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Does this program safely run?

#include <stdint.h> o
typedef uint64_t t; gcC -00 && ./a.out
void f (t* pa, t* pb) { - Segfault (stack
if (*pa == 0) return; overflow)
“pa--;
f (pa, pb); * gcc -O1 && ./Ja.out
pb++;
} - OK (function inlining)
int main (int argc, char”
argv[]) {
t a = UINT64 MAX, b = 0:
f (8a, &b);

return a;

}
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On Thursday Gctober 24, 2013, an Oklshoms courtruled against Tayata in a case of unimended
acceleration that Lead to the death of ons the occupants. Cantral to the tril was the Engine Cortral
Modules (ECH) fimmware.

Embedded saftware used to be low-level code we'd bang together using C or assembler. These days,
‘ven a relatively straighrforward, alben critca, task like thromle comral i likely to use 3 saphisticted
RTOS and tens of thousands af lines of code.

With sl this sophistication, standards and practices for design, coding, and testing bacom paramaurt —
‘especially when the function involved is safety-crical. Falure s not an option. t is something to be
comained and benign.

S0 what happens when an automaker decides to wing t and plzy by their own les? To disregard the
figorous standards, best practices, and checks and balances required of such softwars (and hardware)
design? Peopls are kiled, reputations nined, and billions of dollars are paid out. That's what happens.
Hera's the story of some software that arguably never should have been.

For the bul o this research, EDH consulted Michiel Bar: CTO and
co-founder of Earr Group, an embedded systems consulting fim, | Check outthis relstee
it waek. As 3 primary expar whnas: fo the plaintts, the n-desth | EE Live! 2014 session
analy s conducted by Barr and his collesgues iluminetes  shameful | Kiler Apps: Embeddzd
example of software design and development and provides s Sotware’s Graanest Hit
cautionary taleto sl involved in sfety-critical developmert, whether Jobe

that be for stomotive, madicl. serospace, or anpwhare slse whare

falure s not tolerable. Bar i an experisnced developer, consultant, former professor, editor bloggsr,
and authr.
Ban's uttimate conclusins were that:
 Toyora’ slectronic thratile cantrol system (ETCS) source code is of unreasonzble qualry.
© Toyota’ source code is dsfective and contains bugs, including bugs that can cause unintendsd
acceleration (UA)
® Code-quality matrics predict presence of addiional bugs.
* Toyots fal sifes are defective and inadequate (refeming to them as a “house of cards” safey
architecture)
* Misbehaviors of Toyatas ETCS are a cause of UA

A damning summary 1o say the least. Let’ Look 3t whit Lead him 1o these conclusions:
Hardware
Although the investigation facused almost entiely on soffware, there is 3 Least one HV factor Toyota

elaimed the 2005 Camry's main CPL had emor detacting and comecting (EDAC) RAM. It didnt. EDAC,
o at least parity RAM, is relstively easy and low-cost insurance for sstety-crtical systems.

Other cases of throttle malfunction have been linked ta tin whiskers in the accelerator pedal sensor
“This doss not seem to have been the case here

itk

The Camr ECM board. U2 is 3 NEC (now Renesas) V850 microcontroller

Software

‘The ECH software formed the core of the technical investigation. What follows s a list of the key
findings.

Mimoring (where key data is written ta redundant variables) was not abway s done. This gains extra
significance in light of

Stack averflow: Toyots claimed only 41% of the allocated stack space was being used. Barrs
investigation shawed that 94% was closerta the truth. On top of that, stack-killing, MISRA-C
fule-vialating recursion was found in the code, and the CPU doesn' incorporate memary pratection ta
guard against stack averflaw:

Twa key items were not mirrored: The RTOS crtcal imemal dita structures; and~—the most importart
bytes of all, the final result of al this fimmware—the TargetThromleAngle global varable.

Although Toyota had performed a stack analysis. Barr concluged the automsker had completely
botehed . Toyota missed some of the calls made via pointer missed stack sage by Lbrary and
assembly functions (about 350 in total). and missed RTOS use during task switching. They also failed to
perform run-time stack montering

Tog otals ETCS used a version of OSEK. which is an automotive standard TOS API. For some reason
though, the CPU vendor-supplied version was net certfied compliant.

