FastVer: Making Data Integrity a Commodity

Arvind Arasu, Badrish Chandramouli, Johannes Gehrke, Esha Ghosh, Donald Kossmann
Jonathan Protzenko, Ravi Ramamurthy, Tahina Ramananandro, Aseem Rastogi
Srinath Setty, Nikhil Swamy, Alexander van Renen*, Min Xu®
arvinda@microsoft.com,badrishc@microsoft.com,johannes@microsoft.com,esha.ghosh@microsoft.com
donaldk@microsoft.com,protz@microsoft.com,ravirama@microsoft.com, taramana@microsoft.com
aseemr@microsoft.com,srinath@microsoft.com,nswamy@microsoft.com,renen@in.tum.de,xum@cs.uchicago.edu
Microsoft Research, Technical University of Munich*, University of Chicago®

ABSTRACT

We present FASTVER, a high-performance key-value store with
strong data integrity guarantees. FASTVER is built as an extension
of FASTER, an open-source, high-performance key-value store. It
offers the same key-value API as FASTER plus an additional verify()
method that detects if an unauthorized attacker tampered with
the database and checks whether results of all read operations are
consistent with historical updates. FASTVER is based on a novel
approach that combines the advantages of Merkle trees and deferred
memory verification. We show that this approach achieves one
to two orders of magnitudes higher throughputs than traditional
approaches based on either Merkle trees or memory verification.
We have formally proven the correctness of our approach in a proof
assistant, ensuring that verify() detects any inconsistencies, except
if a collision can be found on a cryptographic hash.

ACM Reference Format:

Arvind Arasu, Badrish Chandramouli, Johannes Gehrke, Esha Ghosh, Don-
ald Kossmann, Jonathan Protzenko, Ravi Ramamurthy, Tahina Ramananan-
dro, Aseem Rastogi, and Srinath Setty, Nikhil Swamy, Alexander van Renen”*,
Min Xu®. 2021. FastVer: Making Data Integrity a Commodity. In Proceedings
of the 2021 International Conference on Management of Data (SIGMOD °21),
FJune 20-25, 2021, Virtual Event, China. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3448016.3457312

1 INTRODUCTION

Data integrity is an important property of many software systems.
It is particularly important in the cloud as customers may want
to monitor their data—independently from guarantees given by
the cloud provider. As an example, consider a cloud service that
authenticates users using passwords. Such a system would main-
tain a table with usernames and hashes of users’ passwords. If an
administrator can tamper with this table and change passwords
without being detected, they can login to the service masquerading
as another user.

The main principles of data integrity are known and have been
explored for decades (e.g.,[7, 19-21]). The basic idea is to store

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD 21, June 20-25, 2021, Virtual Event, China

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8343-1/21/06...$15.00
https://doi.org/10.1145/3448016.3457312

a cryptographic hash of the data (e.g., a hash of the username-
password table) at a secure and trusted location. Every update to
the data (e.g., registering a new user) is authorized by a processor at
this trusted location and results in an update of the hash stored at
the trusted location. With every access to the data (e.g., validating a
password), the processor at the trusted location compares its hash
with the current state of the data used for the access. If the hash
does not match, the access is rejected as it indicates that the data
has been tampered with in an unauthorized way (e.g., by a rogue
administrator).

The classic approach to manage hashes at the trusted location
is to use Merkle trees [21]. Merkle trees implement a hierarchy of
hashes organized as a tree and store the root hash at the trusted
location. To update a record, the hashes along the path from the
record to the root are updated, and the new root hash is stored at
the trusted location. To verify a read of a record, the processor at
the trusted location receives the record and the hashes along the
record-to-root path and checks whether these hashes are consis-
tent and match the root hash stored at the trusted location. The
per-operation cost is proportional to the height of the tree, so loga-
rithmic in the database size. (We review Merkle trees in detail in
Section 4.)

While the theory of Merkle trees is well explored and understood,
adoption of this technology has been limited in practice to low-
throughput scenarios such as protection of passwords and public
blockchains. The problem is that the verification with Merkle trees
is expensive and does not scale well because all update operations
update the root hash and need to be serialized. To overcome the
limitations of Merkle trees, deferred memory verification! has been
proposed as an alternative for data integrity [3, 7, 27]. The key idea
is to defer verification and verify the integrity of a batch of opera-
tions rather than each operation individually. While this approach
improves concurrency [3], it incurs a high cost during verification
since it involves a scan of the entire database. This might result
in delaying the commit of a transaction beyond the latency that is
tolerated by the application.

An important consideration for data integrity in the cloud is
the choice of the trusted location. If it is outside of the cloud, the
communication cost incurred by the roundtrips to the trusted loca-
tion can be prohibitive. This issue alone has made it impractical to
deploy data integrity at scale in the cloud so that there was no need
to address the limitations of Merkle trees and deferred memory
verification. Fortunately, the trusted location issue in the cloud has
been addressed with the latest generation of server architectures.

! Also referred to as offline memory checking.

https://doi.org/10.1145/3448016.3457312
https://doi.org/10.1145/3448016.3457312

These servers provide so-called enclaves, which are a game-changer
to implement security features in the cloud. Prior work has shown
how enclaves can help implement confidentiality efficiently in the
cloud [1, 2, 4, 31]. This paper shows how enclave technology can
help to commoditize data integrity in the cloud.

Enclaves or Trusted Execution Environments (TEE) are sup-
ported by most CPU families today: Intel calls its feature SGX,
AMD calls it SEV-SNP, and ARM, Trustzone. While there are dif-
ferences, the basic idea and value proposition are the same. An
enclave is a protected region of the virtual memory space of a pro-
cess containing code and data with a well-defined interface. The
CPU protects the execution of code and the state within the enclave
from even privileged (e.g., host OS kernel) code and, therefore, also
from administrators with root privileges. Since enclaves are em-
bedded into cloud servers, the interactions between the untrusted
cloud server and the enclave are efficient.

Enclaves solve an important piece of the data integrity puzzle, the
trusted location. However, this throws into sharper relief the limi-
tations of the current state-of-the-art. Even with enclaves, Merkle
trees achieve at best tens of thousands of operations per second.
Deferred memory verification involves scanning the entire database
in the trusted location when verifying a batch of operations which
can take dozens of seconds. The goal of this paper is to overcome
these deficiencies and deploy data integrity at scale with affordable
cost and performance for any data service in the cloud. Consider,
for instance, a database of bank accounts that are updated and ac-
cessed with millions of updates per second. There is a substantial
economic incentive to tamper with such a database, yet there are
also high performance and operational requirements.

Our technique to achieve strong integrity guarantees with ex-
tremely high throughput and latency guarantees is a combination
of two simple yet effective ideas:

Caching within the enclave: We exploit state within the enclave to
cache verification data. Rather than storing only the root of the
Merkle tree our approach allows caching arbitrary nodes within
the enclave. Such caching reduces cost since only the path from a
record to the first cached ancestor needs to be verified. Furthermore,
caching removes the root as the single point of contention since the
root is no longer referenced by every operation, thereby improving
concurrency. While prior work [29] has considered Merkle tree
caching, our approach is simpler, more general, and more perfor-
mant (Section 8).

Hybridizing Merkle and deferred memory verification: We combine
Merkle trees and deferred memory verification into a new hybrid
scheme that has the low latency of the Merkle trees approach and
the high throughput of deferred memory verification. The core idea
is to treat database records and Merkle tree nodes uniformly for
integrity checking. For example, instead of always checking the
integrity of a Merkle node by comparing it with the hash stored at
its parent node, the hybrid scheme provides the flexibility to defer
this check to a later verification scan. More generally, we use the
flexibility of the hybrid scheme to organize data into a verification
memory hierarchy: The integrity of the cold database records and
Merkle tree nodes is checked by checking their hash against the
hash at a parent node as in the Merkle trees approach. This approach
is expensive since it leads to a logarithmic chain of hash checking,

Client-owned i
Infrastructure

Cloud Infrastructure

! Verified Database

3 Untrusted Trusted

Host Database

System

-’:}\- —]
N
Recovery Crypto

: . —— Cache
Client : oBotate Merkle Tree Log hashes
Processes !
3 Commodity Enclave
' Hardware

Figure 1: Architecture of a Verified Database System.

but the cost is tolerable for cold data. The hottest records and Merkle
nodes are cached within the enclave; since these are stored within
trusted memory, integrity checking is elided for such data. The
integrity of warm records and Merkle nodes is batch-verified using
the deferred memory verification approach. Our organization of
data for integrity checking is analogous to traditional memory
hierarchy with Merkle-tree based integrity checking playing the
role of disks, deferred memory verification, the role of main memory,
and enclave caching, that of CPU cache.

