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Abstract
Modern computer systems consist of a multitude of abstraction lay-
ers (e.g., OS kernels, hypervisors, device drivers, network protocols),
each of which defines an interface that hides the implementation
details of a particular set of functionality. Client programs built on
top of each layer can be understood solely based on the interface,
independent of the layer implementation. Despite their obvious im-
portance, abstraction layers have mostly been treated as a system
concept; they have almost never been formally specified or verified.
This makes it difficult to establish strong correctness properties, and
to scale program verification across multiple layers.

In this paper, we present a novel language-based account of
abstraction layers and show that they correspond to a strong form
of abstraction over a particularly rich class of specifications which
we call deep specifications. Just as data abstraction in typed func-
tional languages leads to the important representation independence
property, abstraction over deep specification is characterized by an
important implementation independence property: any two imple-
mentations of the same deep specification must have contextually
equivalent behaviors. We present a new layer calculus showing
how to formally specify, program, verify, and compose abstraction
layers. We show how to instantiate the layer calculus in realistic
programming languages such as C and assembly, and how to adapt
the CompCert verified compiler to compile certified C layers such
that they can be linked with assembly layers. Using these new lan-
guages and tools, we have successfully developed multiple certified
OS kernels in the Coq proof assistant, the most realistic of which
consists of 37 abstraction layers, took less than one person year to
develop, and can boot a version of Linux as a guest.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Correctness proofs, formal
methods; D.3.3 [Programming Languages]: Languages Constructs
and Features; D.3.4 [Programming Languages]: Processors—
Compilers; D.4.5 [Operating Systems]: Reliability—Verification;
D.4.7 [Operating Systems]: Organization and Design—Hierarchical
design; F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs

Keywords Abstraction Layer; Modularity; Deep Specification;
Program Verification; Certified OS Kernels; Certified Compilers.
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1. Introduction
Modern hardware and software systems are constructed using a
series of abstraction layers (e.g., circuits, microarchitecture, ISA
architecture, device drivers, OS kernels, hypervisors, network proto-
cols, web servers, and application APIs), each defining an interface
that hides the implementation details of a particular set of function-
ality. Client programs built on top of each layer can be understood
solely based on the interface, independent of the layer implementa-
tion. Two layer implementations of the same interface should behave
in the same way in the context of any client code.

The power of abstraction layers lies in their use of a very rich
class of specifications, which we will call deep specifications in this
paper. A deep specification, in theory, is supposed to capture the
precise functionality of the underlying implementation as well as the
assumptions which the implementation might have about its client
contexts. In practice, abstraction layers are almost never formally
specified or verified; their interfaces are often only documented
in natural languages, and thus cannot be rigorously checked or
enforced. Nevertheless, even such informal instances of abstraction
over deep specifications have already brought us huge benefits.
Baldwin and Clark [1] attributed such use of abstraction, modularity,
and layering as the key factor that drove the computer industry
toward today’s explosive levels of innovation and growth because
complex products can be built from smaller subsystems that can be
designed independently yet function together as a whole.

Abstraction and modularity have also been heavily studied in
the programming language community [31, 30]. The focus there is
on abstraction over “shallow” specifications. A module interface
in existing languages cannot describe the full functionality of its
underlying implementation, instead, it only describes type specifi-
cations, augmented sometimes with simple invariants. Abstraction
over shallow specifications is highly desirable [24], but client pro-
grams cannot be understood from the interface alone—this makes
modular verification of correctness properties impossible: verifica-
tion of client programs must look beyond the interface and examine
its underlying implementation, thus breaking the modularity.

Given the obvious importance, formalizing and verifying abstrac-
tion layers are highly desirable, but they pose many challenges:
• Lack of a language-based model. It is unclear how to model

abstraction layers in a language-based setting and how they
differ from regular software modules or components. Each layer
seems to be defining a new “abstract machine;” it may take
an existing set of mechanisms (e.g., states and functions) at the
layer below and expose a different view of the same mechanisms.
For example, a virtual memory management layer—built on top
of a physical memory layer— would expose to clients a different
view of the memory, now accessed through virtual addresses.

• Lack of good language support. Programming an abstraction
layer formally, by its very nature, would require two languages:
one for writing the layer implementation (which, given the low-



level nature of many layers, often means a language like C or
assembly); another for writing the formal layer specification
(which, given the need to precisely specify full functionality,
often means a rich formal logic). It is unclear how to fit these
two different languages into a single setting. Indeed, many
existing formal specification languages [34, 18, 16] are capable
of building accurate models with rich specifications, but they are
not concerned with connecting to the actual running code.

• Lack of compiler and linking support. Abstraction layers are
often deployed in binary or assembly. Even if we can verify a
layer implementation written in C, it is unclear how to compile
it into assembly and link it with other assembly layers. The
CompCert verified compiler [19] can only prove the correctness
of compilation for whole programs, not individual modules or
layers. Linking C with assembly adds a new challenge since they
may have different memory layouts and calling conventions.

In this paper, we present a formal study of abstraction layers that
tackles all these challenges. We define a certified abstraction layer
as a triple pL1,M,L2q plus a mechanized proof object showing that
the layer implementation M , built on top of the interface L1 (the
underlay), indeed faithfully implements the desirable interface L2

above (the overlay). Here, the implements relation is often defined
as some simulation relation [22]. A certified layer can be viewed
as a “parameterized module” (from interfaces L1 to L2), a la an
SML functor [23]; but it enforces a stronger contextual correctness
property: a correct layer is like a “certified compiler,” capable of
converting any safe client program running on top of L2 into one
that has the same behavior but runs on top ofL1 (e.g., by “compiling”
abstract primitives in L2 into their implementation in M ).

A regular software module M (built on top of L1) with interface
L2 may not enjoy such a property because its client may invoke
another module M 1 which shares some states with M but imposes
different state invariants from those assumed by L2. An abstraction
layer does not allow such a client, instead, such M 1 must be either
built on top of L2 (thus respecting the invariants in L2), or below
L2 (in which case, L2 itself must be changed).

Our paper makes the following new contributions:

• We present the first language-based account of certified abstrac-
tion layers and show how they correspond to a rigorous form
of abstraction over deep specifications used widely in the sys-
tem community. A certified layer interface describes not only
the precise functionality of any underlying implementation but
also clear assumptions about its client contexts. Abstraction over
deep specifications leads to the powerful implementation inde-
pendence property (see Sec. 2): any two implementations of the
same layer interface have contextually equivalent behaviors.

• We present a new layer calculus showing how to formally specify,
program, verify, and compose certified abstraction layers (see
Sec. 3). Such a layer language plays a similar role as the module
language in SML [23], but its interface checking is not just
typechecking or signature matching; instead, it requires formal
verification of the implements relation in a proof assistant.

• We have instantiated the layer calculus on top of two core lan-
guages (see Sec. 4 and 5): ClightX, a variant of the CompCert
Clight language [5]; and LAsm, an x86 assembly language. Both
ClightX and LAsm can be used to program certified abstraction
layers. We use the Coq logic [35] to develop all the layer inter-
faces. Each ClightX or LAsm layer is parameterized over its
underlay interface, implemented using CompCert’s external call
mechanisms. We developed new tools and tactic libraries to help
automate the verification of the implements relation.

• We have also modified CompCert to build a new verified com-
piler, CompCertX, that can compile ClightX abstraction layers

into LAsm layers (see Sec. 6). CompCertX is novel because it
can prove a stronger correctness theorem for compiling individ-
ual functions in each layer—such a theorem requires reasoning
about memory injection [21] between the memory states of the
source and target languages. To support linking between ClightX
and LAsm layers, we show how to design the implements rela-
tion so that it is stable over memory injection.

• Using these new languages and tools, we have successfully
constructed several feature-rich certified OS kernels in Coq (see
Sec. 7). A certified kernel pLx86,K, Lkerq is a verified LAsm
implementation K, built on top of Lx86, and it implements the
set of system calls as specified in Lker . The correctness of the
kernel guarantees that if a user program P runs safely on top
of Lker , running the version of P linked with the kernel K on
Lx86 will produce the same behavior. All our certified kernels
are built by composing a collection of smaller layers. The most
realistic kernel consists of 37 layers, took less than one person
year to develop, and can boot a version of Linux as a guest.

The POPL Artifact Evaluation Committee reviewed the full artifact
of our entire effort, including ClightX and LAsm, the CompCertX
compiler, and the implementation of all certified kernels with Coq
proofs. The reviewers unanimously stated that our implementation
exceeded their expectations. Additional details about our work can
be found in the companion technical report [13].

2. Why abstraction layers?
In this section, we describe the main ideas behind deep specifications
and show why they work more naturally with abstraction layers than
with regular software modules.

2.1 Shallow vs. deep specifications
We introduce shallow and deep specifications to describe different
classes of requirements on software and hardware components.
Type information and program contracts are examples of “shallow”
specifications. Type-based module interfaces (e.g., ML signatures)
are introduced to support compositional static type checking and
separate compilation: a module M can be typechecked based on its
import interface L1 (without looking at L1’s implementation), and
shown to have types specified in its export interface L2.

To support compositional verification of strong functional cor-
rectness properties on a large system, we would hope that all of its
components are given “deep” specifications. A module M will be
verified based on its import interface L1 (without looking at L1’s
implementation), and shown to implement its export interface L2.

To achieve true modularity, we would like to reason about
the behaviors of M solely based on its import interface L1; and
we would also like its export interface L2 to describe the full
functionality of M while omitting the implementation details.

More formally, a deep specification captures everything we
want to know about any of its implementations—it must satisfy
the following important “implementation independence” property:

Implementation independence: Any two implementations
(e.g., M1 and M2) of the same deep specification (e.g., L)
should have contextually equivalent behaviors.

Different languages may define such contextual equivalence relation
differently, but regardless, we want that, given any whole-program
client P built on top of L, running P ‘M1 (i.e., P linked with M1)
should lead to the same observable result as running P ‘M2.