Unintentional T0S task shutdorwn was hervily investigated as  potential source of the UA. As single
bits in memory cortrol each task, comuption dus to HV or SW faults will suspend nesded tasks or
<tart uwanted ones. Vehicle tests corimed that ane partcular dead task would result n loss of
throttle cortrol, and that the criver might have to il remave their foot from the brake during an
unintended acceleration event before being able to end the unwanted acceleration.

A Ltany of other fauits were found in the code. including buffer averflow, unsate casting, and race
condiions between tasks.

Enl CE—Ur - teenl

Toyota' killer firmware: Bad design and its
cansequences

Hybrid autamotive use of ultracapacitors
Teardawn: 0BD-Il Bluetaoth adapter

Fundamentls of the automative cabin climate
control system

Cars run HTMLS-based applications
Engineer shares how to build an slectric
vehicle from the ground up - Part 1: Design
choices

Teardawn: Heads-up thermal imaging camera
Automobile sensors may usher in self-driving
s

Teardawn revesls Chevy Volts elearanic
secrets

Engineer shares how to build an electric
vehicle fram the ground up - Part 1
Lead-acid vs Lithium-ion batteries

ELATED CONTEN

Accalerating toward $1 millon prize
105 the cart Ho, ts the driver Vi, it doesn':
matter!

Toyata Announces Prioty Registaton Ve
Stz for AlL-New Prus Plug-in Hybnd

Toyota Announces Sesand Annual Shareathon
Program

Tojota Announces Marketing Cimpaign For
The Reivented 2012 Camry

]>E>




ED N About Us + Subscribe to Newsletters

EDN N E T w o r «  DESIGN CENTERS - TOOLS & LEARNING - COMMUNITY -
NETWORK DESIGN CENTERS -  TOOLS & LEARNING - COMMUNITY -

Toyota's killer firmware: Bad design and Home > Automative Design Center > How To Article

its consequences

Michael Dunn -October 28,2013
109 Comments

e

Toyota’s killer firmware: Bad design and
its consequences

Michael Dunn -October 28, 2013
109 Comments

ﬁsmm 277 | |8+ 932 W Tweet | 724

On Thursday October 24, 2013, an Oklahoma court ruled against Toyota in a case of unintended
acceleration that lead to the death of one the occupants. Central to the trial was the Engine
Control Module's (ECM) firmware.

Stack overflow. Toyota claimed only 41% of the allocated stack space was being used. Barr's
investigation showed that 94% was closer to the truth. On top of that, stack-killing, MISRA-C rule-
violating recursion was found in the code, and the CPU doesn't incorporate memory protection to
guard against stack overflow.

Although Toyota had performed a stack analysis, Barr concluded the automaker had completely
botched it. Toyota missed some of the calls made via pointer, missed stack usage by library and

assembly functions (about 350 in total), and missed RTOS use during task switching. They also

ia pointer, missed stack usage by library and

d RTOS use during task switching. They also

Biaohe failed to perform run-time stack monitoring.




Does this program stack-overflow?

* Important in embedded software
- led to deadly software bugs in Toyota cars
e Most stack analysis tools available for compiled code only

- Harder to analyze
— User interaction iIs troublesome

 How to prove, at the source level, that the compiled code
does not stack-overflow?

- How to model stack overflow at the source level?
- How to prove stack-aware compiler correctness?



CompCert

 Formal C and assembly semantics

* Verified semantics-preserving compiler

- Safety Is preserved

- For safe programs, I/O events and
termination/divergence are preserved



CompCert and stack overflow

« Stack frame allocation always succeeds

— Stack-overflow not modeled in either C or
assembly

- How to guarantee that, if source program does not
crash, then neither does compiled code not even
by stack overflow?



] it is hopeless to prove a stack memory bound on
the source program and expect this resource

certification to carry out to compiled code: stack
consumption, like execution time, is a program property

Xavier Leroy
(1968-)

! that is not preserved by compilation.