We have integrated our data integrity techniques into a state-
of-the-art, open-source, high-performance key-value store called
FASTER [8], and we call the resulting system FASTVER. Our ex-
periments show that FASTVER can process more than 50 million
key-value ops/sec with sub-second verification latency for a range
of database sizes and workloads. Our performance numbers are
competitive with FASTER without data integrity (within a factor of
2) and better than commercial key-value systems such as Redis [26].
It is two orders of magnitude more performant than Merkle trees
and an order of magnitude better than Concerto [3], which is the
best known system based on deferred memory verification both in
terms of throughput and latency.

As a unique contribution, we have formalized our hybrid scheme
for data integrity checking using the F* proof assistant [30], and
proven it correct. Our hybrid scheme is quite subtle and a machine
verified proof ensures that our data integrity checks cover all corner
cases required for overall correctness.

2 PROBLEM STATEMENT

This section defines a verified database that captures the notion
of data integrity. Our definitions are derived from prior work but
tailored specifically to a cloud, enclave-based setting.

2.1 Architecture

Figure 1 gives an overview of the components of a verified database
system. We focus in this paper on a key-value database system that
exposes a simple get()/put() api to clients. For simplicity, we assume
that keys are 32-byte strings. If the application uses keys from a
different domain, we hash the keys using a standard cryptographic

hash function such as SHA-256 to generate 32-byte keys. This
change can be implemented transparently to the clients by the
verified database.

An untrusted (host) database system running on commodity
hardware processes client get/put requests. For get(key) requests, it
returns the current value of the key or null if the key is not in the
database. For put(key, value) requests, it updates the database and
logs changes to secondary storage for durability.

What makes the architecture of Figure 1 unique is the verifier
within the enclave. Before returning the computed result of a client
request, the host database system routes the result to the verifier.
If the verifier is convinced of its validity (e.g., the result of a get(k)
reflects the current value of key k), it digitally signs® the result
indicating successful validation. The client only accepts results
with signed verifier validation. The details of how the untrusted
host database and the verifier interact to cryptographically vali-
date a result forms the technical core of the paper as discussed in
Sections 3-7.

To implement this protocol, we extend the get/put interface as
follows:

o get(k,t) — (v,sy(k,v,1)).
o put(k,v,t,sc(k,v,t)) — (su(t)).

Here, sx(m) denotes a digital signature of message m using the
private key of a participant in the protocol, such as a client or the
verifier and ¢, a nonce used to prevent replay attacks as discussed
below.

A put request takes two additional parameters. The parameter
sc(k, v, t) denotes a client signature protecting the other parameters.
The verifier is initialized with the public keys of authorized clients,
and it rejects any operation not containing a signature from one of
them. This check ensures that only authorized clients update the
database; in particular, the host database system cannot generate
a valid put request and therefore cannot unilaterally modify the
database without the verifier detecting the tampering.

The nonce t prevents replay attacks. The verifier checks the
nonce ¢t of a request has not been previously seen. This check en-
sures that a malicious actor cannot replay a previous legitimate
put request and cause unintended database changes. As a possi-
ble implementation, to generate nonces, a client uses a counter
incremented for each request to assign nonces. The verifier tracks
the last nonce seen from each client and checks if a new nonce is
greater than the last one.

A get request also carries a nonce t. The verifier validation sig-
nature for this request covers the nonce. This design prevents the
untrusted host from returning a stale (validated) output for the
request.

2.2 Threat Model and Integrity Guarantees

The server hosting the database system is untrusted. Thus, we
assume that the adversary has complete control over the server.
The adversary can cause the server to exhibit byzantine behavior
and deviate arbitrarily from its prescribed protocol. In particular,
the byzantine assumption implies that our integrity guarantees

2 Alternately, the clients and the verifier establish a secure channel and use more
efficient message authentication codes instead of digital signatures.

do not depend on the implementation details of the host database
system.

We rely on cryptographic primitives such as unforgeable signa-
tures, collision-resistant hash functions, and pseudo-random func-
tions. We assume that the adversary cannot break the cryptographic
hardness assumptions required to implement these primitives.

We further assume that the enclave is shielded from the ad-
versary, meaning the adversary cannot tamper with the verifier’s
computation and state. The attacker, however, can make arbitrary
calls to the verifier using the verifier’s API. Furthermore, the adver-
sary can reboot the enclave, which resets the verifier to its initial
state. We assume that the verifier maintains a small amount of
persistent state to hold a single hash value; we use this state to
prevent rollback attacks. In practice, such persistent state can be
implemented using TPMs or a public blockchain using protocols
such as Memoir [24].

We assume that clients are trusted and inaccessible to the ad-
versary. However, any communication between the client and the
verifier goes through the untrusted server and is therefore under
the adversary’s control. We assume that the clients and the verifier
share cryptographic secrets such as symmetric keys to efficiently
exchange and authenticate messages. Such shared secrets can be
established using, e.g., a public key infrastructure.

The verifier code and the client code that checks verifier vali-
dation is the trusted computing base (TCB) of the verified database.
In other words, our integrity guarantees rely on this code being
correctly implemented.

We provide strong integrity guarantees based on sequential con-
sistency [16]: An output seen by a client (and verified by the verifier)
reflects some sequential ordering of historical updates. We do not
provide guarantees on progress and availability and the adversary
has the power to arbitrarily disrupt the database service or pro-
vide preferential treatment to one client over another. Again, these
assumptions are common to other work on data integrity.

2.3 Performance Goals

As we discuss in subsequent sections, there are different solution
approaches for implementing the verified database that differ in
the design of the verifier and the details of how the untrusted host
cryptographically proves the validity of an operation result to the
verifier. We present here various performance desiderata that we
use to characterize and compare different solution approaches. We
show that our hybrid approach meets all the desiderata while prior
approaches do not.

P1: Size of the Verifier State: Enclaves provide a limited amount of
trusted memory, and the verifier can use this memory to improve
performance. The performance of the verified database system,
however, must degrade gracefully with the size of the memory
allocated to the verifier. In particular, a solution should not rely on
the verifier storing the whole database to achieve good performance.

P2: Verification Complexity: Verification complexity refers to the
additional computation performed by the host and the verifier
to validate an operation result. Verification complexity impacts
the overall throughput of the verified database. The verification
complexity should be O(1) with a low-constant for operations over

frequently accessed records. Given a lower-bound proof in prior
work [11], we cannot avoid worst-case logarithmic verification
complexity, but we seek solutions where this happens rarely, such
as for operations over cold records.

P3: Verification Latency: One of the techniques for data integrity in-
volves verifying operations in a batch for better performance. Such
batching introduces latency in communicating a validated result
of a client operation. A solution approach for verified databases
should allow the client application to control latency, e.g., specify a
latency bound of one second. In particular, the database size should
not limit the size of the latency budget a client can set.

P4: Concurrency Bottlenecks: Verification should not introduce con-
currency bottlenecks beyond those arising from the client workload.
In other words, the concurrency bottlenecks of a verified database
should be no different from that of a regular system without data
integrity. An example of such a bottleneck is the Merkle root hash
discussed in Section 1. As another example, if the verifier is single-
threaded, the verifier thread becomes a contention point for the
host threads seeking to validate results.

3 TRUSTED DATABASE APPROACH

A simple approach to implement a verified database system is to
run the entire system within an enclave. The untrusted host merely
relays requests and responses to and from the clients to the enclave
database system. When the entire database fits within the enclave
memory, this approach is sound and achieves good performance.

The main drawback arises from limited enclave memory. For
example, the total amount of memory of an (Intel Coffee Lake) SGX
enclave, for both code and data, is less than 200 MB, barely enough
to fit a database of size 10M records with 8-byte keys and 8-byte
values. This solution approach meets the performance goals P2-P4
of Section 2.3, but not P1.

While the “trusted database” approach has an impractically high
enclave memory requirement, it provides us with the concept of
verifier caching that we leverage in subsequent sections to design
better schemes. Consider a strawman instantiation of the architec-
ture in Figure 1 similar to the trusted database where the verifier
mirrors the entire key-value database within the enclave. To vali-
date an output v for request get (k), the verifier checks if its mirrored
database has the record (k, v). To validate a put(k,v’) operation,
the verifier updates the current value of k with o”. The mirrored
database state within the verifier is correct for the sequence of
operations that the verifier witnesses implying the validations by
the verifier reflects this sequence.

