decreases
its balance and sends the value message.

1The whole system has been proved, except cryptographical issues
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4. The “to” purse receives the value message, increases its
balance and sends the acknowledgment message. It is done.

5. The “from”purse receives the acknowledgment message. It
is done.

If the transaction cannot go on for some reason (for instance if
one of the two purses is disconnected too early), then a mecha-
nism of abortion is provided (that could occur after a timeout
in the real world). Then, in abortion cases where money could
be lost, aborting purses have to log the transaction details into
a private logging archive, so that if a transaction is actually
lost, then it has necessarily been logged. Later purses may also
copy the contents of their private log to a global archive.

So, the system is nondeterministic, insofar as a purse can decide
to abort instead of going on with the transaction. But in both
cases, the specification assumes that, once purses are connected
to the system, they behave correctly and follow the operation
protocol. The specification also assumes that messages related
to the protocol cannot be forged (they are “protected”, for in-
stance cryptographically), they can only be replayed. However,
other “foreign” messages can be forged.

The proof layout in the Z specification consists in showing that
security properties hold for the Abstract, then refining the Ab-
stract model by the Concrete. But, as the Concrete model is
not constrained enough, refinement is made easier by making it
two-step, through a Between world which has the same struc-
ture as the Concrete but is constrained. So:

• The Between is abstracted by the Abstract by computing
the values stored by abstract purses corresponding to the
Between; however, for each purse, those computations may
involve several purses because of the logs. This proof is a
backwards refinement involving a prophecy variable, cho-
senLost : among the set of transactions for which the“from”
purse has already decreased its balance but the “to” purse
has not increased its own one yet, no purse having aborted
yet, some transactions are chosen in advance to be lost.

• The refinement of the Between by the Concrete is rather an
invariant proof than a refinement proof. The proof layout
is a forwards simulation.

1.2 The Alloy model-finding method

Alloy [Jac02, Jac06] is a modeling method that includes both a
modeling language based on first-order logic and relational cal-
culus including transitive closures, and a tool, called Alloy An-
alyzer [AA]2 and based on model-finding through SAT-solving
[Jac00], to analyze specifications in this language. The analysis
consists in checking a theorem: the specification is translated
into a SAT formula so that an instance of this formula corre-
sponds to a counterexample to the theorem being checked.

2The Alloy Analyzer is the analysis engine for Alloy 3.0, with which
the Mondex case study has been tackled. The new version of Alloy, 4.0,
is based on another analysis tool, Kodkod [TJ07, Tor], which is a major
improvement in translating specifications to SAT formulae.
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Figure 2: The Alloy model-finding method

A model of an Alloy specification is a set of atoms, or objects,
satisfying all the facts, or axioms, in addition to the theorem
being checked. The scope of the model is the cardinality of its
atoms. All models considered by Alloy analyses are finite.

The Alloy modeling language is based on relations. A relation
corresponds to a set of tuples, a tuple is an ordered combination
of atoms. In Alloy, every relation has a fixed arity : in every
relation, all the tuples have the same number of atoms.

Alloy provides the user with a relational calculus close to set
theory: + (union), - (difference), & (intersection)... The carte-
sian product is denoted -> . The most notable operator is the
join operator denoted . : given two relations A of arity a and
B of arity b, then A.B corresponds to the following set:

A.B =
{(

~a,~b
)

: ∃ x , (~a, x ) ∈ A ∧
(

x ,~b
)

∈ B
}

Special operators are also provided: ˜ (for binary relations only)
denotes the reciprocal relation (with the tuples turned upside
down); s <: r (resp. r :> s) denotes the restriction of a relation
r where the first (resp. last) components of its tuples are in the
signature s.

Then, a formula consists in:

• a multiplicity formula to denote whether the relation cor-
responds to a non-empty set (some), an empty set (no),
a singleton (one), a singleton or empty set (lone);

• an inclusion between two relations (in);

• a Boolean combination of formulae: {...} (and), or, im-

plies, not...;

• a quantified formula: universal (all), existential (some),
existential with unicity condition (one), unicity “if it ex-
ists” (lone), universal with negation (no). The disj key-
word ensures the quantified variables to denote sets of tu-
ples that are disjoint one to the other.

To construct relations of a given arity, it is necessary to declare
unary relations, or signatures. Signatures correspond to sets of
tuples. A signature is declared by sig name. A signature can
also be declared as a subset of an existing signature thanks to

module ::= module modname [signame*] opendir* declaration*

opendir ::= open modname [signame*]

declaration ::= | sigdecl | preddecl | factdecl | fundecl

sigdecl ::= | abstract? sig signame extends? {args*}

| sig signame in expr {args*}

extends ::= extends signame

args ::= relname : mult? signame sigprodend* ,

sigprodend ::= ->mult? signame

preddecl ::= pred predname (args*) andformula

factdecl ::= fact factname andformula

fundecl ::= fun funname (args* ) : signame sigprodend* {expr}

expr ::= | relname | funname (expr,*) | expr+expr

| expr-expr | expr->expr | expr&expr

| expr .expr | expr<:expr | expr :>expr | ...

andformula ::= {formula*}

formula ::= | predname(expr,* ) | mult expr | expr in expr

| quant disj? args args* andformula | andformula

| andformula implies andformula

| andformula or andformula | ...

mult ::= | some | one | lone | no

quant ::= | all | mult

Figure 3: The Alloy syntax (simplified)

the in keyword, or to the extends keyword: in the latter case,
two signatures extending the same signature are constrained to
be disjoint. Finally, the abstract keyword states that all the
atoms of this signature belong to a signature extending it. In
fact, a signature declared as sig name is implicitly considered
extending the top-level abstract signature object.