Formal Certification of a Compiler Back-end

or: Programming a Compiler with a Proof Assistant

Xavier Leroy
INRIA Rocquencourt
Xavier.Leroy@inria. fr

Abstract

This paper reports on the development and formal certification
(proof of semantic preservation) of a compiler from Cminor (a C-
like imperative language) to PowerPC assembly code, using the
Coq proof assistant both for programming the compiler and for
proving its correctness. Such a certified compiler is useful in the
context of formal methods applied to the certification of critical
software: the certification of the compiler guarantees that the safety
properties proved on the source code hold for the executable com-
piled code as well.

Categories and Subject Descriptors  F3.1 [Logics and meanings

of programs): Specifying and verifying and reasoning about

programs—Mechanical ~ verification.; D24  [Software ~engi-

are/program  verification—Correctness  proofs,
[

can potentially invalidate

software industry is aware of this 1
niques to alleviate it, such as conduc!
the generated assembly code afier having turned all compiler opti-
‘mizations off. These techniques do not fully address the issue, and
are costly in terms of development time and program performance.

An obviously better approach is to apply formal methods to
the compiler itself in order to gain assurance that it preserves the
semantics of the source programs. Many different approaches
have been proposed and investigated., including on-paper and
on-machine proofs of semantic preservation, proof-carrying code,

li

ingl:  Softw:
formal methods, reliability; D.3.4
Processors—Compilers. optimization

General Terms  Languages, Reliability, Security, Verification.

Keywords ~ Certified compilation, semantic preservation, program
proof, compiler transformations and optimizations, the Cog theo-
rem prover.

1. Introduction

Can you trust your compiler? Compilers are assumed to be seman-
tically transparent: the compiled code should behave as prescribed
by the semantics of the source program. Yet, compilers ~ and espe-
cially optimizing compilers — are complex programs that perform
complicated symbolic transformations. We all know horror stories
of bugs in compilers silently turning a correct program into an in-
correct executable.

For low-assurance software, validated only by testing, the im-
pact of compiler bugs is negligible: what s tested is the exccutable
code produced by the compiler; rigorous testing will expose errors
in the compiler along with errors in the source program. The picture
changes dramatically for critical, high-assurance software whose
certification at the highest levels requires the use of formal meth-
ods (model checking, program proof. etc). What is formally veriﬁcd
using formal methods is almost universally the source code;
in the compiler used to turn this verified source into an exccutable
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ot s o copy cen o epublih 10 post o server or e
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credible translation validation, and type-preserving
compilers. (These approaches are compared in section 2.) For
the last two years, we have been working on the development of
a realistic, certified compiler. By ceriified, we mean a compiler
that is accompanied by a machine-checked proof of semantic
preservation. By realistic, we mean a compiler that compiles a
language commonly used for critical embedded software (a subset
of C) down to assembly code for a processor commonly used in
embedded systems (the PowerPC), and that generates reasonably
efficient code.

This paper reports on the completion of one half of this
program: the certification, using the Cog proof assistant [2], of
a lightly-optimizing back-end that generates PowerPC assembly
code from a simple imperative intermediate language called
Cminor. A front-end translating a subset of C to Cminor is being
developed and certified, and will be described in a forthcoming

paper.

While there exists a considerable body of earlier work on
machine-checked correctness proofs of parts of compilers (see
section 7 for a review), our work is novel in two ways. First, recent
work tends to focus on a few parts of a compiler, mostly opti-
mizations and the underlying static analyses [18, 6]. In contrast,
our work is modest on the optimization side, but emphasizes the
certification of a complete compilation chain from a structured im-
perative language down to assembly code through 4 intermediate
languages. We found that many of the non-optimizing translations
performed, while often considered obvious in compiler literature,
are surprisingly tricky to formally prove correct. The other novelty
of our work is that most of the compiler is written directly in
the Coq specification language, in a purely functional style. The
exceutable compiler is obtained by automatic extraction of Caml
code from this specification. This approach has never been applied
before to a program of the size and complexity of an optimizing
compiler.
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Our solution: Quantitative CompCert

 Introduce stack consumption in C semantics

* Preserve stack consumption by compilation passes:
guantitative refinement

* Refine assembly semantics with finite stack

* Make compiler correctness depend on source-level
stack bound

- Introduce a program logic on Clight to derive stack
consumption bound

- Introduce automatic stack analyzer to automatically use
program logic on programs without recursion