To avoid storing the entire database within the enclave, we ex-
tend the strawman by adding mechanisms to “page-out” verifier
records to untrusted storage outside the enclave and “page” them
back in when needed for validation. The collection of records within
the verifier is at any point a cached subset of the overall database.
The problem with this approach is that the untrusted host could
tamper with a paged-out record. If we, therefore, add data integrity
checks using which a verifier can ensure that the content of a record
(as identified by its key) when paged-in is identical to the content
when it was last paged out, the execution of the extension becomes
isomorphic to the strawman above.

The remainder of the paper develops increasingly sophisticated
techniques for such data integrity checks for verifier caching that
ultimately meet the performance goals of Section 2.3.

4 MERKLE TREES AND ENHANCEMENTS

4.1 State-of-the-Art: Sparse Merkle Trees

Merkle trees have been used for data integrity for decades [14,
18, 21]. A Merkle tree is a hierarchy of cryptographic, collision-
resistant hashes constructed over the database records. The leaves
of the tree contain hashes of the database records computed using
a standard hash function such as SHA-256. An intermediate node
contains the hash of its children. We can prove that the root hash is
a collision-resistant hash of the entire database, i.e., the root hashes
of two different databases collide with negligible probability.

To implement a verified database using Merkle trees, the verifier
stores the root, and the host stores the rest of the Merkle tree. To
validate the result v of a get (k) operation, the host sends the verifier
the ancestors of the referenced record (k,v) and their siblings; it
does not send the root which the verifier already has. The verifier
checks if each ancestor hash equals the hash computed from its
children. If all these checks pass, it validates (signs) the value v. We
can prove using the collision-resistant property of hashing that at
least one of the checks fails if v is not the current value of key k.
To validate a put(k, v’), the host sends the same ancestor hashes
as for get (k). The verifier uses the updated value v’ to recursively
compute the ancestor hashes and update the stored root.

One particular challenge is to verify a key does not exist for a
get request that returns null. Prior work [9, 17, 23] has proposed a
variant called a Sparse Merkle Tree to prove the non-existence of
keys>3. Conceptually, a sparse Merkle tree has a leaf key-value entry
for every key in the key domain (which could be unbounded), using
a special value null for non-existent keys (hereafter, null-keys). For
a large key domain, most values would be null, and sparse Merkle
trees use a representation that exploits the sparsity of non-null keys
to use space linear in the number of non-null keys. A well-known
implementation [9, 17, 23] builds a Patricia trie [22] over non-null
keys. It augments this data structure by storing with each pointer a
cryptographic hash of the pointed node.

Next, we present enhancements to sparse Merkle trees that
change their representation to leverage verifier caching and change
how updates are propagated to ancestor hashes. These enhance-
ments improve the performance of the Merkle-tree-based approach
while also providing a building block for the hybrid scheme of
Section 6.

4.2 Encoding Sparse Merkle using Records

We encode Patricia sparse Merkle tree as a collection of records in
(key, value) format, one for each node of the tree. With this change,
there are two kinds of records: data records originate externally from
the client and are referenced in get/put operations; merkle records
are internal to the verified database and help with verification. We
extend the prefixes data- and merkle- to apply to keys and values,
so, for example, a data key refers to the key field of a data record
and a merkle value refers the value field of a merkle record.

3 Alternately, we can use a more complex verification mechanism where the host sends
two paths to the verifier to prove the non-existence of a key [18].

Merkle Keys

Data Keys

Figure 2: Tree relationship of Merkle and Data Keys.

(0101) ky

010101 ... 010110... 010111 ... 100001 ... 100101 ...

Figure 3: Example Sparse Merkle Tree

Creame | ko | vae |

ko) ((fer, ha), (kz, hz))
ks 0101 ((ka, ha), k3, h3))
ks 100 ({k, h7), (g, hg))
ks 01011 ((ks, hs), (ke, he))
ks 010101 ... vy
ks 010110 ... g
ke 010111 ... s
ky 100001 ... vy
kg 100101 ... vg

Figure 4: Record view of the sparse Merkle tree of Figure 3.
The first four are Merkle records and the last five are data
records (generated by the client). The symbols k;, v;, and h;
are names that represent binary strings.

As mentioned in Section 2.1, data keys are drawn from {0, 1}2%.
The domain of merkle keys is {0, l}d, d < 256, i.e., a merkle key a
bit string of any length up to (but not including) 256. We logically
organize the set of all (merkle and data) keys as a binary tree with
the empty string being the root (denoted ¢) and the string k being
the parent of strings k - 0 and k - 1, where - denotes string con-
catenation. We can view string k as the encoding of the path from
the root, with the length of the key being its depth in the tree (see
Figure 2). A key k’ is an ancestor of a key k, if k” is a prefix of k. If
k’ is an ancestor of k and k" # k, we call it a proper ancestor. When
k’ is a proper ancestor of k, we use dir(k,k’) € {0,1} to denote
whether k is a left (0) or right (1) descendant of k’. For example,
dir(1011,1) = 0.

The domain of merkle values is a pair (kho, kh1), where each kh;
is either null or a key-hash pair (k;, h;), where k; is a descendant
key and h;, the cryptographic hash of the value associated with
ki. Informally, k; is the least common ancestor of all non-null data
keys along the left or right subtree of k;. Figure 3 shows the record
encoding of an example sparse Merkle tree in “tree” form; Figure 4
shows the same in tabular form. There are three non-null data keys
in the left subtree of the root, and the least common ancestor of
these keys is k1 = 0101. The value associated with the root stores
the key k1 and the hash A is the hash of the value ((ky, h4), (k3, h3))
associated with kj.

Example 4.1. We illustrate the implementation of a verified data-
base system using the record encoding of sparse Merkle trees. The
verifier stores the root record. Consider the database instance in Fig-
ure 3-4 and an operation get(kg). To get the verifier to validate the
output vg for this operation, the host sends the records correspond-
ing to the keys k¢, k3, and k1 along the path from k¢ to the root. The
verifier uses the hash hy (stored internally as part of the root record)
to verify the integrity of record k1 (and therefore the hash h3 stored
in it). It uses the hash h3 to verify the integrity of record k3, and
so on. For a get(k) with a non-existent key k = 010100. . ., the host
sends the single record with key ki, the least ancestor of k in the
tree. Given that the left and right descendant of k; correspond to
the keys 010101 ... and 01011, the verifier can validate that key k
does not exist. O

4.3 MerKkle trees with Verifier Caching

In Section 3, we presented a general approach where the verifier
uses cached records to validate the operations referencing the
records. To ensure correctness, the verifier needs to check that
the content of a record added to the cache is identical to the con-
tent when it was last removed. We can naively use Merkle trees to
implement this data integrity check: e.g., to add a (data) record to
the cache, the host sends the merkle records along the root-to-leaf
path as illustrated in Example 4.1.

We improve this approach by bringing merkle records into the
ambit of verifier caching: any record (merkle or data) can now be
added to and removed from the verifier cache. We use the avail-
ability of merkle records in verifier cache to simplify data integrity
checks when adding and evicting records: when a (merkle or data)
record (k,v) is added, the verifier checks that the tree parent of
key k is in its cache, and checks that the hash stored in this record
matches the hash of value v. The tree parent of a key is the key
in the sparse merkle tree that “points” to the key; in Figure 3, for
example, the tree parent of k4 is k;. To evict a record (k, v”) from its
cache, the verifier again checks that the tree parent is in its cache
and stores the hash of the updated value v” within parent record.
The root record is always in the verifier cache and never evicted.
Adding and evicting records to the verifier cache are now constant
time operations rather than logarithmic in the database size.

Example 4.2. Since the root record is in the verifier cache, the
record of key ki of Figure 3 can be added to the verifier cache.
Next, the record of key k3 can be added, and finally, the data record
(kg,v6) can be added based on its tree ancestor k3 already in the
cache. Once (ke, v6) is in the cache, the verifier can validate get and
put requests for k¢ knowing its value vg is correct. O

Adding the record (ke, v6) requires the same number of hash
computations (three) as the path-based check of Example 4.1. We
have replaced a check involving a root-to-leaf path with smaller
checks, one for each edge of the path. However, we can now exploit
locality-of-reference of merkle records. We save hash computations
by keeping a merkle record cached between two references. For
example, given the verifier cache state after Example 4.2, we can
directly add the record (ks, v5) since its parent k3 is already in the
cache. A single hash computation is sufficient to check its integrity.

4.3.1 Lazy hash updates. In traditional Merkle trees, any update
to a data record propagates to the root. An important feature of our
caching is lazy updates. Any update of a (merkle or data) record
is propagated to the immediate tree parent and not to ancestors
beyond. The change propagates to the next ancestor when the
parent record is evicted.