Without implementation independence, running P ‘M1 and
P ‘M2 may yield different observable results, so we can prove a
specific whole-program property that holds on P ‘M1 but not on
P ‘M2—such whole-program property cannot be proved based on
the program P and the specification L alone.



typedef enum {
TD_READY, TD_RUN,
TD_SLEEP, TD_DEAD

} td_state;

struct tcb {
td_state tds;
struct tcb *prev, *next;

};

struct tdq {
struct tcb *head, *tail;

};
// νtcbp and νtdqp
struct tcb tcbp[64];
struct tdq tdqp[64];
// κdequeue

struct tcb *
dequeue(struct tdq *q){

struct tcb *head,*next;
struct tcb *pid=null;
if(q == null)

return pid;
else {

head = q -> head;
if (head == null)
return pid;

else {
pid = head;
next = head -> next;
if(next == null) {
q -> head = null;
q -> tail = null;

} else {
next -> prev = null;
q -> head = next;

}
}

}
return pid;

} ...

Inductive td_state :=
| TD_READY | TD_RUN
| TD_SLEEP | TD_DEAD.

Inductive tcb :=
| TCBUndef
| TCBV (tds: td_state)

(prev next: Z)

Inductive tdq :=
| TDQUndef
| TDQV (head tail: Z)

Record abs:={tcbp:ZMap.t tcb;
tdqp:ZMap.t tdq}

Function σ̂dequeue a i :=
match (a.tdqp i) with
|TDQUndef => None
|TDQV h t =>
if zeq h 0 then
Some (a, 0)

else
match a.tcbp h with
|TCBUndef => None
|TCBV _ _ n =>
if zeq n 0 then
let q’:=(TDQV 0 0) in
Some (set_tdq a i q’, h)

else
match a.tcbp n with
|TCBUndef => None
|TCBV s’ _ n’ =>
let q’:=(TDQV n t) in
let a’:=set_tdq a i q’ in
let b:=(TCBV s’ 0 n’) in
Some (set_tcb a’ n b, h)

end
end

end ...

Figure 1. Concrete (in C) vs. abstract (in Coq) thread queues

Definition tcb := td_state.

Definition tdq := List Z.

Record abs’:={tcbp:ZMap.t tcb;
tdqp:ZMap.t tdq}

Function σ̂1dequeue a i :=

match (a.tdqp i) with
| h :: q’ =>

Some(set_tdq a i q’, h)
| nil => None
end ......

Figure 2. A more abstract queue (in Coq)

Hoare-style partial correctness specifications are rarely deep
specifications since they fail to satisfy implementation independence.
Given two implementations of a partial correctness specification for
a factorial function, one can return the correct factorial number and
another can just go into infinite loop. A program built on top of such
specification may not be reasoned about based on the specification
alone, instead, we have to peek into the actual implementation in
order to prove certain properties (e.g., termination).

In the rest of this paper, following CompCert [20], we will focus
on languages whose semantics are deterministic relative to external
events (formally, these languages are defined as both receptive
and determinate [33] and they support external nondeterminism
such as I/O and concurrency by making events explicit in the
execution traces). Likewise, we only consider interfaces whose
primitives have deterministic specifications. If L is a deterministic
interface, and both M1 and M2 implement L, then P ‘M1 and
P ‘M2 should have identical behaviors since they both follow the
semantics of runningP overL, which is deterministic. Deterministic
specifications are thus also deep specifications.

Deep specifications can, of course, also be nondeterministic.
They may contain resource bounds [6], numerical uncertainties [7],

L1   with  abs1   

interface  L   with abstract state:   abs   

module   M   with concrete state:   mem 
R R

module M1 

R1 

L2   with  abs2   

module M2 

R2 

client program  P 

Figure 3. Client code with conflicting abstract states?

etc. Such nondeterminism should be unobservable in the semantics
of a whole program, allowing implementation independence to
still hold. We leave the investigation of nondeterministic deep
specifications as future work.

2.2 Layers vs. modules
When a module (or a software component) implements an interface
with a shallow specification, we often hide its private memory state
completely from its client code. In doing so, we can guarantee
that the client cannot possibly break any invariants imposed on the
private state in the module implementation.

If a module implements an interface with a deep specification, we
would still hide the private memory state from its client, but we also
need to introduce an abstract state to specify the full functionality
of each primitive in the interface.

For example, Fig. 1 shows the implementation of a concrete
thread queue module (in C) and its interface with a deep specification
(in Coq). The local state of the C implementation consists of 64
thread queues (tdqp) and 64 thread control blocks (tcbp). Each
thread control block consists of the thread state, and a pair of pointers
(prev and next) indicating which linked-list queue it belongs to. The
dequeue function takes a pointer to a queue; it returns the head
block if the queue is not empty, or null if the queue is empty.

In the Coq specification (Fig. 1 right; we omitted some invariants
to make it more readable), we introduce an abstract state of type
abs where we represent each C array as a Coq finite map (ZMap.t),
and each pointer as an integer index (Z) to the tdq or tcb array.
The dequeue primitive σ̂dequeue is a mathematical function of type
absÑ ZÑ option (absˆ Z); when the function returns None, it
means that the abstract primitive faults. This dequeue specification
is intentionally made very similar to the C function, so we can easily
show that the C module indeed implements the specification.

We define that a module implements a specification if there
is a forward simulation [22] from the module implementation
to its specification. In the context of determinate and receptive
languages [33, 20], if the specification is also deterministic, it is
sufficient to find a forward simulation from the specification to its
implementation (this is often easier to prove in practice).

In the rest of this paper, following CompCert, we often call the
forward simulation from the implementation to its specification as
upward (forward) simulation and the one from the specification to
its implementation as downward (forward) simulation.

Fig. 2 shows a more abstract specification of the same queue
implementation where the new abstract state abs’ omits the prev
and next links in tcb and treats each queue simply as a Coq list. The
dequeue specification σ̂1dequeue is now even simpler, which makes it
easier to reason about its client, but it is now harder to prove that the
C module implements this more abstract specification. This explains
why we often introduce less abstract specifications (e.g., the one
in Fig. 1) as intermediate steps, so a complex abstraction can be
decomposed into several more tractable abstraction steps.

Deep specification brings out an interesting new challenge
shown in Fig. 3: what if a program P attempts to call primitives
defined in two different interfaces L1 and L2, which may export two



conflicting views (i.e., abstract states abs1 and abs2) of the same
abstract state abs (thus also the same concrete memory state mem)?

Here we assume that modules M,M1,M2 implement interfaces
L,L1, L2 via some simulation relations R,R1, R2 (lines marked
with a dot on one end) respectively. Clearly, calling primitives in L2

may violate the invariants imposed in L1, and vice versa, so L1 and
L2 are breaking each other’s abstraction when we run P . In fact,
even without M2 and L2, if we allow P to directly call primitives
in L, similar violation of L1 invariants can also occur.

This means that we must prohibit client programs such as P
above, and each deep specification must state the clear assumptions
about its valid client contexts. Each interface should come with a
single abstract state (abs) used by its primitives; and its client can
only access the same abs throughout its execution.

This is what abstraction layers are designed for and why they are
more compositional (with respect to deep specification) than regular
modules! Layers are introduced to limit interaction among different
modules: only modules with identical state views (i.e., R1, R2 and
abs1, abs2 must be identical) can be composed horizontally.

A layer interface seems to be defining a new “abstract machine”
because it only supports client programs with a particular view of the
memory state. The correctness of a certified layer implementation
allows us to transfer formal reasoning (of client programs) on one
abstract machine (the overlay) to another (the underlay).

Programming with certified abstraction layers enables a dis-
ciplined way of composing a large number of components in a
complex system. Without using layers, we may have to consider
arbitrary module interaction or dependencies: an invariant held in
one function can be easily broken when it calls a function defined
in another module. A layered approach aims to sort and isolate all
components based on a carefully designed set of abstraction levels
so we can reason about one small abstraction step at a time and
eliminate most unwanted interaction and dependencies.

3. A calculus of abstraction layers
Motivation A user of an abstraction layer pL1,M,L2q wants to
know that its implementation M (on top of the underlay interface
L1) can be used to run any program P written against the overlay
interface L2. If we consider L1, L2 as abstract machines and M
as a program transformation (which transforms a program P into
MpP q), then for some notion of refinement Ď, this property can be
stated as @P .MpP q@L1 Ď P@L2, meaning that the behavior of
MpP q executing on top of the underlay specification L1 refines that
of the program P executing on top of the overlay specification L2.

This view of abstraction layers captures a wide variety of
situations. Furthermore, two layers pL1,M,L2q and pL2, N, L3q

can be composed as pL1,M ˝ N,L3q, and the correctness of the
layer implementation M ˝N follows from that of M and N .

However, the layer interfaces are often not arbitrary abstract
machines, but simply instances of a base language, specialized to
provide layer-specific primitives and abstract state. The implementa-
tion is not an arbitrary transformation, but instead consists of some
library code to be linked with the client program. In order to prove
this transformation correct, we will verify the implementation of
each primitive separately, and then use these proofs in conjunction
with a general template for the instrumented language.

Abstract machines and program transformations are too general
to capture this redundant structure. The layer calculus presented in
this section provides fine-grained notions of layer interfaces and
implementations. It allows us to describe what varies from one layer
to the next and to assemble such layers in a generic way.

3.1 Prerequisites
To keep the formalism general and simple, we initially take the
syntax and behavior of the programs under consideration to be

abstract parameters. Specifically, in the remainder of this section we
will assume that the following are given:

• a set of identifiers i P I which will be used to name variables,
functions, and primitives (e.g., dequeue and tcbp in Fig. 1);

• sets of function definitions κ P K, and variable definitions ν P T,
as specified by the language (e.g., κdequeue and νtcbp in Fig. 1);

• a set of behaviors σ P Σ for the individual primitives of layers,
and the individual functions of programs (e.g., the step relation
σdequeue derived from the Coq function σ̂dequeue in Fig. 1).

More examples can be found in Sec. 4.
We also need to define how the behaviors refine one another.