Safety Proof

b4

Verified Compiler
: v,

v

Safety Proof

Overview

Source Program

s

( Verified Quantitative
L Hoare Logic

<M_ W,,,,([s} < ;—f(ﬂb

Weight Bound
B:(6E—-7Z)—=N

< Rek(C(8)) < Wi (C()) v

Target Program

C(s)

Event Metric

M, : & — Z

Stack-Usage Bound
stack(C(s)) < (M)
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Event Metric
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Stack-Usage Bound
stack(C(s)) < (M)




Stack consumption in C semantics

CompCert C produces an I/O event trace
- Preserved by compilation
Add function call/return events

Model the stack consumption as trace weight parameterized by an event
metric for call/return events

- Preserve the weights

- Stack consumption of a function is parameterized by the stack frame sizes of
its callees

Operational semantics does not go wrong on stack overflow

- Does not know the event metric, only generates events



Example

int £ (int x) { < main() generates trace:

return x+1; call(main) ::
} call(f) :: return(f) ::
return(main) :: nil
main () { * Stack consumption:
F(0); M(main) + M(f)
} where M is an event

metric (giving non-
negative stack frame
size for each function)



Stack consumption

 Events e ;= ... | call(f) | return(f)
e Event and trace valuation:
V (call(f)) = M(f); V_(return(f)) = -M(f);
V (e) = 0 otherwise
V (nil) =0; V (ext) =V (€) +V (1)
e Trace weight:
W (T) =sup{V () | T=t.T}



Stack consumption

Cog implementation: I/O events have constant
(maybe non-null) stack consumption

 Event and trace valuation:

V' (e) =V, (e) for call/return

V' (nil) =0; V' (t++e:nil) = max( V' (1), V, (O+V' (e))
e Trace weight:

W' (T) =sup{V' ()| T=t.T}



Quantitative refinement

For any target behavior T', there exists a
source behavior T such that:

- Pruned traces (call/return events removed) are
preserved

- Termination/divergence Is preserved
- For all metrics M, W _(T") < W _(T)

« Equality holds for most passes (all events preserved)

* Do not change the metric during a pass (use the
assembly metric)



Quantitative compiler correctness

« Given stack size B<27*, for all source code s, if all the following hold:
- The compiler produces assembly code C(s) and event metric M
- s does not go wrong in infinite stack space
- All traces T of s have weight W (T) <8

- Assembly C(s) is run with 8 stack size
e Then:
- C(s) refines s (I/0O events and termination/divergence are preserved)

- C(s) does not go wrong
- In particular, C(s) is guaranteed to not stack overflow



Quantitative CompCert

..............................................................................................................................................................

Quantitative Hoa e Logic || Au tomato Stack Analyzer E . Xx86 ASM Staok Merging

_________________________________________________________________________________ CompCe r1113‘;

[GSource ]—»[ Clight ]—»W—» X —>( Linear ]3»[ Mach ]—b( Mach2s, )?[XSSASM ]

* Function inlining and tailcall recognition
underway

» All other passes supported



Quantitative CompCert

......................................................................................................................................................

Quantitative Hoare Logic Automatlc Stack Analyzer E XEGASM Stack Merging

_________________________________________________________________________________ CompOer’[ 1.7

[CSource ]—»[ Clight ]_'m X —>( Linear ]3»[ Mach ]—b( MachZ2s; )?[XSS ASMS/-_-JE




CompCert stack management

« CompCert memory model: allocate a fresh stack
frame memory block upon function entry

- No pointer arithmetics across different memory blocks
- Always succeeds

 Still used for assembly language semantics

- Requires Pallocframe/Pfreeframe pseudo-instructions to
manage stack frame blocks

- Turned into pointer arithmetics by unverified “pretty-
printing” phase



CompCert-generated assembly...

int g(int y); £:

Pallocframe 12

14
mov $4(%esp) , %edx
int f(int X) { movl (%edx) , %eax
return g(x-1)-2; novl seax | (vosp)
} call g
subl $2 , %eax
Pfreeframe 12, 4
ret

 Formal semantics of Pallocframe/Pfreeframe also:

X
- stores/loads return address in/from calleg's stack frame - 0
» Uses RA pseudo-register to model caller's return address slot 5 5 12
- stores/loads back link to caller's stack frame RA g
y=x-1 4