Example 4.3. Continuing Example 4.2, the verifier cache has five
records: kg (root), k1, k3, ks, and k¢. Assume the verifier validates
two operations, put(ks, U;) and put(ke, Ué), that update records ks
and kg in the cache. If the record (ks, v;) is now evicted from the
cache, the verifier updates the record k3 with the hash of the new
value ;. It does not recursively update records k; and ko. The
hashes stored in records ki and ko are now stale, but we can prove
this does not affect correctness since record k3 is cached. Similarly,
when record kg is evicted, the update is not propagated beyond k3.

Lazy updates yield performance benefits when there is locality-
of-reference of merkle records. With lazy updates, a single merkle
record accumulates updates to all its descendants during the time
it is cached and propagates them to its parent record with a single
hash computation when it is evicted. To exploit this property, our
hybrid scheme “manufactures” locality of reference by batching
updates and applying them in sorted order.

4.3.2 Correctness. We argue that when a record (k,v) is evicted
from the verifier cache, it cannot be subsequently added with a
different value v” # v. This is because the hash of value v is stored
at the tree parent of k and checked when the record is added. The
parent may itself be evicted and added in the meantime. We use
induction to prove that if the tree parent is evicted, it is added
with the correct value (which includes the hash of v). This informal
argument misses several details, and we defer them to a formal
proof. For example, how does the verifier know what the tree parent
of a key k is? In fact, it relies on the untrusted host to specify
the parent key, but we can prove that the host cannot specify an
incorrect parent without being detected.

4.4 Discussion

Traditional Merkle trees do not meet the performance goal P2
since each operation incurs a logarithmic verification cost or the
performance goal P4 since every operation touches the root. They
meet the performance goal P3 since they do not add any verification
latency beyond the time required for the hash checks; this contrasts
favorably with deferred memory verification we discuss next, which
introduces latency to accrue the benefits of batching.

Our enhancements use enclave memory to alleviate, but not
eliminate, the limitations around P2 and P4. For example, by caching
higher levels of the Merkle tree, we eliminate root as the single

point of contention. The verifier performs fewer hash computations,
but the verification complexity is still logarithmic unless the cache
size is large enough to fit most merkle records. In concrete terms,
the changes improve the performance of Merkle trees from around
10k ops/sec to around 100k ops/sec.

More importantly, our improvements lay critical groundwork for
the hybrid scheme which achieves two order-of-magnitude higher
performance. Our changes break up the monolithic data integrity
checking of traditional Merkle trees into finer-granularity checks:
to check the integrity of a record, it suffices to check if the hash
of its value field is equal to the hash stored at its parent record,
once the parent is in the verifier cache. This change does not seem
significant since the parent record is itself recursively checked in
the same way. The real significance emerges with deferred memory
verification we present next since it opens up the option of using a
different mechanism for checking the integrity of the parent.

5 DEFERRED MEMORY VERIFICATION

An alternative approach to data integrity is deferred memory verifi-
cation. The theoretical underpinnings of this approach were pre-
sented by Blum et al. [7], and recent work has introduced several
extensions to make this approach practical [3, 28].

5.1 State-of-the-Art Deferred Verification

Deferred memory verification relies on a cryptographic primitive
called collision-resistant multiset hashing, a hash function over mul-
tisets (bags) with the property that two different multisets hash to
different hash values with high probability.

To implement a verified database using deferred memory verifi-
cation, we do not require additional data structures such as Merkle
trees. To validate an operation (get(k,t) or put(k,v’,t,s.) with
nonce t) involving key k, the host sends the verifier the current
record (k, v) in the database. The host is untrusted, so v could be a
tampered value. The verifier does not have sufficient information to
check the integrity of the record right away. Instead, it does some
internal bookkeeping and signs a provisional validation s, (k, v, t, e)
indicating it has recorded the operation as part of some batch e. At
a later point, the host interacts with the verifier to perform integrity
checking for all operations in the current batch e. If these checks
pass, the verifier signs a batch validation s, (e). The provisional and
batch validations together serve as the overall validation of the
operation which the hosts forwards to the client.

The crucial detail in the description above is the verifier book-
keeping. For each operation (get (k) or put(k,v’)), the verifier adds
the pre-image, the record (k,v) that the host provides, to a read-set
that it tracks. The verifier also adds the post-image reflecting the
effects of the operation to a write-set that it tracks. For a get (k), the
pre- and post-images are identical, and for a put(k,v’), the post-
image reflects the new value v’. If the host is honest, the pre-image
added to the read-set is identical to the post-image that was previ-
ously added to the write-set during the last operation referencing
key k. Therefore, the read- and write-sets are equal, except the
write-set contains one additional entry for each key corresponding
to its most recent post-image. During batched verification, the host
sends the entire database to the verifier. The verifier adds these
records to the read-set and checks if the read- and write-sets are

put(k, 4) get(k) verification

scan
DBState (k, 1) ~----- > (kdgy) -~ > () o > (k4

Read-Set {} {(k, 1} {(k, 13, (K, 4} {(k, 1), (k,), (k. 42))}

Write-Set {(k, L)} (U 1), (4} (kL) (K 4) (k4 (1), (K 4), (42}
Figure 5: Offline memory checking for a toy database with
one key, referenced in Example 5.1

equal; any dishonest behavior by the host results in this check
failing. The verifier does not materialize the read- and write-sets
but maintains hashes of these sets using a multi-set hash function
which is sufficient for the equality checking during verification.

Example 5.1. Figure 5 illustrates these ideas for a database of one
record with key k and two operations. To validate put(k, 4), the
host sends the verifier initial record (k, L). The verifier adds this
record to the read-set and the updated record (k, 4), to the write-
set. (We discuss the subscript (1) later.) For get(k), the host sends
the updated record (k, 4), and the verifier adds the same record to
both read- and write-sets. At all times, the write-set has one more
entry than the read-set. The verification scan adds this entry to the
read-set, making these two sets equal. If the host is malicious and
sends an invalid record (k, 5(y)) for get(k), the invariant is broken.
The read-set after this operation contains an element not present
in the write-set, which leads to a subsequent verification failure. O

Our informal description elides subtle details essential for cor-
rectness. In particular, deferred memory verification associates a
timestamp with each record. The verifier maintains an internal clock
(counter) that is incremented each time a record is touched. The
timestamps are shown as subscripts in Figure 5 and are included
when adding a record to read- and write-sets. The host is required
to store the timestamp and present it when the record is referenced
next.

Concerto [3] introduces practical improvements to the theoret-
ical construction of Blum et al [7], including the use of epochs to
make verification recurring and an efficient AES-based multiset
hash function. Informally each verification completes an epoch
and starts a new one, and all the operations that happen within an
epoch are verified in bulk by the verification operation at the end
of that epoch. In this paper, we build on these and introduce two
other modifications that significantly improve performance.

5.2 Deferred Verification with Caching

We instantiate the verifier-cache-based approach of Section 3 to
use deferred memory verification to check that the content of a
record added to the cache is identical to that when it was last
removed. When a record is added to the cache, the verifier adds it
to its read-set; when a record is evicted from the cache, the evicted
version is added to the verifier’s write-set. During verification, any
cached record is ignored. The only change to that the validation of
operations is provisional until the next verification scan.

5.3 Improved Concurrency

While the deferred memory verification technique of Concerto [3]
has significantly better concurrent performance than Merkle trees,

(k,2,100) — (k,4,104)

get(k)% %0 %0
Evict(k) put(k,4) Add(k 2,100)

put(k,4)% 101 e———) 101

CAS({2,100),(2,101))

© €AS((2,100),(4,102))

CAS((2,100),(5,122)) put(k,5) & 121 121

(host) (verifier)

Figure 6: Example 5.2 illustrating the actions of three
threads concurrently perform operations on a single record.

it still has two global contention points. First, there is a single
verifier clock referenced and updated by all operations. Second, all
interactions with the verifier across different host threads need to be
fully serial. To keep the host threads and the verifier decoupled, the
interaction between the host threads and the verifier happens using
a log buffer; however, all operations are serialized into this single
log. The performance benefits of Concerto arise since both these
global contentions can be managed using lock-free operations. This
means that the maximum rate of lock-free operations on a single
data element is an upper bound on the performance of Concerto.