This is particularly important because our layer interfaces bundle
primitive specifications, and because a relation between layer inter-
faces is defined pointwise over these primitives. Ultimately, we wish
to use these fine-grained layers and refinements to build complete
abstract machines and whole-machine simulations. This can only be
done if the refinements of individual primitives are consistent; for
example, if they are given in terms of the same simulation relation.

Hence, we index behavior refinement by the elements of a partial
monoid pR, ˝, idq. We will refer to the elements R P R of this
monoid as simulation relations. However, note that at this stage, the
elements of R are entirely abstract, and we require only that the
composition operator ˝ and identity element id satisfy the monoid
laws R ˝ pS ˝ T q “ pR ˝ Sq ˝ T and R ˝ id “ id ˝R “ R.

Finally, we need to interpret these abstract simulation relations as
refinement relations between behaviors. That is, for each R P R, we
require a relationďR on Σ. For instance, if the behaviors σ1, σ2 P Σ
are taken to be step relations over some sets of states, σ1 ďR σ2

may be interpreted as the following simulation diagram:

s1
σ1 //

R

s11

R

s2 σ2
// s12

That is, whenever two states s1, s2 are related by R in some sense,
and σ1 takes s1 to s11 in one step, then there exists s12 such that σ2

takes s2 to s12 in zero or more steps, and s12 and s11 are also related
byR. The relationsď´ should respect the monoid structure of R, so
that for any σ P Σ we have σ ďid σ, and so that wheneverR,S P R
and σ1, σ2, σ3 P Σ such that σ1 ďR σ2 and σ2 ďS σ3, it should
be the case that σ1 ďS˝R σ3.

3.2 Layer interfaces and modules
The syntax of the calculus is defined as follows:

L ::“ ∅ | i ÞÑ σ | i ÞÑ ν | L1 ‘ L2

M ::“ ∅ | i ÞÑ κ | i ÞÑ ν |M1 ‘M2

The layer interfaces L and modules M are essentially finite maps;
constructions of the form i ÞÑ are elementary single-binding
objects, and ‘ computes the union of two layers or modules. This
is illustrated by the proof-of-concept interpretation given in the
companion technical report [13]. For example, the thread queue
module, shown in Fig. 1, can be defined as Mthread queue :“ tcbp ÞÑ
νtcbp ‘ tdqp ÞÑ νtdqp ‘ dequeue ÞÑ κdequeue, while the overlay
interface can be defined as Lthread queue :“ dequeue ÞÑ σdequeue .

The rules are presented in Fig. 4. The inclusion preorder defined
on modules corresponds to the intuition that when M Ď N ,
any definition present in M must be present in N as well. The
composition operator‘ behaves like a join operator. However, while
M ‘ N is an upper bound of M and N , we do not require it to
be the least upper bound. The order on layer interfaces extends the



M1 ĎM2
M ĎM MLE-REFL

∅ ĎM MLE-EMPTY

M ‘∅ ĎM MLE-ID-RIGHT

pM1 ‘M2q ‘M3 ĎM1 ‘ pM2 ‘M3q MLE-ASSOC

M2 ‘M1 ĎM1 ‘M2 MLE-COMM

M1 ĎM1 ‘M2 MLE-UB-LEFT

M1 ĎM2 ^M2 ĎM3 ñM1 ĎM3 MLE-TRANS

M1 ĎM
1
1 ^M2 ĎM

1
2 ñM1 ‘M2 ĎM

1
1 ‘M

1
2 MLE-MON

L1 ďR L2 L ďid L LLE-REFL

∅ ďR L LLE-EMPTY

L‘∅ ďid L LLE-ID-RIGHT

pL1 ‘ L2q ‘ L3 ďid L1 ‘ pL2 ‘ L3q LLE-ASSOC

L2 ‘ L1 ďid L1 ‘ L2 LLE-COMM

L1 ďid L1 ‘ L2 LLE-UB-LEFT

L‘ L ďid L LLE-IDEMPOTENT

L1 ďR L2 ^ L2 ďS L3 ñ L1 ďS˝R L3 LLE-TRANS

L1 ďR L
1
1 ^ L2 ďR L

1
2 ñ L1 ‘ L2 ďR L

1
1 ‘ L

1
2 LLE-MON

σ1 ďR σ2 ñ i ÞÑ σ1 ďR i ÞÑ σ2 LLE-INTRO-PRIM

L1 $R M : L2 EMPTY
L $id ∅ : L

VAR
L $id i ÞÑ ν : i ÞÑ ν

L1 $R M : L2 L2 $S N : L3
VCOMP

L1 $R˝S M ‘N : L3

L $R M : L1 L $R N : L2
HCOMP

L $R M ‘N : L1 ‘ L2

L1 ďR L11 L1 $S M : L2 L12 ďT L2
CONSEQ

L11 $R˝S˝T M : L12

Figure 4. The fine-grained layer calculus

underlying simulation preorder ďR on behaviors. Compared to Ď,
it should satisfy the additional property LLE-IDEMPOTENT.

The judgment L1 $R M : L2 is akin to a typing judgment for
modules. It asserts that, using the simulation relation R, the module
M—running on top of L1—faithfully implements L2. Because
modules consist of code ultimately intended to be linked with a client
program, the empty module ∅ acts as a unit, and can implement any
layer interface L (EMPTY). Moreover, appending first N , then M to
a client program is akin to appending M ‘N in one step (VCOMP).
These rules correspond to the identity and composition properties
already present in the framework of abstract machines and program
transformations. However, the fine-grained calculus also provides a
way to split refinements (HCOMP): when two different layer interfaces
are implemented in a compatible way by two different modules on
top of a common underlay interface, then the union of the two
modules implements the union of the two interfaces.

This allows us to break down the problem of verifying a layer
implementation in smaller pieces, but ultimately, we need to handle
individual functions and primitives. The consequence rule (CONSEQ)
can be used to tie our notion of behavior refinement into the calculus.
However, to make the introduction of certified code possible, we
need a semantics of the underlying language.

3.3 Language semantics
Assume that layers and modules are interpreted in the respective sets
L and M. The semantics of a module can be understood as the effect
of its code has on the underlay interface, as specified by a function

J´K : MÑ pLÑ Lq
i ÞÑ ν ďid Ji ÞÑ νKL SEM-VAR

JMKpL‘ JNKLq ďid JM ‘NKL SEM-COMP

M1 ĎM2 ^ L1 ďR L2 ñ JM1KL1 ďR JM2KL2 SEM-MON

Figure 5. Semantics of modules

J´K : M Ñ L Ñ L. Given such a function, we can interpret the
typing judgment as:

L1 $R M : L2 ô L2 ďR L1 ‘ JMKL1.

Then the properties in Fig. 5 are sufficient to ensure the soundness
of the typing rules with respect to this interpretation.

Here, surprisingly, we require that the specification refine the
implementation! This is because our proof technique involves
turning such a downward simulation into the converse upward
simulation, as detailed in Sec. 5 (Theorem 1) and Sec. 4.3. Also, we
included L1 on the right-hand side of ďR to support pass-through
of primitives in the underlay L1 into the overlay L2.

The property SEM-COMP can be understood intuitively as follows.
In JMKpL ‘ JNKLq, the code of M is able to use the functions
defined in N in addition to the primitives of the underlay interface
L, but conversely the code of N cannot access the functions of
M . However, in JM ‘ NKL, the functions of M and N can call
each other freely, and therefore the result should be more defined.
The property SEM-MON states that making the module and underlay
larger should also result in a more defined semantics.

Once a language semantics is given, we introduce a language-
specific rule to prove the correctness of individual functions:

VCpL, κ, σq
FUN

L $id i ÞÑ κ : i ÞÑ σ

where the language-specific predicate VCpL, κ, σq asserts that the
function body κ faithfully implements the primitive behavior σ on
top of L. This rule can be combined with the rules of the calculus to
build up complete certified layer implementations.

Similarly, given a concrete language semantics, we will want to
tie the calculus back into the framework of abstract machines and
program transformations. For a layer interface L, we will define a
corresponding abstract machine meant to execute programs written
in a version of the language augmented with the primitives specified
in L. The program transformation associated with a module M will
simply concatenate the code of M to the client program. Then, for
a particular notion of refinement Ď, we will want to prove that the
typing judgments entail the contextual refinement property:

L1 $R M : L2

@P . pP ‘Mq@L1 Ď P@L2

Informally, if M faithfully implements L2 on top of L1, then
invocations in P of a primitive i with behavior σ in L2, can be
satisfied by calling the corresponding function κ in M .

Indeed in Sec. 4 and Sec. 5, the primitive specifications in
JMKL, based on step relations, are defined to reflect the possible
executions of the function definitions in M . Therefore, L2 ďR
L1 ‘ JMKL1 implies that, for any primitive implementation in M ,
the corresponding deep specification in L2 refines the execution of
that function definition. Hence the execution of program P with
underlay L2 refines that of P ‘M with underlay L1 (the properties
enumerated in Fig. 5 hold for a similar reason). Properties of the
language (i.e., being determinate and receptive) can then be used to
reverse this refinement into the desired pP ‘Mq@L1 Ď P@L2.

4. Layered programming in ClightX
In this section, we provide an instantiation of our framework for a
C-like language. This instantiation serves two purposes: it illustrates
a common use case for our framework, showing its usability and



practicality; and it shows that our framework can add modularization
and proof infrastructure to existing language subsets at minimal cost.

Our starting point: CompCert Clight Clight [5] is a subset of
C and is formalized in Coq as part of the CompCert project. Its
formal semantics relies on a memory model [21] that is not only
realistic enough to specify C pointer operations, but also designed to
simplify reasoning about non-aliasing of different variables. From
the programmer’s point of view, Clight avoids most pitfalls and
peculiarities of C such as nondeterminism in expressions with side
effects. On the other hand, Clight allows for pointer arithmetic and
is a true subset of C. Such simplicity and practicality turn Clight
into a solid choice for certified programming. However, Clight
provides little support for abstraction, and proving properties about
a Clight program requires intricate reasoning about data structures.
This issue is addressed by our layer infrastructure.

