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Le présent mémoire est constitué de deux parties indépendantes. La première, constituée du
chapitre I, porte sur une démonstration alternative du théorème d’aplatissement par éclatements
de Raynaud-Gruson, reposant sur la construction et l’étude de certains espaces valuatifs. Ce
thème est présenté dans la section 0.1 de cette introduction. La seconde, qui comprend les
chapitres II et III, porte sur l’existence de facteurs ε locaux dans un cadre géométrique et
aboutit sur une formule du produit pour le déterminant de la cohomologie d’un faisceau `-
adique sur une courbe en caractéristique p 6= ` positive. Parmi les outils utilisés figure la théorie
du corps de classes géométrique, dont on présente dans le chapitre II une démonstration de
nature purement géométrique. Les résultats afférents sont énoncés et mis en contexte dans la
section 0.2 de la présente introduction.

0.1. Aplatissement par éclatements et Φ-anneaux

0.1.1. Espaces rigides : de Tate à Raynaud. Soit R un anneau de valuation discrète
complet, de corps des fractions K, d’idéal maximal m et de corps résiduel k. Notons v la
valuation m-adique sur K. Classiquement, la catégorie des K-espaces rigides au sens de Tate,
introduite par ce dernier en 1962 [Ta71], est construite par recollement à partir de la catégorie
des K-espaces rigides affines, définie comme étant la catégorie opposée à celle des K-algèbres
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qui sont quotients de

K〈T 〉 = {f =
∑
α∈Nn

fαT
α1
1 · · ·Tαnn | fα ∈ K, fα −−−−→

α→∞
0},

pour un certain entier n, avec T = (T1, . . . , Tn). Les K-algèbres K〈T 〉, dites de Tate, sont
naturellement munies de structures de K-algèbres de Banach, en les munissant des normes de
Gauss

|
∑
α∈Nn

fαT
α1
1 · · ·Tαnn |= sup

α
2−v(fα).

Cela confère aux espaces rigides de Tate une teinte analytique, permettant une analogie avec la
théorie des fonctions holomorphes. Par exemple, la définition de la propreté en géométrie rigide,
due à Kiehl, est choisie de manière à permettre l’imitation de la démonstration analytique
par Cartan et Serre de la finitude des dimensions des groupes de cohomologie d’un module
cohérent sur un espace analytique complexe propre. Cependant, certains énoncés d’apparence
bénine, telle la stabilité par composition de la notion de propreté susmentionnée, semblent être
à l’épreuve de toute démonstration par voie analytique.

Dans une lettre à Serre d’octobre 1961, Grothendieck suggère que les espaces rigides de
Tate devraient s’inscrire dans un cadre les unissant aux schémas formels, dont l’étude remonte
à [EGA1]. Remarquons par exemple que la R-algèbre R〈T 〉, formées des éléments deK〈T 〉 dont
les coefficients appartiennent à R, est la complétion m-adique de l’algèbre de polynômes R[T ].
Il s’agit alors de se figurer l’espace rigide associé à K〈T 〉 comme étant la fibre générique du
R-schéma formel se déduisant de l’espace affine AnR par complétion le long de sa fibre spéciale.

C’est à Raynaud qu’échoit la tâche de formaliser l’idée de Grothendieck. Ses résultats sont
exposés dans [Ray74] : Raynaud y définit en particulier le foncteur « fibre générique », de la
catégorie des R-schémas formels de type fini vers celle des K-espaces rigides quasi-compacts.
Ce foncteur est essentiellement surjectif, mais n’est pas pleinement fidèle, quand bien même
le restreindrait-on à la sous-catégorie des R-schémas formels plats de type fini. Raynaud fait
alors l’élégante observation qui suit : le foncteur « fibre générique » devient une équivalence de
catégories si l’on substitue à sa source la catégorie qui s’en déduit par inversion formelle des
éclatements admissibles, ces derniers étant les éclatements formels dont le centre est défini par
un idéal ouvert. Nous renvoyons à [Abb10] pour un développement systématique de la théorie
des espaces rigides du point de vue de Raynaud.

Cette approche par Raynaud de la théorie des espaces rigides permet de ramener l’étude
de ces derniers à celle des R-schémas formels, dès lors que l’on sait comparer leurs propriétés
respectives. Se pose également le problème comparer les propriétés, telles la propreté ou la
platitude, d’un morphisme de R-schéma formels de type fini et de sa fibre générique. C’est sur
cette question, dans le cas particulier de la platitude, que se porte notre attention dans la suite.

0.1.2. Aplatissement par éclatement admissible. ToutK-espace rigide quasi-compact
X (cf. 0.1.1) est la fibre générique d’un R-schéma formel plat et de type fini ; ce dernier est
alors réputé être un R-modèle de X. De même, tout morphisme fK : X → Y de K-espaces
rigides quasi-compacts est la fibre générique d’un morphisme f : X → Y entre des R-modèles X
et Y de X et Y , respectivement. La platitude de f entraîne celle de fK , mais la réciproque ne
saurait être vraie. Se pose alors l’interrogation suivante : si fK est plat, est-il possible de choisir
f également plat ? La réponse à cette question s’avère positive, et des démonstrations peuvent
en être trouvées dans ([BL93], 5.2) ou dans ([Abb10], 5.8.1). Raynaud et Gruson avaient au-
paravant démontré ([RG71] I.5.2.2) une version schématique de ce résultat, s’énonçant comme
suit.



0.1. APLATISSEMENT PAR ÉCLATEMENTS ET Φ-ANNEAUX 9

Théorème 0.1.3 (cf. I.1.1). Soit X un schéma de présentation finie sur une base S quasi-
compacte et quasi-séparée, soit U un ouvert quasi-compact de S et soit F un OX-module quasi-
cohérent de type fini. Supposons que la restriction de F à X×SU est à la fois un OX×SU -module
de présentation finie et un OU -module plat. Il existe alors un éclatement f : S′ → S vérifiant
les propriétés suivantes :

(1) l’éclatement f est centré sur un sous-schéma fermé de présentation finie de S disjoint
de U ;

(2) si X ′ → S′ est le transformé strict de X selon f , alors le transformé strict de F ′ selon
f est à la fois un OX′-module de présentation finie et un OS′-module plat.

Un éclatement f : S′ → S tel qu’autorisé dans le théorème 0.1.3 est réputé U -admissible.
Rappelons brièvement la notion de transformé strict selon un éclatement : si Z est le diviseur
de Cartier exceptionel de l’éclatement f , alors le transformé strict X ′ de X selon f est le sous-
schéma fermé de S′ ×S X défini par l’annulation de l’idéal quasi-cohérent des sections dont
le support est contenu dans Z ×S X. Le transformé strict F ′ de F selon f est quant à lui
la restriction à X ′ du quotient de F ⊗OX OS′×SX par le sous-module de ses sections dont le
support est contenu dans Z ×S X.

Une démonstration du théorème 0.1.3, différente de celle de Raynaud-Gruson, est présentée
dans le Chapitre I. Celle-ci consiste à considérer la situation du théorème 0.1.3 non pas sur S,
ni même sur un éclatement admissible de S, mais sur la limite inverse

S̃ = lim
S′→S

S′,

où la limite, cofiltrante, porte sur l’ensemble des éclatements U -admissibles de S. La limite
est ici prise dans la catégorie des espaces topologiques localement annelés, de sorte que S̃ est
naturellement muni d’un faisceau d’anneaux OS̃ , dont la tige en chaque point est un anneau
local. On procède alors comme suit : on commence par munir OS̃ d’une structure plus riche, en
l’occurrence de Φ-anneau Φ-local (cf. 0.1.6, 0.1.8), puis on démontre directement le théorème
0.1.3 lorsque la base S est le spectre d’un Φ-anneau Φ-local (cf. 0.1.8). On note alors que la
propriété d’aplatissement, établie sur les tiges Φ-locales de OS̃ , se propage localement sur S̃,
et on utilise enfin un argument de limite pour descendre la propriété de platitude de S̃ vers un
éclatement U -admissible de S adéquatement choisi.

0.1.4. Φ-anneaux. La catégorie des Φ-anneaux est un substitut algébrique à la catégorie
des anneaux topologiques adiques, ces derniers formant les briques élémentaires de la théorie
des espaces rigides à la Raynaud (cf. 0.1.1), ou encore de la théorie de Huber.

Définissons la notion de Φ-anneau. Il s’agit d’un anneau A, muni d’une notion abstraite
d’admissiblité portant sur ses idéaux de type fini, sujette aux axiomes suivants : un produit fini
d’idéaux admissibles l’est aussi, et tout idéal de type fini contenant un idéal admissible de A est
lui-même admissible. Étant donné un anneau A, une structure de Φ-anneau sur A correspond
naturellement à une famille de supports constructibles sur l’espace topologique Spec(A) (cf.
I.2.9). Cette interprétation explique le choix de la lettre Φ, qui fait écho à la notation de Cartan
pour les familles de supports dans [Car51].

Parmi les Φ-anneaux se distinguent les deux classes qui suivent.

(1) Les Φ-anneaux de type adique : étant donné un idéal I d’un anneau A, on peut munir
A d’une structure de Φ-anneau, réputé I-adique, en déclarant admissibles les idéaux de
type fini de A qui sont ouverts pour la topologie I-adique.

(2) Les Φ-anneaux de type birationnel : un anneau noethérien intègre étant donné, on peut
munir celui-ci d’une structure de Φ-anneau en déclarant admissible tout idéal non nul.

Si A est un anneau et Φ0 est un ensemble d’idéaux de type fini de A, alors il existe une plus
petite structure de Φ-anneau sur A pour laquelle tous les éléments de Φ0 sont admissibles. On
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dit alors que la structure de Φ-anneau de A est engendrée par Φ0. Lorsque Φ0 est un singleton,
on obtient ainsi un Φ-anneau de type adique.

Les Φ-anneaux de type adique sont précisément ceux dont on use dans la démonstration du
théorème 0.1.3 : dans le contexte de ce dernier, supposant la base S affine d’anneau A, l’ouvert
quasi-compact U est le complémentaire dans S du lieu d’annulation d’un idéal de type fini I de
A, et on se contente alors de munir A de sa structure de Φ-anneau I-adique.

Quant aux Φ-anneaux de type birationnel, on peut considérer l’étude de ceux-ci, ou plutôt
de leur Φ-localisation (cf. 0.1.5) comme étant l’objet de la géométrie birationnelle.

0.1.5. Profondeur, purification, clôture. Soit A un Φ-anneau (cf. 0.1.5). On définit
dans I.2.10 des groupes de cohomologie Hq

Φ(M) pour tout A-moduleM et tout entier q : il s’agit
de la cohomologie à supports du faisceau quasi-cohérent sur Spec(A) associé à M , où on choisit
pour famille de supports les fermés de Spec(A) qui sont contenus dans le lieu d’annulation d’un
idéal admissible de A. On a par exemple

H0
Φ(M) = {m ∈M | il existe un idéal admissible I de A tel que Im = 0}.

On définit alors (cf. I.2.14) la notion de profondeur en s’inspirant de ([SGA2] III.2.3) :
pour chaque entier d, un A-module M est d-profond si Hq

Φ(M) s’annule pour tout entier q < d.
On démontre alors (cf. I.2.18) qu’un A-module M est d-profond si et seulement si les groupes
de cohomologie locale Hq

I (M) s’annulent pour tout entier q < d et pour tout idéal admissible I
de A.

Un module 1-profond est aussi réputé pur, tandis que l’on qualifiera de clos un module
2-profond : il s’agit de la terminologie issue de ([EGA4], 5.9, 5.10).

Pour tout A-module M , il existe un homomorphisme A-linéaire M → Mpur vers un A-
module pur Mpur, et qui est universel pour cette propriété : il suffit de considérer le quotient
de M par H0

Φ(M). Le module Mpur est réputé être la purification de M .
De même, on démontre (cf. I.2.32) qu’il existe un homomorphisme A-linéaire M → M/

vers un A-module clos M/, et qui est universel pour cette propriété. Le module M/ est réputé
être la clôture de M . Si M est pur, on a l’expression suivante :

MC = colim HomA(I,M),

où la colimite (filtrée) porte sur l’ensemble des idéaux admissibles de A (cf. I.2.27). En parti-
culier, un A-module M est clos si et seulement si l’homomorphisme naturel

M → HomA(I,M),(1)

est un isomorphisme pour tout idéal admissible I (cf. I.2.24)
Concluons ce paragraphe en indiquant comment la caractérisation (1) permet de retrouver

le critère de normalité de Serre. Considérons un anneau intègre noethérien A vérifiant les deux
conditions suivantes, dites de Serre :

(R1) l’anneau A est régulier en codimension 1, i.e. pour tout idéal premier p de A de codi-
mension 1 (respectivement 0), l’anneau localisé Ap est un anneau de valuation discrète
(respectivement un corps) ;

(S2) tout idéal de A de codimension au moins 2 est de profondeur au moins 2.
Montrons que A est normal, i.e. intégralement clos dans son corps des fractions K. Soit a un
élément de K qui est entier sur A, et considérons le conducteur de a, c’est-à-dire l’idéal I de
A constitué de ses éléments b tels que ab appartient à A. Si p est un idéal premier de A de
codimension au plus 1, alors Ap est intégralement clos par (R1), de sorte que a appartient à
Ap, et donc que I n’est pas contenu dans p. Ainsi la codimension de I est au moins 2, et celui-ci
est par conséquent de profondeur au moins 2 par (S2). Munissons l’anneau A de sa structure
de Φ-anneau I-adique. Le Φ-anneau A est 2-profond, de sorte que A/ = A. Puisque Ia ⊆ A, le
critère (1) montre que a appartient à A.
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0.1.6. Spectres valuatifs. Nous construisons dans I.4 un espace valuatif associé à un
espace topologique muni d’un faisceau de Φ-anneaux. Bornons nous à décrire ici le cas particulier
d’un schéma affine.

À un Φ-anneau A on peut fonctoriellement associer un espace topologique X = ΦSpec(A),
dont un point x est une classe d’équivalence de valuation | · (x)| : A → Γ+, où Γ est un
groupe abélien totalement ordonné et Γ+ est le semigroupe Γt{0}, qui satisfait aux propriétés
suivantes :

(1) pour tout idéal admissible I dans A, l’élément |I(x)| = maxf∈I |f(x)| de Γ+ est stricte-
ment positif ;

(2) pour tout élément γ de Γ, il existe un idéal admissible I dans A tel que |I(x)| ≤ γ.
La topologie de X est alors engendrée par les domaines rationnels, de la forme

U
(
g−1I

)
= {x ∈ X | |I(x)| ≤ |g(x)|},

où I est un idéal admissible de A et g en est un élément. On munit alors X d’un faisceau
d’anneaux O/X dont les sections sur U

(
g−1I

)
forment la A-algèbre localisée A/[g−1], puis du

sous-faisceau d’anneaux OX formé des sections de O/X de valuation au plus 1 en chaque point.

Remarque 0.1.7. Supposant que A est I-adique, on retrouve le spectre valuatif de Huber
[Hu93] de la paire (A/, A) comme étant le fermé de ΦSpec(A) défini par l’inéquation |I| < 1.
Son complémentaire dans ΦSpec(A) est alors un ouvert isomorphe à U = Spec(A) \ V (I).
Ainsi, l’espace ΦSpec(A) est un recollement de U et du spectre valuatif de Huber de (A/, A),
cp. [Fu95].

Le faisceau d’anneauxOX est naturellement muni d’une structure de faisceau de Φ-anneaux,
en déclarant, pour tout ouvert U , admissible tout idéal de type fini I deOX(U) tel que |I(x)| > 0
pour tout point x de U . On obtient ainsi un espace topologique Φ-annelé (X,OX), encore noté
ΦSpec(A). La tige OX,x de OX en un point x de X est par ailleurs un Φ-anneau Φ-local : c’est
un anneau local, et tous ses idéaux admissibles sont inversibles (cf. I.2.36).

Ainsi (X,OX) est un espace topologique Φ-localement Φ-annelé. On démontre (cf. I.4.11)
que (X,OX) est terminal dans la catégorie des espaces Φ-localement Φ-annelés munis d’un
morphisme de Φ-anneaux de A vers Γ(X,OX).

On démontre (cf. I.2.39) un résultat de structure sur les Φ-anneaux Φ-locaux, dans l’esprit
de ([Abb10] 1.9.4), qui implique que la classe d’équivalence de valuation sur A correspondant
à un point x de X est encodée dans la structure de Φ-anneau de OX,x. Autrement dit, à un
Φ-anneau Φ-local est canoniquement associé une valuation, et celle attribuée à OX,x permet de
retrouver la valuation x par composition avec l’homomorphisme naturel A→ OX,x.

0.1.8. Aplatissement local. Conservons les notations de 0.1.6. Supposons que A est un
Φ-anneau I-adique, pour un certain idéal I de type fini dans A. L’espace localement annelé
(X,OX) est alors isomorphe à la limite inverse (cf. I.4.13)

lim
S′→Spec(A)

S′,

la limite portant sur les éclatements U -admissibles de Spec(A), où U est le complémentaire de
V (I) dans Spec(A). Ainsi, la démonstration du théorème 0.1.3 dans le cas d’une base affine
S = Spec(A) se ramène par un argument de limite à un énoncé d’aplatissement sur ΦSpec(A).
Puisque celui-ci est Φ-localement Φ-annelé (cf. 0.1.6), on se ramène à démontrer l’énoncé suivant,
qui constitue la version locale du théorème d’aplatissement 0.1.3.

Proposition 0.1.9 (cf. I.5.2, I.5.3). Soit A un Φ-anneau qui est Φ-local, i.e. qui est local
et dont les idéaux admissibles sont tous inversibles, soit B une A-algèbre de type fini et soit M
un B-module de type fini. Supposons que les assertions suivantes sont vérifiées :
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(1) le A/-module M ⊗A A/ est plat ;

(2) le B ⊗A A/-module M ⊗A A/ est de présentation finie.

Le B-module Mpur est alors de présentation finie, et est un A-module plat.

Nous consacrons les parties I.5.7 et I.6 du chapitre I à la démonstration du fait que l’énoncé
local 0.1.9 se globalise pour donner le théorème de Raynaud-Gruson 0.1.3.

0.1.10. Φ-anneaux normaux et faisceau structural. Un Φ-anneau est réputé normal
si l’homomorphisme de clôture (cf. 0.1.5)

A→ A/,

est injectif et d’image intégralement close dans A/.
Pour tout Φ-anneau A, il existe un homomorphisme A → A+ vers un Φ-anneau normal

A+, et qui est universel pour cette propriété : il suffit en effet de considérer la clôture intégrale
de A dans A/. Le Φ-anneau A+ est réputé être la normalisation de A.

Il se trouve que tout Φ-anneau Φ-local est normal (cf. I.2.39). En particulier, notant X =
ΦSpec(A) pour un Φ-anneau A, cela implique que Γ(X,OX) est également un Φ-anneau normal,
et donc que l’homomorphisme naturel de A vers Γ(X,OX) se factorise uniquement par un
homomorphisme

A+ → Γ(X,OX).

Ce dernier est toujours un isomorphisme. Plus généralement, si I est un idéal admissible de
A et si g en est un élément, alors la A-algèbre formée des sections de OX sur l’ouvert ration-
nel U

(
g−1I

)
est la normalisation du sous-Φ-anneau A[g−1I] de A[g−1] : on obtient donc une

description explicite du faisceau OX .

0.1.11. Φ-schémas. À tout Φ-anneau est associé un spectre valuatif (cf. 0.1.6), qui est un
espace topologique Φ-localement Φ-annelé, et il est naturel d’introduire les recollements de tels
espaces. Définissons simplement un Φ-schéma comme étant un espace topologique Φ-localement
Φ-annelé, dont chaque point admet un voisinage ouvert isomorphe à ΦSpec(A), pour un certain
Φ-anneau A, ce dernier pouvant être supposé Φ-normal. En particulier, à chaque point x d’un
Φ-schéma X est canoniquement associé une valuation f 7→ |f(x)| sur OX,x.

Informellement, la catégorie des Φ-schémas s’insère dans le diagramme commutatif suivant.

Schémas Φ-schémas

Schémas formels Espaces rigides ou adiques

“fibre générique”

complétion

“fibre générique”

complétion

Si la pertinence de la notion de Φ-schéma nous est apparue de prime abord dans le contexte
du théorème d’aplatissement de Raynaud-Gruson 0.1.3, celle-ci nous semble intéressante en soi.
Nous n’étudierons cependant pas les Φ-schémas dans le présent texte.

0.2. Facteurs locaux géométriques

Dans toute cette section sont fixés des nombres premiers distincts ` et p, ainsi qu’une clôture
algébrique Q` du corps Q` des nombres `-adiques. Par faisceau `-adique sera ici entendu un
Q`-faisceau constructible (cf. III.3.5).
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0.2.1. Les équations fonctionnelles et leurs constantes. Soit X un schéma propre
sur un corps fini k, ce dernier étant muni d’un choix de clôture algébrique k. Considérons un
complexe borné F de faisceaux `-adiques sur X. La fonction L de Weil-Grothendieck associée
au couple (X,F) est la série formelle

L(X,F ;T ) =
∏
x∈|X|

det(1− FrobxT
[k(x):k] | Fx̄)−1,

où |X| est l’ensemble des points fermés de X et pour chaque x dans |X|, on note x̄ un choix
de clôture algébrique de x et Fx̄ la tige de F en ce point géométrique. Enfin, on a noté Frobx
l’élément de Frobenius géométrique du groupe de Galois Gal(k(x̄)/k(x)) : si k(x) est de cardinal
qx, il s’agit de l’automorphisme α 7→ αq

−1
x de k(x̄).

Ainsi, L(X,F ;T ) est un élément de Q`[[T ]] de terme constant 1. Un théorème de Grothen-
dieck [Gr66] affirme que la série formelle L(X,F ;T ) est une fraction rationnelle en la variable
T , donnée par

L(X,F ;T ) = det(1− FrobkT | RΓ(Xk,F))−1,

où la cohomologie RΓ(Xk,F) est un complexe borné de représentations `-adiques du groupe de
Galois Gal(k/k). Notant Hν(Xk,F) la cohomologie de degré ν de ce complexe, on a encore :

L(X,F ;T ) =
∏
ν∈Z

det(1− FrobkT | Hν(Xk,F))(−1)ν−1

,

où chaque Hν(Xk,F) est une représentation `-adique de dimension finie de Gal(k/k). Lorsque
X est lisse, une application de la dualité de Poincaré, ou du moins de l’analogue de cette dernière
en cohomologie étale ([SGA4], XVIII 3.2.5), procure alors une équation fonctionnelle

L(X,F ;T ) = ε(X,F)T−χ(X,F)L(X,D(F);T−1),

où le dual D(F) de F est encore un complexe borné F de faisceaux `-adiques sur X, où l’entier
χ(X,F) est la caractéristique d’Euler de (X,F), définie par

χ(X,F) = dimRΓc(Xk,F) =
∑
ν

(−1)ν dimHν(Xk,F),

et où le facteur ε global ε(X,F) est donné par

ε(X,F) = det
(
−Frobk | RΓ(Xk,F)

)−1

= (−1)χ(X,F) det
(
Frobk | RΓ(Xk,F)

)−1
.

Cette dernière quantité est complètement déterminée par la parité de χ(X,F), et par le déter-
minant

det
(
RΓ(Xk,F)

)−1
,

qui est un Gal(k/k)-module de rank 1. Ce dernier objet est un invariant du couple (X,F), bien
plus grossier que la fonction L elle-même, et qu’il est par conséquent envisageable de calculer.
Plus généralement se pose la question suivante.

Problème 0.2.2. Si X est un schéma propre sur un corps k de caractéristique différente
de `, et si F est faisceau `-adique sur X, comment calculer la classe du déterminant

det
(
RΓ(Xk,F)

)−1

dans le groupe H1(Gal(k/k),Q×` ) des caractères `-adiques de Gal(k/k) ?
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Lorsque k est un corps fini et lorsque X est une courbe lisse, les travaux de Tate [Ta50],
Dwork [Dw56], Deligne [De73], Langlands [Lan] et enfin Laumon [La87], assurent que le
déterminant de la cohomologie d’un faisceau `-adique se factorise en un produit fini de contri-
butions de nature purement locale. Nous y reviendrons dans le paragraphe 0.2.8 ci-bas.

Dans la suite, nous considérons le problème 0.2.2 exclusivement dans le cas où X est une
courbe lisse sur un corps k parfait de caractéristique p.

0.2.3. Le cas des systèmes locaux de rang 1. Dans le cas d’un faisceau `-adique
de rang générique 1 sur une courbe projective lisse, une solution au problème 0.2.2 peut être
trouvée dans la thèse de Tate [Ta50] dans le cas d’un corps de base fini, ou dans une lettre
de Deligne à Serre de 1974 dans le cas d’un corps de base arbitraire : on obtient alors une
décomposition du déterminant de la cohomologie en un produit de contributions locales, cf.
III.8.3. Cette lettre est publiée en tant qu’annexe à l’article [BE01]. Dans celle-ci, Deligne
suppose le corps de base de caractéristique p positive ; sa méthode donne également un résultat
de localisation du déterminant en caractéristique nulle, mais ce n’est qu’en caractéristique p que
l’existence du système local d’Artin-Schreier permet de factoriser l’expression obtenue (cf. III.8,
et plus spécifiquement le lemme III.8.10). Nous avons choisi de donner une rédaction détaillée
de l’argument de Deligne dans la partie III.8. Bornons-nous ici à en décrire l’essence.

Soit X un courbe projective lisse sur un corps k de caractéristique p, et j : U → X un
ouvert non vide de X. Considérons un système local `-adique F de rang 1 sur U . Il s’agit de
calculer le caractère `-adique

det
(
RΓ(Xk, j!F)

)−1 ∼= det
(
RΓc(Uk,F)

)−1
.

Supposons que la caractéristique d’Euler de (X,F) est un entier négatif −d. La formule de
Künneth symétrique (cf. 49) permet alors d’écrire :

detRΓc(Uk,F)−1 ∼= detRΓc(Symd
k(U)k,F [d])(−1)d ,(2)

où Symd
k(U) est le d-ième produit symétrique de U , quotient de Ud par le groupe des bijections

de [|1, d|] dans lui-même agissant par permutations des coordonnées.
L’étape suivante consiste à invoquer la théorie du corps de classes globale géométrique. On

se donne pour cela un diviseur effectif i : D → X sur X, supporté sur le complémentaire de
U dans X, et bornant la ramification de F au bord de U (cf. III.5.12). À la paire (X,D) est
associée le groupe de Picard généralisé Pick(X,D) (cf. III.5.13) qui paramètre les couples (L, α)
constitués d’un fibré en droites L sur X muni d’une rigidification α le long de D, c’est-à-dire
d’un isomorphisme α : OD → i∗L : il s’agit d’un k-schéma en groupes séparé lisse commutatif,
extension de Z par un k-schéma en groupes géométriquement connexe. On dispose alors du
morphisme d’Abel-Jacobi

Φ : U → Pick(X,D),(3)

qui envoie une section x de U sur la paire (O(x), 1), où 1 : OD → O(x) ⊗OX OD est la
rigidification de O(x) sur D induite par la section unité 1 : OX ↪→ O(x). Munis de ces notations,
nous pouvons énoncer le théorème principal de la théorie du corps de classes globale géométrique
comme suit.