To break this ceiling, we introduce multiple minimally interacting
verifier (threads): each verifier thread has its own clock, own cache,
own read-set and write-set hashes, and does not communicate with
other verifier threads except at the end of verification epoch to
aggregate local set-hashes. (As we will see in Section 7, each set
hash is a small 16-byte value, and aggregating hashes is a simple
xor operation.) The verifier logic is otherwise unchanged except for
one critical detail: when the host adds a record to a verifier cache,
if the record’s timestamp is greater than the local clock of the
verifier, verifier updates its clock to one larger than the timestamp.
This is analogous to the update rule of Lamport’s clocks [15]. We
emphasize there are no constraints on which record can be added
to the cache of which verifier thread. The same record can visit
different verifier caches over its lifetime. We have formal proof that
if at the end of verification, the aggregated read-set (hash) is equal
to the aggregated write-set (hash), there exists a serialization of all
operations that satisfy data integrity.

We use the extensions above to remove the concurrency bot-
tlenecks of Concerto. We pair one verifier thread with one host
thread. Just like in Concerto, the host thread interacts with its veri-
fier thread asynchronously using a buffered log; however, the log
is now local to a host thread eliminating contention. (Our imple-
mentation uses the same OS thread to assume the role of both the
host- and verifier threads, further eliminating producer-consumer
contention on this log.) Unless otherwise mentioned, a log refers to
the asynchronous communication log between the host and verifier,
not to the recovery log.

Each host thread operates in a simple loop processing get/put op-
erations. For an operation on a key k, it adds (asynchronously, using
the log) the record of key k to its local verifier cache, (provisionally)
validates the operation, evicts the record from the cache, and up-
dates the record in the database to reflect possibly new value and
the new timestamp derived from its verifier’s clock. Two or more

host threads touching different keys proceed entirely independent
of one another.

An important detail is managing contention when two or more
threads access the same key. A naive approach is for a thread to lock
the key, interact with its verifier, apply updates, and release the lock.
Our implementation is lock-free for records with small (e.g., 8-byte)
value fields and uses short-lived locks for larger fields. While the
verifier clocks are protected state (meaning, if they can be tampered,
the security guarantees can be broken), they are not confidential.
A host thread can simulate and, therefore, mirror the changes of
its verifier’s clock. This means that the host thread can predict the
record’s updated value with the new timestamp, without requiring
a roundtrip to the verifier. Based on this observation, a host thread
speculatively attempts to update a record before serializing the
operation to its log. If there is no contention, the update succeeds,
and the host thread proceeds with the serialization a posteriori. If
another thread wins out, the host thread retries.

Example 5.2. InFigure 6, three threads process concurrent get/put
operations on a key k with value 2 and timestamp 100. Each thread
tries to compare-and-swap install a new value and timestamp based
on its local verifier clock. For example, the first (red) thread calcu-
lates that the result of adding the record to its verifier cache (which
updates its clock to 100), validating the get(k) operation, and evict-
ing the record results in the updated (value, timestamp) of (2, 101);
it, therefore, tries to install this value-timestamp. The second thread
wins the CAS, so it proceeds with logging its verifier interactions;
the other threads retry with the new state of the record. O

5.4 Discussion

Deferred memory verification meets three of the performance goals
listed in Section 2.3. It is efficient, has minimal dependence on veri-
fier caches, and the improvements presented in this section make
the resulting verification scheme highly concurrent. However, it
does not meet the goal P3 on bounded verification latency. Verifica-
tion latency is linear in the database size since each record is routed
to a verifier thread during the verification scan. We note that this
is wasted work for rarely accessed records. In the next section, we
combine the Merkle and deferred memory verification approaches
to achieve the performance goals of Section 2.3. An enabling idea is
that deferred memory verification does not assume anything about
a record other than its key-value structure, so merkle records can
be protected using deferred memory verification.

6 HYBRID APPROACH

Sections 4 and 5 presented two traditional approaches to data in-
tegrity with various enhancements. While these enhancements
improve the performance of each approach in isolation, they do not
change the fundamental tradeoff: Deferred memory verification has
high throughput and concurrency but incurs high verification la-
tency. Merkle trees have low latency but achieve lower throughputs
and support limited concurrency.

A central contribution of this paper is a hybrid approach that
lets us combine the advantages of both. Our encoding of Merkle
nodes as key-value records and the use of verifier caches to validate
operations is crucial to this hybrid approach. The integrity of a
record (data or merkle) can be ensured in any of three ways: (1) it

can be kept within a verifier cache, a protected state; (2) it can be
protected by storing a cryptographic hash of its value in a different,
specially identified record (its Merkle tree parent); or (3) it can be
protected by recording its value a in write-set hash. For options (2)
and (3), the record is stored in untrusted storage. However, its state
recorded in the merkle parent record or the write-set hash ensures
that the host cannot corrupt the record without being detected
when it is next added to a verifier cache. Over its lifetime, a record
can transition from one integrity protection mechanism to another
independent of other records. We argue in Section 6.4 that no matter
how we arrange such transitions, we correctly ensure data integrity
of all records, assuming verification checks pass.

6.1 Verification Hierarchy

Our hybrid approach allows us to organize records into a verification
hierarchy based on their access characteristics. Caching is at the
top of the hierarchy. It is fastest since it does not involve any hash
computations but also expensive since, in practice, enclave memory
is a limited resource. So caching is ideal for hot records and for
records that we know will be accessed in the near future. As we
discuss in Section 6.3, we leverage the flexibility of the hybrid
scheme to “manufacture” locality of reference to better exploit
verifier caches.

Deferred memory verification is at the next level of the hierar-
chy. Protecting a record using deferred verification is less expensive
than using Merkle hashing since the latter could induce a chain of
O(log n) hash computations. On the other hand, to ensure bounded
verification latency, we need to bound the number of records pro-
tected using deferred verification since the verification latency
increases linearly with this number. There are no such constraints
for protecting a record using Merkle hashing, and this approach
serves as a fallback option for records that are not hot/warm for
caches or deferred verification. Therefore protecting using Merkle
hashing is analogous to secondary storage in a memory hierarchy.

We note that the notion of hotness or coldness of records ap-
plies naturally to merkle records as data records. For example, the
descendants of a merkle record r could be in aggregate accessed
frequently without any of the individual records being frequent.
In such cases, it is beneficial to keep the record r protected using
deferred verification or in a verifier cache; for any descendants of
r, the chain of Merkle hashing stops at record r, and none of its
ancestors need to be touched.

6.2 Parallelizing Merkle-Hashing

Merkle-tree-based verification (Section 4) is hard to parallelize
across multiple verifier threads. This is because to add a record
to a verifier cache, its Merkle tree parent needs to be in that cache,
which in turn would have required its parent to be in the same cache
when it was added, and so on. By an inductive argument, it follows
that records can be added only to the verifier thread whose cache
contains the root record; therefore, all Merkle hash computations
required for verification happen within that verifier thread.

In the hybrid approach, we can use deferred verification to break
this chain and parallelize Merkle hashing. Merkle records that are
protected using deferred verification are “unshackled” from their
parent records and can be added to the cache of any verifier thread.

Deferred

I Hash
updates

Thread 0

Thread 1 Thread 2 Thread 3

Figure 7: FASTVER: organization of records

We use this property to partition Merkle records among the avail-
able threads in the system. With the sorted-merkle updates opti-
mization below, all hash computations required for Merkle tree
updates parallelize across all the threads in the system.

6.3 Sorted Merkle Updates

As we discuss in Section 8.5, there is an order of magnitude differ-
ence in performance when updates to the data records are applied
in sorted order as opposed to random order, arising from better
locality of reference for merkle records. As a subtle optimization the
details of which are discussed in the full version of the paper, within
each epoch, we temporarily record data updates using deferred ver-
ification, sort the keys touched by these updates and apply them
back to Merkle in sorted order.

6.4 Correctness

We have formal proof that any collection data operations validated
using our hybrid approach is correct, meaning that if the checks
at all the verifier threads succeed, then the validated operations
are sequentially consistent up to the last epoch verified. The proof
relies on some subtle additional checks discussed in the full version
of the paper. We have also formalized our core hybrid approach
scheme in the F* proof assistant [30] and proven it correct. Our
development involves around 20K lines of code and proof.

We emphasize that the host database system (prover) is untrusted
for the above claims. The host can choose to arbitrarily violate the
state machine and try adding a record that was evicted using the
Merkle mechanism using the deferred verification mechanism. Such
malicious behavior would result in some verifier checks failing. In
other words, the verifier correctly detects the malicious behavior of
the host as desired. Also, outside of the cache, each verifier thread
uses O(1) state (for the add-set and evict-set hashes). Finally, the
verifier code is subtle but simple and our current implementation is
around 500 lines of C++ code, not counting the code in the crypto
libraries.