4.1 Abstract state, primitives, and layer interfaces
We enable abstraction in Clight and other CompCert languages by
instrumenting the memory states used by their semantics with an ab-
stract state component. This abstract state can be manipulated using
primitives, which are made available through CompCert’s external
function mechanism. We call the resulting language ClightX.

Abstract state and external functions The abstract state is not
just a ghost state for reasoning: it does influence the outcome
of executions! However, we seek to minimize its impact on the
existing proof infrastructure for program and compiler verification.
We do not modify the semantics of the basic operations of Clight,
or the type of values it uses. Instead, the abstract state is accessed
exclusively through Clight’s external function mechanism.

Primitives and layer interfaces CompCert offers a notion of ex-
ternal functions, which are useful in modeling interaction with the
environment, such as input/output. Indeed, CompCert models com-
piler correctness through traces of events which can be generated
only by external functions. CompCert axiomatizes the behaviors
of external functions without specifying them, and only assumes
they do not behave in a manner that violates compiler correctness.
We use the external function mechanism to extend Clight with our
primitive operations, and supply their specifications to make the
semantics of external functions more precise.

Definition 1 (Primitive specification). Let mem denote the type
of memory state, and let val denote the type of concrete values.
A primitive specification σ over the abstract state type A is a
predicate on pval˚ ˆ mem ˆ Aq ˆ pval ˆ mem ˆ Aq: when
σpargs,m, a, res,m1, a1q holds, we say that the primitive takes
arguments args , memory state m and abstract state a, and returns
a result res , a memory state m1 and an abstract state a1.

The type of abstract state and the set of available primitives will
constitute our notion of layer interface.

Definition 2 (Layer interface). A layer interface L is a tuple
L “ pA,P q whereA is the type of abstract state, and P is the set of
primitives as a finite map from identifiers to primitive specifications
over the abstract state A.

4.2 The ClightX parametric language
Syntax The syntax of ClightX (parameterized over a layer inter-
face L) is identical to that of Clight. It features global variables
(including function pointers), stack-allocated local variables, and
temporary variables t . Expressions have no side effects; in particu-
lar, they cannot contain any function call. They include full-fledged
pointer arithmetics (comparison, offset, C-style “arrays”).

e ::“ n |x |t Constant, variable, temporary
| &e |*e |e1 op e2 | . . .

Statements include assignment to a memory location or a temporary,
function call and return, and structured control (loops, etc.).

S ::“ e1 “ e2 Assignment to a memory location
| t :“ e Assignment to a temporary variable
| tÐ epe1, . . . q Function call
| returnpeq Function return
| S1;S2 | ifpeq S1 else S2 | whilepeq S

Function calls may refer to internal functions defined as part of
a module, or to primitives defined in the underlay L. However
these two cases are not distinguished syntactically. In fact, the layer
calculus allows for replacing primitive specifications with actual
code implementation, with no changes to the caller’s code.

Definition 3 (Functions, modules). A ClightX function is a tuple
κ “ ptargs, lvars, Sq, where targs is the list of temporaries to
receive the arguments, lvars is the list of local stack-allocated
variables with their sizes, and S is a statement, the function body. A
module M is a finite map from identifiers to ClightX functions.

Semantics Compared with Clight, the semantics of ClightXpLq
adds a notion of abstract state, and permits calls to the primitives
of L. We will write Lpiqpargs,m, a, res,m1, a1q to denote the
semantics of the primitive associated with identifier i in L.

We present the semantics of ClightX under the form of a big-step
semantics. We fix an injective mapping Γ from global variables to
memory block identifiers. We write JeKpl, τ,mq for the evaluation
of expression e under local variables l, temporaries τ and memory
state m. We write Γ, L,M, l $ S : pτ,m, aq Ó pres; τ 1,m1, a1q
for the semantics of statements: from the local environment l, the
temporary environment τ , the memory state m, and the abstract
state a, execution of S terminates and yields result res (or ¨ if no
result), temporary environment τ 1, memory state m1, and abstract
state a1. For instance, the rule for return statements is:

JeKpl, τ,mq “ res

Γ, L,M, l $ returnpeq : pτ,m, aq Ó pres; τ,m, aq

We write Γ, L,M $ f : pargs;m,aq ó pres;m1, a1q to say
that a function f defined either as an internal function in the module
M , or as a primitive in the layer interface L, called with list of
arguments args , from memory state m and abstract state a, returns
result res , memory m1 and abstract state a1.

For internal function calls, we first initialize the temporary
environment with the arguments, and allocate the local variables of
the callee (nextpmq denotes the next available block identifier in
memory m, not yet allocated). Then, we execute the body. Finally,
we deallocate the stack-allocated variables of the callee.

Mpfq “ ppt1, . . . , tnq, ppx1, sz1q, . . . , pxk, szkqq, Sq
m1 “ allocpszkq ˝ ¨ ¨ ¨ ˝ allocpsz1qpmq

l “ Hrx1 Ð nextpmqs . . . rxk Ð nextpmq ` k ´ 1s
τ “ Hrt1 Ð v1s . . . rtn Ð vns

Γ, L,M, l $ S : pτ,m1, aq Ó pres; τ 1,m2, a
1q

m1 “ freepnextpmq, sz1q ˝ ¨ ¨ ¨ ˝ freepnextpmq ` k ´ 1, szkqpm2q

Γ, L,M $ f : pv1, . . . , vn;m,aq ó pres;m1, a1q

For primitive calls, we simply query the layer interface L:

Lpfqpargs,m, a, res,m1, a1q

Γ, L,M $ f : pargs;m,aq ó pres;m1, a1q

Using the function judgment, we can state the rule for function call
statements as:

@i, JeiKpl, τ,mq “ vi JeKpl, τ,mq “ pb, 0q
Γpfq “ b Γ, L,M $ f : pv1, . . . , vn;m,aq ó pres;m1, a1q

τ 1 “ τ rtÐ ress

Γ, L,M, l $ tÐ epe1, . . . , enq : pτ,m, aq Ó p¨; τ 1,m1, a1q



@i . L1 $id i ÞÑ κi : i ÞÑ σ1i

L1 $id M : L11

@i . σi ďR σ1i

@i . i ÞÑ σi ďR i ÞÑ σ1i

L2 ďR L11
L1 $R M : L2

where L1 is the underlay, the module M “
À

i i ÞÑ κi, the intermediate
layer L11 “

À

i i ÞÑ σ1i, and the overlay L2 “
À

i i ÞÑ σi.

Figure 6. Building a certified ClightX layer
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Figure 7. Layer simulation relation

The full semantics of ClightX is given in the companion TR [13].

Definition 4 (Semantics of a module). Let M be a ClightX module,
andL be a layer interface. Let Γ be a mapping from global variables
to memory blocks. The semantics of a module M in ClightX(L),
written JMKL, is the layer interface defined as follows:

• the type of abstract state is the same as in L;
• the semantics of primitives are defined by the following rule:

f P dompMq Γ, L,M $ f : pargs;m,aq ó pres;m1, a1q

pJMKLqpfqpargs,m, a, res,m1, a1q

4.3 Layered programming and verification
To construct a certified abstraction layer pL1,M,L2q, we need to
find a simulation R such that L1 $R M : L2 holds. Fig. 6 gives
an overview of this process. We write M “

À

i i ÞÑ κi, where
i ranges over the function identifiers defined in module M , and
κi is the corresponding implementation. Global variables in M
should not be accessible from the layers above: their permissions are
removed in the overlay interface L2. The interface L2 also includes
a specification σi for each function i defined in M .

We decouple the task of code verification from that of data
structure abstraction. We introduce an intermediate layer interface,
L11 “

À

i i ÞÑ σ1i, with its specifications σ1i expressed in terms
of the underlay states. We first prove that L1 $id M : L11
holds. For each function i in M , we show that its implementation
κi is a downward simulation of its “underlay” specification σ1i,
that is, L1 $id i ÞÑ κi : i ÞÑ σ1i. We apply the HCOMP rule
to compose all the per-function simulation statements. Note the
simulation relations here are all id, meaning there is no abstraction
of data structures in these steps. We then prove L2 ďR L

1
1, which

means that each specification σi in L2 is an abstraction of the
intermediate specification σ1i via a simulation relation R. From
i ÞÑ σi ďR i ÞÑ σ1i, we apply the monotonicity rule LLE-MON

to get L2 ďR L11. Finally, we apply the CONSEQ rule to deduce
L1 $R M : L2.

Verifying ClightX functions L1 and L11 share the same views of
both concrete and abstract states, so no simulation relation is in-
volved during this step of verification (the FUN rule in Sec. 3.3).
Using Coq’s tactical language, we have developed a proof automa-
tion engine that can handle most of the functional correctness proofs
of ClightX programs. It contains two main parts: a ClightX state-
ment/expression interpreter that generates the verification conditions
by utilizing rules of ClightX big-step semantics, and an automated
theorem prover that discharges the generated verification conditions

typedef enum {
PG_RESERVED, PG_KERNEL,
PG_NORMAL

} pg_type;

struct page_info {
pg_type t;
uint u;

};
struct page_info AT[1<<20];

Notation RESV := 0.
Notation KERN := (RESV + 1).
Notation NORM := (KERN + 1).

Inductive page_info :=
| ATV (t: Z) (u: Z)
| ATUndef.

Record abs’’ :=
{AT: ZMap.t page_info}.

Figure 8. Concrete (C) vs. abstract (Coq) memory allocation table

// κat get

uint at_get (uint i){
uint allocated;
allocated = AT[i].u;
if (allocated != 0)

allocated = 1;
return allocated;

}

// κat set

void at_set (uint i, uint b){
AT[i].u = b;

}

Function σ̂at get a i :=
match (a.AT i) with
| ATV _ 0 => Some 0
| ATV _ _ => Some 1
| _ => None
end.

Function σ̂at set a i b :=
match (a.AT i) with
| ATV t _ =>
Some (set_AT a i (ATV t b))
| _ => None
end.