The user can also declare a relation along with the signature
of its first component : for instance, sig A {r : B} declares
a signature A and a binary relation r in A->B (that is, in
A×B). Multiplicity keywords as above can also occur, adding
constraints on the relation.

The user can also declare predicates (pred) and functions (fun,
with a “typing” indication about the return value) to factor the
code of the specification.

The Alloy system is modular: a specification can be split in
several module files beginning with module name. A module
is then included via open. Modules can take signatures as
parameters.

1.3 Overview of the main issues encountered

while writing the Alloy specification

The use of the Alloy method (the Alloy specification language
and the Alloy Analyzer) raised some issues at different levels,
due to the logical conception of the Alloy specification language,
or to the current implementation of the Alloy Analyzer. we
solved them in two steps. First, we wrote a preliminary ver-
sion of the Mondex specification in Alloy that used to follow
the Z specification as close as possible. But this translation in-
troduced several artifacts (such as useless signatures) that did
not seem natural to the general ways of writing specifications
in Alloy, so that we rewrote the specification to remove those
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artifacts. This “optimisation” has eventually pointed out some
errors in the previous model.

On the one hand, we had to tackle rather technical issues about
integers: whereas the Z specification frequently uses them, they
are not well handled by the implementation of the Alloy An-
alyzer. But in fact, not all properties of integers are used, so
that there are ways to represent the corresponding data more
efficiently than with integers. This offers an interesting way to
compute sums of sets of values without recursion on the set of
values.

On the other hand, we had to tackle a more conceptual issue
regarding how Z and Alloy treat the notion of the identity of
objects. Whereas Z schemas define records, Alloy specifications
define relations between objects that have their own identity.
For instance, two abstract purses having the same balance and
lost values are represented by the same record in Z, so they
have to be distinguished somehow ; in Alloy, it is the converse
: as different objects can have the same properties, constraints
have to be added to consider them as records.

After tackling those modeling issues, the obtained models have
been able to find bugs in the Z specification of the Mondex
electronic purse. Those bugs are related to the insufficient for-
malism of that Z specification.

This work has been done within an internship at MIT [Ram06];
the Alloy model files are available on the author’s website
[Ram].

2 Representing integers with Alloy

The implementation of integers in the Alloy Analyzer3 provides
not very efficient analyses. Indeed, the translation of integers
and their operations into boolean formulae consumes a lot of
time and space, by building the whole arithmetic circuits, and
dramatically reduces the definable scope.

The idea commonly retained by Alloy users, and also by the
researchers who develop Alloy themselves (within Daniel Jack-
son’s Software Design group) is that for most models written
in Alloy, integers may be replaced with another representation
providing similar properties, and which could fit the model bet-
ter. This idea holds for the Mondex case study, so that author-
level encodings may be used, as described in this section.

2.1 Using an order rather than sequence num-

bers

Sequence numbers are used to distinguish different transactions
led by purses. In some way, they represent a time scale increas-
ing whenever a transaction begins. It is not specified how this
time scale increases: only the comparison relation is used. So,
we only need an order to model them.

One idea is to use the ordering module provided along with the
standard distribution of the Alloy Analyzer : util/ordering.

3The new engine Kodkod for Alloy 4.0 models integers in a different way
through their binary representations. Few work has been done to translate
the models to this new version.

sig SEQNO {}

open util/ordering [SEQNO]

Moreover, the Alloy Analyzer treats this module in an opti-
mized way, in terms of symmetry breakings when building the
SAT boolean formula, rather than explicitly defining the order.

2.2 Representing amounts through coins

Even though all the first-order properties of integers are used
to model amounts, they are used in a particular way. Com-
parisons only occur between the pre-state and the post-state
of an operation: either a purse decreasing its balance, or the
whole global world balance, is concerned. In particular, two
balances of different purses (associated to different names) are
never compared.

The solution proposed by members of the SDG group, namely
Emina Torlak and Derek Rayside, is to use sets of coins to
represent an amount. The amount will not be represented by
the cardinality of the set, but the coins themselves, as with real
coins in non-electronic purses.

2.2.1 Computing with coins

With this approach, operations are redefined as follows :

• The sum of two values is the disjoint union of the corre-
sponding sets of coins.

• The difference of two values is the (set) difference of the
corresponding sets of coins, as soon as the set being sub-
tracted is included in the original set.

• The comparison relation is the set inclusion between sets
of coins.