7 IMPLEMENTATION

Our implementation of FASTVER is based on the C++ implemen-
tation of FASTER available at [12]. FASTVER is an application over
unmodified FASTER. FASTER has an extensible api where we can
specify custom logic for key-value operations, and our implemen-
tation instantiates this api with code required for verification. We
add a 64-bit aux field to each value, used for internal bookkeeping

Merkle records in

and FASTER manages the database of keys and values including the
aux field; this includes persisting them for durability.

Thread model: Data processing with FASTVER involves n identical
worker threads running in a loop, processing client operations. For
each operation, in addition to unmodified FASTER processing, the
worker performs the verification work that includes ensuring the
record referenced by the operation is in the verifier cache, getting
the operation validated by the verifier, and returning the validated
result to the client. There are n logical verifier threads and the
same OS thread performs both the host database processing and
the verifier processing after entering the enclave. To amortize the
overhead of entering and exiting the enclave, the worker serializes
the verifier calls into a verification log buffer; when the buffer is full,
the worker thread enters the enclave and processes the entries in
the buffer. Each worker generates its own log stream and there is
no log contention between different workers.

Worker inner loop: The aux field associated with a value encodes
the current protection mechanism (cache or deferred verification
or merkle-hashing based verification); for a record protected using
deferred, it provides the associated timestamp; for a record in a
verifier cache, it provides details of verifier thread and slot where it
is cached. As an example of how the aux field is used and updated,
consider a worker thread processing put(k, v') and assume the aux
field indicates the (k, v) is in deferred state with timestamp ¢. The
worker generates a new timestamp t’ that predicts the evict times-
tamp when the record is added to the verifier and subsequently
evicted; since the verifier clock advances in a predictable manner, ¢’
can be computed without actually running the verifier. The worker
thread atomically updates (o, t) to (v’, t'); this is accomplished us-
ing record-level mutexes in general and 128-bit CAS for 8-byte
value fields. If the atomic update succeeds, the worker thread gener-
ates log entries that add the record to its verifier cache, validate the
put operation, and evict the record. The actual steps would differ if
the record were in a different state, but the overall template remains
the same: a small, contended, atomic update step over value and
aux fields, followed by uncontended generation of log and other
bookkeeping for background tasks.

Background work: Every M operations for some configured value
M, a worker performs background work essential for verification.
This includes starting an epoch verification, migrating records from
epoch e to e + 1 required for deferred verification, sorting keys and
applying Merkle updates, checking the fill status of the verification
log buffer and running verification if it is full.

Cryptography: We use a C-implementation of Blake3 [6] for Merkle
hashing. For multiset hashing, we use the construction suggested in
Concerto with AES-CMAC as a PRF. We use an vectorized assembly
implementation of AES using Intel AES-NI instructions based on a
sample code provided by Intel [13].

Durability: The durability guarantees of FASTVER are similar to
those of prior systems [3], and a detailed description of durabil-
ity is not a focus of this paper. Briefly, durability is implemented
using standard logging techniques. We rely on CPR logging of
FAsTER [25], which aligns well with epoch-based verification. By
synchronizing the epochs in FASTVER with that of FAsTER’s CPR
logging, we get the guarantee that when epoch e is completed, all

the database state is persisted. In addition to the database state, we
checkpoint the verifier state, protected from tampering by a verifier
signature. This includes the evict-set hashes of epoch e + 1 and a
cryptographic hash of the verifier cache contents. We note that
durability only guarantees recovery from media failures, not avail-
ability, since an adversary can destroy logs and make the system
unrecoverable.

8 EXPERIMENTAL EVALUATION

This section presents the results of our experimental evaluation.
The goals of the evaluation are: (1) quantify the cost of data in-
tegrity by comparing the performance of FASTVER against FASTER
as a baseline; (2) illustrate the benefits of our hybrid design through
evaluating the throughput and latency characteristics of FASTVER;
(3) compare with prior approaches; and (4) study scalability charac-
teristics of FASTVER.

Setup: We used an Ubuntu 18.04 machine with Intel Xeon 6140,
2.3GHz, two-socket, 36 core machine (18 physical cores x 2 with
hyperthreading) for our experiments. The machine has 512 GB of
main memory. This machine does not support Intel SGX enclaves,
and we used it for our simulated enclave experiments, as discussed
below. For true enclave experiments, we also run FASTVER on an
Microsoft Azure Confidential Compute VM with Intel SGX; this is
a DC8_v2 VM with 8 vCPUs and 32 GB of RAM. We note that the
current generation of SGX machines are fairly low-end and do not
support a large number of CPU cores.

Benchmark: We use a variant of the YCSB [10] benchmark with 8-
byte keys and 8-byte values. We vary the database size to illustrate
different performance characteristics. For a database of size N, the
domain of the keys is 0,..., N — 1. As discussed in Section 2, we
map the 8-bytes keys to 32 bytes by padding. YCSB benchmark
specifies different workload characteristics with different ratios of
get and put operations: YCSB-A is update-heavy with 50% gets and
50% puts; YCSB-B is read-heavy with 95% gets, YCSB-C is read-only,
and YCSB-E is a scan-based, mostly-read-only benchmark. Unless
otherwise mentioned, we use a zipfian distribution with 6 = 0.9 for
key selection as proposed in the original benchmark [10].

Systems Evaluated: We use an unmodified FASTER as a baseline to
quantify the cost of data integrity. We use two variants of FASTVER,
one with true enclaves and one with simulated enclaves. In a sim-
ulated enclave, verifier calls are regular function calls with added
delays to model enclave switching costs, following an approach
used in prior work [5]. Simulated enclaves allow us to perform
large-scale experiments without the constraints imposed by the
current enclave technology. Our experiments of Section 8.2 indicate
the performance of simulated- and real-enclaves are comparable,
so our learnings with simulated enclaves should be relevant when
more powerful enclave supporting processors become available
in the future. We use different configuration options for FASTVER
depending on the experiment and we specify these with the ex-
periment. Unless otherwise mentioned, we use 32 workers with
simulated enclaves and 8 workers with true enclaves and a verifier
cache of 512 entries for each verifier thread.

We also use micro-benchmarks (Section 8.5) loosely based on
YCSB to profile different sub-components of FASTVER. These exper-
iments help illustrate the relative contributions of different tech-
niques and explain end-to-end performance characteristics, includ-
ing current bottlenecks. We also use these experiments to compare
our techniques with those of prior work. Such comparisons at the
technical level are more insightful than a system-level comparison;
e.g., VeritasDB [29] uses RocksDB as the backend store, so a sys-
tem level comparison is dominated by the relative performance of
FasTER and RocksDB, which is heavily biased in favor of FASTVER.

8.1 Experiment: Throughput vs. Latency

YCSB-A: In this experiment, we evaluate the throughput vs. latency
characteristics of FASTVER for databases of 2M, 8M, 64M, and 128M
records. FASTVER offers two parameters to control the verification
latency: the first is batching, where we batch a specified number
of operations before initiating the verification scan. The second
is the count of merkle records that are protected using deferred
verification; the larger the number, the greater the verification delay
since these records need to be migrated to the next epoch during
every verification. Currently, the second parameter is an integer d
and all merkle records at depth d are kept in deferred state.

We measured the throughput and latency for an exponentially
varying values of batch size and different values of depth d as in-
dicated above. Each experimental run involved executing 232 (4
billion) key-value operations over 32 worker threads and measur-
ing the average verification latency. Figures 12 shows the trend
of throughput-latency values that we observed over these experi-
mental runs for YCSB-A workload with 50% reads and 50% updates,
with zipf parameter § = 0.9.

FASTVER achieves high throughput exceeding 50M ops/sec for
all the database sizes we evaluated. However, as the size of the data-
base increases, high throughputs come with increasingly higher
verification delays. This happens because the best throughput num-
bers are achieved by batching a large number of operations between
verification scans which translates to higher verification costs. Even
for very large databases, the parameters provided by FASTVER al-
low us to tradeoff throughput for lower latency. For a database
of size 128M records, we achieve a subsecond verification latency
with a throughput of 10M ops/sec. In contrast, the best throughput
reported in Concerto [3] is around 3M ops/sec, but incurs a ver-
ification latency exceeding 10s of seconds for a modest database
of 10M records. FASTVER achieves similar performance for other
workload distributions; this happens because deferred verification
turns a pure read into a read-modify-write operation (to update
timestamps) and a similar observation has been made in [3]. In the
extended version, we include experiments with a uniform distri-
bution (zipf parameter 6 = 0) and our experiments validate the
positive impact of skew. In general, the throughput of FASTVER at
skew 6 = 0.9 is about 30% higher than that at 6 = 0.