Figure 9. Concrete vs. abstract getter-setter functions for AT

Inductive σ1at set :=
| @ m m’ a ofs v n,

m.store AT ofs v = m’
-> ofs = n * 8 + 4
-> 0 <= n < 1048576

-> σ1at set (n::v::nil)
m a Vundef m’ a.

Inductive σat set :=
| @ m a a’ n v,

σ̂at set a n v = Some a’
-> 0 <= n < 1048576
-> σat set (n::v::nil)

m a Vundef m a’.

Figure 10. High level and low level specification for at set

on the fly. The automated theorem prover is a first order prover,
extended with different theory solvers, such as the theory of integer
arithmetic and the theory of CompCert style partial maps. The entire
automation engine is developed in Coq’s Ltac language.

Data abstraction Since primitives in L11 and L2 are atomic, we
prove the single-step downward simulation between L11 and L2 only
at the specification level. The simulation proof for the abstraction
can be made language independent. The simulation relation R
captures the relation between the underlay state (concrete memory
and abstract state) and the overlay state, and can be decomposed
as Rmem and Rabs (see Fig. 7). The relation Rmem ensures that the
concrete memory states m1 and m2 contain the same values, while
making sure the memory permissions for the part to be abstracted
are erased in the overlay memory m2. The component Rabs relates
the overlay abstract state a2 with the full underlay state pm1, a1q.

Through this decomposition, we achieve the following two
objectives: the client program can directly manipulate the abstract
state without worrying about its underlying concrete implementation
(which is hidden via Rmem), and the abstract state in the overlay is
actually implementable by the concrete memory and abstract state
in the underlay (via Rabs).

Common patterns We have developed two common design pat-
terns to further ease the task of verification. The getter-setter pattern
establishes memory abstraction by introducing new abstract states
and erasing the corresponding memory permissions for the overlay.
The overlay only adds the get and set primitives which are imple-
mented using simple memory load/store operations at the underlay.
The abs-fun pattern implements key functionalities, but does not
introduce new abstract state. Its implementation (on underlay) does
not touch concrete memory state. Instead, it only accesses the states



// κpalloc

uint palloc(uint nps){
uint i = 0, u;
uint freei = nps;
while(freei == nps

&& i < nps) {
u = at_get(i);
if (u == 0)

freei = i;
i ++;

}
if (freei != nps)

at_set(freei, 1);
return freei;

}

Definition first_free a n:
{v| 0<= fst v < n
/\ a.AT (fst v) = ATV (snd v) 0
/\ @ x, 0 <= x < fst v

-> „ a.AT x = ATV _ 0}
+ {@ x, 0 <= x < n

-> „ a.AT x = ATV _ 0}.

Function σ̂palloc a nps :=
match first_free a nps with
| inleft (exist (i, t) _) =>

(set_AT a i (ATV t 1), i)
| _ => (a, nps)

end.

Figure 11. Concrete (in C) vs. abstract (in Coq) palloc function

Inductive σ1palloc : spec :=

| @ m a a’ nps n,
σ̂palloc a nps = (a’, n)

-> 0 <= nps < 1048576

-> σ1palloc (nps::nil) m a n m a’.

Definition σpalloc := σ1palloc.

Figure 12. High level and low level specification for palloc function

that have already been abstracted, and it only does so using the
primitives provided by the underlay interface.

Figs. 8-12 show how we use the two patterns to implement
and verify a simplified physical memory allocator palloc, which
allocates and returns the first free entry in the physical memory
allocation table. Fig. 8-10 shows how we follow the getter-setter
pattern to abstract the allocation table into a new abstract state. As
shown in Fig. 8, we first turn the concrete C memory allocation table
implementation into an abstract Coq data type. Then we implement
the getter and setter functions for the memory allocation table, both
in C and Coq (see Fig. 9). The Coq functions σ̂at get and σ̂at set are
just intermediate specifications that are used later in the overlay
specifications. The actual underlay and overlay specifications of the
setter function at set are shown in Fig. 10.

We then prove L1 $id at set ÞÑ κat set : at set ÞÑ σ1at set, and
also at set ÞÑ σat set ďR at set ÞÑ σ1at set.

The code verification (first part) is easy for this pattern because
the memory load and store operations in the underlay match the
source code closely. The proof can be discharged by our automation
tactic. The main task of this pattern is to prove refinement (second
part): we design a simulation relation R relating the memory storing
the global variable at underlay with its corresponding abstract data
at overlay. The component Rmem ensures that there is no permission
for allocation table AT in overlay memory state m2, while the
component Rabs is defined as follows:

• @i P r0, 220
q, Rabs enforces the writable permission on AT[i]

at underlay memory state m1, and requires (a2.AT i) at overlay
to be (ATV AT[i].t AT[i].u).

• Except for AT, Rabs requires all other abstract data in underlay
and overlay to be the same.

The refinement proof for L2 ďR L11 involves the efforts to prove
that this relation R between underlay memory and overlay abstract
state is preserved by all the atomic primitives in both L11 and L2.

After we abstract the memory and get/set operations, we im-
plement palloc on top of L2, following the abs-fun pattern. The
previous overlay now becomes the new underlay (“L1”). Fig. 11
shows both the implementation of palloc in ClightX and the ab-
stract function in Coq. As before, we separately show that L1 $id
palloc ÞÑ κpalloc : palloc ÞÑ σ1palloc, and palloc ÞÑ σpalloc ďR

palloc ÞÑ σ1palloc holds. For the abs-fun pattern, the refinement proof
is easy. Since we do not introduce any new abstract states in this
pattern, the implementation only manipulates the abstract states
through the primitive calls of the underlay. Thus, as shown in Fig.
12, the corresponding underlay and overlay specifications are exactly
the same, so the relation R here is the identity (id) and the proof
of refinement is trivial. The main task for the abs-fun pattern is to
verify the code, which is done using our automation tactic.

The above examples show that for the getter-setter pattern, the
primary task is to prove data abstraction, while for the abs-fun
pattern, the main task is to do simple program verification. These
two tasks are well understood and manageable, so the decoupling
(via these two patterns) makes the layer construction much easier.

5. Layered programming in LAsm
In this section, we describe LAsm, the Layered Assembly language,
and the extended machine model which LAsm is based on.

The reason we are interested in assembly code and behavior is
threefold. First of all, even though we provide ClightX to write most
code, we are still interested in the actual assembly code running on
the actual machine. In Section 6, we will provide a verified compiler
to transport all proofs of code written in ClightX to assembly.

Secondly, there are parts of software that have to be manually
written in assembly for various reasons. For example, the standard
implementation of kernel context switch modifies the stack pointer
register ESP, which does not satisfy the C calling convention and
has to be verified in assembly. A linker will be defined in Section 6
to link them with compiled C code.

Last but not least, we are interested not only in the behavior
of our code, but also in the behavior of the context that will call
functions defined in our code. To be as general as possible, we allow
the context to include all valid assembly code sequences. To this
end, it is necessary to transport per-function refinement proofs to a
whole-machine contextual refinement proof.

The LAsm assembly language We start from the 32-bit x86
assembly subset specified in CompCert. CompCert x86 assembly is
modeled as a state machine with a register set and a memory state.
The register set consists of eight 32-bit general-purpose registers and
eight XMM registers designated as scalar double-precision floating-
point operands. The memory state is same as the one in Clight. In
particular, each function executes with its stack frame modeled in
its own memory block, so that the stack is not a contiguous piece
of memory. Another anomaly regarding function calls in CompCert
x86 assembly is that the return address is stored in pseudo-register
RA instead of being pushed onto the stack, so that the callee must
allocate its own stack frame and store the return address.

Similarly to ClightX, we extend the machine state with an
abstract state, which will be modified by primitives. This yields
LAsm, whose syntax is the same as that of CompCert x86 assembly,
except that the semantics will be parameterized over the type of
abstract states and the specifications of primitives. Most notably,
primitive calls are syntactically indistinguishable from normal
function calls, yet depend on the specifications semantically.

Moreover, in our Coq formalization, the semantics of LAsm
is also equipped with memory accessors for address translation in
order to handle both kernel memory linear mapping and user space
virtual memory. However, for the sake of presentation, we are going
to describe a simplified version of LAsm where memory accesses
only use the kernel memory.

We define the semantics of LAsm in small-step form. The
machine state is pρ,m, aq where ρ contains the values of registers,
m is the concrete memory state and a is the abstract state. Let M be
an LAsm module, which is a finite map from identifiers to arrays of
LAsm instructions, we write Γ, L,M $ pρ,m, aq Ñ pρ1,m1, a1q



a transition step in the LAsm machine. The full syntax and formal
semantics of LAsm is described in the companion technical report.

Assembly layer interfaces The semantics of LAsm is parameter-
ized over a layer interface. Different from C-style primitives (see
Def. 1), which are defined using argument list and return value,
primitives implemented in LAsm often utilize their full control over
the register set and are not restricted to a particular calling con-
vention (e.g. context switch). Therefore, it is necessary to extend
the structure of layer interfaces to allow assembly-style primitives
modifying the register set.

Definition 5 (Assembly-style primitive). An assembly-style prim-
itive specification p over the abstract state type A is a predicate
on pppreg Ñ valq ˆ mem ˆ Aq ˆ pppreg Ñ valq ˆ mem ˆ Aq.
ppρ,m, a, ρ1,m1, a1q says that the primitive p takes register set ρ,
memory state m and abstract state a as arguments, and returns
register set ρ1, memory state m1 and abstract state a1 as result.

By “style,” we mean the calling convention, not the language in
which they are actually implemented. C-style primitives may very
well be implemented as hand-written assembly code at underlay.

We can then define assembly layer interfaces by replacing the
primitive specification with our assembly-style one in Def. 2. But,
to make reasoning simpler, when defining assembly layer interfaces,
we distinguish C-style from assembly-style primitives. First, C-style
primitives can be refined by other C-style primitives. Second and
most importantly, it becomes possible to instantiate the semantics of
ClightX with an assembly layer interface by just considering C-style
primitives and ignoring assembly-style primitives (which might not
follow the C calling convention). In this way, ClightX code is only
allowed to call C-style primitives, whereas LAsm can actually call
both kinds of primitives.