Théorème 0.2.4 (Théorie du corps de classes globale géométrique, cf. III.5.15). Soit F un
système local `-adique de rang 1 sur U , de ramification bornée par D. Il existe alors un unique
(à isomorphisme près) couple (χF , β) constitué d’un système local `-adique multiplicatif χF sur
Pick(X,D) et d’un isomorphisme β : Φ−1χF → F .

Un système local `-adique multiplicatif sur un k-schéma en groupes G est un système local
`-adique χ de rang 1 sur G muni, pour toutes sections g, h de G d’un isomorphisme

g−1χ⊗ h−1χ ∼= (gh)−1χ,
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vérifiant certaines compatibilités naturelles, cf. III.5.1 et III.5.6.
Nous renvoyons au paragraphe 0.2.5 ci-bas pour une discussion plus complète du théorème

0.2.4. Contentons-nous pour l’heure de revenir à la situation ci-dessus. Soit χF le système local
`-adique multiplicatif sur Pick(X,D) procuré par l’application à (X,D,F) du théorème 0.2.4,
de sorte que le tiré en arrière Φ−1χF de χF par le morphisme d’Abel-Jacobi Φ, cf. (3), est
isomorphe à F .

Le morphisme Φ induit par multiplication un morphisme, cf. 50

Φd : Symd
k(U)→ Pick(X,D),

et la suite spectrale de Leray donne alors un isomorphisme

detRΓc(Symd
k(U)k,F [d]) ∼= ⊗q∈Z detRΓc(Pick(X,D)k, R

qΦd!Φ
−1
d χF )(−1)q

∼= ⊗q∈Z detRΓc(Pick(X,D)k, χF ⊗RqΦd!Q`)(−1)q .

Il se trouve que les complexes RqΦd!Q` se concentrent sur une seule fibre du morphisme de
projection π : Pick(X,D)→ Pick(X), à savoir celle du fibré en droites Ω1

X(D) (cf. III.8.6). Les
fibres de π sont par ailleurs des torseurs sous l’action du noyau de π, ce dernier se décomposant
comme un produit de groupes de Picard locaux (cf. III.8.11). On use alors de la compatibilité
locale-globale en théorie du corps de classes géométrique, ainsi que de la formule de Künneth, ce
qui résulte en l’obtention d’une décomposition du déterminant de la cohomologie en un produit
de facteurs locaux ; nous renvoyons à III.8.11 pour plus de détails.

0.2.5. Théorie du corps de classes géométrique. Revenons sur l’ingrédient essentiel
de la méthode de Deligne en rang 1, à savoir la théorie du corps de classes géométrique, sous la
forme du théorème 0.2.4. Ce théorème est initialement obtenu par Serre et Lang, cf. ([La56], 6)
et [Se59], chacun d’entre eux en attribuant à l’autre l’idée essentielle de la démonstration. Cette
dernière repose sur la propriété dite “Albanaise” des Jacobiennes généralisées Pick(X,D), due
à Rosenlicht [Ro54]. En sus de la factorisation du déterminant de la cohomologie d’un système
local de rang 1 évoquée dans la section 0.2.3, Deligne en esquisse par ailleurs une démonstration
similaire à celle de Serre et Lang dans sa lettre à Serre de 1974.

Deligne a également donné une démonstration de nature géométrique du théorème 0.2.4,
dans le cas d’un système local de rang 1 non ramifié : on peut en trouver une exposition, dans
le cas d’un corps de base fini, dans ([La90], Sect. 2). La méthode de Deligne s’étend aisément
au cas d’un système local modérément ramifié. Dans le chapitre II, nous étendons la méthode
de Deligne au cas d’un faisceau arbitrairement ramifié, en nous inspirant de notes non publiées
de Genestier sur la théorie du corps de classes globale arithmétique. Une telle extension a
également été obtenue peu après par Takeuchi dans [Ta18] par une méthode différente. Nous
étendons par la même occasion le résultat au cas des courbes relatives, comme suit.

Théorème 0.2.6 (cf. II.1.1). Soit X → S un morphisme de schémas, propre et lisse à fibres
géométriquement connexes de dimension 1. Soit D un diviseur de Cartier effectif relatif sur X,
tel que les fibres du morphisme D → S sont non vides. Supposons que ` soit inversible sur S.
Soit F un système local `-adique sur le complémentaire U de D dans X, à ramification bornée
par D. Il existe alors un unique (à isomorphisme près) couple (χF , β) constitué d’un système
local `-adique multiplicatif χF sur PicS(X,D) et d’un isomorphisme β : Φ−1χF → F .

Nous renvoyons à la section II.4 pour la définition et l’étude du schéma de Picard généralisé
PicS(X,D). Contentons-nous ici d’indiquer que sa formation commute au changement de base,
et qu’il coïncide avec le schéma en groupes introduit dans 0.2.3 lorsque S est le spectre d’un
corps.

Notre démonstration du théorème 0.2.6 utilise la théorie du corps de classes géométrique
locale (cf. II.3), due à Serre [Se61] pour un corps de base algébriquement clos et à Contou-
Carrere et Suzuki [Su13] en général, pour pouvoir établir la proposition clé II.3.14. Nous aurions
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pu également démontrer cette dernière en usant de la théorie d’Artin-Schreier-Witt, comme dans
[Ta18], obtenant ainsi le théorème 0.2.6 sans utiliser la théorie du corps de classes géométrique
locale.

Nous expliquons dans III.5.34 comment déduire du théorème 0.2.6 et de la théorie des
extensions de Gabber-Katz (cf. 0.2.14 ci-après) la version suivante du théorème principal de la
théorie du corps de classes locale géométrique.

Théorème 0.2.7 (cf. III.5.26). Soit T un trait hensélien d’équicaractéristique distincte de
`, de point générique η et de point fermé s, soit D un diviseur de Cartier effectif sur T et soit
π une uniformisante de T . Soit Pic(T,D)s le s-schéma de Picard local de (T,D) (cf. III.5.20)
et soit Φη,π : η → Pic(T,D)s le morphisme d’Abel-Jacobi local (cf. III.5.23). Soit F un système
local `-adique sur η, à ramification bornée par D. Il existe alors un unique (à isomorphisme
près) couple (χF , β) constitué d’un système local `-adique multiplicatif χF sur Pic(T,D)s et
d’un isomorphisme β : Φ−1

η,πχF → F .

En passant à la limite sur le diviseur D, on retrouve le théorème de Suzuki ([Su13], Th.
A (1)), cf. III.5.30. Nous donnons également une version du théorème 0.2.7 où Pic(T,D)s est
remplacé par un T -schéma en groupes Pic(T,D) de fibre spéciale Pic(T,D)s, et où le mor-
phisme d’Abel-Jacobi local devient indépendant de π (cf. III.5.25). Cette dernière formulation,
essentiellement due à Gaitsgory (cf. III.5.28), se révèle être, de par son caractère canonique,
particulièrement adaptée à la démonstration d’énoncés de compatibilité, tels la compatibilité
local-global (cf. III.5.36) ou la fonctorialité par rapport à la norme (cf. III.5.37). Il est notable
que nous démontrons ces deux dernières propriétés sans jamais nous référer aux constructions
proprement dites de la théorie du corps de classes géométrique.

0.2.8. Facteurs locaux `-adiques. Revenons au problème 0.2.2, restreint au cas d’une
courbe projective lisse sur un corps parfait k de caractéristique p. Nous avons évoqué dans 0.2.3
la solution apportée par Deligne dans le cas d’un faisceau `-adique de rang générique 1, en
faisant usage de la théorie du corps de classes géométrique explicitée dans 0.2.5. Intéressons-
nous maintenant au cas des faisceaux `-adiques de rang quelconque, ce qui nous permettra par
la même occasion d’expliciter la décomposition obtenue par Deligne en rang 1.

Il s’agit donc de décomposer le déterminant de la cohomologie d’un faisceau `-adique sur
une courbe projective lisse définie sur un corps parfait k de caractéristique p, en un produit de
contributions locales. Précisons à présent la nature de ces facteurs locaux. Ceux-ci dépendent
du choix d’un caractère injectif ψ : Fp → Q×` , fixé dans cette exposition. On se donne également
une clôture algébrique k de k. Nous faisons ici, pour simplifier l’exposition, l’hypothèse suivante,
en renvoyant à III.1.6 pour une présentation qui l’omet :

(?) aucune extension finie de k contenue dans k ne contient toutes les racines de l’unité
`-primaires de k.

L’hypothèse (?) est par exemple vérifiée si k est fini, ou encore si celui-ci est la perfection
d’un corps de type fini sur Fp. Considérons à présent les triplets (T,F , ω) où T est un trait
hensélien sur k, de point fermé s fini sur k, où ω est une 1-forme différentielle méromorphe non
nulle sur T (cf. III.7.1) et où F est un complexe borné de faisceaux `-adiques sur T . On définit
le conducteur d’un tel triplet comme étant l’entier

a(T,F , ω) = a(T,F) + rg(Fη)v(ω),

où on a posé
a(T,F) = rg(Fη) + sw(Fη)− rg(Fs),

où η est le point générique de T , où sw est le conducteur de Swan, et où v(ω) est la valuation
de la 1-forme ω.
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Une théorie des facteurs locaux `-adiques sur k, de caractère ψ, est une application ε qui à
un tel triplet (T,F , ω) associe un système local `-adique ε(T,F , ω) de rang 1 sur le point fermé
s de T , satisfaisant aux propriétés suivantes :

(i) la classe d’isomorphisme de ε(T,F , ω) ne dépend que de la classe d’isomorphisme du
triplet (T,F , ω) ;

(ii) pour tout triangle distingué

F ′ → F → F ′′ [1]−→
de complexes bornés de faisceaux `-adiques sur T , on a

ε(T,F , ω) ∼= ε(T,F ′, ω)⊗ ε(T,F ′′, ω);

(iii) si F est concentré sur le point fermé s de T , alors ε(T,F , ω) est isomorphe à det(Fs)−1 ;
(iv) pour toute extension finie génériquement étale f : T ′ → T de traits henséliens sur k,

de points fermés respectifs s et s′, on a

ε(T, f∗F , ω) ∼= δ
⊗a(T ′,F)
s′/s ⊗Vers′/s (ε(T ′,F , f∗ω)) ,

pour tout complexe borné de faisceaux `-adiques F sur T ′, de rang générique nul, où le
caractère δs′/s est le morphisme signature pour l’action de Gal(s/s) sur Homs(s, s

′) et
Vers′/s est la composition avec l’homomorphisme de transfert Gal(s/s)ab → Gal(s′/s′)ab

(cf. III.3.22) ;
(v) si j : η → T est le point générique de T et si F est un système local `-adique de rang

1 sur η, de conducteur de Swan ν − 1, alors

ε(T, j!F [0], ω) ∼= Rνf! (χF ⊗ Lψ{Resω}) (−v(ω)),

où f : Picν+v(ω)(T, νs)s → s est la composante de degré ν+v(ω) du s-schéma en groupes
Picν+v(ω)(T, νs)s (cf. 0.2.7), où χF est le système local `-adique multiplicatif associé à
F par la théorie du corps de classes locale géométrique (cf. 0.2.7), et où Lψ{Resω} est
le faisceau d’Artin-Schreier associé au morphisme résidu Resω, cf III.7.5 pour plus de
détails ;

(vi) si f : X → s est une courbe projective lisse géométriquement connexe de genre g sur
une extension finie s de k, si ω est une 1-forme non nulle sur X et si F est un complexe
borné de faisceaux `-adiques sur X, alors on a la formule du produit

det(Rf∗F)−1(1− g) ∼=
⊗
x∈|X|

δ
⊗a(X(x),F|X(x)

)

x/s ⊗Verx/s

(
ε(X(x),F|X(x)

, ω|X(x)
)
)
,

où |X| est l’ensemble des points fermés de X et X(x) est l’hensélisé de X en un point
fermé x, le produit tensoriel au membre de droite ne comptant qu’un nombre fini de
termes non triviaux.

La méthode de Deligne, esquissée ci-haut dans 0.2.3, et décrite en détail dans III.8, donne
alors le résultat qui suit.

Théorème 0.2.9 (cf. III.7.7, III.7.10, III.8.3). Soit k un corps parfait de caractéristique
p et soit ψ : Fp → Q×` un caractère injectif. Les axiomes (i), (ii), (iii) et (v) caractérisent (à
isomorphisme près) les facteurs locaux `-adiques des triplets (T,F , ω) où F est de rang générique
1, et la formule du produit (vi) est alors vérifiée pour les faisceaux `-adiques de rang générique
1.

Il s’agit donc d’étendre ce résultat de Deligne en rang supérieur. La première difficulté, avant
même de démontrer la formule du produit (vi) en rang quelconque, est de construire des facteurs
locaux vérifiant les axiomes (i)− (v). Nous reviendrons sur ce point dans les paragraphes 0.2.12
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et 0.2.13 ci-après. Contentons-nous pour l’heure d’énoncer l’instance suivante des résultats du
chapitre III.

Théorème 0.2.10 (cf. III.1.7, III.1.8, III.1.9). Soit k un corps parfait de caractéristique p
vérifiant (?), et soit ψ : Fp → Q×` un caractère injectif. On a alors :

(1) il existe une unique théorie des facteurs locaux `-adiques sur k, de caractère ψ (à iso-
morphisme près) ;

(2) si k est fini, l’application qui à un triplet (T,F , ω) associe

(−1)a(T,F)Tr (Frobs | ε(T,F , ω)) ,

où s est le point fermé de T et Frobs est la substitution de Frobenius géométrique de
s, coïncide avec le facteur local classique de (T,F , ω), normalisé comme dans ([La87],
Th. 3.1.5.4).

Les énoncés III.1.7, III.1.8 et III.1.9 n’imposent pas à k de vérifier (?) ; il faut alors se res-
treindre aux triplets (T,F , ω) tels que F est potentiellement unipotent (cf. III.9.8). Le théorème
de monodromie locale de Grothendieck assure que cette dernière hypothèse est nécéssairement
vérifiée lorsque k vérifie (?) (cf. III.9.9).

Pour un corps de base k fini, l’existence et l’unicité de facteurs locaux vérifiant les axiomes
(i)− (v) est un théorème démontré indépendamment par Langlands [Lan] et Deligne [De73],
améliorant un résultat antérieur de Dwork [Dw56], qui construisait les facteurs locaux au signe
près. La formule du produit (vi) est alors démontrée, toujours dans le cas d’un corps de base
fini, par Deligne [De73] pour les faisceaux `-adiques à monodromie géométrique finie, puis par
Laumon ([La87], Th. 3.2.1.1) en général. L’ingrédient clé de la démonstration de Laumon est
sa variante `-adique de la méthode de la phase stationnaire (cf. III.11.5), utilisée en particulier
pour démontrer une formule cohomologique pour les facteurs locaux `-adiques ([La87], 3.5.1.1).
Nous généralisons cette dernière au cas d’un corps de base non nécéssairement fini, comme suit.

Théorème 0.2.11 (cf. III.1.10). Soit k un corps parfait de caractéristique p vérifiant (?), et
soit ψ : Fp → Q×` un caractère injectif. Soit (T,F , ω) un triplet sur k, tel que ω = dπ pour une
certaine uniformisante π sur T ; on note s le point fermé de T . Soit F

(0,∞′)
π (F) la transformée

de Fourier locale de Laumon du faisceau `-adique F , cf. ([La87], 2.4.1) : il s’agit d’un système
local `-adique sur le point générique de l’hensélisation (P1

s)(∞) de P1
s à l’infini. On a alors :

(1) le caractère det(F
(0,∞′)
π (F)) est modérément ramifié, et la théorie du corps de classes lo-

cale géométrique (cf. 0.2.7) lui associe donc un système local multiplicatif χ
det(F

(0,∞′)
π (F))

sur Pic((P1
s)(∞),∞)s ;

(2) considérant la variable t de P1
s comme un s-point de Pic1((P1

s)(∞),∞)s, on a un iso-
morphisme

ε(T,F , dπ) ∼= t−1χ
det(F

(0,∞′)
π (F))

.

Nous aurions pu démontrer le théorème 0.2.11 en adaptant fidèlement l’argument de Lau-
mon à ce cadre plus général. Nous choisissons d’en présenter dans III.11.7 une démonstration
plus directe, exploitant le caractère géométrique de nos facteurs locaux.

0.2.12. Théorie de Brauer. Revenons à présent sur le théorème 0.2.10, et considérons le
problème consistant à définir des facteurs locaux `-adiques vérifiant les axiomes 0.2.8(i)−(v). La
stratégie utilisée à cet effet par Deligne et Langlands dans le cas d’un corps de base fini consiste
à utiliser le théorème d’induction de Brauer pour se ramener par la formule d’induction 0.2.8(iv)
au cas d’un système local de rang générique 1 dont le facteur local est alors prescrit par 0.2.8(v).

Le théorème de Brauer auquel nous venons de faire allusion est le suivant. Si G est un
groupe fini, alors le groupe des classes de Q`-représentations virtuelles de G de rang virtuel nul
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est engendré par les classes de la forme IndGHχ − IndGHQ`, où H est un sous-groupe de G et χ
est une Q`-représentation de dimension 1 de H (cf. III.2.35). L’ensemble des classes de cette
forme, auquel on adjoint la classe de la représentation triviale de G, engendre alors le groupe
des classes de Q`-représentations virtuelles de G.

Partant d’un triplet (T,F , ω) avec F génériquement de monodromie finie, le théorème
d’induction de Brauer montre que les axiomes 0.2.8(i)−(v) caractérisent (à isomorphisme près)
le facteur local ε(T,F , ω), et donne par ailleurs un candidat pour ce dernier : toute la difficulté
consiste alors à démontrer que le facteur local ainsi construit est indépendant des choix effectués.
Cette dernière question est résolue par Langlands dans [Lan] par une méthode purement locale,
tandis que Deligne en donne dans [De73] une démonstration par un argument de comparaison
local-global.

0.2.13. Monodromie locale et représentations tordues par un 2-cocycle. Soit k
un corps parfait de caractéristique p vérifiant (?), et soit (T,F , ω) un triplet sur k. Supposons
F supporté sur le point générique η de T , et irréductible. Par le théorème de monodromie
locale de Grothendieck (cf. III.9.9), le faisceau F est alors à monodromie géométrique finie. Si
l’on souhaite définir le facteur local ε(T,F , ω) en suivant la stratégie de 0.2.12, c’est-à-dire en
appliquant le théorème d’induction de Brauer pour se ramener par induction et multiplicativité
au rang 1, il faut tout d’abord se ramener au cas où F est à monodromie finie, et pas seulement
à monodromie géométrique finie.

Soit s le point fermé de T . Si k est fini, alors le corps résiduel k(s) l’est également, de
sorte que le groupe de Galois G = Gal(s/s) est pro-cyclique. On vérifie alors, cf. ([De73],
4.10), que le faisceau `-adique F , à monodromie géometrique finie, est de la forme E ⊗W, où
E est à monodromie finie et W est non ramifié, de rang 1. Pour un corps de base k général,
le groupe de Galois absolu G n’est pas procyclique, ni même abélien, et la réduction au cas
d’un faisceau à monodromie finie se révèle plus délicate. Convenablement interprétée, elle est
néanmoins possible, comme nous allons à présent l’expliquer.

Notant I le groupe de monodromie géométrique de F , la fibre V = Fη du faisceau F est
une représentation `-adique d’un quotient Q de Gal(η/η), s’insérant dans une suite exacte

1→ I
ι−→ Q

π−→ G→ 1.

Le groupe G agit alors par conjugaison sur l’ensemble des caractères irréductibles du groupe
fini I, et cette action permute les facteurs isotypiques de la représentation V de I. Comme V est
supposée irréductible, une unique G-orbite de caractères de I apparaît dans V , de sorte que
l’on peut écrire

V ∼= IndQQχV [χ],

où Qχ est l’image réciproque dans Q du stabilisateur Gχ dans G d’un certain caractère irré-
ductible χ du groupe fini I, et V [χ] est la composante χ-isotypique de V , considérée comme
représentation de I.

Soit E une représentation de I de caractère χ, et soit W l’espace vectoriel des homomor-
phismes I-équivariants de E dans V [χ]. On dispose alors d’un isomorphisme

θ : E ⊗W → V [χ]

e⊗ w 7→ w(e).

Celui-ci devient I-équivariant si l’on munit W de l’action triviale de I. Se pose alors la ques-
tion suivante : peut-on munir E et W d’actions de Qχ et Gχ respectivement qui rendent
Qχ-équivariant l’isomorphisme θ ?

La réponse à cette question est négative en général, mais on a néanmoins le résultat suivant
(cf. III.2.39) : il existe des applications ρE : Qχ → GL(E) et ρW : Gχ → GL(W ) telles que le
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produit tensoriel
ρE ⊗ ρW : Qχ → GL(E ⊗W ),

correspond par θ à l’action de Qχ sur V [χ], et telles que l’on a

ρE(q1)ρE(q2) = µ(π(q1), π(q2))ρE(q1q2)

ρW (g1)ρW (g2) = µ(g1, g2)−1ρW (g1g2),

pour tout couple q1, q2 (respectivement g1, g2) d’éléments de Qχ (respectivement Gχ), pour une
certaine application continue µ : Gχ×Gχ → Q×` à valeurs dans le groupe des racines de l’unité
de Q`. En particulier, l’application ρE induit un homomorphisme de Qχ vers PGL(E) : on
pourra donc qualifier ρE de représentation projective de Qχ, ou encore de représentation tordue
par µ.

On notera que l’application µ est nécessairement un 2-cocycle surGχ (cf. III.2.6). Remplacer
ρE et ρW par (λ ◦ π)ρE et λ−1ρW respectivement, pour une certaine application λ : Gχ → Q×` ,
à valeurs dans le groupe des racines de l’unité de Q`, a pour effet de multiplier µ par le 2-cobord
de λ, c’est-à-dire par l’application

(g1, g2)→ λ(g1)λ(g2)λ(g1g2)−1.

Le 2-cocycle µ apparaissant ci-dessus n’est donc pas uniquement déterminé ; en revanche, sa
classe de cohomologie l’est. Lorsque le groupe de cohomologie continue H2

cont(Gχ,Q/Z) est nul,
ce qui est par exemple le cas lorsque k est fini, alors tout 2-cocycle sur Gχ est un 2-cobord, et
on peut donc supposer µ = 1 ci-dessus ; c’est la réduction utilisée par Deligne et Langlands.

On vérifie que dans le contexte ci-dessus, la représentation tordue ρE est nécéssairement
d’image projective finie (cf. III.2.38). Nous démontrons par ailleurs dans III.2.36 que le théorème
d’induction de Brauer s’étend au cadre des représentations tordues par un 2-cocycle, d’image
projective finie. Ceci nous permet dans le reste du chapitre III de nous ramener à des situations
de rang 1 par induction et additivité.

La définition et l’étude des représentations tordues est l’objet de la section III.2. La section
III.3 est quant à elle consacrée à la contrepartie géométrique des représentations tordues : les
faisceaux `-adiques tordus. Le reste du chapitre III est entièrement rédigé en termes de faisceaux
tordus. Nous donnons par exemple dans III.1.6 une caractérisation purement locale des facteurs
locaux `-adiques, formulée dans ce langage, ce qui permet d’obtenir un énoncé plus précis que
le théorème 0.2.10.

0.2.14. Extensions de Gabber-Katz et définition des facteurs locaux. Plutôt que
de définir des facteurs locaux à l’aide du procédé de réduction au cas d’un faisceau (tordu) à
monodromie (projective) finie (cf. 0.2.13) et du théorème d’induction de Brauer, tels Deligne
et Langlands, nous choisissons dans III.9 d’adopter une approche quelque peu différente. Nous
commençons par donner une définition cohomologique simple de ces facteurs locaux (cf. III.9.2),
et ce n’est qu’ensuite que nous utilisons la théorie de Brauer pour vérifier que ceux-ci vérifient
les propriétés 0.2.8(i)− (v).

La définition cohomologique susmentionnée repose sur la théorie des extensions de Gabber-
Katz, que nous décrivons dans la section III.4. Contentons-nous ici d’en donner un aperçu.
Considérons un triplet (T,F , ω) comme dans 0.2.8, avec ω = dπ pour une certaine uniformisante
π sur T . Notant s le point fermé de T , l’élément π induit un morphisme

π : T → A1
s.

Le théorème de Gabber-Katz (cf. III.4.19) assure alors l’existence (et l’unicité à isomorphisme
près) d’un faisceau `-adique π♦F sur A1

s satisfaisant aux propriétés suivantes :
(1) la restriction π−1π♦F est isomorphe à F ;
(2) le faisceau `-adique π♦F est modérément ramifié à l’infini ;
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(3) la restriction de π♦F à Gm,s est un système local dont le groupe de monodromie géo-
métrique admet un unique sous-p-groupe de Sylow.

Notant f : A1
s → s la projection naturelle, on se contente alors de poser

επ(T,F , dπ) = det
(
Rf!(π♦F ⊗ L−1

ψ )
)−1

,

où Lψ est le système local d’Artin-Schreier associé à ψ. On utilise alors la théorie du corps
de classes locale géométrique pour définir ε(T,F , ω) lorsque ω est une 1-forme méromorphe
non nulle arbitraire sur T , cf. III.9.2. Nous démontrons ensuite, par réduction au rang 1 via la
théorie de Brauer, que επ est indépendant de π à isomorphisme près (cf. III.9.16), et satisfait
aux propriétés 0.2.8(i)− (v).

0.2.15. Formule du produit. Comme l’avait déjà observé Deligne dans [De73], disposer
d’un formalisme des facteurs locaux `-adiques satisfaisant aux propriétés 0.2.8(i)− (v) implique
la validité de la formule 0.2.8(vi) pour les faisceaux `-adiques à monodromie géométrique finie :
après réduction au cas d’un faisceau à monodromie finie (cf. 0.2.13), appliquer le théorème de
Brauer permet de supposer que le faisceau `-adique considéré est de rang générique 1, auquel
cas la formule du produit résulte de la thèse de Tate [Ta50] si k est fini. Pour un corps parfait
non nécessairement fini, on applique plutôt le théorème 0.2.9, qui donne la formule du produit
en rang 1. Nous menons dans la section III.10 les vérifications nécéssaires, menant ainsi à la
formule du produit (cf. III.10.3) pour les faisceaux `-adiques à monodromie géométrique finie.