Figure 13a shows the throughput latency curves for YCSB-E
scan-based workload, using scan length parameter 100 and a data-
base of 64M records. FASTVER is not a transactional system (nor is
FASTER), so the execution of scan queries is not guaranteed to be
atomic. Figure 13a reports the per-key operation rate, so the per-
scan operation rate is roughly 50 times slower since a scan contains

©
3
3

©
8
.
.
.
.
©
8

3
.
3

3
v

o o N
3
millions ops/sec)
o oo N

g3

Throughput (millions ops/sec)
o358 8 8

Through

e IS
o 5 8 8

Latency (sec) Latency (sec)

Figure 8: 2M records Figure 9: 8M records

v oo N e w©
8333838
© o

8 388

5 0 oo N
8

&

8
&

.
Throughput (millions ops/sec)

15
S
.

Throughput (millions ops/sec)
S
3

S
°
5

Latency (sec) Latency (sec)

Figure 10: 32M records Figure 11: 128M records

Figure 12: Throughput vs Latency curves for FASTVER for workload of 50 % reads and 50 % updates with keys picked using a

zipfian distribution with 6 = 0.9

30
g2
70
60 s o
50 . £15
. <
40 o
30 . Ed
.0 s
20 | o°
10 0
8 16 32 64

Database Size (millions of records)

Throughput (millions ops/sec)

Throughput (millions ops/sec)

Latency (sec) W SGXEnclave M Simulated Enclave

(a) Throughput vs Latency (b) Throughput (at 1 sec

g

sec)

8

f ops/!
8

2 8 E?) 128

Database size (millions of records)

Throughput (millions ops/sec)
o 8 &8 8 8
I
I
I
|
I
I
I
|

Throughput (millions of

88888

Database size (Millions of records)
W FASTER ™ FastVer FastVer (1s) W FASTER ™ FastVer FastVer (1s)

(c) Comparing the through- (d) Comparing the through-

curve for FASTVER for YCSB-E
workload for a DB of 64M
records, zipf 0 = 0.9, and scan

latency) of FasTVER with
SGX enclaves and simulated
enclaves for a workload of 50%
reads and 8 worker threads.

put of FASTER baseline with
FASTVER for a workload of 50%
reads for different database
sizes and 32 worker threads.

put of FASTER baseline with
FasTVERfor a readonly work-
load for different database
sizes and 32 worker threads.

length 100

Figure 13

50 keys on average. We did not notice a significant impact of scans
on performance, i.e., we empirically observed the per-operation
rate of YCSB-A to be very similar. One subtle impact is that the
throughput-latency curve is flatter at lower latencies: this is the re-
gion where merkle records are protected using deferred verification
and the impact of a cached merkle record is higher in a scan-based
workload than for a non-scan one.

8.2 Experiment: SGX Enclaves

Figure 13b shows the performance comparison of FASTVER with
SGX enclaves and with simulated enclaves, 8 worker threads, for
YCSB-A benchmark where the keys were picked using a uniform dis-
tribution. We report throughput numbers for a verification latency
of 1 second. At all configurations, the performance of FASTVER us-
ing SGX enclaves was about 90% of that of FAsTVER with simulated
enclaves, and this trend remains true in other experimental settings.
We believe the slight slowdown of performance with real enclaves
arise from effects not modeled in our enclave simulation such as
an increased overhead of memory accesses with true enclaves.

8.3 Comparison with FASTER baseline

Figures 13c and 13d show the performance comparison between
FasTER and FASTVER for a workload of 50% reads and 100% reads, re-
spectively. The figure shows two throughput numbers for FASTVER:
the best throughput with no constraints on verification latency and
the throughput achieved at sub-second verification latency. Overall,

FASTVER is competitive (less than x2 performance penalty) with
FASTER at all the database sizes that we can tolerate verification
latencies of 10s of seconds. However, for sub-second verification
latencies, for 128M database size, the performance of FASTVER can
be up to 10 times slower than FASTER.

8.4 Experiment: Scalability

Figure 14a shows the performance of FASTVER as we vary the num-
ber of worker threads for different database sizes and a workload of
50% reads. Overall, FASTVER scales well with the number of worker
threads. There is a minor super-linear effect (e.g., the performance
for 32 workers is slightly more than double that of 16 workers)
that happens due to partitioning of the Merkle tree as indicated in
Section 6. The other parts of our verification mechanism, includ-
ing deferred verification, is embarrassingly parallel and is able to
leverage any available parallelism.

8.5 Experiment: Performance Drill-Down

In this section, we present results of various “micro”-data integrity
experiments designed to drill down and understand the perfor-
mance characteristics of FAsTVER. Each of these experiments stores
a large number of records in an array, performs key-value opera-
tions, and gets the verifier to check data integrity. By storing the
records in an array, not FASTER, we remove any effect of FASTER
code in the results. The operations are loosely modeled on YCSB-A

10000000

1000000

100000

Throughput (ops/sec)

=
o
S

5]

Throughput (millions of ops/sec)

H . =

Number of worker threads MV

H2M E8M H32M ®128M

(a) Performance of FASTVER with vary-
ing number of worker threads

10000
1000 ;

60

: 40 I H
20 D

- o m_ N [

32 workers 16 workers 8 workers 4workers 1 1 2 4 8 16 32
M

M1K M32K M1K DV

(b) Single-threaded throughput for
micro-experiments of Section 8.5

=) o

0 @
Bos o e N
N B O ® O
[SERSIR- RIS

o
S

o
N

)
W
Verification Time / Total Time
Throughput (millions of ops/sec)

o
e

o

Number of worker threads

(seq) H16K W64M

(c) Multi-threaded throughput for ex-
periments of Section 8.5

Figure 14

(50% updates) and records are picked at random unless otherwise
mentioned.

Single Threaded Performance: Figure 14b shows the single-threaded
throughput performance of this setup for five different verification
techniques for a dataset of size 64M records:

e (M) Plain Merkle tree without verifier caching.

o (MIK) Merkle tree with verifier caching (Section 4.3) with a
cache size of 1K records.

e (M32K) Same as M1K, but with a cache of size 32K records.

e (MV) Merkle tree with caching of size 32K, but for an put
operation we propagate Merkle hash updates all the way to
root. This setup is designed to model the caching technique
suggested in VeritasDB [29].

o (MIK Seq) Merkle tree with a cache of size 1K, but the work-
load is now sequential instead of random.

e (DV) Deferred verification.

Figure 14b also shows on the secondary axis, the fraction of the time
an experiment run spent within the verifier. We used a simulated
enclave for all the verifiers.

The performance of all the non-sequential Merkle variants is
clustered around a 100K operations/sec. While caching does im-
prove performance the improvements are small and not registered
in Figure 14b which plots throughput on a log-scale. Caching im-
proves verification costs as shown by the decreasing fraction of
time spent within the verifier when we go from plain Merkle to
Merkle with a cache of size 32K entries.

If the workload is sequential, verifier caching provides a signifi-
cant performance improvement and the throughput increases by
an order of magnitude to around 1M operations/sec. This perfor-
mance improvement is the basis for the optimization of Section 6.3
where we sort the records prior to Merkle hash updates. Finally,
deferred verification has a throughput of over 10M ops/sec. One
of the reasons for this performance difference is that AES block
encryptions (hardware optimized using AESNI instructions) used
for multiset hashing are more efficient than Blake3 cryptographic
hashing required for Merkle. Our profiling suggests we are able to
perform multiset hashing at a rate of 3.2GB/sec and cryptographic
Blake3 hashing at a rate of around 400MB/sec.

Multithreaded Performance: FASTVER inherits many of the bottle-
necks of FASTER (or any key-value store). Record accesses could

result in cache misses and incur memory access latencies. Since
FAsTVER inlines additional information required for verification
within a record the random memory access pattern of FASTVER is
nearly identical to that of FASTER (FASTVER needs additional ran-
dom accesses to merkle tree records). FASTVER does incur additional
sequential memory accesses to read- and write verification logs
and significant amounts of extra computation to perform hashing
(quantified in the single-threaded experiments above).