Definition 6 (Assembly layer interface). An assembly layer inter-
face L is a tuple L “ pA,PClightX, PLAsmq where:

• pA,PClightXq is a C layer interface (see Def. 2)
• PLAsm is a finite map from identifiers to assembly-style primitive

specifications over the abstract stateA. The domains of PClightX

and PLAsm shall be disjoint.

Whole-machine semantics and contextual refinement Based on
the relational transition system which we just defined for LAsm,
we can define the whole-machine semantics including not only the
code that we wrote by hand or that we compile, but also the context
code that shall call our functions. To this end, it suffices to equip the
semantics with a notion of initial and final state, in a way similar to
the CompCert x86 whole-program assembly semantics.

In CompCert, the initial state consists of an empty register set
with only EIP (instruction pointer register) pointing to the main
function of the module, and the memory state is constructed by
allocating a memory block for each global variable of the program.
We follow the same approach for LAsm, except that we also need
an initial abstract state, provided by the layer interface, so we need
to extend its definition:

Definition 7 (Whole-machine layer interface). A whole-machine
layer interface L is a tuple L “ pA,PClightX, PLAsm, a0q where:

• pA,PClightX, PLAsmq is an assembly layer interface
• a0 : A is the initial abstract state.

Definition 8 (Whole-machine initial state). The whole-machine
LAsm initial state for layer interface L and module M is the LAsm
state pρ0,m0, a0q defined as follows:

• ρ0prq “

$

&

%

pΓpmainq, 0q if r “ EIP
0 if r “ RA
K otherwise

• m0 is constructed from the global variables of Γ, L,M
• a0 is the whole-machine initial state specified in L

Definition 9 (Whole-machine final state). A whole-machine LAsm
state pρ,m, aq is final with return code n if, and only if, ρpEAXq “
n and ρpEIPq “ 0, where EAX is the accumulator register.

Notice that ρpEIPq contains the integer 0, which is also the initial
return address and is not a valid pointer. This ensures that executions
do not go beyond a final state, following the CompCert x86 whole-
program semantics: main has returned to its “caller”, which does
not exist. Thus, the final state is uniquely determined (there can
be no other possible behavior once such a state is reached), so the
whole-machine semantics is deterministic once the primitives are.

Definition 10 (Whole-machine behavior). Let Γ be a mapping of
global variables to memory blocks. Then, we say that

• LAsmpΓ, L,Mq diverges if there is an infinite execution se-
quence from the whole-machine initial state for L

• LAsmpΓ, L,Mq terminates with return code n if there is a finite
execution sequence from the whole-machine initial state for L
to a whole-machine final state with return code n

• LAsmpΓ, L,Mq goes wrong if there is a finite execution se-
quence from the whole-machine initial state for L to a non-final
state that can take no step.

Then, we are interested in refinement between whole machines:

Definition 11 (Whole-machine refinement). Let Lhigh, Llow be
two whole-machine assembly layer interfaces, and Mhigh,Mlow

be two LAsm modules. Then, we say that Mlow@Llow refines
Mhigh@Lhigh, and write Mlow@Llow Ď Mhigh@Lhigh if, and only
if, for any Γ such that dompLhighq Y dompMhighq Y dompLlowq Y

dompMlowq Ď dompΓq and LAsmpΓ, Lhigh,Mhighq does not go
wrong, then (1) LAsmpΓ, Llow,Mlowq does not go wrong; (2) if
LAsmpΓ, Llow,Mlowq terminates with return code n, then so does
LAsmpΓ, Lhigh,Mhighq; (3) if LAsmpΓ, Llow,Mlowq diverges, so
does LAsmpΓ, Lhigh,Mhighq.

In our Coq implementation, we actually formalized the semantics
of LAsm with a richer notion of observable behaviors involving
CompCert-style events such as I/O. Thus, we define the whole-
machine behaviors and refinement using event traces a la CompCert
[20, 3.5 sqq.]: if the higher machine does not go wrong, then every
valid behavior of the lower machine is a valid behavior of the higher.

Finally, we can define contextual refinement between layer
interfaces through a module M :

Definition 12 (Contextual refinement). We say a module M im-
plements an overlay Lhigh on top of an underlay Llow, and write
Llow ( M : Lhigh if, and only if, for any module (context) M 1 dis-
joint from M,Llow, Lhigh, we have pM ‘M 1

q@Llow Ď M 1@Lhigh.

Per-module semantics As for ClightX, we can also specify the
semantics of an LAsm module as a layer interface. However, a major
difference between ClightX and LAsm is that it is not possible to
uniquely characterize the “per-function final state” at which function
execution should stop. Indeed, as in LAsm there is no control stack,
when considering the per-function semantics of a function f , it is
not possible to distinguish f exiting and returning control to its
caller, from a callee g returning to f .

Thus, even though both the step relation of the LAsm semantics
and the primitive specifications (of a layer interface) are determinis-
tic, the semantics of a function could still be non-deterministic.

Definition 13. Let L “ pA, , q be an assembly layer interface,
andM be an LAsm module. The module semantics JMKL is then the
assembly layer interface JMKL “ pA,H, P q, where the assembly-
style primitive specification P is defined for each f P dompMq



using the small-step semantics of LAsm as follows:

P pfqpρ,m, a, ρ1,m1, a1q
ô Γpfq “ b^ ρpEIPq “ pb, 0q

^Γ, L,M $ pρ,m, aq Ñ`
pρ1,m1, a1q

Soundness of per-module refinement In this paper, we aim at
showing that the layer calculus given in Section 3 is a powerful
device to prove contextual refinement: instead of proving the whole-
machine contextual refinement directly, we only need to prove the
downward simulation relations about individual modules, notated
as Llow $R M : Lhigh, and apply the soundness theorem to get the
contextual refinement properties at the whole-machine level.

Lemma 1 (Downward simulation diagram). Let pLlow,M,Lhighq

be a certified layer, such that Llow $R M : Lhigh. Then, for any
module M 1, we have the following downward simulation diagram:

shigh
Γ,Lhigh,M

1

1 //

R

s1high

R

slow
Γ,Llow,M‘M

1

` // s1low

Theorem 1 (Soundness). Let pLlow,M,Lhighq be a certified layer.
If the primitive specifications of Llow are deterministic and if
Llow $R M : Lhigh, then Llow (M : Lhigh.

Proof. Since the whole machine LAsmpΓ, Llow,Mq is deterministic,
we can flip the downward simulation given by Lemma 1 to an
upward one, hence the whole-machine refinement.

Since the per-function semantics is non-deterministic due to its
final state not being uniquely defined, we can only flip the downward
simulation to contextual refinement at the whole-machine level.

6. Certified compilation and linking
We would like to write most parts of our kernel in ClightX rather
than in LAsm for easier verification. This means that, for each layer
interface L, we have to compile our ClightX(L) source code to the
corresponding LAsm(L) assembly language in such a way that all
proofs at the ClightX level are preserved at the LAsm level.

This section describes how we have modified the CompCert
compiler to compile certified C layers into certified assembly layers.
It also talks about how we link compiled certified C layers with
other certified assembly layers.

6.1 The CompCertX verified compiler
To transport the proofs at ClightX down to LAsm, we adapt the
CompCert verified compiler to parameterize all its intermediate
languages over the layer interface L similarly to how we defined
ClightX(L), including the assembly language. This gives rise to
CompCertX(L) (for “CompCert eXtended”, where external func-
tions are instantiated with layer interface L).

CompCertX goes from ClightX to the similarly parameterized
AsmX and then to LAsm. We retain all features and optimizations
of CompCert, including function inlining, dead code elimination,
common subexpression elimination, and tail call recognition.
Compiler correctness for CompCertX Because CompCert only
proves semantics preservation for whole programs, the major chal-
lenge is to adapt the semantics preservation statements of all compi-
lation passes (from Clight to assembly) to per-function semantics.

The operational semantics of all CompCert languages are given
through small-step transition relations equipped with sets of whole-
program initial and final states, so we have to redesign those states
to per-function setting. For the initial state, whereas CompCert

constructs an initial memory and calls main with no arguments, we
take the function pointer to call, the initial memory, and the list of
arguments as parameters. For the final state, we take not only the
return value, but also the memory state when we exit the function.

Consequently, the compiler correctness proofs have to change.
Currently, CompCert uses a downward simulation diagram [20, 2.1]
for each pass from Clight, then, thanks to the fact that the CompCert
assembly language is deterministic (up to input values given by
the environment), CompCert composes all of them together before
turning them to a single upward simulation which actually entails
that the compiled code refines the source code.

In this work, we follow a similar approach: for each individual
pass, we prove per-function semantics preservation in a downward
simulation flavor. We do not, however, turn it into an upward
simulation, because the whole layer refinement proof is based
on downward simulation, which is in turn turned into an upward
simulation at whole-machine contextual refinement thanks to the
determinism (up to the environment) of LAsmpLq.
Memory state during compilation The main difference between
CompCert and CompCertX lies in the memory given at the begin-
ning of a function call.

In the whole-program setting, the initial state is the same across
all languages, because it is uniquely determined by the global
variables (which are preserved by compilation). On the other hand, in
the middle of the execution when entering an arbitrary function, the
memory in Clight is different from its assembly counterpart because
CompCert introduces memory transformations such as memory
injections or extensions [21, 5.4] to manage the callees’ stack frames.
This is actually advantageous for compilation of handling arguments
and the return address.

For CompCertX, within the module being compiled, the same
memory state mismatch also exists. At module entry, however, we
cannot assume much about the memory state because it is given as
a parameter to the semantics of each function in the module. In fact,
this memory state is determined by the caller, so it may very well
come from non-ClightX code (e.g., arbitrary assembly user code),
thus we have to take the same memory as initial state across all the
languages of CompCertX. It follows then that the arguments of the
function already have to be present in the memory, following the
calling convention imposed by the assembly language, even though
ClightX does not read the arguments from memory.