Pour démontrer la formule du produit dans le cas général, tel qu’énoncé dans 0.2.8(vi),
nous adaptons dans III.11 la démonstration par Laumon [La87] de l’énoncé analogue pour les
corps finis. Celle-ci repose sur la méthode de la phase stationnaire `-adique (cf. III.11.5), ainsi
que sur la formule donnée dans le théorème 0.2.11 :

ε(T,F , dπ) ∼= t−1χ
det(F

(0,∞′)
π (F))

.

Cette formule est elle-même une conséquence de la méthode de la phase stationnaire `-adique.
Pour un corps de base fini, la démonstration par Laumon de cette formule débute par une ré-
duction au cas modérément ramifié ([La87], 3.5.3.1), et poursuit avec un calcul explicite dans ce
dernier cas ([La87], 2.5.3.1). Nous choissons de passer outre ces étapes en donnant une démons-
tration directe à partir de la méthode de la phase stationnaire `-adique (cf. III.11.5) ; le point
clé est l’indépendance en le choix de l’uniformisante des facteurs locaux tels qu’introduits dans
0.2.14, que nous appliquons à un trait hensélien dont le corps résiduel n’est pas une extension fi-
nie de k, mais plutôt la perfection d’un corps discrètement valué hensélien d’équicaractéristique
p, de corps résiduel k.
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I.1. Introduction

In Raynaud’s approach to rigid geometry, the category of quasi-compact quasi-separated
rigid spaces over a completely valued field K of rank 1 is defined as the localization with
respect to “admissible blow-ups” of the category of finitely presented formal schemes over the
ring of integers R ⊆ K (cf. [Ray74]). It has been known since then that a flat morphism
of quasi-compact quasi-separated rigid spaces over K can be represented by a flat morphism
between appropriate R-models. A precise statement and a proof can be found in ([BL93],
5.2) or ([Abb10], 5.8.1). The schematic version of this flattening theorem had been previously
proved by Raynaud and Gruson in 1971:

Theorem I.1.1 (([SP] 0815), cp. ([RG71] I.5.2.2)). Let Y be a scheme of finite presenta-
tion over a quasi-compact and quasi-separated scheme X, let U be a quasi-compact open subset
of X and let F be a quasi-coherent OY -module of finite type. Assume that the restriction of
F to Y ×X U is a finitely presented OY×XU -module which is flat over U . Then there exists a
blow-up f : X ′ → X such that:

(1) The center of the blow-up f is a finitely presented closed subscheme of X, disjoint from
U .

(2) If Y ′ is the strict transform of the X-scheme Y along f , then the strict transform F ′
of F along f is finitely presented over OY ′ and flat over X ′.

Here, by “strict transform” we mean the following: if Z is the exceptional Cartier divisor
of the blow-up f , then Y ′ is the closed subscheme of X ′ ×X Y defined by the vanishing of the
quasi-coherent ideal of sections supported on Z ×X Y . Similarly, the strict transform F ′ of F
along f is the pullback to Y ′ of the quotient of F⊗OY OX′×XY by the submodule of its sections
supported on Z ×X Y .

Our proof of Raynaud-Gruson’s theorem proceeds in two steps.We first consider the (fil-
tered) limit

X̃ = lim
X′→X

X ′

of all blow-ups as allowed in the statement of the theorem. This is not a scheme, but a ringed
space which we identify to a valuative space I.4.13. These valuative spaces are constructed

23
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and studied in greater generality in Section I.4, using the langage of “rings with constructible
supports”, whose set-up is the purpose of Sections I.2 and I.3. We obtain in this broader context
a more general version of Raynaud-Gruson’s theorem, namely Theorem I.5.9, which implies that
a variant of the conclusion of Theorem I.1.1 holds over X̃ (cf. Section I.5). The second and
last step consists in descending the properties shown to hold on the limit X̃ to some blow-up
(cf. Section I.6). We now give a more detailed description of the content of this text.

In Section I.2, we define the notion of “rings with constructible supports” or “Φ-rings” (cf.
I.2.3) and we consider their basic properties. We include a few sorites on the notion of depth
(cf. I.2.13 and I.2.26), and give an interpretation of the closure and purification functors from
([EGA4], 5.9, 5.10) as adjoint functors, cf. I.2.31 and I.2.32. We conclude Section I.2 with the
definition and the study of the notion of “Φ-local” Φ-rings.

Section I.3 is devoted to the definition of sheaves of Φ-rings and to their basic properties.
It is noticed there that the notion of Φ-ring is well-defined in any topos, cf. I.3.5, and that the
notions and properties from Section I.2 extend to this broader context.

In Section I.4, to any locally Φ-ringed topological space X we associate a valuative space X̃,
which is itself a locally Φ-ringed topological space, endowed with a morphism X̃ → X, cf. I.4.1,
I.4.3 and I.4.5. We call this valuative space the “Φ-localization” of X. It is actually a Φ-locally
Φ-ringed topological space, and the morphism X̃ → X is universal for this property, cf. I.4.10.
We then consider the context of Theorem I.1.1, in which we endow the base scheme X with a
structure of locally Φ-ringed topological space; we show that the valuative space associated to
X coincides with the limit of all blow-ups as allowed in Theorem I.1.1, cf. I.4.13.

In Section I.5, Φ-localizations are shown to have a flattening property, cf. I.5.8 and I.5.9.
The main argument is purely local, cf. I.5.2, and rests upon the equational criterion for flatness.
Theorem I.1.1 is then deduced from I.5.9 in Section I.6.

Ahmed Abbes has brought to our attention during the preparation of this text that a proof
of Raynaud-Gruson’s theorem similar to ours has been announced by Kazuhiro Fujiwara and
Fumiharu Kato in [FK06]. Besides the sketch given in ([FK06] 5.6), their proof does not seem
to have appeared in print. We notice that our treatment of the local case, namely I.5.2 and
I.5.3, seems to differ from theirs.
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I.2. Rings with constructible supports

I.2.1. Let A be a ring. A family of constructible supports on A is a set Φ of finitely
generated ideals of A which satisfies the following two properties:

(1) Φ is stable under finite products of ideals. In particular the unit ideal belongs to Φ.
(2) If a finitely generated ideal I of A contains an element of Φ, then I is itself in Φ.

Examples I.2.2. (i) Given an arbitrary set Φ0 of ideals of A, the family of con-
structible supports generated by Φ0 is the set of finitely generated ideals of A
which contain a finite product of elements of Φ0. If Φ0 consists only of finitely gen-
erated ideals, then this family of constructible supports is the smallest one containing
Φ0.

(ii) If A is a preadmissible topological ring in the sense of ([EGA1] 0.7.1.2), i.e. a lin-
early topologized ring with an ideal of definition (an open ideal I of A such that any
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neighbourhood of 0 in A contains IN for some integer N), then one can consider the
family of constructible supports generated by all the ideals of definition. This family
of constructible supports consists precisely of the finitely generated open ideals of A
whenever A is preadic in the sense of ([EGA1] 0.7.1.9), i.e. when A has an ideal of
definition I such that IN is open in A for any integer N .

I.2.3. The category ΦRings of rings with constructible supports or Φ-rings is defined
as follows:

. Its objects are the pairs (A,ΦA) consisting of a ring A and a family of constructible
supports ΦA on A (cf. I.2.1). An ideal of A is said to be admissible if it belongs to
ΦA.

. Its morphisms are the ring homomorphisms f : A → B such that for any admissible
ideal I of A, the ideal f(I)B of B is admissible.

From now on, we commit the abuse of notation where we use the same name for a ring
with constructible supports and for its underlying ring, just as it is customary to use the same
symbol for a ring and for its underlying set.

Proposition I.2.4. The category ΦRings is complete and cocomplete, and the forgetful
functor from ΦRings to the category of rings preserve all small limits and colimits.

Indeed let us consider a functor F from a small category J to ΦRings. Let us endow the
ring limF with the family of constructible supports which consists of all the finitely generated
ideals I such that IF (j) is admissible in F (j) for all j. The resulting ring with supports is a
limit of F in ΦRings. Moreover if colim F is endowed with the family of constructible supports
generated in the sense of I.2.2 (i) by all the ideals generated by an admissible ideal of F (j) for
some j, then the resulting ring with supports is a colimit of F in ΦRings.

Proposition I.2.5. The forgetful functor from ΦRings to the category of rings has both a
left adjoint and a right adjoint.

Indeed the functor which endows a ring A with the family of constructible supports consist-
ing only of the unit ideal is a left adjoint to the forgetful functor, while the functor which endows
a ring A with the family of constructible supports consisting of all of its finitely generated ideals
is a right adjoint to the forgetful functor.

Remark I.2.6. Let f : A→ B be a ring homomorphism between preadic topological rings
in the sense of ([EGA1] 0.7.1.9). Let us endow A and B with the family of constructible
supports consisting of all their finitely generated open ideals as in Example I.2.2 (ii), and let us
assume that A has a finitely generated ideal of definition. Then f yields a morphism of ΦRings
if and only if the topology on B is finer that the topology induced by that of A. In particular
f may be a morphism of ΦRings without being continuous.

I.2.7. A family of supports on a topological space X is a set Φ of closed subsets of X
which satisfies the following two properties:

(1) Φ is stable under finite unions. In particular the empty set belongs to Φ.
(2) If a closed subset of Z of X is contained in an element of Φ, then Z is itself in Φ.

This definition is taken from ([God73] II.2.5), besides the fact that we require a family of
supports to be nonempty. 1 The notion of family of supports was introduced in [Car51], but
additional conditions on Φ were required, e.g. paracompactness of its elements.

1. It is indeed mistakenly asserted in ([God73] II.2.5) that for a family of supports Φ in the sense defined
there and for a sheaf of abelian groups on X, the set of global sections of this sheaf with supports in Φ is an
abelian group. This requires Φ to contain the support of the zero section, hence to be nonempty.
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Example I.2.8. Given an arbitrary set Φ0 of closed subsets of X, the set of closed subsets
of X which are contained in a finite union of elements of Φ0 is a family of supports on X.
It is the family of supports generated by Φ0, i.e. the smallest family of supports on X
containing Φ0

I.2.9. If Φ is a family of constructible supports on a ring A in the sense of I.2.3, then
the set of closed subsets Z ⊆ X contained in V (I) for some I ∈ Φ is a family of supports on
Spec(A) which is generated (cf. I.2.8) by its globally constructible elements ([EGA1], 0.2.3.2).
Conversely, if Φ is a family of supports on Spec(A) generated by its globally constructible
elements then the set of finitely generated ideals I such that V (I) belongs to Φ is a family of
constructible supports on A.

These two constructions are inverse to each other. Indeed if J is a finitely generated
ideal such that V (J) ⊆ V (I) for some admissible ideal I = (f1, . . . , fr), then fNii belongs to
J for some integer Ni. For N =

∑
iNi this yields IN ⊆ J , so that J is admissible. On

the other hand, if we start from a family of supports Φ on Spec(A) generated by its globally
constructible elements, then for any globally constructible element Z of Φ, the complement of Z
is a globally constructible open subset of Spec(A), hence is quasi-compact, so that it is a finite
union of standard open subsets (D(fi))1≤i≤r. Thus Z = V (I) where I is the ideal generated
by (fi)1≤i≤r.

I.2.10. Let X be a topological space and let Φ be a family of supports (cf. I.2.7). Let us
consider as in ([God73] II.2.5) the functor ΓΦ(X,−) which to a sheaf of abelian groups F on
X associates the abelian group

ΓΦ(X,F) = {s ∈ Γ(X,F) | supp(s) ∈ Φ}.
It is a left exact additive functor between abelian categories, and its source has enough injectives
([God73] 7.1.1). Consequently, it has right derived functors ([God73] 7.2), which are denoted
by Hq

Φ(X,F). When Φ is the set of closed subsets of a given closed set Z, these groups are also
denoted by Hq

Z(X,F).

Proposition I.2.11. For any sheaf of abelian groups F on X, one has

Hq
Φ(X,F) ∼= colim Hq

Z(X,F),

where the (filtered) colimit runs over elements Z of Φ.

Indeed, if F → J • is an injective resolution of F , then ΓΦ(X,J •) is the (cofiltered) colimit
of the complexes of abelian groups ΓZ(X,J •) when Z runs over elements of Φ. Since filtered
colimits are exact, taking cohomology groups of these complexes yields I.2.11.

Proposition I.2.12. Let Z and Z ′ be closed subsets of X, and let F be a sheaf of abelian
groups on X.

(a) There exists a long exact sequence

· · · → Hq
Z∩Z′(X,F)→ Hq

Z(X,F)⊕Hq
Z′(X,F)→ Hq

Z∪Z′(X,F)→ Hq+1
Z∩Z′(X,F)→ · · ·

(b) Let U = X \ Z. There exists a long exact sequence

· · · → Hq
Z∩Z′(X,F)→ Hq

Z′(X,F)→ Hq
Z′∩U

(
U,F|U

)
→ Hq+1

Z∩Z′(X,F)→ · · ·
Let F → J • be a flasque resolution ([KS90] II.2.4.6vi). Part (a) follows from the exactness

of the sequence of complexes

0→ ΓZ∩Z′(X,J •)→ ΓZ(X,J •)⊕ ΓZ′(X,J •)→ ΓZ∪Z′(X,J •)→ 0,

while part (b) follows from the exactness of the sequence of complexes

0→ ΓZ∩Z′(X,J •)→ ΓZ′(X,J •)→ ΓZ′∩U (U,J •|U )→ 0.

Alternatively, part (b) is an instance of ([SGA2] 2.2.8, 2.2.2).
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I.2.13. Let A be a Φ-ring (cf. I.2.3), and let ΦA be the corresponding family of supports
on X = Spec(A) as in I.2.7. If M is an A-module, corresponding to the quasi-coherent sheaf
M̃ on X, then we set

Hq
I (M) = Hq

V (I)(X, M̃) and Hq
ΦA

(M) = Hq
ΦA

(X, M̃).

Definition I.2.14. Let d ≥ 0 be an integer. A module M over the Φ-ring A is said to be
d-deep if Hq

ΦA
(M) vanishes for each integer q < d.

Remark I.2.15. Assume that A is noetherian, that its family of constructible supports is
generated by a single ideal I, and that M is finitely generated. The I-depth of M in the sense
of ([SGA2] III.2.3) is at least d if and only if M is d-deep in the sense of the definition I.2.14.
This follows from ([SGA2] III.3.1, III.3.3).

Lemma I.2.16. Let d ≥ 0 be an integer. Let I be a finitely generated ideal of a ring
A, and let M be an A-module such that Hq

I (M) = 0 for any q < d. Then for any finitely
generated ideal J containing I, we have Hq

J(M) = 0 for any q < d, and the canonical morphism
Hd
J(M)→ Hd

I (M) is injective.

By induction on the number of generators of J , one can assume that J = (I, g) for some
element g. One then applies I.2.12 (b) to Z = V (g) and Z ′ = V (I), so that U = D(g). The
resulting long exact sequence takes the form

· · · → Hq
J(M)→ Hq

I (M)→ Hq
I

(
M [g−1]

)
→ Hq+1

J (M)→ · · · .
By ([SGA2] II.2) and by the hypothesis, one has

Hq
I

(
M [g−1]

) ∼= Hq
I (M) [g−1] ∼= 0

for q < d. This proves the injectivity of Hq
J(M)→ Hq

I (M) for q ≤ d and concludes the proof.

Proposition I.2.17. Let A be a Φ-ring and let M be a d-deep A-module. Then Hq
I (M) = 0

for any admissible ideal I and any q < d.

We prove Proposition I.2.17 by induction on d, the case d = 0 being tautological. We are
thus led to assume that d ≥ 1 and that the result has been proved for (d − 1)-deep modules.
By I.2.11 one has

Hq
ΦA

(M) ∼= colim Hq
I (M),

where I runs over the admissible ideals of A. It is therefore sufficient to prove that for any
pair I ⊆ J of admissible ideals and for any q < d the homomorphism Hq

J(M) → Hq
I (M) is

injective. The latter fact follows from Lemma I.2.16, since Hq
I (M) = 0 for q < d − 1 and for

any admissible ideal I of A.

Corollary I.2.18. Let A be a Φ-ring and let Φ0 be a set of finitely generated ideals of A
generating the family of constructible supports of A as in I.2.2(i). An A-module M is d-deep if
and only if Hq

I (M) = 0 for any I in Φ0 and any q < d.

The forward direction follows from I.2.17. For the converse we proceed by induction on d,
the case d = 0 being tautological. We first note that Hq

I (M) = 0 for any q < d whenever I is
a finite product of elements of Φ0. Indeed, if I and I ′ satisfy Hq

I (M) = Hq
I′(M) = 0 for any

q < d, then by I.2.12(a) we have an exact sequence

0→ Hq
II′(M)→ Hq+1

I+I′(M)→ Hq+1
I (M)⊕Hq+1

I′ (M),

for any q < d. Since the canonical homomorphism Hq+1
I+I′(M) → Hq+1

I (M) is injective by
Lemma I.2.16, we obtain the vanishing of Hq

II′(M) for any q < d.
Any admissible ideal J must contain an ideal I which is a finite product of elements of Φ0.

By Lemma I.2.16, we obtain Hq
J(M) = 0 for any admissible ideal J and any q < d. By I.2.11

the A-module M must be d-deep.
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Proposition I.2.19. LetM be a 1-deep A-module, and let I = (f1, . . . , fr) be an admissible
ideal of A. Then the homomorphism

HomA(I,M)→M⊕r

sending an element ψ to (ψ(fi))1≤i≤r is injective, and its image consists of the r-uples (mi)1≤i≤r
such that fimj = fjmi for all i, j.

As I is generated by f1, . . . , fr, the injectivity is clear. In order to characterize the image,
let us consider a free A-module F of rank r with basis (ei)1≤i≤r and let G be its quotient by
the relations fiej − fjei. Consider the homomorphism G→ I sending ei to fi, and let H be its
kernel. The exact sequence

0→ H → G→ I

yields the exact sequence

HomA(I,M)→ HomA(G,M)→ HomA(H,M)→ 0.

We thus have to show that HomA(H,M) vanishes. Since M has no nonzero I-torsion, it is
sufficient to show that IH = 0. But if x =

∑
i aiei belongs to H then

fjx = fj

(∑
i

aiei

)
=

(∑
i

aifi

)
ej = 0

holds in G for any j, so that Ix = 0.

Proposition I.2.20. Let M be an A-module. If I is an ideal of A generated by f1, . . . , fr,
then Hq

I (M) is isomorphic to the q-th cohomology group of the Čech complex

C•(M,f•) : 0→M →
∏
i

M

[
1

fi

]
→
∏
i<j

M

[
1

fifj

]
→ · · · →M

[
1

f1 . . . fr

]
→ 0

where M is in degree 0. This isomorphism is functorial in M .

This is ([SGA2] II.5).

Remark I.2.21. It follows from Proposition I.2.20 that for any finitely generated ideal I of
A, any A-moduleM , and any flat ring homomorphism A→ A′, the base change homomorphism

Hq
I (M)⊗A A′ → Hq

IA′(M ⊗A A′)
is bijective for each integer q.

Corollary I.2.22. Let f : A → B be a homomorphism of Φ-rings, an let M be a B-
module. If M is 1-deep (respectively, 2-deep) as a B-module, then it is so as an A-module. The
converse holds if the family of constructible supports of B is generated by that of A.

Indeed, it follows from Proposition I.2.20 that for any admissible ideal I of A and any
integer q, we have

Hq
I (M) ∼= Hq

IB(M),

where M is considered as an A-module on the left hand side, and as a B-module on the right
hand side.

Corollary I.2.23. An A-module M is 1-deep if and only if for any admissible ideal I of
A, M has no nonzero I-torsion.

Indeed by Proposition I.2.20 (or by definition) the module H0
I (M) consists of all m in M

such that fNii m = 0 for some integers (Ni)1≤i≤r. For N =
∑
iNi this gives I

Nm = 0, so that
H0

ΦA
(M) is the submodule of elements m in M such that Im = 0 for some admissible ideal I.
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Corollary I.2.24. An A-module M is 2-deep if and only if for any admissible ideal I of
A, the homomorphism

M → HomA(I,M)

which sends an element m to (x 7→ xm) is bijective.

Assume first that M is 2-deep. The injectivity follows from I.2.23, since M is also 1-
deep. For the surjectivity, let ψ be an element of HomA(I,M), for some admissible ideal
I = (f1, . . . , fr). Then (ψ(fi)f

−1
i )1≤i≤r is a 1-cycle in the Čech complex C•(M,f•). Since M

is 2-deep, the module H1
I (M) vanishes by I.2.17. By I.2.20, the 1-cycle (ψ(fi)f

−1
i )1≤i≤r must

be a 1-boundary, so that ψ(fi) = fim in the localization of M by fi, for some m in M . Thus
fNii ψ(fi) = fNi+1

i m in M for some integers Ni. For N = 1 +
∑
iNi and x in IN one has

ψ(x) = xm, so that xψ(y) = yψ(x) = xym for any y in I. Since M has no nonzero IN -torsion
this implies ψ(y) = ym, so that ψ is the image of m.

Conversely, assume that the homomorphim

M → HomA(I,M)

is bijective for any admissible ideal I. The injectivity yields thatM is 1-deep by I.2.23. Let I =
(f1, . . . , fr) be an admissible ideal. By I.2.20 we have to show that any 1-cycle (mif

−Ni
i )1≤i≤r

in the Čech complex C•(M,f•) is a 1-boundary. By increasing the integers Ni if necessary, one
can assume that fNii mj = f

Nj
j mi in M . For N =

∑
iNi and for any r-uple α = (α1, . . . , αr)

of nonnegative integers summing to N , the element mα = fα−Nieimi does not depend on the
choice of an index i such that αi ≥ Ni. Here fα = fα1

1 . . . fαrr and ei is the i-th basis vector.
Since fαmβ = fβmα, one must have mα = fαm for some m by I.2.19 and by the hypothesis
applied to IN . Thus our initial 1-cycle (mif

−Ni
i )1≤i≤r is the boundary of m.

Corollary I.2.25. Let Φ0 be a set of finitely generated ideals of A generating the family
of constructible supports of A as in I.2.2(i). An A-module M is 2-deep if and only if for any I
in Φ0 the homomorphism

M → HomA(I,M)

which sends an element m to (x 7→ xm) is bijective.

Assume indeed that the homomorphism

M → HomA(I,M)

is bijective for any I in Φ0. It follows that for any I in Φ0, M has no nonzero I-torsion.
However, if I and J are admissible ideal and if M has no nonzero I-torsion then

HomA(I,HomA(J,M)) ∼= HomA(IJ,M),

since the product homomorphism I ⊗A J → IJ has I-torsion kernel. From this one deduces
that the homomorphism

M → HomA(I,M)

is bijective whenever I is a product of element of Φ0. The proof of Corollary I.2.24 then shows
that H1

I (M) vanishes whenever I is a product of elements of Φ0. One concludes with Corollary
I.2.11.

I.2.26. In ([EGA4], 5.9, 5.10) the notions of “modules purs” and “modules clos” are
introduced in a noetherian setting. We define here the corresponding purification and closure
functors in a more general setting.
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Definition I.2.27. Let A be a Φ-ring and let M be an A-module. The purification of M
is defined as the quotient

Mpur = M/H0
ΦA(M).

If M is 1-deep (cf. I.2.14), the closure of M is defined as the colimit

MC = colim HomA(I,M),

where the colimit runs over all the admissible ideals of A. In general, we set MC = (Mpur)C

(cf. I.2.29 below).

Example I.2.28. Let A be a valuation ring, and let us endow A with the family of supports
consisting of all the nonzero principal ideals of A. Then, for any A-module M , the purification
Mpur is the largest torsion-free quotient of M , while we have

MC = S−1M,

where S = A \ {0}.

Proposition I.2.29. Let A be a Φ-ring and let M be an A-module. Then Mpur is 1-deep
and MC is 2-deep.

The A-module Mpur is 1-deep by the characterization I.2.23. In order to prove that MC

is 2-deep, we can assume that M is 1-deep. Let J be an admissible ideal of A. By I.2.19
the functor HomA(J,−) coincides on 1-deep A-modules with HomA(G,−) for some finitely
presented A-module G. In particular it commutes with filtered colimits of 1-deep A-modules.
Thus

HomA(J,MC) ∼= colim HomA(J,HomA(I,M))

∼= colim HomA(I ⊗A J,M)

∼= colim HomA(IJ,M)

∼= MC.

The third identification above follows from the fact that the product map I ⊗A J → IJ has
I-torsion kernel (and J-torsion kernel as well). We conclude by Proposition I.2.24 that MC is
2-deep.

Definition I.2.30. The category ΦRings≥d is the full subcategory of ΦRings whose objects
are the Φ-rings which are d-deep as modules over themselves (cf. I.2.14).

There is a fully faithful functor from the category of rings to the category of Φ-rings, which
sends a ring A to the Φ-ring whose underlying ring is A and whose only admissible ideal is the
unit ideal. The image of this fully faithful functor is the intersection over all integers d of the
subcategories ΦRings≥d of ΦRings. Indeed if for some ideal I = (f1, . . . , fr) the Čech complex
C•(A, f•) of Proposition I.2.20 is exact then it is an exact complex of flat A-modules so that
C•(A, f•)⊗A A/I = A/I[0] is exact as well, and thus I = A.

Proposition I.2.31. The purification functor

A 7→ Apur = A/H0
ΦA(A)

from ΦRings to ΦRings≥1 yields a left adjoint to the canonical inclusion functor. Here A/H0
ΦA

(A)
is endowed with the family of constructible supports generated by that of A.

This follows from the characterization of 1-deep modules in I.2.23.
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Proposition I.2.32. The closure functor

A 7→ AC = colim HomA(I, A),

from ΦRings≥1 to ΦRings≥2 yields a left adjoint to the canonical inclusion functor. Here AC

is endowed with the family of constructible supports generated by that of A.

Let A be an object of ΦRings≥1. We notice as above that for any pair I, J of admissible
ideals, the product map I ⊗A J → IJ has I-torsion kernel. This enables us to define an
A-bilinear morphism

HomA(I, A)×HomA(J,A)→ HomA(I ⊗A J,A) ∼= HomA(IJ,A),

which yields the A-algebra structure on AC. By Proposition I.2.29, the A-module A/ is 2-
deep. By Corollary I.2.22, we deduce that A/, when endowed with the family of constructible
supports generated by that of A, is also 2-deep as a module over itself. Using I.2.24 and I.2.19
again, one checks that any Φ-ring morphism from A to a 2-deep Φ-ring B factors as an A-
module homomorphism through HomA(I, A) for any admissible ideal I, hence through AC.
The resulting homomorphism AC → B of A-modules must be a Φ-ring morphism, and this
shows that the morphism A → AC is universal among Φ-ring morphisms from A to a 2-deep
Φ-ring.