Figure 14c seeks to shed light on how the computation costs of
our hybrid approach interact with memory access costs by studying
multithreaded performance for a small database of size 16K records
(which fits in the L3 cache) and a large database of 64M records
(which does not). Again, we implement the database using an array
to remove effects of FASTER code and use a YCSB-A style bench-
mark with the same fraction of reads and updates with records
picked uniformly at random. While there is no data contention
most record accesses should result in an L1/L2 cache miss. We use
a batch size of 4M operations/worker at which setting almost all
the records are protected using deferred verification (for that rea-
son, the performance of one worker in Figure 14c is very similar
to that of DV in Figure 14b). For a database of size 16K records
the throughput performance scales linearly with an increase of
about 75% everytime we double the number of workers; the 25%
loss in performance reflects the effect of L1/L2 cache misses. The
performance trends are similar for the larger database size and the
performance gap from the smaller database size reflects the effect
of L3 cache misses and memory access latencies.

9 CONCLUSIONS

In this paper, we present the design of FASTVER, a high-performance
key-value store with data integrity guarantees. The system lever-
ages server-side enclaves and uses novel algorithms that combine
the advantages of both Merkle trees and deferred memory verifica-
tion. This approach achieves throughput which is in the ballpark of
the highly optimized FASTER key-value store and which is orders
of magnitude more than any state-of-the-art integrity solutions.
We believe this work can serve as an important building block in
making data integrity solutions a commodity.

REFERENCES

[1] Panagiotis Antonopoulos, Arvind Arasu, Kunal D. Singh, et al. 2020. Azure SQL
Database Always Encrypted. In SIGMOD. 1511-1525.

=

o

=

[2] Arvind Arasu, Ken Eguro, Manas Joglekar, et al. 2015. Transaction processing on

confidential data using cipherbase. In ICDE. 435-446.

Arvind Arasu, Ken Eguro, Raghav Kaushik, Donald Kossmann, Pingfan Meng,
Vineet Pandey, and Ravi Ramamurthy. 2017. Concerto: A High Concurrency
Key-Value Store with Integrity. In Proceedings of the ACM International Conference
on Management of Data (SIGMOD).

Sumeet Bajaj and Radu Sion. 2014. TrustedDB: A Trusted Hardware-Based
Database with Privacy and Data Confidentiality. IEEE Trans. Knowl. Data Eng.
26, 3 (2014), 752-765.

Andrew Baumann, Marcus Peinado, and Galen C. Hunt. 2015. Shielding Appli-
cations from an Untrusted Cloud with Haven. ACM Trans. Comput. Syst. 33, 3
(2015), 8:1-8:26.

Blake3 cryptographic hash function 2018. https://github.com/BLAKE3-team/
BLAKE3.

M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. 1991. Checking the
correctness of memories. In Proceedings of the IEEE Symposium on Foundations of
Computer Science (FOCS).

Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin J. Levandoski,
James Hunter, and Mike Barnett. 2018. FASTER: An Embedded Concurrent Key-
Value Store for State Management. Proc. VLDB Endow. 11, 12 (2018), 1930-1933.
Melissa Chase, Apoorvaa Deshpande, Esha Ghosh, and Harjasleen Malvai. 2019.
SEEMless: Secure End-to-End Encrypted Messaging with Less Trust. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communications Secu-
rity (London, United Kingdom) (CCS ’19). Association for Computing Machinery,
New York, NY, USA, 1639-1656. https://doi.org/10.1145/3319535.3363202
Brian F. Cooper, Adam Silberstein, Erwin Tam, et al. 2010. Benchmarking cloud
serving systems with YCSB. In SoCC. 143-154.

Cynthia Dwork, Moni Naor, Guy N. Rothblum, and Vinod Vaikuntanathan. 2009.
How Efficient Can Memory Checking Be?. In Theory of Cryptography Conference
(TCC).

FASTER source code 2018. https://github.com/microsoft/FASTER.

Intel AES NI Sample library 2013. https://software.intel.com/content/www/us/
en/develop/articles/advanced-encryption-standard-aes-crypto-performance-
analysis-project.html.

Rohit Jain and Sunil Prabhakar. 2013. Trustworthy data from untrusted databases.
In ICDE. 529-540.

Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed
System. Commun. ACM 21, 7 (1978), 558-565.

Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs. IEEE Trans. Comput. C-28, 9 (Sept. 1979).

B. Laurie and E Kasper. 2013. Revocation transparency. www.links.org/files/
RevocationTransparency.pdf.

Feifei Li, Marios Hadjieleftheriou, George Kollios, et al. 2006. Dynamic authenti-
cated index structures for outsourced databases. In SIGMOD. 121-132.

Jinyuan Li, Maxwell Krohn, David Maziéres, and Dennis Shasha. 2004. Secure
Untrusted Data Repository (SUNDR). In Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation (OSDI).

Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement, Lorenzo Alvisi,
Mike Dahlin, and Michael Walfish. 2010. Depot: Cloud storage with minimal
trust. In Proceedings of the USENIX Symposium on Operating Systems Design and
Implementation (OSDI).

Ralph C. Merkle. 1988. A Digital Signature Based on a Conventional Encryption
Function. In Proceedings of the International Cryptology Conference (CRYPTO).
Donald R. Morrison. 1968. PATRICIA - Practical Algorithm To Retrieve Informa-
tion Coded in Alphanumeric. J. ACM 15, 4 (1968), 514-534.

Alina Oprea and Kevin D. Bowers. 2009. Authentic Time-Stamps for Archival
Storage. In Computer Security — ESORICS 2009, Michael Backes and Peng Ning
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 136-151.

Bryan Parno, Jacob R. Lorch, John R. Douceur, et al. 2011. Memoir: Practical State
Continuity for Protected Modules. In IEEE S&P. 379-394.

Guna Prasaad, Badrish Chandramouli, and Donald Kossmann. 2019. Concurrent
Prefix Recovery: Performing CPR on a Database. In SIGMOD. 687-704.

Redis 2021. Redis in-memory data structure store. https://redis.io.

Srinath Setty, Sebastian Angel, and Jonathan Lee. 2020. Verifiable State Machines:
Proofs That Untrusted Services Operate Correctly. ACM SIGOPS Operating
Systems Review 54, 1 (Aug. 2020), 40-46.

Srinath T. V. Setty, Sebastian Angel, Trinabh Gupta, et al. 2018. Proving the
correct execution of concurrent services in zero-knowledge. In OSDI. 339-356.
Rohit Sinha and Mihai Christodorescu. 2018. VeritasDB: High Throughput Key-
Value Store with Integrity. IACR Cryptol. ePrint Arch. 2018 (2018), 251.

Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-
Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub,
Markulf Kohlweiss, Jean-Karim Zinzindohoué, and Santiago Zanella-Béguelin.
2016. Dependent Types and Multi-Monadic Effects in F*. In 43rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL). ACM, 256—
270. https://www.fstar-lang.org/papers/mumon/

Wenting Zheng, Ankur Dave, Jethro G. Beekman, et al. 2017. Opaque: An Oblivi-
ous and Encrypted Distributed Analytics Platform. In NSDI. 283-298.

https://github.com/BLAKE3-team/BLAKE3
https://github.com/BLAKE3-team/BLAKE3
https://doi.org/10.1145/3319535.3363202
https://github.com/microsoft/FASTER
https://software.intel.com/content/www/us/en/develop/articles/advanced-encryption-standard-aes-crypto-performance-analysis-project.html
https://software.intel.com/content/www/us/en/develop/articles/advanced-encryption-standard-aes-crypto-performance-analysis-project.html
https://software.intel.com/content/www/us/en/develop/articles/advanced-encryption-standard-aes-crypto-performance-analysis-project.html
www.links.org/files/RevocationTransparency.pdf
www.links.org/files/RevocationTransparency.pdf
https://redis.io
https://www.fstar-lang.org/papers/mumon/

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Architecture
	2.2 Threat Model and Integrity Guarantees
	2.3 Performance Goals

	3 Trusted Database Approach
	4 Merkle Trees and Enhancements
	4.1 State-of-the-Art: Sparse Merkle Trees
	4.2 Encoding Sparse Merkle using Records
	4.3 Merkle trees with Verifier Caching
	4.4 Discussion

	5 Deferred Memory Verification
	5.1 State-of-the-Art Deferred Verification
	5.2 Deferred Verification with Caching
	5.3 Improved Concurrency
	5.4 Discussion

	6 Hybrid Approach
	6.1 Verification Hierarchy
	6.2 Parallelizing Merkle-Hashing
	6.3 Sorted Merkle Updates
	6.4 Correctness

	7 Implementation
	8 Experimental Evaluation
	8.1 Experiment: Throughput vs. Latency
	8.2 Experiment: SGX Enclaves
	8.3 Comparison with Faster baseline
	8.4 Experiment: Scalability
	8.5 Experiment: Performance Drill-Down

	9 Conclusions
	References