Another difference between CompCert and CompCertX is the
treatment of final memory states. In CompCert, only the return
value of a program is observable at the end; the final memory state
is not. By contrast, in CompCertX, the final memory state is passed
back to the caller hence observable. Thus, it is necessary to account
for memory transformations when relating the final states in the
simulation diagrams.
Compilation refinement relation Finally, the per-function com-
piler correctness statement of CompCertX can be roughly summa-
rized as this commutative diagram and formally defined below.

v,m1, a1
_�

j

��

_�

j

��

l

ρ
,m, a

LCpfq 44

LAsmpfq

**
l « mpρpESPqq ρ1,m2, a1

Definition 14. Let LC be a C layer interface, and LAsm be an
assembly layer interface. We say that LC is simulated by LAsm

by compilation, written LC ď
comp LAsm, if and only if, for any Γ, and

for any execution LCpfqpl,m, a, v,m1, a1q of a primitive f of LC
for some list l of arguments and some return value v, from memory
state m and abstract state a to m1 and a1, and for any register map
ρ such that the following requirements hold:



1. the memory m contains the arguments l in the stack pointed to
by ρpESPq

2. EIP points to the function f being called: ρpEIPq “ pΓpfq, 0q

Then, there is a primitive execution LAsmpfqpρ,m, a, ρ
1,m2, a1q

and a memory injection j from m1 to m2 preserving the addresses
of m such that the following holds:

• the values of callee-save registers in ρ are preserved in ρ1;
• ρ1pEIPq points to return address ρpRAq;
• the return value contained in ρ1pEAXq (for integers/pointers) or
ρ1pFP0q (for floating-points) is related to v by j;

Theorem 2. Let L be an assembly layer interface with all C-style
primitives preserving memory transformations. Then, for any M :

JMKL ďcomp JCompCertXpMqKL

More details can be found in the companion technical report.

6.2 Linking compiled code with assembly code
Contrary to traditional separate compilation, we target compiling
ClightX functions that may be called by LAsm assembly code. Since
the caller may be arbitrary LAsm code, not necessarily well-behaved
code written in or compiled from ClightX, we have to assume that
the memory we are given follows LAsm layout. When reasoning
about memory states that involve compiled code, we then have to
accommodate memory injections introduced by the compiler.

During a whole-machine refinement proof, the two memory
states of the overlay and the underlay are related with a simulation
relation R. However, consider when the higher (LAsm) code calls
an overlay primitive, that, in the underlay, is compiled from ClightX.
Because during the per-primitive simulation proofs we ignored the
effects of the compiler, the memory injection introduced by the
compiler may become a source of discrepancy. That is why we
encapsulate, in R, a memory injection between the higher memory
state and the lower memory state. This injection is identity until
the lower state calls a compiled ClightX function. Then, at every
such call, the layer simulation relation R can “absorb” compilation
refinement on its right-hand side:

Lemma 2. If L1 and LC are C overlays and LAsm is an assembly
underlay, with L1 ďR LC and LC ď

comp LAsm, then L1 ďR LAsm.

Proof. If R encapsulates a memory injection j0, and compilation
introduces a memory injection j, then, the simulation relation R
will still hold with the composed memory injection j ˝ j0.

Summary of the refinement proof with compilation and linking
Finally, the outline of proving layer refinement L1 $ M : L2,
where M “ CompCertXpMCq ‘MAsm is the union of a compiled
ClightX module and an LAsm module, is summarized in the
following steps, also shown in Fig. 13:

1. Split the overlay L2 into two layer interfaces L2,C and L2,Asm
where L2,C is a C layer interface containing primitive specifica-
tions to be implemented by ClightX code (necessarily C-style)
and L2,Asm is an assembly layer interface containing all other
primitives (implemented in LAsm), so that L2 “ L2,C‘L2,Asm.

2. For each such part of the overlay, design an intermediate layer
interface L11,C and L11,Asm with the same abstract state type as
L1 (see Section 4.3), and prove L2,C ďR L

1
1,C and L2,Asm ďR

L11,Asm independently of the implementation.

3. For both intermediate layer interfaces, prove that they are imple-
mented by modules MC and MAsm on top of L1 respectively, i.e.
L11,C ďid JMCKL1 and L11,Asm ďid JMAsmKL1.

4. Then, compile MC: JMCKL1 ď
comp JCompCertXpMCqKL1.

L2,C

ďR2. ��

À1. L2,Asm

ďR2. ��

“ L2

L11,C
ďid3. ��

L11,Asm

ďid3.

��

JMCKL1

ďcomp4. ��
JCompCertXpMCqKL1

À

ďid6. ��

JMAsmKL1

`JMKL1 “ JCompCertXpMCq ‘MAsmKL1
oo

ďR
5.

7.

Figure 13. Proof steps of layer refinement L1 $R M : L2

5. Using LLE-TRANS and LLE-MON to combine 2. and 3., we have:
L2,C ‘ L2,Asm ďR L

1
1,C ‘ L

1
1,Asm ďid JMCKL1 ‘ JMAsmKL1

On the C side (left of‘), Lemma 2 shows thatďR absorbsďcomp.
By 4.: L2,C ‘ L2,Asm ďR JCompCertXpMCqKL1 ‘ JMAsmKL1

6. From the soundness of HCOMP (proof in TR [13]), and because
M “ CompCertXpMCq ‘MAsm, we have:

JCompCertXpMCqKL1 ‘ JMAsmKL1 ďid JMKL1

7. Finally, by combining 5. and 6., we have L2,C ‘ L2,Asm ďR
JMKL1. Since L2 “ L2,C‘L2,Asm, by using LLE-UB-LEFT and
LLE-COMM, we have: L2 ďR JMKL1 ďid JMKL1 ‘ L1 ďid
L1 ‘ JMKL1, thus we get L1 $R M : L2.

7. Case study: certified OS kernels
To demonstrate the power of our new languages and tools, we have
applied our new layered approach to specify and verify four variants
of mCertiKOS kernels in the Coq proof assistant. This section
describes these kernels and the benefits of the approach.

The mCertiKOS base kernel is a simplified uniprocessor version
of the CertiKOS kernel [12] designed for the 32 bit x86 architecture.
It provides a multi-process environment for user-space applications
using separate virtual address space, where the communications
between different applications are established by message passing.
The mCertiKOS-hyp kernel, built on top of the base kernel, is a
realistic hypervisor kernel that can boot recent versions of unmod-
ified Linux operating systems (Debian 6.0.6 and Ubuntu 12.04.2).
The mCertiKOS-rz kernel extends the hypervisor supporting “ring
0” processes, hosting “certifiably safe” services and application
programs inside the kernel address space. Finally, we strip the last
kernel down to the mCertiKOS-emb kernel, removing virtualization,
virtual memory, and user-space interrupt handling. This results in a
minimal operating system suitable for embedded environments.

The layer structures of these kernels are shown in the top half
of Fig. 14; each block in the top half represents a collection of sub-
layers shown in the bottom half (as we zoom in on mCertiKOS-hyp).

mCertiKOS The layered approach is the key to our success in fully
certifying a kernel. In Sec. 4.3, we have shown how to define getters
and setters for abstract data types like those in Fig. 8, allowing
higher layers to manipulate abstract states. Furthermore, layering
is also crucial to certification of thread queues as discussed in
Sec. 2. Instead of directly proving that a C linked-list implements a
functional list, we insert an intermediate layer as shown in Fig. 1 to
divide the difficult task into two steps.

These may look like mere proof techniques for enabling abstract
states or reducing proof effort, but they echo the following mantra
which makes our certification more efficient and scalable:
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Figure 14. Various mCertiKOS layer structures. Layer short-hands:
TRAP: interrupt handling; VIRT: virtualization; PROC: process
management; THR: thread management; VM: virtual memory; MM:
physical memory management.

Abstract in minimal steps, specify full behavior, and hide all
underlying details.

This is also how we prove the overall contextual correctness guar-
antees for all system calls and interrupt handlers. Fig. 15 shows the
call graph of the page fault handler, including all functions called
both directly and indirectly. Circles indicate functions, solid arrows
mean primitive invocations, and faint dashed lines are primitives
that are translated by all the layers they pass through.

Defined in TSysCall layer interface, the page fault handler makes
use of proc exit and proc start, both defined in PProcd layer
interface. Since the invocations of them are separated by other
primitive calls, one may expect that the invariants need to be re-
established or the effects of the in-between calls re-interpreted.
Fortunately, as our mantra suggests, when the in-between layers
translate the two primitives to TTrap layer interface, the behaviors
of them are fully specified in terms of TTrap’s abstract states, and
the invariants of PProc layer interface are considered the underlying
details and have all been hidden. This is especially important for
calls like proc exit to ikern set which span over 20 layers with the
abstract states so different that direct translation is not feasible.

Finally, kernel initialization is another difficult task that has been
missing from other kernel verification projects. The traditional
kernel initialization process is not compatible with “specify full
behavior and hide all underlying details.” For example, start kernel
in Linux kernel makes a sequence of calls to module initializations.
mCertiKOS’s initialization (see its call graph in Fig. 16) is a chain of
calls to layer initializations; this pattern complies with the guideline
that initializing one layer should hide the detail about initializing the
lower layers. Without layering, the specifications of all functions
will be populated with initialization flags for each module they
depend on. This makes encapsulation harder and could also lead to
a quadratic blowup in size and proving effort.

mCertiKOS-hyp The mCertiKOS-hyp kernel provides core primi-
tives to build full-fledged user-level hypervisors by supporting one of
the two popular hardware virtualization technologies – AMD SVM.
The primitives include the operations for manipulating the virtual
machine status, handling VMEXITs, starting or stopping a virtual
machine, etc. The details of virtualization, e.g., the virtual machine
control block and the nested page table, are hidden from the guest
applications. The hypervisor functionalities are implemented in nine
layers and then inserted in between process management and inter-
rupt handling layers. The layered approach allows us to do so while
(1) only modeling virtualization-specific structures when needed;
(2) retaining primitives in the layer interface PProc by systematic
lifting; and (3) adding new primitives (including a new initialization
function) guaranteed not to interfere with existing primitives.
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Figure 15. Call graph of the page fault handler

Figure 16. Call graph of mCertiKOS initializer

mCertiKOS-rz The mCertiKOS-rz kernel explores a different
dimension—instead of adding intermediate layers, we augmented
a few existing layers (in mCertiKOS-hyp) with support of ring 0
processes. The main modification is at PProc, where an additional
kind of threads is defined. However, all the layers between PProc
and TSysCall also need to be extended to expose the functionality
as system calls. Thankfully, since all the new primitives are already
described in deep specifications, lifting them to system calls only
requires equality reasoning in Coq.

mCertiKOS-emb The mCertiKOS-emb kernel cuts features down
to a bare minimum: it does not switch to user mode, hence does not
require memory protection and does not provide system call inter-
faces. This requires removing features instead of adding them. Since
the layered structure minimizes entanglements by eliminating un-
necessary dependencies and code coupling, the removal process was
relatively easy and straightforward. Moreover, removing the top 12
layers requires no additional specifications for those now top-level
primitives—deep specifications are suitable for both internal rea-
sonings and external descriptions. Thread and process management
layers now sit directly on top of physical memory management;
virtual memory is never enabled. The layers remain largely the same
barring the removal of primitives mentioning page tables.