The composition of the functors of propositions I.2.31 and I.2.32 will still be denoted by
A→ AC.

Definition I.2.33. The category ΦRings+ of normal Φ-rings is the full subcategory of
ΦRings whose objects are the Φ-rings A such that the adjunction morphism

A→ AC

is injective, so that A can be considered as a subring of AC, and such that A is integrally closed
in AC: any element of AC which is integral over A is required to lie in A.

In particular, any object of ΦRings≥2 is an object of ΦRings+, and any object of ΦRings+

is an object in ΦRings≥1.

Proposition I.2.34. The normalization functor which sends a Φ-ring A to the integral
closure A+ of A in its closure AC yields a left adjoint to the canonical inclusion functor from
ΦRings+ to ΦRings. Here A+ is endowed with the family of constructible supports generated
by that of A.

Let f : A → B be a morphism in ΦRings such that B belongs to ΦRings+. This induces
a morphism AC → BC sending the image of A into B. Since B ⊆ BC is an integrally closed
subring, the morphism A → B factors uniquely through A → A+, the integral closure of the
image of A in AC. Thus the morphism A→ A+ is universal among Φ-ring morphisms from A
to a normal Φ-ring.

I.2.35. We now turn to the definition and study of the local objects in our category of
Φ-rings.

Definition I.2.36. A Φ-ring A is Φ-local if it is a local ring and if all of its admissible
ideals are invertible.

In ([Abb10] 1.9.1), these objects are called “prevaluative” rings, in the particular case
where the admissible ideals are the open finitely generated ideals for some adic topology.

Example I.2.37. Let A be a valuation ring, and let us endow A with the family of supports
consisting of all the nonzero principal ideals of A. Then A is a Φ-local Φ-ring.
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Remark I.2.38. Let A be a Φ-local Φ-ring. The condition that any admissible ideal of A
is invertible implies that whenever an admissible ideal I of A is generated by a family (xλ)λ∈Λ

of elements of A, there exists λ in Λ such that xλ is a nonzero divisor generating I. Indeed, the
ideal I is an invertible ideal in a local ring, hence is generated by some nonzero divisor x of A.
For each λ in Λ, we then have xλ = aλx for a unique element aλ of A. Moreover, we can write
x as

∑
λ∈Λ bλxλ for some family (bλ)λ∈Λ of elements of A, only finitely many of which being

non zero. Since x is a non zero divisor, we must have
∑
λ∈Λ aλbλ = 1. Since A is local, there

exists λ in Λ such that aλ is a unit, in which case xλ is a nonzero divisor generating I.

A structure theorem similar to ([Abb10] 1.9.4) holds in the general case:

Proposition I.2.39. Let A be a Φ-local Φ-ring with maximal ideal n.
(i) The canonical homomorphism A→ A/ is injective.
(ii) The ring AC is a local ring, and its maximal ideal m is contained in A. More precisely,

AC is the localization of A at m.
(iii) An ideal of A is admissible if and only if it is generated by an element of A \m.
(iv) The ring A/m is a valuation subring of the field AC/m.
(v) We have

m =
⋂

s∈A\m

sn.

(vi) A is a normal Φ-ring.
(vii) Let I be a finitely generated ideal of A and let g be an element of A such that (I, g)

is admissible. Then I(A/m) ⊆ g(A/m) if and only if I ⊆ gA.
Let S be the subset of elements of A which generate an admissible ideal. Then S is a

multiplicative subset of the set of nonzero divisors of A and any admissible ideal of A is equal
to sA for some element s of S. In particular we have

A/ ∼= colim
s∈S

HomA(sA,A)
∼−→ colim

s∈S
s−1A

∼−→ S−1A.

This proves in particular (i). Let us define

m =
⋂
s∈S

sn.

Then m is a proper ideal of AC contained in A. We show that S = A \m.
First, let a be an element of A \ m. Then there exists an element s of S such that a does

not belong to sn. The finitely generated ideal (s, a) is admissible, as it contains the admissible
ideal sA. Thus (s, a) is invertible, since A is Φ-local, and is in particular generated by either a
or s, cf. I.2.38. If (s, a) is generated by s, then a = bs for some b in A. But then b does not
belong to n, so it is a unit of A, and hence s = b−1a belongs to aA. If (s, a) is generated by
a, it is also the case that s belongs to aA. Thus aA contains the admissible ideal sA and is
therefore admissible itself, so that a belongs to S. Conversely, if a is an element of S, then a
does not belong to an, and thus a is in A \m.

This shows (iii) and that AC is the localization of A at m, hence (ii) and (v). Moreover,
for any pair a, s of elements of A \ m, the ideal (s, a) of A is admissible, hence it is generated
by either a or s, cf. I.2.38. Thus, either a belongs to sA or s belongs to aA. This shows that
A/m is a valuation subring of the field AC/m, hence (iv).

In particular, A/m is integrally closed in AC/m, so that A is integrally closed in AC. Thus
A is a normal Φ-ring, hence (vi).

Let I be a finitely generated ideal of A and let g be an element of A such that (I, g) is
admissible, hence equal to sA for some element s of S. If we have the inclusion I(A/m) ⊆
g(A/m) then s(A/m) ⊆ g(A/m) also holds, so that s = ag + b with a ∈ A and b ∈ m. Since
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m ⊆ sn we have b = cs for some c ∈ n. Thus we have (1 − c)s = ag, and consequently
s = (1 − c)−1ag, so that (I, g) = sA is contained in gA. In particular, we have I ⊆ gA, hence
(vii).

Remark I.2.40. The datum of a Φ-local Φ-ring is the same as the datum of a local ring
together with a valuation subring of its residue field. The inverse construction is simply the
following: given a local ring B and a valuation subring R of its residue field, let A be the inverse
image of R in B, and declare an ideal of A to be admissible if it is generated by an element
which is invertible in B. Then A is a Φ-ring and AC = B. Moreover, the valuation subring of
the residue field of AC produced by Proposition I.2.39 is precisely R.

Construction I.2.41. Let A be a local Φ-ring and let f : A→ S be a local homomorphism
from A to a valuation ring S such that f(I)S 6= 0 for any admissible ideal I of A. Let us endow
S with the family of constructible supports generated by that of A. Then S is a Φ-local Φ-
ring. Let m be the maximal ideal of S/ (cf. I.2.39) and let p be its inverse image in A/. The
homomorphism A/ → S//m induced by f factors through an injective homomorphism from
κ(p) = Frac(A//p) to S//m. Let R ⊆ κ(p) be the inverse image of the valuation ring S/m
under this homomorphism. The pair (p, R) has the following properties:

(a) The ring R is a valuation ring, and the homomorphism A → κ(p) factors through a
local homomorphism A→ R.

(b) For any a ∈ κ(p) there is an admissible ideal I of A such that Ia ⊆ R.
(c) The prime ideal p contains no admissible ideal of A/.
(d) Let I be a finitely generated ideal of A and let g be an element of A such that (I, g) is

admissible. Then IR ⊆ gR if and only if IS ⊆ gS.
If a is a non zero element of R, then a or a−1 belongs to the valuation ring S/m, hence to

R. Thus R is a valuation ring. Since its maximal ideal is the inverse image of that of S/m, the
local homomorphism A→ S/m factors through a local homomorphism A→ R.

For any a ∈ κ(p), there is an admissible ideal I of A such that f(Ia)(S/m) ⊆ S/m. For
such an ideal I, we have Ia ⊆ R.

The maximal ideal m of S/ is the intersection of all f(I)n where I runs over the admissible
ideals of A, and where n is the maximal ideal of S. For any admissible ideal I of A, the invertible
ideal f(I)S is not contained in f(I)n, and is consequently not contained in m. In particular,
the ideal I is not contained in p.

Let I be a finitely generated ideal of A and let g be an element of A such that (I, g) is
admissible. Then IR ⊆ gR if and only if I(S/m) ⊆ g(S/m), if and only if IS ⊆ gS by I.2.39
(vii).

I.3. Sheaves of Φ-rings

Let U be a universe ([SGA4], I.0). For any category C, we denote by U-C the full subcat-
egory of C whose objects are the objects of C which belong to U .

I.3.1. Let C be a U-site ([SGA4], II.3.0.2). A presheaf of Φ-rings on C (with respect
to U) is a contravariant functor from C to U-ΦRings. A presheaf of Φ-rings A (with respect to
U) is a sheaf of Φ-rings if for any Φ-ring B in U , the functor

U ∈ C 7→ HomΦRings(B,A(U))

is a sheaf of sets on C (with respect to U). We also define a morphism of sheaves of Φ-rings
to be a morphism of presheaves of Φ-rings between sheaves of Φ-rings. We henceforth omit
references to U when no confusion arise from the lack thereof.

This definition is a specialization of ([SGA4], II.6.1). Since the category ΦRings is complete
I.2.4, a presheaf of Φ-rings on C is a sheaf of Φ-rings if and only if for any covering sieve S of
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an object U of C, the natural morphism

A(U)→ lim
C/S

A(4)

is an isomorphism of Φ-rings ([SGA4], II.6.2).

Proposition I.3.2. Let A be a presheaf of Φ-rings on C. Then A is a sheaf of Φ-rings if
and only if its underlying presheaf of sets is a sheaf and for each integer r the contravariant
functor

Admr(A) : U 7→ {(fi)1≤i≤r ∈ A(U)r | (fi)1≤i≤r generates an admissible ideal of A(U)}
is a sheaf of sets on C.

Indeed if A is a sheaf of Φ-rings then its underlying presheaf of rings is a sheaf since
the forgetful functor from ΦRings to the category of rings has a left adjoint by I.2.5 and thus
commutes with the limit in 4. For each integer r, taking the Φ-ring B in the definition of a sheaf
of Φ-rings to be the polynomial ring Z[X1, . . . , Xr] endowed with the family of constructible
supports generated by the ideal (X1, . . . , Xr) yields that the presheaf Admr(A) is a sheaf of
sets.

Conversely, let us assume that the presheaf of rings underlying A is a sheaf and that
Admr(A) is a sheaf for each integer r. For each covering sieve S of an object U of C, the
natural homomorphism

A(U)→ lim
C/S

A(5)

is bijective since A is a sheaf of rings. Moreover an element (fi)1≤i≤r of A(U)r generates an
admissible ideal if and only if it generates an admissible ideal of A(V )r for each V → U in S,
since Admr(A) is a subsheaf of Ar. According to the description of limits in ΦRings given in
the proof of I.2.4 the latter condition holds if and only if (fi) generates an admissible ideal of
limC/S A. Thus 5 is an isomorphims of Φ-rings and A is a sheaf of Φ-rings.

Corollary I.3.3. Let A be a presheaf of Φ-rings on C and let Ã be the sheaf of rings
associated to its underlying presheaf of rings. Then there is a unique sheaf of Φ-rings with
underlying sheaf of rings Ã, such that for each r the sheaf Admr(Ã) (cf. I.3.2) is the sheaf
associated to Admr(A). Moreover the morphism A → Ã is initial among the morphisms of
presheaves of Φ-rings from A to a sheaf of Φ-rings.

Let Admr(Ã) ⊆ Ãr be the sheaf associated to Admr(A). For any object U of C, let us
declare an ideal of Ã(U) admissible if it is generated by elements f1, . . . , fr such that (f1, . . . , fr)

belongs to Admr(Ã)(U).
Let r and s be integers and let us consider the morphism of presheaves of sets given by

αr,s : Ars ×As → Ar

((aij)1≤i≤r,1≤j≤s, (gj)1≤j≤s) 7→

∑
j

aijgj


1≤i≤r

.

The fiber product α−1
r,s(Admr(A)) = (Ars × As) ×Ar Admr(A) is a subobject of Ars × As

contained in Ars×Adms(A) since A is a presheaf of Φ-rings (cf. I.2.1(2)). Since the “associated
sheaf” functor ([SGA4], II.3.4) commutes with finite limits ([SGA4], II.4.1), we obtain that the
morphism α̃r,s between the associated sheaves of sets satisfies α̃−1

r,s(Admr(Ã)) ⊆ Ãrs×Adms(Ã).
If U is an object of C then this shows that the axiom I.2.1(2) is satisfied for Ã(U) and that
an element (f1, . . . , fr) of Ãr(U) generates an admissible ideal if and only if it belongs to
Admr(Ã)(U).
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By considering

βr,s : Admr(A)×Adms(A)→ Admrs(A)

((fi)1≤i≤r, (gj)1≤j≤s) 7→ (figj)1≤i≤r,1≤j≤s

instead of αr,s and by taking the induced morphism between the associated sheaves of sets, one
obtains the axiom I.2.1(1) as well. Thus we have endowed the sheaf of rings Ã with a structure
of presheaf of Φ-rings. Since a local section (f1, . . . , fr) of Ãr generates an admissible ideal if
and only if it belongs to Admr(Ã), the notation Admr(Ã) is consistent with I.3.2. For each r,
Admr(Ã) is a sheaf, hence Ã is a sheaf of Φ-rings by Proposition I.3.2.

Let A → B be a morphism of presheaves of Φ-rings from A to a sheaf of Φ-rings. The
underlying morphism of presheaves of rings uniquely factors through the natural morphism
A → Ã. Since for each integer the morphism Ar → Br maps Admr(A) into Admr(B), the
induced morphism Ãr → Br maps Admr(Ã) into Admr(B) as well. Thus the morphism Ã→ B
is a morphism of sheaves of Φ-rings.

Corollary I.3.4. Let A be a sheaf of Φ-rings on C, and let U be a sheaf of sets on C. Then
the ring Hom(U,A) is endowed with a family of constructible supports by declaring admissible
any ideal of Hom(U,A) which is generated by elements f1, . . . , fr such that (f1, . . . , fr) belongs
to the subset Hom(U,Admr(A)) of Hom(U,Ar) = Hom(U,A)r.

This follows from the proof of I.3.3 by applying the limit preserving functor Hom(U, ·) to
αr,s and βr,s.

I.3.5. Let X be a topos. We define a Φ-ring of X to be a ring A in X together with a
subobject Admr(A) of Ar for each positive integer r, such that:

(1) For all U in X, the element 1 ∈ A(U) belongs to Adm1(A)(U). For all positive integers
r, s, for all (fi)1≤i≤r and (gj)1≤j≤s in Admr(A)(U) and Adms(A)(U) respectively, the
element (figj)1≤i≤r,1≤j≤s of A(U)rs belongs to Admrs(A)(U).

(2) For all U in X, for all positive integers r, s, and for all (fi)1≤i≤r in Admr(A)(U), any
element (gj)1≤j≤s of A(U)s such that

∑
i fiA(U) ⊆∑j gjA(U) belongs to Adms(A)(U).

We define a morphism of Φ-rings of X to be a ring homomorphism f : A→ B such that for each
positive integer r, the subobject f(Admr(A)) of Br is a subobject of Admr(B). This defines a
category ΦRingsX .

Proposition I.3.6. Let C be a site and let C̃ be the topos of sheaves of sets on C. The
functor which associates to a sheaf of Φ-rings A on C the Φ-ring (A, (Admr(A))r≥0) in C̃ (cf.
I.3.2) is an equivalence of categories.

This follows from I.3.2 and I.3.4.

I.3.7. Let f = (f∗, f
−1) : X → Y be a morphism of toposes 2. If A is a Φ-ring of X then

setting Admr(f∗A) = f∗(Admr(A)) gives f∗A the structure of a Φ-ring of Y . Similarly if B is
a Φ-ring of X then setting Admr(f

−1B) = f−1Admr(B) gives f−1B the structure of a Φ-ring
of Y , since the functor f−1 commutes with finite limits.

In particular if A is a Φ-ring of X and x is a point of X, then the stalk Ax of A at x is
defined to be x−1A. It is a Φ-ring of the topos of sets, or in other words a Φ-ring. We have

Ax = colim(U,u)A(U),

in the category of Φ-rings, where the colimit is indexed by pairs (U, u) where U runs over the
members of a small generating family of X and u is an element of Ux = x−1U .

2. We choose here the notation f−1 in order to avoid confusion with the pullback functor f∗ between
categories of modules, which is associated to a morphism a ringed toposes.
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Proposition I.3.8. The pair of functors (f∗, f
−1) between the categories ΦRingsX and

ΦRingsY is a pair of adjoint functors.

This follows from the corresponding adjunction property of (f∗, f
−1) between the categories

X and Y .

I.3.9. A Φ-ringed topos is a pair (X,OX) where X is a topos and OX is a Φ-ring of X
(cf. I.3.5). We define a morphism of Φ-ringed topos from a Φ-ringed topos (X,OX) to an other
one (Y,OY ) to be a morphism of toposes f = (f∗, f

−1) : X → Y together with a morphism
f ] : OY → f∗OX (cf. I.3.7) of Φ-rings in Y .

I.3.10. Let us recall that a ring A in a topos X is local if the natural morphism

A× t (1 +A×)→ A

is an epimorphism and if the limit of the diagram e
1−→ A

0←− e is the initial object of X 3.

Proposition I.3.11. Let (X,OX) be a ringed topos with enough points. Then OX is local
if and only if for each point x of X the stalk OX,x of OX at x (cf. I.3.7) is a local ring.

This appears as an exercise in ([SGA4], IV.13.9). The proposition follows from the fact
that a ring A (in the punctual topos) is local if and only if for any element a of A, either a or
1 + a is invertible, and if moreover 0 6= 1 in A.

Definition I.3.12. A Φ-ringed topos (X,OX) (cf. I.3.9) is locally Φ-ringed if the underlying
ring of OX is local. A morphism of locally Φ-ringed toposes is a morphism of Φ-ringed toposes
(cf. I.3.9) which is also a morphism of locally ringed toposes ([SGA4], IV.13.9).

I.3.13. A Φ-ring A in a topos is Φ-local if the following three conditions are satisfied:
(1) The ring A is local (cf. I.3.10).
(2) For all U in X, each element of Adm1(A)(U) is not a zero divisor in A(U).
(3) For each integer r the morphism

r∐
j=1

(
Adm1(A)×A[1,r]\{j}

)
→ Admr(A)

(f, (ai)1≤i≤r,i 6=j) 7→ (aif)1≤i≤r where aj = 1

is epimorphic.

Definition I.3.14. A Φ-ringed topos (X,OX) is Φ-locally Φ-ringed if OX is Φ-local. A
morphism of Φ-locally Φ-ringed toposes is a morphism of locally Φ-ringed toposes (cf. I.3.12)
between Φ-locally Φ-ringed toposes.

Proposition I.3.15. Let (X,OX) be a Φ-ringed topos with enough points. Then (X,OX)
is Φ-locally Φ-ringed if and only if for each point x of X the stalk OX,x of OX at x (cf. I.3.7)
is a Φ-local Φ-ring.

This follows from Proposition I.3.11 and from the fact that a Φ-ring (in the punctual topos)
is Φ-local if and only if its underlying ring is local and if for any admissible ideal I = (f1, . . . , fr)
of A, there exists i such that fi generates I and is not a zero divisor.

3. The last condition, which can be reworded as “0 6= 1”, is missing from the definition of a local ring in a
topos which can be found in ([SGA4], IV.13.9)
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I.3.16. Let us recall that we denote by ΦRingsX the category of Φ-rings of a topos X (cf.
I.3.5).

Definition I.3.17. Let (X,OX) be a Φ-ringed topos. For d ≤ 2, an OX -moduleM is said
to be d-deep if for all U in X, the OX(U)-moduleM(U) is d-deep (cf. I.2.14).

Proposition I.3.18. Let d ≤ 2 and let (X,OX) be a ringed topos with enough points. Then
an OX-moduleM is d-deep if and only if all of its stalks are d-deep.

The case d = 0 is tautological. By I.2.23 an OX -moduleM is 1-deep if and only if for each
integer r, the inverse image of the neutral suboject 0→Mr ofMr by the morphism

Admr(OX)×M→Mr

((fj)1≤j≤r,m) 7→ (fjm)1≤j≤r

is a subobject of Admr(OX)× 0. This yields the proposition for d = 1. For d = 2, one rather
uses I.2.19 and I.2.24, which imply that a M is 2-deep if and only if for each integer r the
natural morphism

Admr(OX)×M→ lim
(

Admr(OX)×Mr ⇒Mr2
)

((fj)1≤j≤r,m) 7→ ((fj)1≤j≤r, (fjm)1≤j≤r)

is an isomorphism, where the transition morphisms in the limit are given by ((fj)j , (mj)j) 7→
(fimj)i,j and ((fj)j , (mj)j) 7→ (fjmi)i,j .

Definition I.3.19. Let X be a topos. For d ≤ 2 we define the category ΦRings≥dX of d-deep
Φ-rings to be the full subcategory of ΦRingsX whose objects are the Φ-rings A which are d-deep
as modules over themselves.

Proposition I.3.20. Let d ≤ 2 be an integer, and let A be a presheaf of Φ-rings on a site
C such that A(U) is d-deep for any object U of C. Then the sheaf of Φ-rings associated to A
(cf. I.3.3) is a d-deep Φ-ring in the topos of sheaves of sets on C.

This follows from the characterizations of d-deep modules in a Φ-ringed topos given in the
proof of the proposition I.3.18.

Proposition I.3.21. Let X be a topos. The canonical inclusion functor from ΦRings≥1
X

to ΦRingsX admits a left adjoint. We call this left adjoint the purification functor and we
denote it by A 7→ Apur.

Let C be a site such that X is (equivalent to) the topos of sheaves of sets on C (e.g. the
canonical site of X). By I.3.6 the category ΦRingsX is equivalent to the category of sheaves of
Φ-rings on C. A sheaf of Φ-rings A on C corresponds to a 1-deep Φ-ring object in X if and
only if for each object U of C the Φ-ring A(U) is 1-deep. Thus the functor which associated
to a sheaf of Φ-rings A on C the sheaf associates to the presheaf of Φ-rings U 7→ A(U)pur (cf.
I.3.3 and I.3.20) defines a left adjoint to the canonical inclusion functor.

Proposition I.3.22. Let X be a topos. The canonical inclusion functor from ΦRings≥2
X to

ΦRingsX admits a left adjoint. We call it the closure functor and we denote it by A 7→ A/.

This is proved similarly as I.3.21 using the closure functor on Φ-rings instead of the purifi-
cation functor.

Proposition I.3.23. Let X be a topos, let x be a point of X and let A be a Φ-ring of X.
Then (A/)x ∼= (Ax)/ and (Apur)x ∼= (Ax)pur.

This follows from the proofs of I.3.21 and I.3.22 since the purification and closure functors
on Φ-rings have right adjoints and thus commute with filtered colimits.
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I.4. Valuative spaces as Φ-localizations

Let X be a locally Φ-ringed topological space (cf. I.3.12).

I.4.1. We define the relative valuative spectrum X̃ of X to be the set of triples x̃ =
(x, p, R), where x is a point of X, p is a prime ideal of O/X,x (cf. I.3.22, I.3.23) which does not
contain an admissible ideal of O/X,x and R is a valuation subring of κ(p) = Frac(O/X,x/p), such
that the following two conditions are satisfied:

(a) The homomorphism OX,x → κ(p) factors through a local homomorphism OX,x → R.
(b) For any a ∈ κ(p) there is an admissible ideal I of OX,x satisfying Ia ⊆ R.
If x̃ = (x, p, R) is a point of X̃, we write Γ(x̃) = κ(p)×/R×, and Γ(x̃)+ = Γ(x̃) t {0}.

The multiplicative valuation on O/X,x associated to R is a multiplicative map O/X,x → Γ(x̃)+

denoted by f 7→ |f(x̃)|.
Remark I.4.2. Here and hereafter we use the term “valuation” as a synonym for “higher-

rank norm”. One recovers the usual notion of valuation by reversing the order on Γ(x̃)+ and
by relabelling 0 ∈ Γ(x̃)+ as ∞.

I.4.3. Let π : X̃ → X be the map (x, p, R) 7→ x. If U is an open subset of X, I is a finitely
generated ideal of Γ(U,OX) and g is an element of Γ(U,OX) such that (I, g) is an admissible
ideal of Γ(U,OX) then we set

U
(
g−1I

)
= {x̃ ∈ π−1(U) | |I(x̃)| ≤ |g(x̃)|}.

Here, by |I(x̃)| we denote the maximum of |f(x̃)| where f runs over all elements of I; this is
equal to max(|fi(x̃)|)ri=1 whenever I is generated by f1, . . . , fr. We endow X̃ with the topology
generated by subsets of the form U

(
g−1I

)
.

Proposition I.4.4. The map π is continuous and its image is equal to the support of the
sheaf O/X , or equivalently of its subsheaf of rings Opur

X .

Since Opur
X is a subsheaf of rings of O/X , its support is equal to the support of O/X . For

any open subset U of X, the inverse image π−1(U) = U(1−1Γ(U,OX)) is open in X̃, hence
the continuity of π. Next we notice that if O/X,x vanishes then this ring has no prime ideals,
so that π−1(x) is empty. Let x be a point of X such that O/X,x is nonzero, and let p′ be a
minimal prime ideal of O/X,x. Were p′ to contain an admissible ideal I of O/X,x, this finitely
generated ideal would be nilpotent in the localization (O/X,x)p′ and we would obtain an element
f of O/X,x \ p′ and an integer N such that fIN = 0, which would contradict the fact that
O/X,x is 1-deep. Thus p′ does not contain any admissible ideal of O/X,x. Let R′ be a valuation
subring of κ(p′) dominating the image of OX,x. The construction I.2.41 applied to the local
homomorphism OX,x → R′ yields a pair (p, R) such that (x, p, R) belongs to X̃, and therefore
the fiber π−1({x}) is not empty.

I.4.5. Let us consider the following sheaf of monoids on X̃:

S : U 7→ S(U) = {s ∈ Γ(U, π−1O/X) | ∀x̃ ∈ U, |s(x̃)| > 0}.
We define O/

X̃
to be the sheafification of the presheaf of rings U 7→ S(U)−1Γ(U, π−1O/X).

Proposition I.4.6. Let x̃ = (x, p, R) be a point of X̃. The stalk O/
X̃,x̃

of O/
X̃

at x̃ is the
localization at p of O/X,x.

The stalk at x̃ of the presheaf given by U 7→ S(U)−1Γ(U, π−1O/X) is canonically isomorphic
to S−1

x̃ O/X,x where Sx̃ is the stalk at x̃ of the sheaf S. If |s(x̃)| > 0 for a section s of O/
X̃

on a neighbourhood U of x then up to shrinking U if necessary we have |s(x̃)| ≥ |I(x̃)| for
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some admissible ideal I of Γ(U,OX) by I.4.1(b), and thus s is a section of S on the open set
{ỹ ∈ π−1(U) | |I(ỹ)| ≤ |s(ỹ)|}. We thus have

Sx̃ = {s ∈ O/X,x | |s(x̃)| > 0}.
Since Sx̃ is the complement of p we obtain O/

X̃,x̃
∼= (O/X,x)p.