Addregses
Increase
SMOUD
>15E’18



... after unverified “pretty-printing”

f:
Pallocframe 12, 4 subl $8 , Sesp
mov $4(%esp) , %edx leal $12(%esp) , %edx
movl (%edx) , %eax movl %edx 4 (esp)
subl $1 , %eax ° . - P
movl %eax , (%esp) mov $4(%esp) , %edx
call g movl (%edx) , %eax
subl $2 , %$eax subl $1 , %eax
Pfreeframe 12, 4 movl %eax , (3esp)
ret call g
X subl $2 , %$eax
12
RA
8 addl S8 , %esp
- A ret

Addregses
increase
SMO0JD
>I51918



But we can do better and prove it!

: f:
subl $8 , %esp o
leal $12(%esp) , %edx subl $4 , o€eSsp
movl %edx , 4(esp) mov S$8(%esp) , seax
mov $4(%esp) , %edx subl $1 , %$eax
movl (%edx) , %eax o o
subl $1 , %$eax movl 3%eax , (%esp)
movl %eax , (%esp) call g
call g o
subl 2  seax subl $2 , %eax
addl $8 , %esp addl S$4 , %esp
ret ret
X
12
RA
8
| X
4 8
y=x1 RA
4
O y=x-1
N, N Q n 0
qv] = |~
Vo Qo
=1ks SV
o £ ?
<




Assembly with finite stack

» Allocate one single stack block at program
start

- Program goes wrong on stack overflow
- No need for pseudo-instructions

* Merge all stack frames together into the single
stack block

- Requires memory injection proof



Quantitative CompCert
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Stack merging

 CompCert Mach to single-stack Mach2 phase

- Mach already puts arguments into stack
- Mach no longer stores RA into stack, Mach2 does
- Mach and Mach2 have same syntax

- No code transformation: reinterpretation of semantics with
single stack

 Mach?2 to assembly

- Implement function entry/exit with stack pointer arithmetics
- No significant memory changes

 Total changes: 5k LOC (out of CompCert's 90k)



Mach vs. Mach?2

Registers (x86)
r.= EAX| EBX | ECX | EDX | FPO

Statements (r* registers, ofs constant integer)
S ::=Mload(chunk, raddr, rres)

Mstore(chunk, raddr, rval)

Mgetstack(chunk, ofs, rres)

Msetstack(chunk, ofs, rres) Mach

Mgetparam(chunk, ofs, rres)

Mcall func | Mret |

Mgoto label | Mlabel label: | ... 0
y=x-1

o

Addregses
Increase
SMO0.1b
>15918

Mach?2

RA
y=x-1




Mach vs. Mach?2

int g(int y); int g {...}
int £ {
int f(int X) { Mgetparam(Mint32, 0, EAX);
Mop (Osubimm 1, EAX);
return g ( x-1 ) -2 7 Msetstack(Mint32, 0, EAX);
} Mcall(qg);
Mach Mach?2 Mop (Osubimm 2, EAX);
Mret
,,,,,,,,,,,,,,,,,, )
X
0
| Memory X ' g
; injection RA 4
=x-1 =X-
0 y | y=x-1 0
D o |
X S0
58 A=
IE



Safety Proof

b4

Verified Compiler
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Quantitative program logic

* Hoare-like logic
e Assertions have valuesin {0, 1, 2, ..., ©}

- Represent available stack space

* {P} S {Q} roughly: If P stack space Is available
before S, then:

- S does not stack overflow (unless P=x), and

- for all possible terminating executions of S,
Q stack space is available after S



Assertions

Clight statements S, continuations K, local state 6
Global state (“heap” = CompCert memory state) H
Mutable state o = (0, H)

Configuration C = (S, K, 0)

Assertion P: C - {0, 1, 2, ..., «}

- Coq implementation: C—- N- Prop, represents sets of
valid bounds



Selected rules

{P}Si1{R}  {R}S:{Q}
{P}S1; 52 {Q}

(Q:SEQ)

c=0 {P}S{Q}
{P+c}S{Q + ¢}

(Q:FRAME)