Evaluation and limitations The planning and development of
mCertiKOS took 9.5 person months plus 2 person months on linking
and code extraction. With the infrastructure in place, mCertiKOS-
hyp only took 1.5 person months to finish, and mCertiKOS-rz and
mCertiKOS-emb take half a person month each. The kernels are
written, layer by layer, in LAsm and ClightX abstract syntaxes along
with driver functions specifying how to compose (link) them. All
of those are in Coq for the proofs to refer to. We utilize Coq’s code
extraction to get an OCaml program which contains CompCertX,
the abstract syntax trees of the kernels, and the driver functions,
which invoke CompCertX on pieces of ClightX code and generate
the full assembly file. The output of the OCaml program is then fed
to an assembler to produce the kernel executable.

With the device drivers (running as user processes) and a cooper-
ative scheduler, most of the benchmarks in lmbench are under 2x
slowdown running in mCertiKOS-hyp, well within expected over-



head. Ring 0 processes, not used in the above experiment, can easily
lower the number as we measured one to two orders of magnitude
reduction in the number of cycles needed to serve system calls.

Because the proof was originally developed directly in terms of
abstract machines and program transformations, the current code
base does not yet reflect the calculus presented in Sec. 3 in its
entirety. Notably, vertical composition is done at the level of the
whole-machine contextual refinements obtained by applying the
soundness theorem to each individual abstraction layer.

Outside our verified kernels (mCertiKOS-hyp consists of about
3000 lines of C and assembly), there are 300 lines of C and 170 lines
of x86 assembly code that are not verified yet: the preinit procedure,
the ELF loader used by user process creation, and functions such as
memcpy which currently cannot be verified because of a limitation
arising from the CompCert memory model. Device drivers are
not verified because LAsm lacks device models for expressing
the correctness statement. Finally, the CompCert assembler for
converting LAsm into machine code remains unverified.

8. Related work
Hoare-style program verification Hoare logic [14] and its mod-
ern variants [32, 2, 26] were introduced to prove strong (partial
or total) correctness properties of programs annotated with pre-
and postconditions. A total-correctness Hoare triple rP sCrQs often
means a refinement between the implementation C and the speci-
fication rP,Qs: given any state S, if the precondition P pSq holds,
then the command C can run safely and terminate with a state that
satisfies Q. Though not often done, it is also possible to introduce
auxiliary/ghost states to serve as “abstract states” and prove that a
program implements a specification via a simulation.

Our layer language can be viewed as a novel way of imposing
a module system over Hoare-style program verification. We insist
on using interfaces with deep specifications and we address the
“conflicting abstract states” problem mentioned in Sec. 2. Traditional
program verification does not always use deep specification (for pre-
and post-conditions) so the module interfaces (e.g., rP,Qs) may
allow some safe but unwanted behaviors. Such gap is fine if the goal
is to just prove safety (as in static type-checking), but if we want
to prove the strong contextual correctness property across module
boundaries, it is important that each interface accurately describes
the functionality and scope of the underlying implementation.

In addition to the obvious benefits on compositionality, our
layered approach also enables a new powerful way of combining
programming- and specification languages in a single setting. Each
layer interface enables a new programming language at a specific
abstraction level, which is then used to implement layers at even
higher levels. As we move up the layer hierarchy, our programming
language gets closer and closer to the specification language—it
can call primitives at higher abstraction levels but it still supports
general-purpose programming (e.g., in ClightX).

Interestingly, we did not need to introduce any program logic
to verify our OS kernel code. Instead, we verify it directly using
the ClightX (or LAsm) language semantics (which is already conve-
niently parameterized over a layer interface). In fact, unlike Hoare
logic which shows that a program (e.g., C) refines a specification
(e.g., rP,Qs), we instead show there is a downward simulation from
the specification to the program. As in CompCert, we found this
easier to prove and we can do this because both our specification
and language semantics are deterministic relative to external events.

Stepwise program refinement Dijkstra [9] proposed to “realize”
a complex program by decomposing it into a hierarchy of linearly
ordered “abstract machines.” Based on this idea, the PSOS team at
SRI [27] developed the Hierarchical Development Methodology
(HDM) and applied HDM to design and specify an OS using

20 hierarchically organized modules. HDM was difficult to be
rigorously applied in practice, probably because of the lack of
powerful specification and proof tools. In this paper, we advance the
HDM paradigm by using a new formal layer language to connect
multiple layers and by implementing all certified layers and proofs
in a modern proof assistant. We also pursued decomposition more
aggressively since it made our verification task much easier.

Morgan’s refinement calculus [25] is a formalized approach to
Dijkstra’s stepwise refinement. Using this calculus, a high-level spec-
ification can be refined through a series of correctness-preserving
transformations and eventually turned into an efficient executable.
Our work imposes a new layer language to enhance compositional
reasoning. We use ClightX (or LAsm) and the Coq logic as our
“refinement” language, and use a certified layer (with deep specifica-
tion) to represent each such correctness-preserving transformation.
All our ClightX and LAsm instances have executable semantics and
can be compiled and linked using our new CompCertX compiler.

Separate compilation for CompCert Compositional compiler cor-
rectness is an extremely challenging problem [3, 15], especially
when it involves an open compiler with multiple languages [29].
In the context of CompCert, a recent proposal [4] aims to tackle
the full Clight language but it has not been fully implemented in
the CompCert compiler. While our CompCertX compiler proves a
stronger correctness theorem for each ClightX layer, the ClightX
language is subtly different from the original full-featured Clight
language. Within each ClightX layer, all locally allocated memory
blocks (e.g., stack frames) cannot be updated by functions defined
in another layer. This means that ClightX does not support the same
general “stack-allocated data structures” as in Clight. This is fine
for our OS kernels since they do not allocate any data structures on
stack, but it means that CompCertX can not be regarded as a full
featured separate compiler for CompCert.

OS kernel verification The seL4 team [17] were the first to build a
proof of functional correctness for a realistic microkernel. The seL4
work is impressive in that all the proofs were done inside a modern
mechanized proof assistant. They have shown that the behaviors of
7500 lines of their C code always follow an abstract specification
of their kernel. To make verification easier, they introduced an
intermediate executable specification to hide C specifics. Both their
abstract and executable specifications are “monolithic” as they are
not divided into layers to support abstraction among different kernel
modules. These kernel interdependencies led to more complex
invariants which may explain why their effort took 11 person years.

The initial seL4 effort was done completely at the C level so
it does not support many assembly level features such as address
translation. This also made verification of assembly code and kernel
initialization difficult (1200 lines of C and 500 lines of assembly are
still unverified). It is also unclear how to use their verified kernel
to reason about user-level programs since they would be running in
a different address space. Our certified kernels, on the other hand,
directly model assembly-level machines that support all kernel/user
and host/guest programs. Memory access to a user-level address
space must go through a page table, and memory access in a guest
virtual machine must go through a nested page table. We thus had
no problem verifying our kernel initialization or assembly code.

Modular verification of low-level code Vaynberg and Shao [36]
also used a layered approach to verify a small virtual memory
manager. Their layers are not linearly ordered; instead, their seven
abstract machines form a DAG with potential upcalls (i.e., calls
from a lower layer to upper ones). As a result, their initialization
function (an upcall) was much harder to verify. Their refinement
proofs between layers are insensitive to termination, from which
they can only prove partial correctness but not the strong contextual
correctness property which we prove in our current work.



Feng et al. [11] developed OCAP, an open framework for
linking components verified in different domain-specific program
logics. They verified a thread library with hardware interrupts and
preemption [10] using a variant of concurrent separation logic [28].
They decomposed the thread implementation into a sequential layer
(with interrupts disabled) and a concurrent layer (with interrupts
enabled). Chlipala [8] developed Bedrock, an automated Coq library
to support verified low-level programming. All these systems aimed
to prove partial correctness only, so they are quite different from
the layered simulation proofs given in this paper.

9. Conclusions
Abstraction layers are key techniques used in building large-scale
computer software and hardware. In this paper, we have presented
a novel language-based account of abstraction layers and shown
that they are particularly suitable for supporting abstraction over
deep specifications, which is essential for compositional verification
of strong correctness properties. We have designed a new layer
language and imposed it on two different core languages (ClightX
and LAsm). We have also built a verified compiler from ClightX to
LAsm. By aggressively decomposing each complex abstraction
into smaller abstraction steps, we have successfully developed
several certified OS kernels that prove deeper properties (contextual
correctness), contain smaller trusted computing bases (all code
verified at the assembly level), require significantly less effort (3000
lines of C and assembly code proved in less than 1 person year),
and demonstrate strong support for extensibility (layers are heavily
reused in different certified kernels). We expect that both deep
specifications and certified abstraction layers will become critical
technologies and important building blocks for developing large-
scale certified system infrastructures in the future.
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