Indeed, when a purse decreases its balance, it actually gives
away part of it. So there is how the Abstract world can be
defined:

sig NAME {}

sig Coin {}

sig AbPurse {

balance : set Coin,

lost : set Coin

}

sig AbWorld { abAuthPurse : NAME -> AbPurse }

This approach allows computing the sum of sets of values
through simply gathering them with a relational expression.
Whereas the Z specification defines a sum of set of values
through a recursive definition:
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Totals

totalBalance, totalLost : (NAME 7 7→ AbPurse) → Z

totalBalance(∅) = 0

totalLost(∅) = 0

∀ f : NAME 7 7→ AbPurse; name : NAME ; AbPurse |

name ∈ dom f ∧ θAbPurse = f (name)

•

totalBalance(f ) = totalBalance(name −⊳ f ) + balance

∧ totalLost(f ) = totalLost(name −⊳ f ) + lost

in Alloy, one would simply write S.r where S is a set of
NAME s and r is a relation that maps a name to some coins.
For instance, if a is an AbWorld, one would simply write
a.abAuthPurse.balance to compute the sum of the balances
of all abstract purses.

2.2.2 Defining constraints to avoid coin sharing

However, this approach requires to define additional constraints
to avoid coin sharing, the fact that, for instance, two amounts
being added could have common coins. Indeed, such constraints
ensure, for instance, the considered sums actually being disjoint
unions of sets of coins.

First constraints are added on the Abstract world. They are
quite simple to express:

• There is no coin common to two purses, regardless of
whether it would belong to the balance or the lost store
of either purse. In other words, a coin must belong to at
most one purse.

• There is no coin common to the balance store and the lost
store of a purse. In other words, a coin must be either not
lost, or lost.

fact noCoinSharing {

all w : AbWorld {

no disj n1, n2 : NAME {

some n1.(w.abAuthPurse).(balance + lost)

& n2.(w.abAuthPurse).(balance + lost)

}

no p : AbPurse {

p in NAME.(w.abAuthPurse)

some p.balance & p.lost

}

}

}

These constraints only apply to abstract authentic purses, that
is purses actually belonging to an abstract world (although the
second could even have been defined for any abstract purse).

Then, the Concrete purses also use coins:

sig PayDetails {

from, to : NAME,

fromSeqNo, toSeqNo : SEQNO,

value : set Coin

}

sig ConPurse {

name : NAME,

balance : set Coin,

pdAuth : PayDetails,

exLog : set PayDetails,

nextSeqNo : SEQNO,

status : STATUS

}

sig ConWorld {

conAuthPurse : NAME -> lone ConPurse,

ether : set MESSAGE,

archive : NAME -> PayDetails

}

The Concrete purse is defined with the pdAuth information on
the pending transaction involving it, the exLog set of logged
transactions, and the status of the purse in the execution of the
pending transaction according to 1 on page 2.

Equivalent constraints to avoid coin sharing have to be added to
the Concrete world. In the first model, we added the following
constraints :

fact noCoinSharingConcrete {

all p : ConPurse {

no p.exLog.value & p.balance -- 1

}

all w : ConWorld {

no disj n1, n2 : NAME {

some n1.(w.conAuthPurse).balance

& n2.(w.conAuthPurse).balance -- 2

}

no p : ConPurse, pd : PayDetails {

p in NAME.(w.conAuthPurse)

pd in NAME.archive

some p.balance & pd.value -- 3

}

}

}

1. A purse has no coin common to its balance and a transac-
tion it has logged to its exLog.

2. Two distinct purses have no coin common to their balances.

3. A purse has no coin common to its balance and a transac-
tion that has been logged in the global archive.

But although constraint 2 makes sense, constraints 1 and 3 are
too strong. Indeed, as regards constraint 3:

• Assume the “to” purse has received the money and sends
the acknowledgment message. If the “from” purse aborts
before receiving it, logging the transaction into its exLog,
then this constraint prevents the“from”purse from copying
the details relevant to this transaction to the global archive.
Indeed, the “to” balance contains the coins corresponding
to the value of the transaction.

• Assume the “to” purse has just sent the request message
but aborts, then logging the transaction into its exLog. If
the “from”purse aborts before receiving this message, then
it will have kept the coins of the transaction value in its
balance. Thus, the “to” purse will not be able to copy the
details relevant to this transaction to the global archive.
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fun allLogs (c : ConWorld) : ConPurse -> PayDetails

{ c.archive + (c.conAuthPurse <: exLog.c) }

fun authenticFrom (c : ConWorld) : set PayDetails

{ from.(c.conAuthPurse) }

fun authenticTo (c : ConWorld) : set PayDetails

{ to.(c.conAuthPurse) }

fun fromLogged (c : ConWorld) : set PayDetails

{ authenticFrom (c) & ConPurse.(allLogs (c) & ~from) }

fun toLogged (c : ConWorld) : set PayDetails

{ authenticTo (c) & ConPurse.(allLogs (c) & ~to) }

fun toInEpv (c : ConWorld) : set PayDetails

{ authenticTo (c) & to.status.c.epv

& (iden & to.(pdAuth.c)).PayDetails }

fun fromInEpr (c : ConWorld) : set PayDetails

{ authenticFrom (c) & from.status.c.epr

& (iden & from.(pdAuth.c)).PayDetails }

fun fromInEpa (c : ConWorld) : set PayDetails

{ authenticFrom (c) & from.status.c.epa

& (iden & from.(pdAuth.c)).PayDetails }

fun definitelyLost (c : ConWorld) : set PayDetails

{ toLogged (c) & (fromLogged (c) + fromInEpa (c)) }

fun maybeLost (c : ConWorld) : set PayDetails

{ (fromInEpa (c) + fromLogged (c)) & toInEpv (c) }

Figure 4: Alloy definitions of the definitelyLost and maybeLost sets of

transactions

In both cases, the corresponding transaction is “locked” in the
exLog, which consequently cannot clear it through a ClearEx-
ceptionLog operation.