P=P {P}S{Q} Q =Q
{P}S{Q}

(Q:CONSEQ)



Selected rules

r'if) = (1Q)
D= 4P+ M(f)} FO1Q + M(f)}

(Q:CALL)

M=T,f:(P;,Qp) X(f)=5r T'H{P}S{Q} T'+{Ps}S;{Qy}
I'{P}S{Q}

(Q:ABSTRACT)



Selected rules

With:

* Global variable addresses A * Mutable state (8, H)
* Loop break * Return value * One argument

those rules become;

L(f) = (Pr,Qs)  P=X0,H).P([Elo,m),H) Q= X0,H).Qs([z]{,m), H)

F=A{P+M(f)}x=fE){(Q+M(f),L L)} (Q:CALL)

I'=T,f:(P;,Qf)  2(f) = (z,5F)
I'={P}S{Q} T —{P}S;{L,1,Q}y P =X0,H).Pr(0(x),H) Q =X0,H).\r.Qs(r,H)

[={ryS{e}

(Q:ABSTRACT)

But we also support:
e Several function arguments * Auxiliary state e Stack framing

See paper for more details.



Example with auxiliary state

{Z =logy(ho—lo) = My - Z)}
bsearch(x,1,h) {
if (h-1 <= 1) return 1;

{(Z>0 A Z =logy(ho—ls)) = My - Z}
m = 1+(h-1)/2;
{(Z>0 A Z =logy(hs—lo) A My = 2te) = M, - Z)
if (a[m]>x) h=m else 1l=m;
([Z—1 = logy(ho—lo) = My - (Z—1)] + My}
return bsearch(x,1l,h);
{{Mp - (Z=1)] + My}
}
{My - Z}




Soundness

» “C consumes at most P stack space” iff for any t, C'
such that C —t—* C', and for any metric M,
W (1) = P(C, M)

 If {P} S {Q} is derivable, then for any o,
(S, Kstop, 0) consumes at most P stack space

- Stronger soundness: for any K, o
If (skip, K, 0) consumes at most Q stack space,
then (S, K, 0) consumes at most P stack space

* Logic and soundness: 700 LOC
Instantiation to Clight: 950 LOC



Accuracy

Function Name Verified Stack Bound
recid( ) 8a bytes
bsearch(x, lo, hi) 40(1 + log,(hi — lo)) bytes
fib(n) 24n bytes
qsort(a, lo, hi) 48(hi — lo) bytes

filter_pos(a, sz, lo, hi)
sum(a, lo, hi)
fact_sq(n)
filter_find(a, sz, lo, hi)

48(hi — lo) bytes
32(hi — lo) bytes
40 + 24n? bytes
128 + 48(hi — lo) + 40 log, (BL) bytes

250000

200000

150000 -

100000

50000 -

Table 1. Manually verified stack bounds for C functions.

T T T
fact_sq(x)
measured stack consumption
—— 40 + 24 x™2
il | | |
0 10 20 30 40 50 &0 70 a0 a0 100

600

500

400

300

200

100

« Bound verified manually
using our program logic, then
instantiated by CompCert-generated
stack frame sizes

» Actual stack consumption measured

at run-time thanks to a stack monitor

using ptrace (200 lines of C+Perl)

» 4 bytes difference
due to space reserved for RA
in the last callee's stack frame

rrrrrrrrrrrrrrrrrrr

bsearch(v, lo, hi), x = hi - lo

measured stack consumption
40(1 + log_2{x))
1
0 500 1000 1500 2000 2500 3000 3500

4000



Automatic stack analyzer

* For C code without recursion (e.g. MISRA C),
program logic can be automatically applied to
derive stack bound

- 500 lines of Coq

* Instrumented compiler to generate both
compiled code and stack bound

- 400 lines of Cog + 500 Ocaml



Automatic stack analyzer

Let 1iftO {A B C: Type} (f: A -> B -> C)

(ox: option A) (oy: option B): option C :

Fixpoint B M [ (s: stm): option nat :=
match s with
| scall £ =>
1ift0 plus (Some (M f)) (I f)
| sseq sl s2 =>
liftO max (B M1 sl) (B M I s2)
| sif st sf =>
1iftO max (B M [ Phi st) (B M I sf)
| sloop s =>B M s
|  => Some 0
end.