For each point x̃ of X̃, the valuation | · (x̃)| on O/X,x extends uniquely to its localization
O/
X̃,x̃

. This allows us to consider the subsheaf OX̃ of O/
X̃

defined as follows:

OX̃ : U 7→ OX̃(U) = {f ∈ O/
X̃

(U) | ∀x̃ ∈ U, |f(x̃)| ≤ 1}.
We endow OX̃ with a structure of a presheaf of Φ-rings by declaring a finitely generated I of
OX̃(U) to be admissible whenever |I(x̃)| > 0 at each point x̃ of U . Then OX̃ is a sheaf of
Φ-rings on X̃ by I.3.2.

Proposition I.4.7. Let x̃ = (x, p, R) be a point of X̃.
(i) The stalk OX̃,x̃ of OX̃ at x̃ is the inverse image of R ⊆ κ(p) in O/

X̃,x̃
.

(ii) The stalk OX̃,x̃ is a Φ-local Φ-ring with residual valuation ring R (cf. I.2.39).

The stalkOX̃,x̃ is the preimage ofR under the canonical surjective homomorphism (O/X,x)p →
κ(p), and a finitely generated ideal I of OX̃,x̃ is admissible if and only if |I(x̃)| > 0, i.e. if and
only if I is generated by an element which is invertible in (O/X,x)p. By I.2.40 one concludes
that OX̃,x̃ is a Φ-local Φ-ring.

Corollary I.4.8. The canonical morphism (OX̃)/ → O/
X̃

of Φ-rings is an isomorphism.

This follows from I.3.23 and I.4.7.

Definition I.4.9. The Φ-localization of a locally Φ-ringed topological space X is the
Φ-locally Φ-ringed topological space X̃ endowed with the sheaf of Φ-rings OX̃ .

I.4.10. The canonical morphism π−1OX → O/X̃ uniquely factors through a morphism of
sheaves of Φ-rings from π−1OX to OX̃ . This provides π with the structure of a morphism of
locally Φ-ringed topological spaces (cf. I.4.7). Moreover the source X̃ of π is Φ-locally Φ-ringed
by I.4.7.

Proposition I.4.11. The morphism π : X̃ → X is terminal among morphisms of locally
Φ-ringed topological spaces from a Φ-locally Φ-ringed topological space to X, and hence is an
isomorphism if the stalks of OX are Φ-local. In particular, the assignment X 7→ X̃ is functorial
and provides a right adjoint to the canonical inclusion functor from Φ-locally Φ-ringed topological
spaces to locally Φ-ringed topological spaces.

Let us consider a morphism ϕ : Y → X of locally Φ-ringed topological spaces such that the
stalks of OY are Φ-local Φ-rings. For each point y of Y we denote by f 7→ |f(y)| the valuation
on O/Y,y associated to its residual valuation ring (cf. I.2.39).

We first construct a map ϕ̃ : Y → X̃ such that πϕ̃ = ϕ. Let y be a point of Y and consider
the morphism of Φ-rings OX,ϕ(y) → OY,y. Let my be the maximal ideal of O/Y,y, and let (p, R)

be the pair obtained from the local homomorphism OX,ϕ(y) → OY,y/my by the construction
I.2.41. We set ϕ̃(y) = (ϕ(y), p, R).

The map ϕ̃ is continuous. Indeed if I = (f1, . . . , fr) is an admissible ideal of OX(U) and if
g is an element of OX(U) then for each y ∈ π−1(U) we have |ϕ−1I(y)| ≤ |ϕ−1g(y)| if and only
if |I(ϕ̃(y))| ≤ |g(ϕ̃(y))| (cf. I.2.41(d)). We thus have

ϕ̃−1
(
U(g−1I)

)
= {y ∈ ϕ−1(U) | |ϕ−1I(y)| ≤ |ϕ−1g(y)|}.
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This is an open subset of Y since if y is one of its points then fi = aig for some elements
a1, . . . , ar of OY,y (cf. I.2.39), so that IOV ⊆ gOV for some open neighbourhood V of y in
ϕ−1(U).

Let us consider the homomorphism

ϕ̃−1π−1O/X
∼−→ ϕ−1O/X → O/Y .

This homomorphism sends the subsheaf of monoids ϕ̃−1S (cf. I.4.5) into the sheaf of invert-
ible elements of O/Y,y (cf. I.2.39), so that it uniquely factors though a local homomorphism
ϕ̃−1O/

X̃
→ O/Y . Moreovever the image of ϕ̃−1OX̃ is contained in the subsheaf OY,y, so that

we obtain a morphism ϕ̃−1OX̃ → OY which endows ϕ̃ with a structure of morphism of locally
Φ-ringed topological spaces.

I.4.12. We assume for the remainder of this section that the locally ringed topological
space underlying X is a scheme. We make the following two definitions:

. A quasi-coherent ideal I ⊆ OX is admissible if for any affine open subscheme V ⊆ X,
the ideal I(V ) is admissible in the Φ-ring OX(V ).

. An admissible blow-up X ′ → X is the blow-up of X along a closed subscheme defined
by an admissible quasi-coherent ideal sheaf.

Let π : X̃ → X be the Φ-localization of X (cf. I.4.9). Let I be an admissible quasi-coherent
ideal sheaf on X, and let V be an affine open subset of X. Then I(V ) = (f1, . . . , fr) is an
admissible ideal in OX(V ). Hence I(V ) becomes invertible on π−1(V ). More precisely, we have
the decomposition by I.2.39

π−1(V ) =

r⋃
i=1

V (f−1
i I(V )),

and the restriction of IOX̃ to V (f−1
i I(V )) is freely generated by fi. Thus IOX̃ is a locally

free OX̃ -module of rank 1. In particular if we denote by XI the blow-up in X of the closed
subscheme defined by I, then from the universal property of the blow-up we obtain a unique
factorisation X̃ → XI → X of π. 4 This yields a morphism

(6) X̃ → lim
X′→X

X ′

of locally Φ-ringed topological spaces, where the limit runs over the category of admissible
blow-ups of X. The latter category is cofiltered; indeed it is non empty since the identity from
X to itself is an admissible blow-up, any pair XI , XJ of admissible blow-ups of X is dominated
by the admissible blow-up XIJ and there are no pair of distinct parallel arrows since for any
admissible quasi-coherent ideals I and J in OX , the existence of an X-morphism XI → XJ
implies that XI is J -torsion free, since J is invertible on its schematically dense open subspace
X \V (I), so that the universal property of the blow-up ensures that there exists a unique such
morphism.

The limit (6) of locally Φ-ringed topological spaces is given by taking the corresponding limit
in the category of locally ringed topological spaces, and by declaring the canonical isomorphism
of its structure sheaf with the colimit

colimf :X′→X f−1OX′
to be an isomorphism of sheaves of Φ-rings.

Theorem I.4.13. Assume that X is quasi-compact and quasi-separated and that there exists
a quasi-compact open subscheme U ⊆ X such that for any open subset V ⊆ X, a finitely

4. The universal property of the blow-up, while usually stated in the category of schemes, also holds in the
larger category of locally ringed topological spaces.
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generated ideal I of OX(V ) is admissible if and only if IOU∩V = OU∩V . Then the canonical
morphism

X̃ → lim
X′→X

X ′

from X̃ to the inverse limit of the admissible blow-ups of X is an isomorphism of locally Φ-
ringed topological spaces. In particular X̃ is quasi-compact and is even a spectral space, cf.
([SP] 0A2V, 0A2Z)

For any admissible blow-up f : X ′ → X we endow X ′ with the unique structure of locally
Φ-ringed topological space such that for any open subset V ⊆ X ′, a finitely generated ideal I
of OX′(V ) is admissible if and only if IOf−1(U)∩V = Of−1(U)∩V .

In order to prove I.4.13, it is sufficient to show that the limit in (6), which is a locally
Φ-ringed topological space, is actually Φ-locally Φ-ringed. Indeed, a morphism from a Φ-locally
Φ-ringed topological space to X uniquely factors through the limit in (6) by the universal
property of the blow-up, hence if the latter is Φ-locally Φ-ringed then it is terminal among
morphisms of locally Φ-ringed topological spaces from a Φ-locally Φ-ringed topological space
to X, so that the canonical morphism (6) is an isomorphism by virtue of I.4.11.

Let us therefore prove that the limit in (6) is Φ-locally Φ-ringed. Let x = (xI)I be a point
on this limit. The stalk of the structure sheaf at x is the colimit of I 7→ OXI ,xI where the index
I runs over all admissible quasi-coherent ideal sheaves on X. Let J be an admissible ideal of
OXI ,xI . We must show that JOXIK,xIK is an invertible ideal for some admissible quasi-coherent
ideal sheaf K.

We first prove that there exists an admissible quasi-coherent ideal sheaf J on XI such that
JxI = J . The ideal J is the stalk at xI of an admissible quasi-coherent ideal sheaf J0 on an
open neighbourhood V of xI in XI . Since J0OU∩V = OU∩V where U denotes the (isomorphic)
inverse image of U in XI , there exists a unique quasi-coherent ideal sheaf J1 on U ∪ V such
that J1|U = OU and J1|V = J0. Since XI and U are quasi-compact, there exists by ([EGA1],
9.4.7) a quasi-coherent ideal sheaf J of finite type on XI such that J|U∪V = J1. The condition
JOU = OU implies that J is admissible.

By ([RG71], I.5.1.4) the composition of blow-ups (XI)J → X is isomorphic to the blow-up
of an admissible quasi-coherent ideal sheaf K on X. Thus JOXIK,xIK is an invertible ideal and
we have shown that the stalks of the structure sheaf of the limit appearing in (6) are Φ-local
Φ-rings. As explained above, this together with I.4.11 and the universal property of the blow-up
concludes the proof of Theorem I.4.13.

I.5. The flattening property of Φ-localizations

I.5.1. If M is a module over a valuation ring R then M is R-flat if and only if for any
nonzero element r of R the module M has no nonzero r-torsion, see ([Bou98], VI §3.6 Lemme
1) or ([SP] 0539). We generalize this fact to modules over Φ-local Φ-rings:

Proposition I.5.2. Let A be a Φ-local Φ-ring, and let M be a A-module. The following
are equivalent:

(i) The A-module M is flat.
(ii) The A/-module M/ = M ⊗A A/ is flat, and the map M →M/ is injective.

We have (i) =⇒ (ii), since A is 1-deep by I.2.39. We thus focus on the converse implication.
We use the equational criterion of flatness, see ([Bou98], I §2.11 Corollaire 1) or ([SP] 00HK).
Namely, given a relation

∑
d∈D adxd = 0 with ad in A and xd in M , for some finite set D, we

would like to show that this relation is trivial, in the sense that we can find relations of the
form

xd =
∑
e∈E

bdeye,
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such that
∑
d∈D adbde = 0 for any e. We proceed by induction on the cardinality of D, the case

D = ∅ being empty.
First, assume that we have a relation of the form

∑
d∈D adcd = 0, where (cd)d∈D ⊆ A and

cd0
= 1 for some d0 in D. We then have∑

d∈D\{d0}

ad(xd − cdxd0
) =

∑
d∈D

ad(xd − cdxd0
) = 0.

Since this relation has fewer terms than the original one, the induction hypothesis ensures that
we can find relations

xd − cdxd0
=
∑
e∈E

bdeye

with
∑
d∈D\{d0} adbde = 0 for any e. We set E′ = E t{?}, y? = xd0

, bd0e = 0 for all e ∈ E, and
bd? = cd for all d ∈ D, so that bd0? = 1. We then have

xd =
∑
e∈E′

bdeye,

for any d in D, and
∑
d∈D adbde = 0 for any e in E′. Thus our relation is trivial.

Let us now assume that the previous case does not happen. Since M/ is flat over A/, our
relation is trivial in M/, hence we can find relations

xd =
∑
e∈E

bdeye,

such that
∑
d∈D adbde = 0 for any e, with ye in M . Here the coefficients bde are elements of A/,

hence it is sufficient for our purpose to show that they belong to A.
Actually, we have the stronger result that for all (d, e) ∈ D × E, the element bde belongs

to the maximal ideal of A/. Indeed, if it were not the case, then, for some e0 ∈ E, the ideal
generated by (bde0)d∈D would not be contained in the maximal ideal of A/. We would then
have an element s of A, invertible in A/, such that all the sbde0 belong to A. The ideal of A
generated by the family (sbde0)d∈D would then be admissible, hence generated by sbd0e0 for
some d0 in D. This would imply that sbde0 = cdsbd0e0 for some cd in A, with cd0

= 1, and the
relation

∑
d∈D adbde0 = 0 would yield

∑
d∈D adcd = 0. This is a contradiction.

The following lemma is both a consequence and a generalization of ([SP] 053E):

Proposition I.5.3. Let A be a Φ-local Φ-ring, let A → B be a ring homomorphism of
finite type, and let M be a B-module of finite type. If M is flat over A, and if M ⊗A A/ is a
finitely presented B ⊗A A/-module, then M is a finitely presented B-module.

Since M is a B-module of finite type, we can find an exact sequence

0→ K → B⊕r →M → 0.

Let m be the maximal ideal of A/, which is contained in A by I.2.39 (ii), and let S = A \ m.
Since M is flat over A, the following exact sequence is still exact:

0→ K/mK → (B/mB)
⊕r →M/mM → 0.

By ([SP] 053E), the kernel K/mK is a finitely generated B/mB-module. Thus there is a finite
subset S of K such that K = BS + mK. But we also have an exact sequence

0→ S−1K →
(
S−1B

)⊕r → S−1M → 0,

and since by hypothesis S−1M = M⊗AA/ is a finitely presented module over S−1B = B⊗AA/,
the kernel S−1K is a finitely generated S−1B-module. Thus, by enlarging S if necessary, we
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can also assume that S−1K = S−1BS. We claim that K = BS. Indeed, the relations
S−1K = S−1BS and m = S−1m imply

mK = mS−1K = mS−1BS = mBS,

so that
K = BS + mK = BS + mBS = BS.

In particular, K is a finitely generated B-module, and consequently M is a finitely presented
B-module.

Corollary I.5.4. Let A be a Φ-local Φ-ring, let A→ B be a ring homomorphism of finite
type. If B is flat over A, and if B ⊗A A/ is a finitely presented A/-algebra, then B is a finitely
presented A-algebra.

Indeed, if we choose a surjection B′ = A[X1, . . . , Xn] → B, then B is flat over A, and
B ⊗A A/ is a finitely presented B′ ⊗A A/-module since B ⊗A A/ is a finitely presented A/-
algebra. Thus, by I.5.3, we conclude that B is a finitely presented B′-module, and thus that B
is a finitely presented A-algebra.

I.5.5. Let (X,OX) be a ringed topological space. A commutative OX -algebra A is said
to be finitely presented if for any point x of X there exists an open neighbourhood U of x in X
and an isomorphism

AU ⊗Γ(U,OX) OU → A|U ,
of OU -algebras, for some finitely presented Γ(U,OX)-algebra AU .

Proposition I.5.6. Let (X,OX) be a ringed topological space, let A be finitely presented
commutative OX-algebra, and let G be a finitely presented A-module. Let x be a point of X
such that the stalkMx is a flat OX,x-module. Then there exists an open neighbourhood U of x
such that the restrictionM|U is a flat OU -module.

Up to replacing X by some open neighbourhood of x in X, we can assume (and we do) that
A is of the form A⊗Γ(X,OX) OX , for some finitely presented Γ(X,OX)-algebra A, and that we
have a global presentation

A⊕m ϕ−→ A⊕n →M→ 0.

For any integer j between 1 and m, let (ai,j)
n
i=1 be the image by ϕ of the j-th basis vector.

Each ai,j belongs to Γ(X,A). Let V be an open neighbourhood of x in X such that each
restriction ai,j|V is the image in Γ(V,A) of an element bi,j of the finitely presented Γ(V,OX)-
algebra AV = A ⊗Γ(X,OX) Γ(V,OX). Let MV be the cokernel of the matrix (bi,j)i,j . It is a
finitely presented AV -module, and we have an isomorphism

MV ⊗AV A|V →M|V ,
of A|V -modules. For each open neighbourhood U of x in V , the Γ(U,OX)-algebra AU =
AV ⊗Γ(V,OX) Γ(U,OX) is finitely presented, and the AU -module MU = MV ⊗AV AU is finitely
presented. Moreover, by hypothesis the filtered colimit

colimUMU
∼=Mx,

where U runs over the cofiltered set of open neighbourhood of x in V , is a flat module over the
colimit

colimUΓ(U,OX) = OX,x.
By ([SP] 02JO(3)), this implies that there exists an open neighbourhood U of x in V such that
MU is a flat Γ(U,OX)-module. In particular, the OU -module

M|U ∼= MU ⊗AU A|U ∼= MU ⊗Γ(U,OX) OU ,
is flat, hence the conclusion of Proposition I.5.6.
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I.5.7. Let X be a Φ-ringed topological space, and let F be an OX -module. We define the
closure F/ of F to be the tensor product F ⊗OX O/X and the purification Fpur of F to be
the subsheaf of F/ generated by the image of F .

Theorem I.5.8. Let X be a locally Φ-ringed topological space with the Φ-localization π :

X̃ → X (cf. I.4.9), and let F be an OX-module such that F/ is a flat O/X-module (cf. I.5.7).
Then (π∗F)pur is a flat OX̃-module.

The stalk of (π∗F)pur at a point x̃ = (x, p, R) of X̃ is the purification of Fx ⊗OX,x OX̃,x̃.
Since (π∗F)/x̃

∼= (F/x)p is a flat module over O/
X̃,x̃
∼= (O/X,x)p (cf. I.4.7), one concludes by I.5.2

that (π∗F)pur
x̃ is flat over the Φ-local Φ-ring OX̃,x̃.

Theorem I.5.9. Let X be a locally Φ-ringed topological space with the Φ-localization π :

X̃ → X (cf. I.4.9). Let A be a finitely presented commutative OX-algebra (cf. I.5.5) and let
F be an A-module of finite type such that F/ is finitely presented as an A/-module and flat as
an O/X-module (cf. I.5.7). Then (π∗F)pur is finitely presented as a π∗A-module and flat as an
OX̃-module.

By using I.5.8 and replacing X with X̃ it is sufficient for the purpose of proving I.5.9 to
show the following:

Proposition I.5.10. Let X be a Φ-locally Φ-ringed topological space. Let A be a finitely
presented commutative OX-algebra (cf. I.5.5) and let F be an A-module of finite type such that
F/ is finitely presented as an A/-module and F is flat as an OX-module. Then F is finitely
presented as an A-module.

Let x be a point of X. Let U be an open neighbourhood of x such that there exists a
surjective homomorphism ψ : A⊕n|U → F|U . The A/|U -module F/|U is finitely presented, and by
([SP] 01BP) this implies that the A/|U -module (kerψ)/ is of finite type. By I.5.3, the Ax-module
Fx is finitely presented, and hence the stalk of kerψ at x is a finitely generated Ax-module.
Thus up to shrinking U if necessary there exists a finitely generated sub-module H ⊆ kerψ such
that Hx = (kerψ)x and H/ = (kerψ)/. Let G be the quotient of A⊕n|U by H. Then G is a finitely
presented A|U -module and we have a surjective homomorphism G → F such that Gx ∼= Fx
and G/ ∼= F/. Moreover, G and F have the same image in F/, so that F is the purification
of G. Since A|U is a finitely presented OU -algebra, since Gx is a flat OX,x-module and since G
is a finitely presented A|U -module, we conclude by Proposition I.5.6 that there exists an open
neighbourhood V ⊆ U of x such that G|V is a flat OV -module. In particular G|V is isomorphic
to its purification F|V , so that F|V is finitely presented as an A|V -module.

I.6. Proof of Raynaud-Gruson’s theorem

I.6.1. We first prove the following variant of Raynaud-Gruson’s theorem I.1.1:

Theorem I.6.2. Let X be quasi-compact and quasi-separated scheme and let U be a quasi-
compact open subset of X. Let A be a (quasi-coherent) finitely presented commutative OX-
algebra and let F be a quasi-coherent A-module of finite type. Assume that F|U is finitely
presented over A|U and flat over OU . Then there exists a blow-up f : X ′ → X such that:

(1) The center of f is a finitely presented closed subscheme of X, disjoint from U .
(2) The strict transform F ′ of F along f is finitely presented over f∗A and flat over OX′ .
Since X is quasi-compact and quasi-separated and U is quasi-compact, the complement

of U is the closed subscheme defined by a finitely generated quasi-coherent ideal sheaf J on
X: indeed, the quasi-coherent ideal defining this complement with its reduced structure is
a filtered union of the family (Jλ)λ∈Λ of its finitely generated quasi-coherent subsheaves by
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([EGA1], 6.9.9), hence the quasi-compact open subset U is the filtered union of the open
subsets (X \ V (Jλ))λ∈Λ, and thus U is equal to X \ V (Jλ) for some λ. Let f : X ′ → X be the
blowing-up of X along J . For any blow-up g : X ′′ → X ′ whose center is a finitely presented
closed subscheme of X ′ disjoint from f−1(U), the composition fg is a blow-up whose center is
a finitely presented closed subscheme of X disjoint from U , cf. ([RG71], I.5.1.4). Hence by
replacing X with X ′, we can assume (and we do) that J is invertible.

We endow X with the structure of a locally Φ-ringed topological space by declaring for
any open subset V ⊆ X a finitely generated ideal I of OX(V ) to be admissible whenever
IOU∩V = OU∩V . Since J is invertible we have O/X = colimN>0 J−N = j∗OU where j :
U → X is the canonical inclusion. In particular the assumptions of Theorem I.6.2 imply that
F/ = colimN>0 F ⊗OX J−N is flat over O/X = colimN>0J−N and finitely presented over
A/ = colimN>0 A⊗OX J−N .

Let π : X̃ → X be the Φ-localization of X. By ([EGA1], 6.9.10) applied to the relative
spectrum of A, there exists a finitely presented A-module G together with a surjective homo-
morphism G → F . By Theorem I.5.9 the π∗A-module (π∗F)pur is finitely presented, hence the
kernel K of the surjective homomorphism π∗G → (π∗F)pur is of finite type.

By I.4.13 we have an isomorphism of locally Φ-ringed topological spaces

X̃ → lim
X′→X

X ′

from X̃ to the inverse limit of the admissible blow-ups of X (cf. I.4.12). We endow each
blow-up g : X ′ → X with the structure of a locally Φ-ringed topological space by declaring
for any open subset V ⊆ X ′ a finitely generated ideal I of OX′(V ) to be admissible whenever
IOg−1(U)∩V = Og−1(U)∩V . Since K is a π∗A-module of finite type, there exists a factorization

X̃
π′−→ X ′

f−→ X of π through an admissible blow-up and a finitely generated sub-f∗A-module
K′ of Ker(f∗G → (f∗F)pur) such that the image of π′∗K′ in π∗G is equal to K.

Let us consider the finitely presented f∗A-module G′ = f∗G/K′. We have π′∗G′ ∼= (π∗F)pur,
hence an isomorphism (π′∗G′)/ ∼= (π∗F)/. By I.4.4 and I.4.6, the morphism of ringed space

(X̃,O/
X̃

)→ (X ′,O/X′)
is flat and surjective, hence we deduce that the canonical homomorphism G′/ → (f∗F)/ is an
isomorphism. Since the homomorphism G′ → f∗F is surjective, we obtain that the purification

of G′ is isomorphic to (f∗F)pur. More generally, for any admissible blow-up X ′′
f ′−→ X ′, the

purification of f ′∗G′ is isomorphic to (f ′∗f∗F)pur.

For each admissible blow-up X ′′
f ′−→ X ′

f−→ X, the set of points x′′ of X ′′ such that
f ′∗G′x′′ is flat over OX′′,x′′ is an open subset Uf ′ of X ′′ by ([SP], 0399(2)). The OX̃ -module
π′∗G′ ∼= (π∗F)pur is flat by Theorem I.5.9, hence by ([SP] 02JO(3)), any point of X̃ is in the
inverse image of Uf ′ for some f ′. Since X̃ is quasi-compact by Theorem I.4.13, we can find f ′

as above such that the inverse image of Uf ′ in X̃ is X̃. By ([SP], 0A2W(1)) we can assume up
to taking a further refinement of f ′ that we have Uf ′ = X ′′. Since f ′∗G′ is flat over OX′′ , it
must coincide with its purification (f ′∗f∗F)pur. In particular the strict transform (f ′∗f∗F)pur

of F on X ′′ is flat over OX′′ and finitely presented over f ′∗f∗A. This concludes the proof of
I.6.2.

I.6.3. We now prove Raynaud-Gruson’s theorem I.1.1. Let g : Y → X,U and F be as
in the statement of the theorem. Let (Xλ)λ∈Λ and (Yλ)λ∈Λ be covers of X and Y by finitely
many affine open subsets such that for each λ ∈ Λ, we have g(Yλ) ⊆ Xλ. Then for each λ ∈ Λ,
Theorem I.6.2 yields a finitely generated quasi-coherent ideal sheaf Jλ ⊆ OXλ such that V (Jλ)
is disjoint from U ∩Xλ and such that the blow-up Jλ has the desired flattening property with
respect to the affine morphism Yλ → Xλ and F|Yλ .
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Since JλOU∩Xλ = OU∩Xλ , there exists a unique quasi-coherent ideal sheaf J ′λ on U ∪Xλ

such that J ′λ|U = OU and J ′λ|Xλ = Jλ. Since X and U ∪Xλ are quasi-compact, there exists by
([EGA1], 9.4.7) a quasi-coherent ideal sheaf Iλ of finite type on X such that Iλ|U∪Xλ = J ′λ.
The blow-up of

∏
λ∈Λ Iλ then satisfies the conclusion of Theorem I.1.1.
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II.1. Introduction

Let X → S be a relative curve, i.e. a smooth morphism of schemes of relative dimension
1, with connected geometric fibers, which is Zariski-locally projective over S. Let Y ↪→ X be a
relative effective Cartier divisor over S (cf. II.4.10), and let U be the complement of Y in X.

The pairs (L, α), where L is an invertible OX -module and α is a rigidification of L along
Y , are parametrized by an S-group scheme PicS(X,Y ), the relative rigidified Picard scheme
(cf. II.4.8). The Abel-Jacobi morphism

Φ : U → PicS(X,Y )

is the morphism which sends a section x of U to the pair (O(x), 1), cf. II.4.14. We prove the
following relative version of the main theorem of geometric global class field theory:

Theorem II.1.1. (Th. II.5.3) Let Λ be a finite ring of cardinality invertible on S, and let F
be an étale sheaf of Λ-modules, locally free of rank 1 on U , with ramification bounded by Y (cf.
II.5.2). Then, there exists a unique (up to isomorphism) multiplicative étale sheaf of Λ-modules
G on PicS(X,Y ), locally free of rank 1, such that the pullback of G by Φ is isomorphic to F .