Roughly speaking, the point is to find constraints which could
be equivalent to the abstract constraint preventing a coin to
be “lost and not lost” at the same time. The solution may be
found by referring to the Abstract/Between refinement relation.
It relies on the definition of two functions :

• definitelyLost corresponds to the set of details referring to
transactions definitely lost. Those transactions are either
logged by the two purses, or logged by the “to” purse while
the “from”, having sent the money, is still expecting an
acknowledgment.

• maybeLost corresponds to critically ambiguous transac-
tions. The “to” purse expects the value. The “from” purse
has already sent it, and either expects the acknowledgment,
or has logged the transaction before the “to” received the
value.

In both cases, we know that the value has been debited from the
“from” balance but not yet credited to the “to” balance. Then,
it is sound to replace constraint 3 above with the following one,
stating that no coin in the value of a transaction in definitelyLost
or maybeLost may be in a purse balance at the same time :

all w : ConWorld {

no p : ConPurse {

p in NAME.(w.conAuthPurse)

some p.balance & (definitelyLost (w) + maybeLost (w)) -- new 3

}

}

This constraint prevents a coin from being in a balance and a
lost store at the same time, even if the purses are distinct.

As regards constraint 1, it is too strong if the following situation
arises : the“to”purse logs the transaction just after sending the
request, but the “from” aborts before receiving it (thus it does
not log). Then, no money has been sent yet, but the transaction
has been logged by the “to” purse. In that case, the “to” purse
cannot receive the corresponding coins in a further transaction
attempt involving them, because they are already in the logged
transaction, even though they are still in the “from” balance.

All those situations have been found by counterexamples while
trying to rewrite the Alloy specification. Indeed, those con-
straints were first defined within the Concrete world, so that
the Between/Concrete refinements did not hold. Actually, some
constraints in the Between were not necessarily kept through
operations, so they were too strong. Thus, they caused some
legal operations not to arise. The new constraints defined here
have been moved to the Between world. This has allowed them
to be checked as invariants through the Between/Concrete re-
finement.

2.2.3 Redefining chosenLost set : coins as a tracking

system

Using coins has another interesting effect : they allow to better
track the amounts through operations.

The Abstract/Between refinement relies on a prophecy variable,
chosenLost, gathering the ambiguous (pending) transactions
that are chosen in advance to be lost. This prophecy variable
causes the protocol to be nondeterministic.

But this set, used to compute the lost values of the abstract
purses, is uniquely known for a given Between world, as soon
as the corresponding Abstract world is known. Indeed, thanks
to the constraint preventing a coin from belonging to the values
of two distinct transactions considered ambiguous, it is possible
to determine to which transaction a coin corresponds. It is
easily possible to show that the definitelyLost and maybeLost
sets of transactions are disjoint (see definition above in Section
...). Indeed, for the former, the “to” purse has to have logged
the transaction, whereas for the latter, the “to” purse has to be
still waiting for the value being credited, which means that the
transaction is still pending. It is also obvious that coins being
accounted in the Abstract model correspond to either a concrete
balance, or a definitelyLost or maybeLost transaction amount,
the latter case including the case of a transaction chosen lost.
So there are four solutions:

• the coin is in a concrete balance: then, it will be accounted
into the abstract balance of the corresponding purse;

• the coin is in a definitelyLost transaction: then, it will be
accounted into the lost of the “from” purse of this transac-
tion;

• the coin is in a transaction considered maybeLost, but not
chosen lost: then, it will be accounted into the balance of
the “from” purse of this transaction;
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• the coin is in a transaction considered maybeLost and cho-
sen lost: then, it will be accounted into the lost of the
“from” purse of this transaction.

Then, it is possible to “revolve” this table to define the chosen-
Lost set. Just take the transactions of maybeLost, the coins of
which are in an abstract lost :

fun getChosenLost (a : AbWorld, b : BetweenWorld) : PayDetails {

NAME.(a.abAuthPurse).lost.(~value :> maybeLost (b))

}

3 Records in Z, objects in Alloy

3.1 The identity of objects

A major difference between Z and Alloy is how they represent
objects. On the one hand, a Z schema defines records, so that
two records having the same values denote the same object.
On the other hand, Alloy specifications define relations between
atomic objects, each of which has its own identity regardless of
how it is related to others.

3.1.1 Simulating objects with Z records and names

In Z, an abstract purse is only a record with two fields, balance
and lost.

AbPurse

balance, lost : Z

balance ≥ 0

lost ≥ 0

So, when two abstract purses have the same balance values and
the same lost values, then it is impossible to distinguish them.

Now consider the definition of the AbWorld abstract world. It
is a set of purses. To distinguish between two purses having the
same values, the Z specification introduces names. This method
is commonly retained in object-oriented Z specifications [Hal90].