* Lemma sound B:

forall M I (CVALID: valid bctx M ) s n
(BS: BMI s = Some n),
valid bound M s n.

Proof.
induction s; intros; ...
+ apply sound_skip.
+ apply sound_ret with (Q :=fun _ => mkassn 0).
+ apply sound_break.

+ ... apply sound_seq with (Q := fun _ => mkassn (max xy)) ...

apply valid_max_| ... apply valid_max_r ...
+ case_eq (I f) ... eapply valid_le; [ apply Le.le_n_Sn [].
eapply sound_consequence,;
[| apply sound_call2
with (C :=T)
(Pg := fun_pre phif)
(Qg := fun_post phif)
(L:=fun__ =>True)].
. eapply CVALID; eauto.
+ eapply sound_consequence;
[| apply sound_loop
with (I := fun _ => mkassn n)
(Q :=fun _ =>mkassn n)
]; unfold mkassn; intuition. ...
eapply IHs; eauto.
Qed.



Automatic stack analyzer:
soundness

Let 1iftO {A B C: Type} (f: A -> B -> () « Fixpoint bound of 1lvl ge M
(ox: option A) (oy: option B): option C := (lvl: nat) f :=
match 1lvl with

Fixpoint B M I (s: stm): option nat := | 0 => None

match s with | s 1vl' =>

| scall _ £ _ => match find func ge f with

1ift0 plus (Some (M f)) (I f) | Some bdy_¥> -
| sseq s1 s2 => B M (bound of 1lvl ge M 1lvl') bdy

liftO max (B M1 sl) (B M I s2)

| sif st sf => | None => None

1iftO max (B M I Phi st) (B M I sf) end
| sloop s =>BMT s end.
|  => Some 0
end.
« Theorem bound lvl sound:
Lemma sound B: forall ge M 1,
forall M [ (CVALID: valid bctx M ') s n valid bctx M (bound of 1lvl ge M 1).
(BS: BM [ s = Some n), Proof. -

valld_bound M s n. induction 1.

apply sound B .. apply IHL ..
Qed.



0
| s

end.

Automatic stack analyzer:
“completeness’

e Fixpoint bound of 1lvl ge M
(lvl: nat) £ :=
match 1lvl with

=> None
lvl' =>
match find func ge f with
| Some bdy =>
B M (bound of 1lvl ge M 1lvl') bdy
| None => None
end

* Theorem bound of 1lvl complete:
forall M p
(CLOSED: .. p ..)
(CG_WELLFOUNDED:
forall id fi,
In (id, Gfun fi) p.(prog defs) -
forall id',
in stm id' fi.(fi body) -

id' < id)
1vl £
(LVL: f < 1lvl)

fi
(FDEF: In (f, Gfun fi) p.(prog defs)),
exists n,
bound of 1lvl
(Genv.globalenv p) M
lvl £ = Some n.



Automatic stack bounds

File Name /
Line Count

Function Name

Verified

Stack Bound

mibench /net/dijkstra.c
(174 LOC)

mibench/auto/bitcount.c
(110 LOC)
mibench/sec/blowfish.c
(233 LOC)

mibench /sec/pgp/md5.c

(335 LOC)

mibench /tele/fft.c
(195 LOC)

enqueue
dequeue

dijkstra

bitcount

bitstring

BF _encrypt

BF _options

BF _ecb_encrypt
MD5Init

MD5Update
MD5Final
MD5Transform
IsPowerOf Two
NumberOfBitsNeeded
ReverseBits

fft_float

40 bytes
40 bytes
88 bytes
16 bytes
32 bytes
40 bytes
8 bytes
80 bytes
16 bytes
168 bytes
168 bytes
128 bytes
16 bytes
24 bytes
24 bytes
160 bytes

certikos/vmm.c palloc 48 bytes
(608 LOC) pfree 40 bytes
mem_init 72 bytes
pmap_init 176 bytes
pt_free 80 bytes
pt_init 152 bytes
pt_init_kern 136 bytes
pt_insert 80 bytes
pt_read 56 bytes
pt_resv 120 bytes
certikos/proc.c enqueue 48 bytes
(819 LOC) dequeue 48 bytes
ketxt_new 72 bytes
sched_init 232 bytes
tdqueue_init 208 bytes
thread_init 192 bytes
thread_spawn 96 bytes
compcert/mandelbrot.c main 56 bytes
(92 LOC)
compcert/nbody.c advance 80 bytes
(174 LOC) energy 56 bytes
offset_momentum 24 bytes
setup_bodies 16 bytes
main 112 bytes

Table 2. Automatically verified stack bounds for C functions.



