

Third Mondex Workshop
University of York – October 5-6th, 2006

Mondex / Alloy Last Updates

Tahina Ramananandro

École Normale Supérieure Paris, France

Daniel Jackson

Massachusetts Institute of Technology CSAIL Software Design Cambridge MA, USA

- Work progress since May
- Improving the Model
- Using FOL theorem provers
- Conclusion and Future Work

What was done in May?

- Z spec converted into Alloy modules
 - In a naive way
- All refinement theorems checked
 - But some constraint checks were missing

What was planned in May?

- Improve formal model
 - More uniform treatment of existential theorems
 - Experiment with more Alloy-like idiom (eg, objects)
- Prove or argue small model theorem?
- Interface Alloy method with others

What has been done since May?

- Improve formal model
 - More uniform, rigorous model
 - Weaker constraints
 - Constraints are no longer global, but integrated into theorems
 - However, no further bugs found
 - Prove or argue small model theorem?
 - Mondex spec is FOL
 - if finiteness issues dropped
 - So, try to use FOL theorem provers
- Interface Alloy method with others
 - May be feasible (cf. future Alloy workshop)

- Work progress since May
- Improving the Model
- Using FOL theorem provers
- Conclusion and Future Work

Better modular organization

Coin sharing constraints

Simulations showed that previous constraints were too strong

```
- no p:ConPurse,pd:PayDetails {
   pd in p.exLog
   some pd.value & p.balance
}
```

- Prevents a purse from logging an aborted transaction with coins
- Newer constraints
 - Reason about the maybeLost and definitelyLost definitions

```
- all c:ConWorld {
  no NAME.(c.conAuthPurse).balance
  & (maybeLost(c) + definitelyLost(c)).value
}
```

Existential issue

- Can't guarantee object exists for every combination of field values
 - The empty model
 - To enforce existence with algebraic constraints would dramatically increase scope
- Solution :
 - Instead of ∃, construct explicit witness:
 all c, c', a | some a' | P (c, c', a, a')
 becomes
 all c, c', a |
 let a' = F(c, c', a) | P(c, c', a, a')
 - Requires to get rid of global constraints
 - Integrate them into theorems

Example: Between/Concrete

```
sig ConWorld {...}
pred Concrete (c:ConWorld) {...}
pred Between (b:ConWorld) {Concrete(b) and ...}
pred Rbc constr (b,c:ConWorld, ...) {...}
pred Rbc (b,c:ConWorld) {...}
assert Rbc Increase {
 all b,b',\overline{c},c':ConWorld, ... | {
  Concrete(c) and Concrete(c')
  Between(b)
  CIncrease(c,c',...)
  Rbc(b,c)
  Rbc constr(b',c',...)
 } implies {
  Rbc(b',c')
  Increase(b,b',...)
assert Increase inv {
 all b,b':ConWo\overline{r}ld,... | {
  Between(b)
  Increase(b,b',...)
 implies Between(b')
```

The identity of objects

- Z : schemas define records
- Alloy: signatures define atomic objects
 - Objects have an *identity*
 - Notion does not exist in Z
 - Suitable for names, coins
- Two objects with same field values may be distinct
 - Naive solution : impose equality constraint

```
fact {
    no disj a1,a2:AbPurse {
        a1.balance=a2.balance
        a1.lost=a2.lost
    }
}
```

The identity of objects

- Smoother solution: represent purses and states as standalone objects rather than records
 - No names

```
sig Coin

sig AbPurse {balance,lost: Coin->AbWorld}

sig AbWorld {abAuthPurse : set AbPurse}

pred AbIgnore (a,a':AbWorld) {
  a'.abAuthPurse = a.abAuthPurse
  all p : AbPurse | p in a.abAuthPurse implies {
    p.balance.a' = p.balance.a
    p.lost.a' = p.lost.a
}
```

AbIgnore

```
\frac{\Delta AbWorld}{abAuthPurse' = abAuthPurse}
```

- Work progress since May
- Improving the Model
- Using FOL Theorem Provers
- Conclusion and Future Work

The direct attempt FOL atoms are Alloy atoms

- But Alloy predicates take arbitrary relations as arguments
- So they have to be inlined
- Formulae become huge
- Simplifications to decrease formula size
 - Eliminate redundancy with subsumption tests
 - Split theorems through
 - Attempt to reach a normal form
 - Does not terminate
- Very few results :
 - Proved theorems relative to the abstract world (atomic transactions) alone

The "lifted" attempt

- FOL atoms are Alloy relations
- Axiomatize relational algebra
 - Bound arities according to spec in Alloy
- Problems :
 - Trouble to prove obvious-looking general theorems such as :
 - The Cartesian product of two atoms is a singleton of arity 2
 - Would have to prove intermediate lemmas
 - Loss of automation
- No significant results

- Work progress since May
- Improving the Model
- Using FOL Theorem Provers
- Conclusion and Future Work

Conclusion

- No further bugs found
- Scope issue not solved yet with Alloy Analyzer
 - Current scope increase with Kodkod ?
- But first proof attempts with FOL
 - Infiniteness still dropped
 - Very few results

Future work

- Argue small model theorem (Momtahan 2004) ?
- Improve checking with FOL theorem provers
 - To expect better FOL theorem provers is quite hopeless : undecidable
 - Better model Alloy into FOL
 - Fit into decidable sublogic ?
- Tackle finiteness
 - HOL necessary at first sight
 - Use incomplete FOL theories ?
- Interface Alloy method with others
 - May be feasible soon (cf. future Alloy workshop)

Acknowledgments

At MIT :

- The SDG group, in particular Daniel Jackson
- But also the CRS group, in particular Viktor Kuncak and Charles Bouillaguet

At ENS :

 Patrick Cousot, who gave me the opportunity to follow the internship

At RAL :

Jim Woodcock and Juan Bicarregui, for their hospitality

Any questions?

- E-mail addresses
 - ramanana@mit.edu Tahina Ramananandro
 - dnj@mit.edu Daniel Jackson

- Alloy modules available at :
 - http://www.eleves.ens.fr/~ramanana/work/mondex

- Alloy Website :
 - http://alloy.mit.edu