[NAME ]

AbWorld

abAuthPurse : NAME 7 7→ AbPurse

In Alloy, the notion of property only corresponds to the way
atomic objects are related to each other. That is why names
are not necessary: keeping them would introduce an artifact
in the Alloy specification. So the purses can simply be defined
through the following signature:

sig AbPurse {

balance: set Coin,

lost: set Coin

}

So, an Abstract world is simply a set of purses, a subset of the
AbPurse signature.

3.1.2 Simulating records with Alloy objects : canoni-

calization

Conversely, in Alloy, there is no notion of records and fields, as
two distinct objects may be related to the same values by the
relations.

However, it is possible to simulate Z’s behaviour by introducing
a notion of records in Alloy. One solution could be to canonical-
ize signatures: that is, to introduce canonicalization constraints
which enforce two abstract worlds having the same properties
to be equal :

The main purpose of this constraint would be to reduce the
search space by eliminating redundant cases when analyzing
the specification. However, such a canonicalization constraint
may be also necessary for the Abstract purses, as the refinement
relation could — and does, without this constraint — give dif-
ferent purses having the same balance and lost fields.

The Z specification also defines “true” records, for instance
TransferDetails and PayDetails which represent respectively
abstract and concrete transaction details.

TransferDetails

from, to : NAME

value : Z

value ≥ 0

PayDetails

TransferDetails

fromSeqNo, toSeqNo : Z

fromSeqNo ≥ 0

toSeqNo ≥ 0

So, such data types have to be represented in Alloy as records,
i.e. with the canonicalization constraint.

sig TransferDetails {

from, to : Purse,

value : set Coin

}

sig PayDetails extends TransferDetails {

fromSeqNo, toSeqNo : SEQNO

}

fact payDetailsCanon {

no disj p, p’ : PayDetails {

p’.from = p.from

p’.to = p.to

p’.fromSeqNo = p.fromSeqNo

p’.toSeqNo = p.toSeqNo

}

}

3.2 Consequence : existential quantification

and constraints

The simulation proofs require to show that for any Between
operation and Abstract post-state, there exists an Abstract pre-
state such that the Abstract operation holds (as required by the
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backwards refinement), and similarly for the Between/Concrete
refinement proof (but forwards).

It is important to understand the notion of existence in the
right way. Indeed, in the Z notation, an existential theorem
corresponds to the fact that a record with the right field values
may be constructed. That is, if the theorem is stated in an
existential way, the proof will give the witness.

But in Alloy, existence is the actual existence of the correspond-
ing atomic objects in the model. That explains the following
behaviour in the Abstract/Between refinement. Let us try to
show the following predicate for the Between Abort operation,
using the method of “encapsulating” the chosenLost set into a
specific signature as a field of this signature:

sig ChosenLost {pd : set PayDetails}

assert ReqEx {

all b, b’ : BetweenWorld, a’ : AbWorld, cl’ : ChosenLost {

{

Rab (a’, b’, cl’.pd)

Req (b, b’)

} implies some a : AbWorld, cl : ChosenLost {

Rab (a, b, cl.pd)

AbIgnore (a, a’)

}

}

}

Then, a counterexample would come: the model with only one
ChosenLost object, preventing some cases where the Chosen-
Lost must change from the post-state to the pre-state.

This is also the reason why a sanity-check property has to be
verified through simulating a predicate rather than trying to
check an existential assertion. Indeed, if we naively tried to
show that there exists a BetweenWorld, to show that the con-
straints are not too strong and allow an object to exist:

assert BetweenEx {

some BetweenWorld

}

then, the immediate counterexample comes: the empty model,
with no atoms at all!

A naive idea would be to constrain the Alloy model to match
the Z notion of existence, that is to constrain any constructible
object to exist. But that idea is very naive, as an immediate
problem arises with the Alloy Analyzer : the scope dramatically
grows.

That is why the only solution is to construct the witness in the
theorem itself, and to assume that an object exists once we have
enough properties to define it. For instance, an Abstract world
is completely determined if we know its abAuthPurse, that is
the set of all its authentic purses and their properties. Thus, we
can consider that the Rab abstraction relation, which computes
the values of balance and lost fields of the authentic purses
of an Abstract world abstracting the given Between world and
the ChosenLost variable, constructs an object which has the
structure of an Abstract world.

But assuming the existence of a constrained object does not
make sense: thus it is necessary to not define constraints as

such, but define them as predicates which will be used as impli-
cation hypotheses in assertions. For instance, instead of defin-
ing and using the Abstract and Between worlds as follows:

sig BetweenWorld extends ConWorld {}

fact BetweenConstraints {...}

assert RabIgnore {

all b, b’: BetweenWorld, a’ : AbWorld,

cl’ : set PayDetails {

{

Rab (a’, b’, cl’)

Ignore (b, b’)

} implies some a : AbWorld {

Rab (a, b, cl’)

AbIgnore (a, a’)

}

}

}

it is a better idea to define constraints as predicates rather than
facts:

sig AbWorld {abAuthPurse : NAME -> AbPurse}

pred Abstract (a : AbWorld) {

a.abAuthPurse : NAME -> lone AbPurse

... -- and abstract coin sharing constraints

}

pred Between (b : ConWorld) {...}

This also allows to check constraints (including coin sharing
constraints defined in the previous section) as invariants.