Conclusion

» Stack overflow need not be enforced by source
semantics

- Stack consumption as add-on to existing operational
semantics

* Yet, stack consumption can be verified at the
source level and preserved by compilation

* Paves the way for other quantitative properties:

- Malloc/free heap memory consumption
- clock cycles, energy...



Thank you!

* Paper (accepted to PLDI 2014, to appear),
TR, Coqg development and artifact VM:
http://cs.yale.edu/~tahina/certikos/stack

* For any questions:
tahina.ramananandro@yale.edu



http://cs.yale.edu/~tahina/certikos/stack
mailto:tahina.ramananandro@yale.edu

Function inlining

void h(); void h();
g() { h(); return 1;} £() { int i=(h(), 1);
f() { int i=g(); return i+1l; } return i+l; }
« Call(f) =
callég}) :: o Call(f) ::
call(h) :: return(h) :: call(h) :: return(h) ::
return(g) :: return(f) :: nil
return(f) :: nil

* Events are removed in matching pairs



Function inlining

(call(f) - T,6) v~ (T, call(f) - 6) « fT"'Cg T, then

(ret(f) - T; call(f) - 0) - (T, 0) — for t' finite prefix of T"

With 6 finite and only containing call events there is t finite prefix of T
such that
V) = Vp(0) = Vu(t

Coinductively: M) M) MO

— - So,
€ —-p € 1

WM(T) — WM(G) = WM(T)

e-T'Cot-e-T ifT' o T

and (t- e T,0) ~* (e-T,¢') * Thus, It suffices to prove that
for any T' of the target,
there is T of the source

suchthat T' CcoT

€ Loy d’ if € ey Tf
and (T, 0) ~" (T',6")



Tallcall recognition

int h(); e Call(f) ::
int g(x) (o) -
{ return h(x+1); } ca (g) -
int f(x) call(h) :: return(h) ::

{ return g(x+2); }

return(g) ::
return(f) :: nil

« Caller produces return event before
transferring to tail-callee

o call(f) :: return(f) :: call(g) :: return(qg) :: call(h) ::
return(h)



Tallcall recognition

o If T Co T, then

— for t' finite prefix of T"

With O finite and only containing return there is t finite prefix of T
events such that
V() + Vp(0) = Vg(t
Coinductively: M) ME) MO
- S0,
=1 Wp(T) + Wp(8) = Wy(T)
e-T'oe-T it 7" =o T  Thus, it suffices to prove that
ret(f) - ; Co € | for any T' of the target,
ret(f)-e-T" Coe-T if T" Crer(sy0 T there is T of the source

T' Creepyo ret(f) T ifT ¢ T suchthat T'C¢ T



Function inlining
and tailcall recognition

* Need to modify simulation diagrams to take
special refinement relations into account

* Proof in progress



Mach configuration

e Continuations
K := Knil | Kcons(SP, f, code, RA, K)

« Configurations
C .= State(mem, rset, SP, f, code, K)
| Callstate(mem, rset, f, K)
| Returnstate(mem, rset, K)

» Callstate/Returnstate correspond to CompcCert
assembly Pallocframe/Pfreeframe pseudos



Mach?2 configuration

e Continuations
K ::= Knil | Kcons(f, code, RA, K)

« Configurations
C .= State(mem, rset, SP, f, code, K)
| Callstate(mem, rset, f, K)
| Returnstate(mem, rset, K)

» Callstate/Returnstate do not modify the stack



Thank you!

* Paper (accepted to PLDI 2014, to appear),
TR, Coqg development and artifact VM:
http://cs.yale.edu/~tahina/certikos/stack

* For any questions:
tahina.ramananandro@yale.edu



http://cs.yale.edu/~tahina/certikos/stack
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