The notion of multiplicative locally free Λ-module of rank 1 is defined in II.2.5, and it
corresponds to isogenies G → PicS(X,Y ) with constant kernel Λ×. We restrict ourself in this
article to Λ×-torsors, with Λ as in Theorem II.1.1, in order to simplify the exposition, since
we are able to apply directly our main descent tool in this context, namely Lemma II.5.9.
However, the latter lemma, and hence Theorem II.1.1 can be extended to G-torsors, where G
is an arbitrary locally constant finite abelian group on Sét.

The case where S is the spectrum of a perfect field is originally due Serre and Lang, cf.
([La56], 6) and [Se59]. Their proof relies on the Albanese property of Rosenlicht’s generalized
Jacobians [Ro54]. A similar proof was sketched by Deligne in his 1974 letter to Serre, published
as an appendix in [BE01]. However, a more geometric proof was given by Deligne in the tamely
ramified case; an account of Deligne’s proof in the unramified case over a finite field can be
found in ([La90], Sect. 2). We generalize the latter approach by Deligne to allow arbitrary
ramification and an arbitrary base S. This generalization is inspired by notes by Alain Genestier
(unpublished) on arithmetic global class field theory.

Deligne’s approach has the advantage over Serre and Lang’s to yield an explicit geometric
construction of the isogeny over PicS(X,Y ) corresponding to a local system of rank 1 over U .

47
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This feature of Deligne’s approach carries over to ours, and is in fact crucial in order to handle
the case of an arbitrary base S.

The author was informed during the preparation of this manuscript that Daichi Takeuchi
has independently obtained a different proof of II.1.1 in the case where S is the spectrum of a
perfect field, also by generalizing Deligne’s approach to handle arbitrary ramification.
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Notation and conventions. We fix a universe U ([SGA4], I.0). Thoughout this paper,
all sets are assumed to belong to U and we will use the term “topos” as a shorthand for “U-topos”
([SGA4], IV.1.1). The category of sets belonging to U is simply denoted by Sets.

For any integers e, d we denote by Je, dK the set of integers n such that e ≤ n ≤ d and by
Sd the group of bijections of J1, dK onto itself.

In this paper, all rings are unital and commutative. For any ring A, we denote by AlgA
the category of A-algebras. For any scheme S, we denote by Sch/S the category of S-schemes.
We denote by Sét (resp. SÉt) the small étale topos (resp. big étale topos) of a scheme S, i.e.
the topos of sheaves of sets for the étale topology ([SGA4], VII.1.2) on the category of étale
S-schemes (resp. on Sch/S), and by SFppf the big fppf topos of S, i.e. the topos of sheaves of
sets for the fppf topology on Sch/S ([SGA4], VII.4.2). If f : X → S is a morphism of schemes,
then we denote by (f−1, f∗) the induced morphism of topos from XÉt to SÉt. The symbol f∗
will exclusively denote the pullback functor from OS-modules to OX -modules.

II.2. Preliminaries

II.2.1. Let E be a topos and let G be an abelian group in E. We denote by GE the
category of objects of E endowed with a left action of G. If X is an object of E, we denote
by E/X the topos of X-objects in E. If X is considered as an object of GE by endowing it
with the trivial left G-action, then we have (GE)/X = G(E/X) and this category will be simply
denoted by GE/X .

Definition II.2.2. A G-torsor over an object X of E is an object P of GE/X such that
P → X is an epimorphism and the morphism

G×X P → P ×X P

(g, p) 7→ (g · p, p)
is an isomorphism. We denote by Tors(X,G) the full subcategory of GE/X whose objects are
the G-torsors over X. If f : Y → X is a morphism in E, we denote by f−1 : Tors(X,G) →
Tors(Y,G) the functor which associates f−1P = P ×X,f Y to a G-torsor P over X.

The category Tors(X,G) is monoidal, with product

P1 ⊗ P2 = G2 \ P1 ×X P2,

where G2 is the kernel of the multiplication morphism G × G → G, and where G2 ↪→ G × G
acts diagonally on P1 ×X P2. The neutral element for this product is the trivial G-torsor over
X, namely G × X, and each G-torsor P over X is invertible with respect to ⊗, with inverse
given by

P−1 = HomGE/X
(P,G×X),

where HomGE/X
denotes the internal Hom functor in GE/X .
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Example II.2.3. If G = Λ× for some ring Λ in E, then the monoidal category Tors(X,G)
is equivalent to the groupoid of locally free Λ-modules of rank 1 in E/X . The equivalence is
given by the functor which sends an object P of Tors(X,G) to the Λ-module G\ (Λ×P ), where
the action of G = Λ× on Λ × P is given by the formula g · (λ, p) = (gλ, g · p). The functor
which sends a locally free Λ-module M of rank 1 of E/X to the G-torsor of isomorphisms of
Λ-modules from M to Λ defines a quasi-inverse to the latter functor.

II.2.4. Let E be a topos, and let us denote by 1 its terminal object. Let us consider an
exact sequence

1→ G
i−→ P

r−→ Q→ 1

of abelian groups in E. The morphism

G×Q P → P ×Q P
(g, p) 7→ (i(g) + p, p)

is an isomorphism, so that P is a G-torsor over Q. Moreover, the multiplication morphism

P × P → P

factors though G2 \ P × P , where G2 ↪→ G×G is the kernel of the multiplication morphism of
G, acting diagonally on P × P . We thus obtain a morphism

p−1
1 P ⊗ p−1

2 P → m−1P

ofG-torsors overQ×Q, where p1 and p2 are the canonical projections andm is the multiplication
morphism of Q.

The following definition is inspired by ([MB85], I.2.3):

Definition II.2.5. Let G be an abelian group of E and let Q be a commutative semigroup
of E (with or without identity). Let m : Q × Q → Q be the multiplication morphism of
Q. A multiplicative G-torsor over Q is a G-torsor P → Q, together with an isomorphism
θ : p−1

1 P⊗p−1
2 P → m−1P of G-torsors over Q×Q where p1 and p2 are the canonical projections,

which satisfy the following two properties.
. Symmetry: if σ is the involution of Q × Q which switches the two factors, then the

isomorphism

p−1
2 P ⊗ p−1

1 P → σ−1(p−1
1 P ⊗ p−1

2 P )
σ−1θ−−−→ σ−1m−1P → m−1P

is the composition of θ with the canonical isomorphism p−1
2 P ⊗ p−1

1 P → p−1
1 P ⊗ p−1

2 P .
. Associativity: if qi : Q×Q×Q→ Q (resp. qij : Q×Q×Q→ Q×Q) is the projection

on the i-th factor for i ∈ J1, 3K (resp. on the i-th and j-th factors for (i, j) ∈ J1, 3K2

such that i < j) and if m3 : Q×Q×Q → Q is the multiplication morphism, then the
diagram of G-torsors over Q×Q×Q

q−1
1 P ⊗ q−1

2 P ⊗ q−1
3 P

q−1
1 P ⊗ (mq23)−1P

(mq12)−1P ⊗ q−1
3 P

m−1
3 P

id⊗ q−1
23 θ

q−1
12 θ ⊗ id

(q1 ×mq23)−1θ

(mq12 × q3)−1θ

is commutative.
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The category of multiplicativeG-torsors is fibered in groupoids over the category of commutative
semigroups of E. We denote by Tors⊗(Q,G) the groupoid of multiplicative G-torsors over a
commutative semigroup Q of E.

Remark II.2.6. If G = Λ× for some ring Λ in E, we use the term “multiplicative locally
free Λ-module of rank 1” as a synonym for “multiplicative G-torsor”, when we want to
emphasize the locally free Λ-module of rank 1 corresponding to a given G-torsor, rather than
the G-torsor itself (cf. II.2.3).

Proposition II.2.7. Let G be an abelian group in E, let Q be a commutative semigroup in
E and let I be an ideal of Q. If the projection morphisms Q× I → Q and I × I → I onto the
first factors are morphisms of descent for the fibered category of multiplicative G-torsors (cf.
II.2.5), then the restriction functor

Tors⊗(Q,G)→ Tors⊗(I,G)

is fully faithful.

Let i : I → Q be the canonical injection morphism. Let p1 and p2 be the projection
morphisms of Q× I onto its first and second factors respectively, and let m : Q× I → I be the
multiplication morphism. Let (P, θ) and (P ′, θ′) be multiplicative G-torsors over Q. We have
an isomorphism

βP : p−1
1 P

(id×i)−1θ−−−−−−→ m−1i−1P ⊗ p−1
2 i−1P−1,

and similarly for P ′. If α : i−1P → i−1P ′ is a morphism of multiplicative G-torsors over I, then
β−1
P ′ (m

−1α ⊗ p−1
2 α)βP is an isomorphism from p−1

1 P to p−1
1 P ′, which is compatible with the

canonical descent datum for p1 associated to p−1
1 P and p−1

1 P ′: indeed, if q1 : Q × I × I → Q
and q2, q3 : Q× I × I → I (resp. qij) are the projections on the first, second and third factors
of Q × I × I respectively (resp. on the product of its i-th and j-th factors for (i, j) ∈ J1, 3K2

such that i < j) and if m3 : Q × I × I → I is the multiplication morphism, then the diagram
of G-torsors over Q× I × I

q−1
12 p

−1
1 P

(im3)−1P ⊗ (imq23)−1P−1

(imq12)−1P ⊗ (ip2q12)−1P−1

(imq12)−1P ⊗ (iq3)−1P ⊗ (ip2q12)−1P−1 ⊗ (iq3)−1P−1

(q1 ×mq23)−1θ

q−1
12 βP

(mq12 × q3)−1θ−1 ⊗ q−1
23 θ
−1

is commutative, and similarly for P ′, so that the pullback of β−1
P ′ (m

−1α ⊗ p−1
2 α)βP by q12 is

given by the composition

q−1
1 P → (im3)−1P ⊗ (imq23)−1P−1 m−1

3 α⊗(mq23)−1α−−−−−−−−−−−−→ (im3)−1P ⊗ (imq23)−1P ′′−1 → q−1
1 P ′,

and therefore coincides with its pullback by q13.
Since p1 is a morphism of descent for the fibered category of multiplicative G-torsors,

there is a unique morphism γ : P → P ′ of multiplicative G-torsors over Q such that p−1
1 γ =

β−1
P ′ (m

−1α⊗p−1
2 α)βP . The restriction of p−1

1 γ to I×I is the pullback of α by the first projection,
which is a morphism of descent for the fibered category of multiplicative G-torsors, so that the
restriction of γ to I is α.
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Proposition II.2.8. Let G be an abelian group in E, and let ρ : M → Q be a morphism
of commutative semigroups in E. If ρ (resp. ρ × ρ and ρ × ρ × ρ) is a morphism of effective
descent (resp. of descent) for the fibered category of G-torsors, then ρ is a morphism of effective
descent for the fibered category of multiplicative G-torsors.

A descent datum of multiplicative G-torsors for ρ yields a descent datum of G-torsors for
ρ, hence a G-torsor over Q by hypothesis. Since ρ× ρ and ρ× ρ× ρ are morphisms of descent
for the fibered category of G-torsors, the structure of multiplicative G-torsor descends as well.
Details are omitted.

Proposition II.2.9. Let G and Q be abelian groups in E. The groupoid Tors⊗(Q,G) of
multiplicative G-torsors over Q is equivalent as a monoidal category to the groupoid of extensions
of Q by G in E, with the Baer sum as a monoidal structure.

We have already seen how to associate a multiplicative G-torsor to an extension of Q by G.
This construction is functorial, and the corresponding functor is an equivalence by ([MB85],
I.2.3.10).

Corollary II.2.10. Let G and Q be abelian groups in E. The group of isomorphism classes
of multiplicative G-torsors over Q is isomorphic to the group Ext1(Q,G) of isomorphism classes
of extensions of Q by G in E.

II.2.11. Let S be a scheme, let X be an S-scheme, and let G be a finite abelian group.
Let P be a G-torsor over X in SÉt. Since P → X is an epimorphism in SÉt, there is an étale
cover (Xi → X)i∈I such that for each i ∈ I, the morphism Xi → X factors through P → X.
In particular, for each i ∈ I the G-torsor P ×X Xi → Xi is isomorphic to the trivial G-torsor
G ×Xi → Xi, so that P ×X Xi is representable by a finite étale Xi-scheme. By étale descent
of affine morphisms, we obtain:

Proposition II.2.12. Let G be a finite abelian group, let S be a scheme, and let P be a
G-torsor over an S-scheme X in SÉt. Then the étale sheaf P : Sch/S → Sets is representable
by a finite étale X-scheme.

The topos (SÉt)/X coincides with XÉt. The category of G-torsors over X in SÉt is therefore
equivalent to the category of G-torsors over the terminal object in XÉt, and Proposition II.2.12
yields:

Corollary II.2.13. Let G be a finite abelian group, let S be a scheme, and let X be an S-
scheme. Then the category of G-torsors over X in SÉt is equivalent to the category of G-torsors
over the terminal object in Xét.

II.2.14. Let S be a scheme, and let G be a finite abelian group. Let Q be a commutative
S-group scheme, and let M be a sub-S-semigroup scheme of Q.

Proposition II.2.15. Assume that the morphism

ρ : M ×S M → Q

(x, y) 7→ xy−1

is faithfully flat and quasi-compact, and that M is flat over S. Then the restriction functor

Tors⊗(Q,G)→ Tors⊗(M,G),

is an equivalence of categories.

Let (P, θ) be a multiplicative G-torsor over M . For i ∈ J1, 4K, let ri be the projection of
R = (M ×SM)×ρ,Q,ρ (M ×SM) onto its i-th factor. Similarly, for i, j ∈ J1, 4K such that i < j,
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we denote by rij : R → M ×S M the projection on the i-th and j-th factors. We then have a
sequence of isomorphisms(

r−1
1 P ⊗ r−1

2 P−1
)
⊗
(
r−1
3 P ⊗ r−1

4 P−1
)−1 → r−1

14 (p−1
1 P ⊗ p−1

2 P )⊗ r−1
23 (p−1

1 P ⊗ p−1
2 P )−1

r−1
14 θ⊗(r−1

23 θ)
−1

−−−−−−−−−−→ (mr14)−1P ⊗ ((mr23)−1P )−1,

of G-torsors over R, where m : M ×S M →M is the multiplication of M . Since mr14 = mr23,
the latter G-torsor is canonically trivial. We thus obtain an isomorphism

ψ : r−1
1 P ⊗ r−1

2 P−1 → r−1
3 P ⊗ r−1

4 P−1,

of G-torsors over R. The associativity of θ (cf. II.2.5) implies that ψ is a cocycle, i.e.
(p−1

1 P ⊗ p−1
2 P−1, ψ) is a descent datum for ρ. By Proposition II.2.12 and since faithfully

flat and quasi-compact morphisms of schemes are of effective descent for the fibered category
of affine morphisms, the conditions of Proposition II.2.8 are satisfied, and thus there exists a
multiplicative G-torsor P ′ over Q and an isomorphism α : ρ−1P ′ → p−1

1 P ⊗ p−1
2 P−1 such that

ψ is given by the composition

r−1
1 P ⊗ r−1

2 P−1 r−1
12 α

−1

−−−−−→ (ρr12)−1P ′ = (ρr34)−1P ′
r−1
34 α−−−→ r−1

3 P ⊗ r−1
4 P−1.

The association P 7→ P ′ then defines a functor from Tors⊗(M,G) to Tors⊗(Q,G). For any
multiplicative G-torsor U over Q, we have an isomorphism U → (U ×QM)′ by multiplicativity,
which is functorial in U .

We now construct, for any multiplicative G-torsor (P, θ) over M , an isomorphism P →
P ′ ×QM of multiplicative G-torsors which is functorial in P . Let ν : M ×S M →M ×S M be
the morphism which sends a section (x, y) to (xy, y). We have an isomorphism

(ρν)−1P ′
ν−1α−−−→ ν−1(p−1

1 P ⊗ p−1
2 P−1)→ m−1P ⊗ p−1

2 P−1 θ−1

−−→ p−1
1 P.

The diagram

M ×S M

M ×S M

M

Q

ν

p1

ρ

is commutative, hence (ρν)−1P ′ is isomorphic to p−1
1 (P ′×QM). We thus obtain an isomorphism

β : p−1
1 P → p−1

1 (P ′ ×QM),

of multiplicativeG-torsors. The morphism β is compatible with the canonical descent data for p1

associated to p−1
1 P and p−1

1 (P ′×QM). Since p1 is a covering for the fpqc topology, Proposition
II.2.8 applies, hence there is a unique isomorphism γ : P → P ′ ×Q M of multiplicative G-
torsors such that β = p−1

1 γ. The construction of this isomorphism of multiplicative G-torsors
is functorial in P , hence the result.

II.2.16. Let A be a ring. IfM is an A-module, we denote byM the functor B 7→M⊗AB
from AlgA to Sets.

Definition II.2.17. ([SGA4], XVII 5.5.2.2) Let M and N be A-modules. A polynomial
map from M to N is a morphism of functors M → N . A polynomial map f : M → N is
homogeneous of degree d if for any A-algebra B, any element λ of B and any element m of
M(B), we have f(λm) = λdf(m).
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For each integer d and any A-module M , let TSdA(M) = (M⊗Ad)Sd be the A-module of
symmetric tensors of degree d with coefficients inM . IfM is a free A-module with basis (ei)i∈I ,
then we have a decomposition

TSdA(M) =

 ⊕
β:J1,dK→I

Aeβ(1) ⊗ · · · ⊗ eβ(d)

Sd

=
⊕
α:I→N∑
i∈I α(i)=d

Aeα,(7)

where we have set
eα =

∑
β:J1,dK→I

∀i,|β−1({i})|=α(i)

eβ(1) ⊗ · · · ⊗ eβ(d).

In particular TSdA(M) is a free A-module, and its formation commutes with base change by
any ring morphism A→ B.

Proposition II.2.18. Let M be a flat A-module and let d ≥ 0 be an integer. Then TSdA(M)
is a flat module, and for any A-algebra B the canonical homomorphism

TSdA(M)⊗A B → TSdB(M ⊗A B)

is bijective.

Any flat A-module is a filtered colimit of finite free modules. We have already seen that
the conclusion of Proposition II.2.18 holds whenever M is free, hence the conclusion in general
since the functor TSdA commutes with filtered colimits.

Proposition II.2.19. Let M be a flat A-module and let d ≥ 0 be an integer. Let γd : M →
TSdA(M) be the functor which sends, for any A-algebra B, an element m ofM(B) to the element
m⊗d of TSdB(M ⊗A B) = TSdA(M)⊗A B (cf. II.2.18). Then, for any homogeneous polynomial
map f : M → N of degree d, there is a unique A-linear homomorphism f̃ : TSdA(M)→ N such
that f = f̃γd.

As in Proposition II.2.18, we can assume that M is free of finite rank over A. Let (ei)i∈I
be a basis of M . Let us write

f

(∑
i∈I

Xiei

)
=
∑
α:I→N

Xαfα

in N(A[(Xi)i∈I ]) for some elements (fα)α of N , where Xα =
∏
i∈I X

αi
i . Accordingly, we have

for any A-algebra B and any element m =
∑
i∈I biei of M(B), the formula

f (m) =
∑
α:I→N

bαfα,

where bα =
∏
i∈I b

αi
i , by using the naturality of f with the unique morphism of A-algebras

A[(Xi)i∈I ] → B which sends Xi to bi for each i. By applying this to the element m =∑
i∈I TXiei of M(A[T, (Xi)i∈I ]), we obtain

f

(∑
i∈I

TXiei

)
=
∑
α:I→N

T |α|Xαfα,

where we have set |α| =
∑
i∈I α(i). Since f is homogeneous of degree d, the left side of this

equation is also equal to

T df

(∑
i∈I

Xiei

)
=
∑
α:I→N

T dXαfα.
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We conclude that T dfα = T |α|fα in N ⊗A A[T ] for any α : I → N, and thus that fα = 0
whenever |α| differs from d. We therefore have

f (m) =
∑
α:I→N
|α|=d

bαfα,

for any A-algebra B and any element m =
∑
i∈I biei of M(B). Using the decomposition (7),

we also have
γd(m) =

∑
β:J1,dK→I

⊗dj=1bβ(j)eβ(j) =
∑
α:I→N
|α|=d

bαeα.

The conclusion of Proposition II.2.19 is achieved by taking f̃ to be the unique morphism of
A-modules from TSdA(M) to N which sends eα to fα.

II.2.20. Let A → C be a ring morphism such that C is a finitely generated projective
A-module of rank d. For any A-algebra B and any element c of C(B), we set

NC/A(c) = detA(B)(mc),

where mc is the A(B)-linear endomorphism of C(B) induced by the multiplication by c. This
defines a homogeneous polynomial map NC/A : C → A of degree d (cf. II.2.17). By II.2.19,
there is a unique morphism of A-modules ϕ : TSdA(C)→ A such that NC/A = ϕγd.

Proposition II.2.21 ([SGA4], XVII 6.3.1.6). The morphism of A-modules ϕ : TSdA(C)→
A is a morphism of A-algebras.

Let x be an element of C, and let us consider the morphism of A-modules f : y → ϕ(γd(x)y)

from TSdA(C) to A. For any A-algebra B and any element c of C(B), we have

f(γd(c)) = ϕ(γd(x)γd(c)) = ϕ(γd(xc)) = NC/A(xc) = NC/A(x)NC/A(c)

by the multiplicativity of determinants, so that f(γd(c)) = NC/A(x)ϕ(γd(c)). By the uniqueness
statement in II.2.19, we obtain f = NC/A(x)ϕ, i.e. for all y in TSdA(C) we have

ϕ(γd(x)y) = NC/A(x)ϕ(y).(8)

For any A-algebra B, one can apply this argument to the morphism B → C(B) instead of
A → C. Thus (8) also holds for any element x of C(B) and any element y of TSdA(C)(B) =

TSdA(B)(C(B)) (cf. II.2.18). Now, let y be an element of TSdA(C) and let us consider the
morphism of A-modules g : z → ϕ(zy) from TSdA(C) to A. We have proved that gγd =
ϕ(y)NC/A, hence g = ϕ(y)ϕ by II.2.19. Thus ϕ is a morphism of rings. Since ϕ is also A-linear,
it is a morphism of A-algebras.

II.2.22. Let S be a scheme.

Definition II.2.23 ([SGA1], V.1.7).

. Let T be an object of a category C endowed with a right action of a group Γ. We say
that the quotient T/Γ exists in C if the covariant functor

C → Sets

U 7→ HomC(T,U)Γ

is representable by an object of C.
. Let T be an S-scheme. An action of a finite group Γ on T is admissible if there

exists an affine Γ-invariant morphism f : T → T ′ such that the canonical morphism
OT ′ → f∗OT induces an isomorphism from OT ′ to (f∗OT )Γ.
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Proposition II.2.24 ([SGA1], V.1.3). Let T be an S-scheme endowed with an admissible
right action of a finite group Γ. If f : T → T ′ is an affine Γ-invariant morphism such that
the canonical morphism OT ′ → f∗OT induces an isomorphism from OT ′ to (f∗OT )Γ, then the
quotient T/Γ exists and is isomorphic to T ′.

Proposition II.2.25 ([SGA1], V.1.8). Let T be an S-scheme endowed with a right action
of a finite group Γ. Then, the action of Γ on T is admissible if and only if T is covered by
Γ-invariant affine open subsets.

Proposition II.2.26 ([SGA1], V.1.9). Let T be an S-scheme endowed with an admissible
right action of a finite group Γ, and let S′ be a flat S-scheme. Then, the action of Γ on the
S′-scheme T ×S S′ is admissible, and the canonical morphism

(T ×S S′)/Γ→ (T/Γ)×S S′

is an isomorphism.

Let X be an S-scheme and let d ≥ 0 be an integer. The group Sd of permutations of J1, dK
acts on the right on the S-scheme X×Sd = X ×S · · · ×S X by the formula

(xi)i∈J1,dK · σ = (xσ(i))i∈J1,dK.

Proposition II.2.27. If X is Zariski-locally quasi-projective over S, then the right action
of Sd on X×Sd is admissible. In particular, the quotient Symd

S(X) = X×Sd/Sd exists in the
category of S-schemes.

Since X is Zariski-locally quasi-projective over S, any finite set of points in X with the
same image in S is contained in an affine open subset of X. Thus X×Sd is covered by open
subsets of the form U×Sd where U is an affine open subset of X whose image in S is contained
in an affine open subset of S. These particular open subsets are affine and Sd-invariant, so
that the action of Sd on X×Sd is admissible by Proposition II.2.25.

Remark II.2.28. If X = Spec(B) and S = Spec(A) are affine, then for any S-scheme T we
have

HomSch/S (X×Sd, T )Sd = HomAlgA(Γ(T,OT ), B⊗Ad)Sd

= HomAlgA(Γ(T,OT ),TSdA(B)),

cf. II.2.16. Thus Symd
S(X) is representable by the S-scheme Spec(TSdA(B)).

Proposition II.2.29. If X is flat and Zariski-locally quasi-projective over S, then Symd
S(X)

is flat over S. Moreover, for any S-scheme S′, the canonical morphism

Symd
S′(X ×S S′)→ Symd

S(X)×S S′

is an isomorphism.

This follows from Remark II.2.28 and from Proposition II.2.18.

Proposition II.2.30 ([SGA1], IX.5.8). Let G be a finite abelian group, let P be a G-torsor
over an S-scheme X in SÉt. Assume that P and X are endowed with right actions from a finite
group Γ such that the morphism P → X is Γ-equivariant, and that the following properties hold:

(a) The right Γ-action on P commutes with the left G-action.
(b) The right Γ-action on X is admissible (cf. II.2.23), and the quotient morphism X →

X/Γ is finite.
(c) For any geometric point x̄ of X, the action of the stabilizer Γx̄ of x̄ in Γ on the fiber

Px̄ of P at x̄ is trivial.
Then the action of Γ on P is admissible, and P/Γ is a G-torsor over X/Γ in SÉt.
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II.2.31. Let S be a scheme, let X be an S-scheme and let d ≥ 1 be an integer. Let G be
a finite abelian group, and let P → X be a G-torsor over X in SÉt. By II.2.12, the sheaf P is
representable by a finite étale X-scheme.

For each i ∈ J1, dK let pi : X×Sd → X be the projection on i-th factor, and let us consider
the G-torsor

p−1
1 P ⊗ · · · ⊗ p−1

d P = Gd \ P×Sd

over X×Sd, where Gd ⊆ Gd is the kernel of the multiplication morphism Gd → G. By II.2.12,
the object Gd \ P×Sd of SÉt is representable by an S-scheme which is finite étale over X×Sd.
The group Sd acts on the right on Gd \ P×Sd by the formula

(pi)i∈J1,dK · σ = (pσ(i))i∈J1,dK.