Then, the abstraction relation could be also defined “struc-
turally”, with no references to the “constraints”:

pred Rab (a : AbWorld, b : BetweenWorld, cl : set PayDetails) {

a.abAuthPurse.AbPurse = b.conAuthPurse.ConPurse -- 1

all n : NAME {

n in b.conAuthPurse.ConPurse implies {

one n.(a.abAuthPurse) -- 2

n.(a.abAuthPurse).balance = ...

n.(a.abAuthPurse).lost = ...

}

}

}

1. The authentic names are the same for the abstract as for
the between world.

2. for any authentic name, there is exactly one corresponding
abstract purse.

Then, the assertion could be stated as follows:

assert RabIgnore {

all b, b’: BetweenWorld, a, a’ : AbWorld,

cl’ : set PayDetails {

{

Abstract (a’)

Rab (a’, b’, cl’)

Ignore (b, b’)

Rab (a, b, cl’)

} implies {

Abstract (a) -- 1

AbIgnore (a, a’)

}

}

}
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It is worth noting that multiplicity constraints also have to be
defined as additional constraints.

Then, the following lemma would avoid conclusion 1 to be
checked each time:

assert RabEx {

all b : ConWorld, a : AbWorld, cl : set PayDetails {

{

Rab (a, b, cl)

} implies {

Abstract (a)

}

}

}

That is, the abstraction relation (provided the chosenLost set of
transactions consists in only critically ambiguous transactions
that may be lost, a constraint that has to be defined in the
abstraction relation) always defines an Abstract world starting
from a Between. Or, in other words, any object that would
have the same structure of an Abstract world but would ab-
stract a given Between world through the abstraction relation,
automatically verifies the constraints of an Abstract world, thus
is itself a “true” abstract world.

4 Results

4.1 Bugs found in the Z specification

The use of the Alloy Analyzer gave some counterexamples not
related to the way of modeling the Mondex specification in Al-
loy. Indeed, some of those counterexamples correspond to real
bugs in the original Z specification. Those bugs were discovered
very early, in analysing the initial specification. However, the
optimized specification gave no further bugs.

The Alloy Analyzer found two bugs related to reasoning errors
in the specification. This points out the fact that the proofs led
in the Z specification [SCW00] are not formal enough, as they
rely on informal comments that can be only implicitly checked
by automated formal methods. Those informal comments can
induce a wrong reasoning schema, leading to a proof that is
formally valid but useless as it is not the proof of a given the-
orem: when a theorem is split into lemmas, the link between
the theorem and the lemmas is sometimes shown only through
informal comments, not through a formal proof. The first bug,
about the Abort proof schema of the Abstract/Between refine-
ment, illustrates the effect of an incorrect informal splitting of
a theorem into cases, leading to an incorrect proof of the theo-
rem, whereas the second bug, about the framing schema, points
out how a lemma is incorrectly used in the proof of a theorem
even though the proof of the lemma itself is correct.

The Alloy Analyzer also found a bug in the specification itself:
missing constraints about authenticity. This notion is impor-
tant insofar as it prevents money from magically appearing or
disappearing during an operation, either because a purse ap-
pears or disappears, or because a purse is making a transaction
with a non-authentic purse.

4.1.1 Abort proof schema

Mostly, the Alloy method allows to directly check the specifi-
cation without going through intermediate lemmas. But some
theorems consumed too much time of analysis, or even did not
terminate if directly checked at once. So, for such theorems, we
had to go into the proof details.

Consider the Abort operation on a Between world. This op-
eration is triggered by a purse when it decides to get rid of a
transaction it is involved in, for instance after a timeout when
the other purse has been disconnected too early. In the Ab-
stract/Between refinement, this operation refnes AbIgnore, the
Abstract no-op. Indeed, the actual transfer only happens once
the“to”purse is credited via the Val operation. Thus, any other
operation is considered abstractly to be no-op.

For this Abort/AbIgnore refinement, a check on a scope of 8 did
not terminate after 2 days of computation. So, it was necessary
to tackle a lemma.

The Abort operation can be split into three cases:

1. when the transaction has gone so far that aborting it leads
to definitely losing the money;

2. when the transaction has not gone far enough to decide;

3. when there was no transaction to abort (the purse was
idle).

Case 3 is easy to separate. Just discriminate on the status of
the purse, when the aborting purse has no pending transaction,
hence nothing to abort.

To distinguish between cases 1 and 2, the Z proof claims that it
is enough to discriminate on whether the transaction in progress
is in maybeLost, that is critically ambiguous, arguing that in this
case, the “to” purse is necessarily aborting.

Actually, this is false, as the Alloy Analyzer generates a coun-
terexample where the transaction in progress is in maybeLost
but the “from” purse is aborting, not the “to”. It is worth not-
ing that a transaction becomes lost only when the “to” purse
has logged the transaction. For instance, the “from” purse may
abort after having sent the money whereas the “to” purse has
still neither received the value nor aborted.

The right condition that makes the proof work — and thus,
the theorem hold, as expected — is that the aborting purse is
the “to” purse waiting to be credited. This is actually one of
the two cases when the transaction is in progress. The other
case is when the aborting purse is the “from” purse expecting
the acknowledgment. The latter case never causes money to be
lost.

The false claim has been present only in the informal text of
the proof : it has not been formalized why splitting the proof
of Abort through that condition worked. That is why this bug
has not been found by other methods as of May 2006.
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4.1.2 Framing schema for operations that first abort

To make the proof easier, and to avoid showing several times
that Abort refines AbIgnore, it is wise to show that operations
that first abort (that is, operations initializing a transaction or
a log clear) may be decomposed into elementary operations, the
first being Abort.

The problem is that if such decomposition theorems are tackled
with the Alloy Analyzer, they generate counterexamples! So
there is necessarily a bug in the Z specification.

Actually, whereas some elementary operations output specific
messages, Abort outputs a generic message called ⊥. The Z
proof argues that operations first aborting are defined through
a framing schema Φ, that is through a definition of the form :

∃∆ConPurse • Φ ∧ (Abort ; ElementaryOp)

where ; is the composition operation.

Then, the Z proof argues that this can be decomposed into two
parts :

(∃∆ConPurse • Φ ∧ Abort) ;

(∃△ConPurse • Φ ∧ ElementaryOp)

using a lemma assuming that Φ is of the following form :

ConWorld

conAuthPurse : NAME 7→ ConPurse

Φ

∆ConWorld

∆ConPurse

n? : NAME

n? ∈ dom conAuthPurse

conAuthPurse n? = θConPurse

conAuthPurse′ = conAuthPurse ⊕ {n? 7→ θConPurse′}

But, even though the lemma itself might be true, actually the
process is wrong because Φ is actually not of the specified
form! Actually, the lemma neglects the non-functional fields
of ConWorld , among which is the ether. This means that mes-
sages are not handled by this schema. This explains the ob-
tained counterexamples, for which Abort and the elementary
operation output different messages, so that it is impossible to
compose them.

One solution is to constrain the generic message ⊥ to be neces-
sarily in the Between ether. In that case, the composition does
work, as the Abort operation does not add any new message to
the ether. But the lemma would still have to be adapted, for
instance by handling some non-functional fields (such as ether)
and by showing a modified form of this lemma where the first
operation does not modify the non-functional fields but the sec-
ond may do so.

4.1.3 Authenticity

The original Z specification requires that for any “from” purse
expecting a request, its pdAuth, that is the current transaction

details held by the purse, must be authentic : its from field
must match the “from” purse.

But, even though a general constraint requires the purse to
match either the from or the to field, there is no more precise
constraint for the “to” purse expecting the value, or even the
“from” purse expecting the acknowledgment.

Due to this lack, trying to check the Abort/AbIgnore refinement
yields a counterexample. Actually, while trying to check this
refinement with the method described above, two counterexam-
ples are (successively) generated in addition to the one related
to the Abort refinement itself:

• the one if the purse holds a pdAuth indicating that it is
actually the from purse, but expecting to be credited (a
state in which only a “to” purse can be);

• the other if the purse holds a pdAuth indicating that it is
actually the to purse, but expecting an acknowledgment (a
state in which only a “from” purse can be).

This lack of authenticity creates an inconsistency in the actual
role played by the purse in the transaction: their status does
not match the indication in their transaction information.

Adding the corresponding contraints in the Concrete, or even
in the Between world, solves this problem and suppresses these
counterexamples.

This bug has also been found by other methods like Z/Eves
[FW06] or KIV [SGHR06].

4.2 Scopes and times of checks

The choice of the scope for a theorem is a very tough issue.
Indeed, the user has to find a balance between the time they
want to spend checking an assertion, and the confidence level
they require for it.

At least, for each signature, the scope should be as large as the
number of quantifications over objects of this signature. Indeed,
if the scope is not large enough, then hypotheses may not be
able to hold, and the theorem would be trivially true within
this scope.

It is often admitted that a scope of 8 is reasonable for most
models.

Actually, as regards the Mondex case study:

• Given an operation, it is sound to bound the number of
abstract or concrete worlds to the number of times they
are quantified over in the formula. Indeed, outside the
considered operation, states are independent on each other.

• But this reasoning does not apply to purses: whereas it
is sound to require at least 2 purses (the “from” and the
“to”), they do depend on other purses because of their local
exLog. In particular, even the computation of the corre-
sponding abstract balance and lost does depend on several
purses. Moreover, it is also interesting to consider some
non-authentic purses.
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Figure 5: Time exponentially increases with the scope
This graph was obtained with the first model.

• No bound on transactions or messages may be found either,
for a similar reason.

The problem is that the time of checking exponentially increases
with the scope.

Besides scope problems, intensive SAT-solving raises technical
issues:

• machines have to be powerful enough to be able to tackle
the problem, so the times of checks also depend on the
speed of the processor and the amount of memory;

• but even on a given machine, the same problem being tack-
led by different SAT-solvers may take different times, or
even crash.

Roughly speaking, SAT-solvings have been tackling from a
few seconds to several hours, up to one day, except for the
Abort/Between refinement which has been stopped after two
days of unsuccessful computation.

Whereas the scopes have been successively checked for the
first model, the final model has been directly checked for a
scope of 10 (modulo restrictions for worlds), except for the Ab-
stract/Between refinement and the Between model consistency
where the scope has been limited to 8, as for the first model.
It is worth noting that in that case, the times are sensitively
longer for the final model than for the first model. On the one
hand, this is due to the constraints, which were too strong in
the first model, and have been weakened in the final model. On
the other hand, it might be also due to the way the Alloy An-
alyzer constructs the search space. Indeed, in the final model,
there are almost no facts: all the “constraints” are defined by
predicates then used as hypotheses in implication formulae in
assertions. Thus, the Alloy Analyzer might have to consider
every possible combination of the atoms to define relations.