This action of Sd commutes with the left action of G on Gd \ P×Sd.
Proposition II.2.32. If X is Zariski-locally quasi-projective on S, then the right action

of Sd on Gd \ P×Sd is admissible (cf. II.2.23), so that the quotient P [d] of Gd \ P×Sd by Sd

exists in Sch/S. Moreover, the canonical morphism P [d] → Symd
S(X) is a G-torsor, and the

morphism
p−1

1 P ⊗ · · · ⊗ p−1
d P → r−1P [d]

where r : X×Sd → Symd
S(X) is the canonical projection, is an isomorphism of G-torsors over

X×Sd.

By II.2.27 and II.2.30, it is sufficient to show that if x̄ = (x̄i)
d
i=1 is a geometric point of

X×Sd, then the stabilizer of x̄ in Sd acts trivially on (Gd \ P×Sd)x̄. Assume that the finite set
{x̄i | i ∈ J1, d]} has exactly r distinct elements ȳ1, . . . , ȳr, where ȳj appears with multiplicity
dj . Then the stabilizer of x̄ in Sd is isomorphic to the subgroup

∏r
j=1 Sdj of Sd. For each

j ∈ J1, rK, the G-torsor Pȳj is trivial, and if e is a section of this torsor then (e)
dj
i=1 is a section

of Gdj \P
dj
ȳj which is Sdj -invariant. The action of Sdj on Gdj \P

dj
ȳj is therefore trivial, so that

the action of
∏r
j=1 Sdj on the G-torsor

(Gd \ P×Sd)x̄ = Gr \

 r∏
j=1

Gdj \ P
dj
ȳj


is trivial as well.

Proposition II.2.33. If X is flat and Zariski-locally quasi-projective on S, then for any
S-scheme S′, the canonical morphism

(P ×S S′)[d] → P [d] ×S S′

is an isomorphism.

By Proposition II.2.29, the canonical morphism

Symd
S′(X ×S S′)→ Symd

S(X)×S S′

is an isomorphism. Thus the second morphism in the composition

(P ×S S′)[d] → (P [d] ×S S′)×Symd
S(X)×SS′ Symd

S′(X ×S S′)→ P [d] ×S S′

is an isomorphism, while the first morphism is a morphism of G-torsors, hence an isomorphism.

II.3. Geometric local class field theory

Let k be a perfect field, and let L be a complete discretely valued extension of k with
residue field k. We denote by OL its ring of integers, and by mL the maximal ideal of OL.
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II.3.1. Let us consider the functor

OL : Algk → AlgOL
A 7→ lim

n
A⊗k OL/mnL,

with values in the category of OL-algebras.
Proposition II.3.2. The functor OL is representable by a k-scheme.

Indeed, if π is a uniformizer of L, then we have an isomorphism k((t)) → L which sends t
to π, so that the functor OL is isomorphic to the functor A 7→ A[[t]], which is representable by
an affine space over k of countable dimension.

Corollary II.3.3. The functor L = OL ⊗OL L is representable by an ind-k-scheme.

We can assume that L is the field of Laurent series k((t)). In this case, we have

L(A) = A((t)) = colimn t
−nA[[t]]

for any k-algebra A, and for each integer n the functor A 7→ t−nA[[t]] is representable by a
k-scheme, cf. II.3.2.

Proposition II.3.4. Let G (resp. H) be the functor from Algk to the category of groups
which associates to a k-algebra A the subgroup G(A) of A((t))× consisting of Laurent series of
the form 1 +

∑
r>0 art

−r where ar is a nilpotent element of A for each r > 0 and vanishes for
r large enough (resp. of Laurent series of the form 1 +

∑
r>0 art

r where ar belongs to A for
each r > 0). Let Z be the functor which sends a k-algebra A to the group of locally constant
functions Spec(A)→ Z. Then for any uniformizer π of L, the morphism

Gm,k × Z×G×H → L×,
(a, n, g, h) 7→ aπng(π)h(π),

is an isomorphism of group-valued functors.

Let A be a k-algebra. By ([CC13], 0.8), every invertible element u of A((t)) uniquely
factors as u = tnf(t)h(t) where f(t) and h(t) are elements of A[[t]]× and G(A) respectively,
and n : Spec(A) → Z is a locally constant function. Moreover, there is a unique factorisation
f(t) = ag(t) where a and g(t) belong to A× and H(A) respectively, hence the result.

Corollary II.3.5. The functor L× is representable by an ind-k-scheme. Moreover, its
restriction to the category of reduced k-algebras is representable by a reduced k-scheme.

The groups Z and H from Proposition II.3.4 are representable by reduced k-schemes, and so
is Gm,k. Moreover, the group G from II.3.4 is the filtered colimit of the functor n 7→ Gn, where
Gn is the functor which associates to a k-algebra A the subset Gn(A) of A((t))× consisting of
Laurent series of the form 1 +

∑n
r=1 art

−r where anr = 0 for each r ∈ J1, nK. For each n, the
functor Gn is representable by an affine k-scheme. Thus G is representable by an ind-k-scheme,
and so is L× by II.3.4. The last assertion of Corollary II.3.5 follows from the fact that G(A) is
the trivial group for any reduced k-algebra A.

Corollary II.3.6. Let d ≥ 0 be an integer, and let U(d)
L be the subfunctor 1+mdLOL (resp.

O×L ) of L× for d ≥ 1 (resp. for d = 0). Then the functor

L×/U(d)
L : Algk → Sets

A 7→ L×(A)/U(d)
L (A),

is representable by an ind-k-scheme. Moreover, its restriction to the category of reduced k-
algebras is representable by a reduced k-scheme.



58 II. THÉORIE DU CORPS DES CLASSES GÉOMÉTRIQUE

According to Proposition II.3.4, it is sufficent to show that (Gm,k × H)/U(d)
k((t)) is repre-

sentable by a reduced k-scheme. The case d = 0 is clear, while for d ≥ 1, we have for any
k-algebra A a bijection

A× ×AJ1,d−1K → (Gm,k ×H)(A)/U(d)
k((t))(A)

(ai)0≤i≤d−1 7→
d−1∑
i=0

ait
i,

hence the result.

II.3.7. From now on, we consider Spec(L), L× and L×/U(d)
L for each integer d ≥ 0 as

objects of the topos Spec(k)Ét. Let π be an uniformizer of L. We denote by Π the element
of L(k) corresponding to π via the canonical identification L ' L(k) . Thus the functor L× is
given by

L× : A ∈ Algk 7→ A((Π))×.

In particular, the Laurent series (Π − π)−1Π = −∑n≥1 π
−nΠn defines an L-point of L×. We

denote by ϕ : Spec(L) → L× the corresponding morphism. We follow here Contou-Carrère’s
convention; in [Su13], the morphism ϕ corresponds to the point (Π − π)Π−1 instead. This is
harmless since the inversion is an automorphism of the abelian group L×.

Theorem II.3.8 ([Su13], Th. A (1)). Let G be a finite abelian group. The functor

Tors⊗(L×, G)→ Tors(Spec(L), G)

P → ϕ−1P

is an equivalence of categories (cf. II.2.2, II.2.5).

In the case where k is algebraically closed, Serre constructed in [Se61] an equivalence

Tors(Spec(L), G)→ Tors⊗(L×, G).

More precisely, Serre considers étale isogenies over L× and the link with Tors⊗(L×, G) is pro-
vided by II.2.4. In [Su13], Suzuki shows that the functor from Theorem II.3.8 is a quasi-inverse
to Serre’s functor when k is algebraically closed, and extends the result to arbitrary perfect
residue fields. In particular, the equivalence from Theorem II.3.8 is canonical, even though its
definition depends on the choice of π. Suzuki’s proof of Theorem II.3.8 relies on the Albanese
property of the morphism ϕ, previously established by Contou-Carrère.

Let Lsep be a separable closure of L, and let GL be the Galois group of Lsep over L, so
that the small étale topos of Spec(L) is isomorphic to the topos of sets with continuous left
GL-action. By II.2.13, the category of G-torsors over Spec(L) in Spec(k)Ét is isomorphic to the
category of G-torsors in the small étale topos Spec(L)ét. Correspondingly, for each finite abelian
group G, the group of isomorphism classes of the category Tors(Spec(L), G) is isomorphic to
the group of continuous homomorphisms from GL to G.

We denote by (GjL)j≥−1 the ramification filtration of GL ([Se68], IV.3), so that G−1
L = GL

and G0
L is the inertia subgroup of GL, while G0+

L = ∪j>0G
j
L is the wild inertia subgroup of GL.

Definition II.3.9. Let G be a finite abelian group and let d ≥ 0 be a rational number. A G-
torsor over Spec(L) (in Spec(k)Ét), corresponding to a continuous homomorphism ρ : GL → G,
is said to have ramification bounded by d if ρ(GdL) = {1}. A G-torsor over Spec(L) with
ramification bounded by 0 (resp. 1) is said to be unramified (resp. tamely ramified).

Remark II.3.10. If P → Spec(L) is a G-torsor in Spec(k)Ét, then we have a finite decom-
position

P =
∐
i∈I

Spec(Li),
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where each Li is a finite separable extension of L, and are pairwise isomorphic. The G-torsor
P has ramification bounded by d if and only if for each i (or, equivalently, for some i) the
extension Li/L has ramification bounded by d, in the sense GdL acts trivially on the finite set
HomL(Li, L

sep).

Proposition II.3.11. Let G be a finite abelian group, let d ≥ 0 be an integer, and let
P be a multiplicative G-torsor P over L× (cf. II.2.5). Assume that k is algebraically closed.
Then ϕ−1P has ramification bounded by d (cf. II.3.9) if and only if P is the pullback of a
multiplicative G-torsor over L×/U(d)

L (cf. II.3.6).

This follows from ([Se61], 3.2 Th. 1) and from the compatibility of ϕ−1 with Serre’s
construction ([Su13], Th. A (2)).

II.3.12. Let π and ϕ be as in II.3.7. Let K be a closed sub-extension of k in L, such that
K → L is a finite extension of degree d. Since L is a finite free K-algebra of rank d, we have a
canonical morphism of K-schemes

ψ : Spec(K)→ Symd
K(Spec(L))

by II.2.21.

Proposition II.3.13. The composition

Spec(K)
ψ−→ Symd

K(Spec(L))→ Symd
k(Spec(L))

Symd
k(ϕ)−−−−−→ Symd

k(L×)→ L×,

where the last morphism is given by the multiplication, corresponds to the K-point Pπ(Π)−1Πd

of L×, where the polynomial Pπ is the characteristic polynomial of the K-linear endomorphism
x 7→ πx of L.

We first describe the morphism ψ. The scheme Symd
K(Spec(L)) is the spectrum of the

k-algebra TSdK(L) of symmetric tensors of degree d in L, cf. II.2.27. The elements ei = πi−1

for i = 1, . . . , d form a K-basis of L, so that we have a decomposition

TSdK(L) =
⊕

α:J1,dK→N∑
i α(i)=d

Keα,

where we have set (cf. II.2.16)

eα =
∑

β:J1,dK→J1,dK
∀i,|β−1({i})|=α(i)

eβ(1) ⊗ · · · ⊗ eβ(d).

Let us write the norm polynomial as

NL/K

(
d∑
i=1

xiei

)
=

∑
α:J1,dK→N∑
i α(i)=d

fαx
α,

where xα = x
α(1)
1 . . . x

α(d)
d , and the fα’s are uniquely determined elements of K. The morphism

TSdK(L)→ K corresponding to ψ is the unique K-linear homomorphism which sends eα to fα
(cf. II.2.19 and its proof).

Next we describe the composition

Symd
K(Spec(L))→ Symd

k(Spec(L))
Symd

k(ϕ)−−−−−→ Symd
k(L×)→ L×.
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Its precomposition with the projection Spec(L)×Kd → Symd
K(Spec(L)) corresponds to the

element of L⊗Kd((Π))× given by the formula
d∏
i=1

(
(Π− 1⊗(i−1) ⊗ π ⊗ 1⊗(d−i))−1Π

)
= P (Π)−1Πd,

where the polynomial P (Π) can be computed as follows:

P (Π) =

d∏
i=1

(Π− 1⊗(i−1) ⊗ π ⊗ 1⊗(d−i))

=

d∑
r=0

(−1)rΠd−r
∑

(i1,...,id)∈{0,1}d
|{s|is=1}|=r

πi1 ⊗ · · · ⊗ πid

=

d∑
r=0

(−1)reαrΠ
d−r,

where αr : J1, dK→ N is the map which sends 1 and 2 to d− r and r respectively, and any i > 2
to 0. The image of P (Π) by ψ in K[Π] is the polynomial

d∑
r=0

(−1)rfαrΠ
d−r = NL[Π]/K[Π] (Πe1 − e2) .

Since e1 = 1 and e2 = π, we obtain II.3.13.

Proposition II.3.14. Let G be a finite abelian group, and let Q be a G-torsor over Spec(L)
(in Spec(k)Ét) of ramification bounded by d (cf. II.3.9). Then ψ−1Q[d] (cf. II.2.32) is tamely
ramified on Spec(K).

LetK ′ be the maximal unramified extension ofK in a separable closure ofK. The formation
of Symd

K(Spec(L)) is compatible with any base change by Proposition II.2.26 or by Proposition
II.2.29, and so is the formation of ϕ. Moreover, a G-torsor over Spec(K) is tamely ramified if
and only if its restriction to Spec(K ′) is tamely ramified. By replacing K and L by K ′ and
the components of K ′⊗K L respectively, we can assume that the residue field k is algebraically
closed.

Let P be the multiplicative G-torsor on L× (cf. II.2.5) associated to Q (cf. II.3.8), so
that Q is isomorphic to ϕ−1P . Then ψ−1Q[d] is isomorphic to the pullback of P along the
composition

Spec(K)
ψ−→ Symd

K(Spec(L))→ Symd
k(Spec(L))

Symd
k(ϕ)−−−−−→ Symd

k(L×)→ L×

considered in II.3.13. By II.3.13, this composition corresponds to the K-point of L× given by
Pπ(Π)−1Πd, where Pπ is the characteristic polynomial of π acting K-linearly by multiplication
on L. Let us consider the morphism of pointed sets

ρ : L×(K)→ H1(Spec(K)Ét, G)

ν → ν−1P

where an element ν of L×(K) is identified to a morphism Spec(K) → L×. If ν1 and ν2 are
elements of L×(K), then using the isomorphism θ : p−1

1 P ⊗ p−1
2 P → m−1P from II.2.5, we

obtain isomorphisms

(ν1ν2)−1P ← (ν1 × ν2)−1m−1P
(ν1×ν2)−1θ←−−−−−−− (ν1 × ν2)−1(p−1

1 P ⊗ p−1
2 P )← ν−1

1 P ⊗ ν−1
2 P.

Thus ρ is an homomorphism of abelian groups.
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We have to prove that ρ(ν) is the isomorphism class of a tamely ramified G-torsor over
Spec(K), where ν = Pπ(Π)−1Πd. Since Pπ is an Eisenstein polynomial, it can be written as
Pπ(Π) = Πd + cR(Π), where c = Pπ(0) is a uniformizer of K, and R is a polynomial of degree
< d with coefficients in OK , such that R(0) = 1. Thus we can write

ν = c−1ν1ν2,

where ν1 = R(Π)−1Πd and ν2 = (1 + c−1ΠdR(Π)−1)−1, so that ρ(ν) = ρ(c)−1ρ(ν1)ρ(ν2).
Since Q has ramification bounded by d (cf. II.3.9), the restriction of ρ to U(d)

L (K) is trivial
(cf. II.3.11). In particular, ρ(ν2) is trivial since ν2 belongs to U(d)

L (K).
The element ν1 belongs to L×(OK), so that the morphism ν1 : Spec(K) → L× factors

through Spec(OK). This implies that ρ(ν1) is the isomorphism class of an unramified G-torsor
over Spec(K). It remains to prove that ρ(c) is the isomorphism class of a tamely ramified
G-torsor over Spec(K). Since c belongs to K× = Gm,k(K) ⊆ L×(K), this is a consequence of
the following lemma:

Lemma II.3.15. Let T be a multiplicative G-torsor over the k-group scheme Gm,k (cf.
II.2.5). Then T is tamely ramified at 0 and ∞.

Let Gk be the constant k-group scheme associated to k. By II.2.9, there is a structure of
k-group scheme on T and an exact sequence

1→ Gk → T → Gm,k → 1(9)

in Spec(k)Ét, such that the structure of G-torsor on T is given by the action of its subgroup
G by translations. Since the fppf topology is finer than the étale topology on Sch/k, the
sequence 9 remains exact in the topos Spec(k)Fppf . In particular, we obtain a class in the group
Ext1

Fppf(Gm,k, Gk) of extensions of Gm,k by Gk in Spec(k)Fppf .
Let n = |G|. In the topos Spec(k)Fppf we have an exact sequence

1→ µn,k → Gm,k
n−→ Gm,k → 1,(10)

where µn,k is the k-group scheme of n-th roots of unity. By applying the functor Hom(·, Gk),
we obtain an exact sequence

Hom(µn,k, Gk)
δ−→ Ext1

fppf(Gm,k, Gk)
n−→ Ext1

fppf(Gm,k, Gk).

Since n = |G|, the group Ext1
Fppf(Gm,k, Gk) is annihilated by n, so that the homomorphism δ

above is surjective. Thus the exact sequence (9) in Spec(k)Fppf is the pushout of (10) along an
homomorphism µn,k → Gk. Let n′ be the largest divisor of n which is invertible in k. Then the
largest étale quotient of µn,k is the epimorphism µn,k → µn′,k given by x 7→ x

n
n′ . In particular,

the homomorphism µn,k → Gk factors through µn′,k, so that (9) is the pushout of the extension

1→ µn′,k → Gm,k
n′−→ Gm,k → 1

along an homomorphism µn′,k → Gk. Since the morphism Gm,k
n′−→ Gm,k is tamely ramified

above 0 and ∞, so is the morphism T → Gm,k.

II.4. Rigidified Picard schemes of relative curves

II.4.1. Let f : X → S be a smooth morphism of schemes of relative dimension 1, with
connected geometric fibers of genus g, which is Zariski-locally projective over S.

Proposition II.4.2. The canonical homomorphism OS → f∗OX is an isomorphism.
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If S is locally noetherian, thenOX is cohomologically flat over S in dimension 0 by ([EGA3],
7.8.6). This means that for any quasi-coherent OS-module M, the canonical homomorphism
f∗f
∗OX ⊗OS M → f∗f

∗M is an isomorphism. This implies that the formation of f∗OX
commutes with arbitrary base change: if f ′ : X ×S S′ → S′ is the base change of f by a
morphism of schemes S′ → S, then the canonical morphism f∗OX ⊗OS OS′ → f ′∗OX×SS′ is an
isomorphism, cf. ([EGA3], 7.7.5.3). By applying this result to the inclusion Spec(κ(s)) → S
of a point s of S, we obtain that f∗(OX)s ⊗OS,s κ(s) is isomorphic to H0(Xs,OXs) = κ(s).
Since f∗(OX) is a coherent OS-module, Nakayama’s lemma yield that the canonical morphism
OS → f∗(OX) is an epimorphism. It is also injective since f is faithfully flat, hence the result.

In general one can assume that S is affine and that X is projective over S, in which case
there is a noetherian scheme S0, a morphism S → S0 and a smooth projective S0-scheme X0

with geometrically connected fibers such that X is isomorphic to the S-scheme X0 ×S0
S, cf.

([EGA4], 8.9.1, 8.10.5(xiii), 17.7.9). We have already seen that in this case the canonical
homomorphism OS0

→ f∗OX0
is an isomorphism, and that the formation of f∗OX0

commutes
with arbitrary base change. In particular, both morphisms in the sequence

OS → f∗OX0
⊗OS0

OS → f∗OX
are isomorphisms.

Proposition II.4.3. Let d ≥ 2g − 1 be an integer, and let L be an invertible OX-module
with degree d on each fiber of f . Then, the OS-module f∗L is locally free of rank d − g + 1,
the higher direct images Rj(f∗L) vanish for j > 0, and the formation of f∗L commutes with
arbitrary base change: if f ′ : X ′ → S′ is the base change of f by a morphism S′ → S, then the
canonical homomorphism f∗L ⊗OS OS′ → f ′∗(L ⊗OX OX′) is an isomorphism.

We first assume that S is locally noetherian. For each point of s of S and for each integer
i, the Riemann-Roch theorem for smooth projective curves implies that the k(s)-vector space
Hi(Xs,Ls) is of dimension d − g + 1 for i = 0, and vanishes otherwise. This implies that
Rjf∗(L ⊗OX f∗N ) vanishes for any integer j > 0 and any OS-module N by the proof of
([EGA3], 7.9.8). Let

0→ N →M→ P → 0

be an exact sequence of OS-modules. Since f is flat and since L is a flat OX -module, the
sequence

0→ L⊗OX f∗N → L⊗OX f∗M→ L⊗OX f∗P → 0

is exact as well. Since R1f∗(L ⊗OX f∗N ) vanishes, the sequence

0→ f∗(L ⊗OX f∗N )→ f∗(L ⊗OX f∗M)→ f∗(L ⊗OX f∗P)→ 0

is exact. TheOX -module L is therefore cohomologically flat over S in dimension 0, cf. ([EGA3],
7.8.1). By ([EGA3], 7.8.4(d)) the OS-module f∗L is locally free, and the formation of f∗L com-
mutes with arbitrary base change. By applying the latter result to the inclusion Spec(κ(s))→ S
of a point s of S and by using that H0(Xs,Ls) is of dimension d− g + 1 over κ(s), we obtain
that the locally free OX -module f∗L is of constant rank d− g + 1.

In general one can assume that S is affine and that X is projective over S, in which case
there is a noetherian scheme S0, a morphism S → S0, a smooth projective S0-scheme X0, and
an invertible OX0

-module L0 such that X is isomorphic to the S-scheme X0 ×S0
S and L is

isomorphic to the pullback of L0 by the canonical projection X0 ×S0 S → X0, cf. ([EGA4],
8.9.1, 8.10.5(xiii), 17.7.9). We have seen that the OS0 -module f0∗L is locally free of rank
d − g + 1, and that its formation commutes with arbitrary base change. By performing the
base change by the morphism S → S0, we obtain that f∗L is a locally free OS-module of rank
d− g + 1 and that the formation of f∗L commutes with arbitrary base change.
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II.4.4. Let f : X → S be as in II.4.1. The relative Picard functor of f is the sheaf
of abelian groups PicS(X) = R1fFppf,∗Gm in SFppf . Alternatively, PicS(X) is the sheaf of
abelian groups on S associated to the presheaf which sends an S-scheme T to Pic(X×S T ), the
abelian group of isomorphism classes of invertible OX×ST -modules. For any S-scheme S′, we
have (SFppf)/S′ = S′Fppf , and we thus have:

Proposition II.4.5. For any S-scheme S′, the canonical morphism

PicS′(X ×S S′)→ PicS(X)×S S′

is an isomorphism in S′Fppf .

The elements of Pic(X ×S T ) which are pulled back from an element of Pic(T ) yield trivial
classes in PicS(X)(T ), since invertible OT -modules are locally trivial on T (for the Zariski
topology, and thus for the fppf-topology). This yields a sequence

0→ Pic(T )→ Pic(X ×S T )→ PicS(X)(T )→ 0,(11)

which is however not necessarily exact. The following is Proposition 4 from ([BLR90], 8.1),
whose assumptions are satisfied by II.4.2:

Proposition II.4.6. If f has a section, then the sequence (11) is exact for any S-scheme
T .

By a theorem of Grothendieck ([BLR90], 8.2.1) the sheaf PicS(X) is representable by a sep-
arated S-scheme. By ([BLR90], 9.3.1) the S-scheme PicS(X) is smooth of relative dimension
g, and there is a decomposition

PicS(X) =
∐
d∈Z

PicdS(X),

into open and closed subschemes, where PicdS(X) is the fppf-sheaf associated to the presheaf

Schfp
/S → Sets

T 7→ {L ∈ Pic(X ×S T )|∀t̄→ T, degXt̄(Lt̄) = d}.
Here the condition degXt̄(Lt̄) = d runs over all geometric points t̄→ T of T .

II.4.7. Let f : X → S be as in II.4.1, and let i : Y ↪→ X be a closed subscheme of X,
which is finite locally free over S of degree N ≥ 1. A Y -rigidified line bundle on X is a
pair (L, α) where L is a locally free OX -module of rank 1 and α : OY → i∗L is an isomorphism
of OY -modules. Two Y -rigidified line bundles (L, α) and (L′, α′) are equivalent if there is an
isomorphism β : L → L′ of OX -modules such that (i∗β)α = α′. If such an isomorphism β
exists, then it is unique. Indeed, any other such isomorphism would take the form γβ for some
global section γ of O×X such that i∗γ = 1. Since f∗OX = OS (cf. II.4.2), we have γ = f∗δ for
some global section δ of O×S . Since the restriction of δ along the finite flat surjective morphism
Y → S is trivial, one must have δ = 1 as well, hence γ = 1.

Proposition II.4.8. Let PicS(X,Y ) be the presheaf of abelian groups on Schfp
/S which maps

a finitely presented S-scheme T to the set of isomorphism classes of YT -rigidified line bundles
on XT . Then, the presheaf PicS(X,Y ) is representable by a smooth separated S-scheme of
relative dimension N + g − 1.

We first consider the case where N = 1:

Lemma II.4.9. The conclusion of Proposition II.4.8 holds if N = 1.
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Indeed, if N = 1 then Y is the image of a section x : S → X of f . For any finitely presented
S-scheme T , we have a morphism

Pic(X ×S T )→ PicS(X,x)(T )

L → (L ⊗ (f∗x∗L)−1, id).