4.3 Limits to the use of the Alloy Analyzer

Because Alloy is based on first-order, even despite transitive clo-
sures, some properties such as the finiteness of the set of purses
in an Abstract world, have to be dropped. But as regards the

Mondex case study, finiteness properties may be shown indi-
rectly by showing, for instance, that during an operation, such
sets are obtained by union or symmetric difference from pre-
state sets which are assumed to be finite. This is true following
the definition of the operations.

But what is more annoying is the finite scope. Indeed, the
checks led with the Alloy Analyzer only show that the theorems
hold for a certain number of atoms. More generally, as discussed
in [FPB+05], in no way can the Alloy Analyzer be used to give
a rigorous proof of the checked theorems.

A first attempt could be to try to increase scopes by improving
ambient conditions (machines, etc.), or even by using the newer
version of the Alloy Analyzer based on Kodkod currently being
developed by SDG. But those methods are still bounded, and
do not generalize.

We could also try to show a small model theorem, a meta-
theorem which could in some way “compute a minimal scope”,
or threshold, for signatures. For instance Lee Momtahan’s idea
[Mom04] would be to show that, starting from a scope, it is pos-
sible to compute a threshold for one signature, for which any
greater scope than this threshold would be automatically true,
other signatures keeping the same scope. But this approach is
still not powerful enough because:

• the extended signature may not be quantified over (except
skolemizable quantifications);

• only one signature scope may be extended at the same
time.

So, it could be wise to get rid of the scope issue and to choose a
more direct approach of really proving assertions. Then this will
require the use of external tools, that is other than the Alloy
Analyzer. It would be also an interesting way to show that
the Alloy specification language can be tacked with different
methods, not only model-finding.

Prioni [AKMR03] translates an Alloy specification into the in-
put language of the Athena [Ath] proof assistant, which is based
on a logic with powerful relational calculus. But the problem
is that Athena, as a proof assistant, is not automated enough.

It makes sense to consider that the more expressive the logic,
the less automated the tool. Then comes up an apparently
interesting solution: automated first-order theorem provers.

Indeed, if finiteness properties are dropped, then it is interest-
ing to point out the fact that the Mondex case study can be
entirely written as a first-order theory, and even without tran-
sitive closures. Actually, any higher-order quantification can be
turned into first-order. For instance, to clear a set of transac-
tion details from the logs, the Z specification computes a code,
called clear code, to represent the set being cleared. So, it is
possible to quantify over this clear code instead of the whole set
being cleared. Moreover, as operations are considered individ-
ually, transitive closures are not useful : there are no theorems
to be shown about sequences of operations.
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5 Conclusion and related work

The Alloy formal method, based on first-order relational logic
with transitive closures, allowed to specify the Mondex case
study almost entirely, that is just dropping the properties about
finiteness, even though those properties may be shown indi-
rectly. Then, without those properties, this work shows that
the Mondex case study can be rewritten as a first-order theory,
even without transitive closures.

Despite some implementation issues that should be improved in
its successor version currently under development by the SDG
group, the use of the Alloy Analyzer allows to rapidly and effi-
ciently develop a specification ; thanks to model-finding, sanity
checks are made in a straightforward way. The Alloy Analyzer
also allowed us to find bugs in the original Z specification. Those
bugs may be relevant to the specification itself as much as to the
proof, or even to informal comments guiding the proof. Those
bugs have also been found by other methods such as Z/Eves or
KIV, so the Alloy Analyzer can fairly compete in finding bugs
in specifications.

However, beyond finding those bugs, the Alloy Analyzer itself
does not provide any proof of the theorems, as discussed in
[FPB+05], only a confidence level depending on the size of the
search space. But although this is often considered to be enough
in industrial software verification, it would not fit to try to prove
security-sensitive specifications such as the Mondex case study.

So it is necessary to extend the results obtained with the Alloy
Analyzer. Lee Momtahan’s work upon a small model theorem
[Mom04] could be a first step towards generalizing results given
by the model-finder. But its too strong constraints over the
specification, requiring signatures to not be quantified at all, do
not fit the Mondex case study. So, other formal methods have
to complete the use of the Alloy Analyzer. Prioni [AKMR03]
intends to use Alloy specifications with the Athena proof assis-
tant, which is not fully automatic. But trying to handle Alloy
models in first-order logic could be also interesting. We have
done some first attempts [Ram06], but only Abstract security
properties have been shown so far. In fact, to be able to practi-
cally use theorem provers, it would be necessary to improve the
conception of automated theorem provers, which is the con-
cern raised by competitions such as TPTP [TPT]. For more
general cases than Mondex which might use transitive closures,
Tal Lev Ami’s work [LAIR+05] could represent an interesting
first-order logic complement to Alloy, as it moreover tries to
handle transitive closures.

It could be also interesting to develop syntactic analysis of Al-
loy specifications, or even to automatize relational calculus and
reasoning directly at the formula level, which would make the
constraint of finite scope irrelevant, as discussed in [FPB+05].
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