The kernel of this homomorphism consists of all invertible OX×ST -modules which are given by
the pullback of an invertibleOT -module. Moreover, any isomorphism class (L, α) in PicS(X,x)(T )
is the image of L by this morphism, hence its surjectivity. We conclude by II.4.6 that the canon-
ical projection morphism

PicS(X,x)→ PicS(X)

(L, α)→ L,

is an isomorphism of presheaves of abelian groups on Schfp
/S . This yields Lemma II.4.9 since

PicS(X) is a smooth separated S-scheme of relative dimension g (cf. II.4.4).
We now prove Proposition II.4.8. Since X ×S Y → Y has a section x = (i × idY ) ◦ ∆Y

where ∆Y : Y → Y ×S Y is the diagonal morphism of Y , we deduce from Lemma II.4.9 and its
proof that the canonical projection morphism

PicY (X ×S Y, x)→ PicY (X ×S Y ) = PicS(X)×S Y
sending a pair (L, α) to the class of L is an isomorphism. Let Z be the Y -scheme PicY (X×SY, x),
and let (Lu, αu) be the universal x-rigidified line bundle on X×SZ. The morphism Y ×SZ → Z
is finite locally free of rank N , so that the pushforward A (resp. M) of OY×SZ (resp. i∗ZLu) is a
locally free OZ-algebra of rank N (resp. a locally free OZ-module of rank N). Let λ :M→OZ
be the surjective OZ-linear homomorphism corresponding to α−1

u : x∗ZLu → OZ .
Let T be a Y -scheme, and let (L, β) be a YT -rigidified line bundle on XT . The section

xT : T → XT uniquely factors through YT and we still denote by xT the corresponding section
of YT . The pair (L, x∗Tβ) is then an xT -rigidified line bundle on XT , so that there is a unique
morphism z : T → Z such that (L, x∗Tβ) is equivalent to the pullback by z of (Lu, αu). Let us
assume that (L, x∗Tβ) is equal to this pullback. Then the global section β of i∗TL over Y ×S T
provides a global section of z∗M over T , which we still denote by β, such that (z∗λ)(β) = 1
and z∗M = (z∗A)β. Conversely, any such section produces a YT -rigidification of L on XT .
The functor PicS(X,Y )×S Y = PicY (X ×S Y, Y ×S Y ) is therefore isomorphic to the functor

Schfp
/S → Sets

T 7→ {(z, β) | z ∈ Z(T ), β ∈ Γ(T, z∗M), λ(β) = 1 andMT = ATβ}.
This implies that PicS(X,Y ) ×S Y is representable by a relatively affine Z-scheme, smooth
of relative dimension N − 1 over Z. By fppf-descent of affine morphisms of schemes along
the fppf-cover PicS(X) ×S Y → PicS(X), this implies the representability of PicS(X,Y ) by
an S-scheme, which is relatively affine and smooth of relative dimension N − 1 over PicS(X).
Since PicS(X) is separated and smooth of relative dimension g over S (cf. II.4.1), the S-scheme
PicS(X,Y ) is separated and smooth of relative dimension g +N − 1.

II.4.10. Let f : X → S be as in II.4.1, and let i : Y ↪→ X be a closed subscheme of
X, which is finite locally free over S of degree N ≥ 1, and let U = X \ Y be its complement.
A Y -trivial effective Cartier divisor of degree d on X is a pair (L, σ) such that L is a
locally free OX -module of rank 1 and σ : OX ↪→ L is an injective homomorphism such that
i∗σ is an isomorphism and such that the closed subscheme V (σ) of X defined by the vanishing
of the ideal σL−1 of OX is finite locally free of rank d over S. Two Y -trivial effective divisors
(L, σ) and (L′, σ′) are equivalent if there is an isomorphism β : L → L′ of OX -modules such
that βσ = σ′. As in II.4.7, if such an isomorphism exists then it is unique.
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Proposition II.4.11. The map (L, σ) 7→ (V (σ) ↪→ X) is a bijection from the set of equiv-
alence classes of Y -trivial effective Cartiers divisor of degree d on X onto the set of closed
subschemes of U which are finite locally free of degree d over S.

Let (L, σ) be a Y -trivial effective divisor of degree d on X. The ideal I = σL−1 is an
invertible ideal of OX such that the vanishing locus V (I) is finite locally free of rank d over S
and is contained in U . The pair (L, σ) is equivalent to (I−1, 1), and I is uniquely determined
by V (I). Conversely for any closed subscheme Z of U which is finite locally free of rank d over
S, the scheme Z is proper over S hence closed in X as well, and its defining ideal I in OXT is
invertible by ([BLR90], 8.2.6(ii)). The pair (I−1, 1) is then a Y -trivial effective Cartier divisor
of degree d on X.

Proposition II.4.12. Let d be an integer and let Divd,+S (X,Y ) be the functor which to
an S-scheme T associates the set of equivalence classes of YT -trivial effective Cartier divisors
of degree d on XT . Then Divd,+S (X,Y ) is representable by the S-scheme Symd

S(U), the d-th
symmetric power of U = X \ Y over S (cf. II.2.22). In particular Divd,+S (X,Y ) is smooth of
relative dimension d over S.

By Proposition II.4.11, the functor Divd,+S (X,Y ) is isomorphic to the functor which sends
an S-scheme T to the set of closed subschemes of UT which are finite locally free of rank d

over T . In other words, Divd,+S (X,Y ) is isomorphic to the Hilbert functor of d-points in the
S-scheme U .

If x is a T -point of U , we denote by O(−x) the kernel of the homomorphism OX×ST →
x∗OT , which is an invertible ideal sheaf, and by O(x) its dual, which is endowed with a section
1x : OT ↪→ O(x). The morphism

Symd
S(U)→ Divd,+S (X,Y )

(x1, . . . , xd)→
(

d⊗
i=1

O(xi),

d∏
i=1

1xi

)
is then an isomorphism of fppf-sheaves by ([SGA4], XVII.6.3.9), hence Proposition II.4.12.

Remark II.4.13. Let T be an S-scheme. Let Z be a closed subscheme of UT which is
finite locally free of rank d over T , therefore defining a T -point of Divd,+S (X,Y ) = Symd

S(U) by
Proposition II.4.11. By ([SGA4], XVII.6.3.9), this T -point is given by the composition

T → Symd
T (Z)→ Symd

T (UT )→ Symd
S(U),

where the first morphism is the canonical morphism from Proposition II.2.21.

Proposition II.4.14. Let d ≥ N + 2g − 1 be an integer, and let PicdS(X,Y ) be the inverse
image of PicdS(X) by the natural morphism PicS(X,Y ) → PicS(X). Then the Abel-Jacobi
morphism

Φd : Divd,+S (X,Y )→ PicdS(X,Y )

(L, σ) 7→ (L, i∗σ)

is surjective smooth of relative dimension d−N−g+1 and it has geometrically connected fibers.

Let Z be the scheme PicdS(X,Y ), and let (Lu, αu) be the universal Y -rigidified line bundle
of degree d on XZ . By ([BLR90], 8.2.6(ii)), the closed subscheme YZ of XZ is defined by an
invertible ideal sheaf I.

Let E be the pushforward ofM = Lu ⊗OXZ I by the morphism fZ : XZ → Z. By II.4.3,
the OZ-module E is locally free of rank d − N − g + 1, and for any morphism T → Z the
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canonical homomorphism

E ⊗OZ OT → fT∗(M⊗OXZ OXT )

is an isomorphism, where fT : XT → T is the base change of f by the morphism T → S. We
thus obtain an isomorphism

E → E′,(12)

of functors on the category of Z-schemes, where E is the functor T 7→ Γ(T, E ⊗OZ OT ) and E′
is the functor T 7→ Γ(XT ,M⊗OXZ OXT ). Let F be the pushfoward of Lu by the morphism
fZ . By the same argument, we obtain that the OZ-module F is locally free of rank d− g + 1,
and that we have an isomorphism

F → F ′,(13)

of functors on the category of Z-schemes, where F is the functor T 7→ Γ(T,F ⊗OZ OT ) and F ′
is the functor T 7→ Γ(XT ,Lu ⊗OXZ OXT ). Let us consider the exact sequence

0→M→ Lu → Lu ⊗OXZ OYZ → 0.

Since R1fZ∗M = 0 by II.4.3, we obtain an exact sequence

0→ E → F −→ G → 0,

where G is a locally free OZ-module of rank N . Together with (12) and (13), this yields an
exact sequence

0→ E′ → F ′
b−→ G→ 0,

of Z-group schemes in Zfppf , where G is the functor T 7→ Γ(T,GT ⊗OZ OT ). The section αu of
G over Z corresponds to a morphism αu : Z → G, and we have a morphism

Divd,+S (X,Y )→ F ′ ×b,G,αu Z
(L, σ) 7→ (σ, (L, i∗σ)),

which is an isomorphism: indeed, if (σ, (L, i∗σ)) is a T -point of F ′×b,G,αu Z, then for any point
t of T the restriction σt of σ to the fiber Xt = XT ×T t is a global section of the line bundle
Lt = L⊗OXT OXt , which is non zero since non vanishing on Yt = YT ×T t, so that σt : OXt → Lt
is an injective homomorphism and ([EGA4], 11.3.7) ensures that σ : OX → L is an effective
Cartier divisor on the relative curve XT , see also ([BLR90], 8.2.6(iii)). Since b is an E′-torsor
over G in Zfppf , we obtain that Divd,+S (X,Y ) is an E′-torsor in Zfppf . Since E′ is isomorphic to
E by (12), it is smooth of relative dimension d−N −g+ 1 over Z with geometrically connected
fibers, hence the conclusion of Proposition II.4.14.

II.5. Geometric global class Field Theory

II.5.1. Let f : X → S be a smooth morphism of schemes of relative dimension 1, with
connected geometric fibers of genus g, which is Zariski-locally projective over S, and let i :
Y ↪→ X be a closed subscheme of X which is finite locally free over S of degree N ≥ 1. Let
j : U → X be the open complement of Y . Let Λ be a finite ring whose cardinality is invertible
on S.

Definition II.5.2. A locally free Λ-module F of rank 1 in UÉt has ramification bounded
by Y over S if for any geometric point x̄ of Y with image s̄ in S, the restriction of F to
Spec(ÔXs̄,x̄)×Xs̄ Us̄ has ramification bounded by the multiplicity of Ys̄ at x̄ (cf. II.3.9).



II.5. GEOMETRIC GLOBAL CLASS FIELD THEORY 67

Theorem II.5.3. Let F be a locally free Λ-module of rank 1 in UÉt with ramification bounded
by Y over S (cf. II.5.2). Then, there is a unique (up to isomorphism) multiplicative locally free
Λ-module G of rank 1 on the S-group scheme PicS(X,Y ) (cf. II.2.6) such that the pullback of
G by the Abel-Jacobi morphism

U → PicS(X,Y ),

which sends x to (O(x), 1), is isomorphic to F .
In Section II.5.4, we study the restriction of the locally free Λ-module F [d] of rank 1 on

Divd,+S (X,Y ) (cf. II.2.32 and II.4.12) to a geometric fiber of the Abel-Jacobi morphism (cf.
II.4.14)

Φd : Divd,+S (X,Y )→ PicdS(X,Y )

(L, σ) 7→ (L, i∗σ).

This study will enable us to prove Theorem II.5.3 in Section II.5.10.

II.5.4. Let k be an algebraically closed field, letX be a smooth connected projective curve
of genus g over k and let i : Y → X be an effective Cartier divisor of degreeN with complementU
in X. Let L be a line bundle of degree d ≥ N + 2g− 1 on X, and let V be the (d−N − g+ 1)-
dimensional affine space over k associated to the k-vector space V = H0(X,L(−Y )), i.e. V is
the spectrum of the symmetric algebra of the k-module Homk(V, k). Let τ be a global section
of L on X such that i∗τ : OY → i∗L is an isomorphism.

Proposition II.5.5. Let Λ be a finite ring of cardinality invertible in k, and let F be a
locally free Λ-module of rank 1 in UÉt, with ramification bounded by Y (cf. II.5.2). Then the
pullback of F [d] (cf. II.2.32) by the morphism

V → Divd,+k (X,Y ),

which sends a section s of V to (L, τ − s), is a constant étale sheaf.

The morphism
V → Divd,+k (X,Y ),

which sends a point σ of V to (L, τ − σ), is an isomorphism from V to the fiber of Φd over the
k-point (L, i∗τ), cf. II.4.14. Proposition II.5.5 thus implies:

Corollary II.5.6. Let F be as in Proposition II.5.5. Then the locally free Λ-module F [d]

on Divd,+k (X,Y )Ét is constant on the fiber at (L, i∗τ) of the morphism

Φd : Divd,+k (X,Y )→ Picdk(X,Y )

from II.4.14.

We now prove Proposition II.5.5. To this end, we consider the morphism

ψ : A1
V → Divd,+k (X,Y ),

which sends a pair (t, σ), where t and σ are points of A1
k and V respectively, to the point

(L, τ − tσ) of Divd,+k (X,Y ). Let F be as in Propoosition II.5.5, and let G be the pullback by
ψ of F [d] (cf. II.2.32). Denoting by ιt : V → A1

V the section corresponding to an element t of
k = A1

k(k), we must prove that the sheaf ι−1
1 G is constant. The sheaf ι−1

0 G is constant, since
ψι0 is a constant morphism, hence it is sufficent to prove that ι−1

1 G and ι−1
0 G are isomorphic.

The latter fact follows from the following lemma:

Lemma II.5.7. The locally free Λ-module G is the pullback of an etale sheaf on V by the
projection π : A1

V → V .
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We now prove Lemma II.5.7. We start by proving that G is constant on each geometric
fiber of the projection π. Since the formation of ψ and G is compatible with the base change
along any field extension of k, it is sufficient to show that G is constant on each fiber of the
projection A1

V → V at a k-point σ of V . If σ = 0, then the restriction of ψ to the fiber of π
above σ is constant, hence G is constant on this fiber.

We now assume that σ is non zero. Since σ vanishes on the non empty divisor Y and τ
does not, the sections σ and τ are k-linearly independent in H0(X,L). Let D be the greatest
divisor on X such that D ≤ div(σ) and D ≤ div(τ). Since the divisor of τ is contained in U ,
so is D. We can then write σ = σ̃1D and τ = τ̃1D, where 1D is the canonical section of O(D)
and σ̃, τ̃ are global sections of L(−D) on X without common zeroes. Thus f = [τ̃ : σ̃] is a well
defined non constant morphism from X to P1

k. Thus, if W is the closed subscheme of X ×k A1
k

defined by the vanishing of τ − tσ, where t is the coordinate on A1
k, then we have

W = D ×k A1
k ∪ (Graph(f) ∩X ×k A1

k) ↪→ U ×k A1
k.

Moreover, the projection W → A1
k is finite flat of degree d, and the restriction of ψ to the fiber

at σ factors as

A1
k
ϕ−→ Symd

A1
k
(W )→ Symd

A1
k
(U ×k A1

k)→ Symd
k(U)→ Divd,+k (X,Y ),

where the first morphism ϕ is obtained from Proposition II.2.21, and the last morphism is the
isomorphism from Proposition II.4.12. Moreover, the pullback of F [d] to Symd

A1
k
(W ) coincides

with (p−1
1 F)[d], where p1 : W → U is the first projection. In particular, the sheaf G is isomorphic

to ϕ−1(p−1
1 F)[d].

Let K = k((t−1)) and let η = Spec(K) → A1
k be the corresponding punctured formal

neighbourhood of ∞. Let us form the following commutative diagram:

η

A1
k

Symd
η(W ×A1

k
η).

Symd
A1
k
(W )

ϕ

We can then write

W ×A1
k
η = D ×k η ∪Graph(f)×P1

k
η = D ×k η ∪X ×f,P1

k
η.

The divisors D×k η and X×f,P1
k
η of X×k η are disjoint, since the former lies over closed points

of X, while the latter lies over the generic point of X. We thus have a decomposition

W ×A1
k
η = D ×k η qX ×f,P1

k
η =

∐
i

Spec(Li)

where Li is either of the form K[T ]/(T di) if Spec(Li) is a connected component of D ×k η, or
a field extension of degree di of K if Spec(Li) is a connected component of X ×f,P1

k
η. In the

former case, the restriction of p−1
1 F to Spec(Li) is constant, while in the latter case, we have

the further information that the restriction of p−1
1 F to Spec(Li) has ramification bounded by

di (cf. II.3.9), since the ramification index of f at a point x above ∞ is greater than or equal
to the multiplicity of Y at x, and F has ramification bounded by Y by assumption. Moreover,
we have

∑
i di = d, and the morphism η → Symd

η(W ×A1
k
η) factors through the canonical

morphism ∏
i

Symdi
η (Spec(Li))→ Symd

η(W ×A1
k
η).

By II.3.14, we obtain that the restriction of G to η is tamely ramified. Since the tame funda-
mental group of A1

k is trivial, we conclude that G is a constant étale Λ-module on the fiber of π
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at σ. The conclusion of Lemma II.5.7 then follows from a descent result, namely Lemma II.5.9
below.

Remark II.5.8. While the proof of Proposition II.3.14, which constitutes the core of the
proof of Lemma II.5.7 above, uses geometric local class field theory, it should be noticed that
its statement does not refer to it. This explains why no form of local-global compatibility is
required in the proof of Lemma II.5.7.

Lemma II.5.9. Let g : T ′ → T be a quasi-compact smooth compactifiable morphism of
schemes of relative dimension δ with geometrically connected fibers, and let G be an étale sheaf
of Λ-modules on T ′ét which is constant on each geometric fiber of g. Then G is isomorphic to
the pullback by g of an étale sheaf of Λ-modules on Tét.

By ([SGA4], XVIII 3.2.5) the functor Rg! on the derived category of Λ-modules on T
admits the functor g! : K 7→ g∗K(δ)[2δ] as a right adjoint. Let us apply the functor H0 to the
adjunction morphism G → g!Rg!G. The morphism

G → H0(g!Rg!G) = g∗R2δg!G(δ)

is an isomorphism, as can be seen by checking the stalks at geometric points with the proper
base change theorem.

II.5.10. We now prove Theorem II.5.3. Let F be a locally free Λ-module of rank 1 over
UÉt. The family (F [d])d≥0 of locally free Λ-modules of rank 1 yields a multiplicative étale
Λ-module of rank 1 over the S-semigroup scheme

Div+
S (X,Y ) =

∐
d≥0

Divd,+S (X,Y ).

For each integer d ≥ N + 2g − 1, Corollary II.5.6 implies that the locally free Λ-module F [d]

of rank 1 on Divd,+S (X,Y ) (cf. II.2.32 and II.4.12) is constant on the geometric fibers of the
smooth surjective morphism (cf. II.4.14)

Φd : Divd,+S (X,Y )→ PicdS(X,Y )

(L, σ) 7→ (L, i∗σ).

This morphism satisfies the conditions of Lemma II.5.9 by Proposition II.4.14. We can therefore
apply Lemma II.5.9, and we obtain a locally free Λ-module Gd of rank 1 over PicdS(X,Y ) such
that Φ−1

d Gd is isomorphic to F [d]. By Proposition II.2.8, the family (Gd)d≥N+2g−1 yields a
multiplicative locally free Λ-module of rank 1 on the S-semigroup scheme

M =
∐

d≥N+2g−1

PicdS(X,Y ).

Since the morphism

ρ : M ×S M → PicS(X,Y )

(x, y) 7→ xy−1

is faithfully flat and quasi-compact, we can apply Proposition II.2.15, which yields a multiplica-
tive locally free Λ-module G of rank 1 over PicS(X,Y ) whose restriction to PicdS(X,Y ) coincides
with Gd for d ≥ N + 2g− 1. The families (F [d])d≥0 and (Φ−1

d Gd)d≥0 yield multiplicative locally
free Λ-modules of rank 1 on the S-semigroup scheme Div+

S (X,Y ) =
∐
d≥0 Divd,+S (X,Y ), whose

restrictions to the ideal
I =

∐
d≥N+2g−1

Divd,+S (X,Y )
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of Div+
S (X,Y ) are isomorphic. We obtain by Proposition II.2.7 an isomorphism from F [d] to

Φ−1
d Gd for each d ≥ 0. In particular, the locally free Λ-module Φ−1

1 G1 of rank 1 is isomorphic
to F .
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III.1. Introduction

III.1.1. The theory of local ε-factors over local fields with finite residue fields originated
from Tate’s thesis in rank 1, and was brought to its current form by works of Dwork [Dw56],
Langlands [Lan], Deligne [De73] and Laumon [La87]. Central motivations for these devel-
opments were the problem of decomposing the constants of functional equations of Artin’s
L-functions, or of Weil’s L-functions, as a product of local contributions, and the applica-
tions of such a decomposition to Langlands program through Deligne’s recurrence principle,
cf. ([La87], 3.2.2). Inspired by the work of Laumon [La87] and by Deligne’s 1974 letter to
Serre ([BE01], Appendix), we provide in this text an explicit cohomological construction of
ε-factors for `-adic Galois representations over equicharacteristic henselian discrete valuation
fields, with (not necessarily finite) perfect residue fields of positive characteristic, such as the
field of Laurent series k((t)) for any perfect field k of positive characteristic p. As it turns out,
these geometric local ε-factors fit into a product formula for the determinant of the cohomology
of an `-adic sheaf on a curve over a perfect field of characteristic p.

III.1.2. Let us first recall the classical theory for local fields with finite residue fields. We
restrict to the equicharacteristic case, and we give a slightly non standard presentation as a
preparation for our extension to the case of a general perfect residue field (cf. III.1.6). Let us
fix an algebraic closure Fp of Fp. Let ` be a prime number distinct from p and let ψ : Fp → Q×`
be a non trivial homomorphism. Let us consider quadruples (T,F , ω, s) where T is a henselian
trait of equicharacteristic p, whose closed point s is finite over Fp, where F is a constructible
étale Q`-sheaf on T , where ω is a non zero meromorphic 1-form on T (cf. III.7.1), and where
s : Spec(Fp)→ T is a morphism of schemes.

71
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A theory of `-adic local ε-factors over Fp, with respect to ψ, is a rule ε which assigns to
any such quadruple (T,F , ω, s) a homomorphism εs(T,F , ω) from the Galois group Gal(s/s)

to Q×` , and which satisfies the following axioms:

(1) the homomorphism εs(T,F , ω) depends only on the isomorphism class of the quadruple
(T,F , ω, s);

(2) there exists a finite extension E of Q` contained in Q`, depending on F , such that
εs(T,F , ω) is a continuous homomorphism from Gal(s/s) to E×;

(3) for any exact sequence
0→ F ′ → F → F ′′ → 0,

of constructible étale Q`-sheaves on T , we have

εs(T,F , ω) = εs(T,F ′, ω)εs(T,F ′′, ω);

(4) if F supported on the closed point of T , then εs(T,F , ω) is the `-adic character of
Gal(s/s) corresponding to the 1-dimensional representation det (Fs)−1;

(5) for each finite generically étale extension f : T ′ → T of henselian traits, there exists a
homomorphism λf (ω) from the Galois group Gal(s/s) to Q×` such that

εs(T, f∗F , ω) = λf (ω)rk(F)δ
a(T ′,F,f∗ω)
s′/s Vers′/s (εs′(T

′,F , f∗ω)) ,

for any constructible étale Q`-sheaf F on T ′, of generic rank rk(F), where the ver-
lagerung Vers′/s and the signature δs′/s are defined in III.3.23, and the conductor
a(T,F , f∗ω) is defined in III.7.2;

(6) if j : η → T is the inclusion of the generic point of T and if F is a lisse étale Q`-sheaf
of rank 1 on η, then we have

(−1)a(T,j∗F)εs(T, j∗F , ω)(Frobs) = ε(χF ,Ψω),

where Frobs is the geometric Frobenius element of Gal(s/s), where the conductor
a(T, j∗F) is defined in III.7.2, where Ψω : k(η)→ Λ× is the additive character given by
z 7→ ψ(Trk/Fp(zω)), where χF is the character of k(η)× associated to F by local class
field theory, and where ε(χF ,Ψω) is the automorphic ε-factor of the pair (χF ,Ψω), cf.
([La87], 3.1.3.2).

Theorem III.1.3. For any prime number p, any prime number ` distinct from p and any
non trivial homomorphism ψ : Fp → Q×` , there exists a unique theory of `-adic local ε-factors
over Fp, with respect to ψ.

Since the Galois group Gal(s/s) is procyclic, the `-adic character εs(T, j∗F , ω) is completely
determined by its value at the geometric Frobenius element of Gal(s/s). Actually, the rule which
associates the quantity

(−1)a(T,F)εs(T,F , ω)(Frobs),

to a quadruple (T,F , ω, s), where a(T,F) is the conductor of the pair (T,F) (cf. III.7.2),
satisfies the properties listed in ([La87], 3.1.5.4). Thus Theorem III.1.3 is a reformulation of
the theorem of Langlands [Lan] and Deligne [De73] regarding the existence and uniqueness of
local ε-factors.

The proof of existence by Deligne and Langlands in the finite field case is somewhat indirect:
starting with the prescribed values (6) of the local ε-factors in rank 1, local ε-factors are defined
in arbitrary rank by Brauer’s theory and by the induction property (5), and the main problem
is then to prove that the resulting factors are independent of the choices made. Our approach
is different: we first give a simple cohomological definition of local ε-factors in arbitrary rank
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(cf. III.9.2) using the theory of Gabber-Katz extensions (cf. III.1.6 below), and we use Brauer’s
theory only to establish the main properties of these local ε-factors.

Laumon gave a cohomological formula for local ε-factors over local fields with finite residue
fields ([La87], 3.5.1.1). If F is supported on the generic point η of T , then Laumon’s formula
takes the following form:

εs(T,F , dπ) = det(F (0,∞′)
π (F)) ◦ σπ,(14)

where π is a uniformizer of k(η), where Laumon’s local Fourier transform F
(0,∞′)
π (F) is an

`-adic representation of Gal(η/η), cf. ([La87], 2.4.1), and where σπ : Gal(s/s) → Gal(η/η)ab

is the section of the natural homomorphism Gal(η/η)ab → Gal(s/s) corresponding by local
class field theory to the unique section of the valuation homomorphism k(η)× → Z sending the
element 1 of Z to π.

It is straightforward to extend (14) to a rule εLau satisfying the properties (1), (2), (3) and
(4) of a theory of `-adic local ε-factors over Fp. Moreover, the normalization in rank 1, namely
property (6), can be proved directly for εLau by using Laumon’s `-adic stationary phase method
from [La87]. Unfortunately, there seems to be no direct proof that εLau satisfies the property
(5), namely the induction formula, and it is therefore not possible to take Laumon’s formula
as a definition of local ε-factors. However, the `-adic stationary phase method yields that the
rule εLau produced from Laumon’s formula (14) coincides with our own definition (cf. III.1.11)
in the finite field case (cf. III.11.8). Thus our main Theorem III.1.7 below, in conjunction with
the `-adic stationary phase method, proves the induction formula for εLau.

By using (14) and the `-adic stationary phase method, Laumon proved the following product
formula:

Theorem III.1.4 ([La87], Th. 3.2.1.1). Let X be a connected smooth projective curve of
genus g over a finite field k, let k be an algebraic closure of k, let ω be a non zero global mero-
morphic differential 1-form on X and let F be a constructible Q`-sheaf on X of generic rank
rk(F). The `-adic character εk(X,F) of Gal(k/k) associated to the 1-dimensional representa-
tion det(RΓ(Xk,F))−1 (cf. III.8.2) admits the following decomposition:

εk(X,F) = χN(g−1)rk(F)
cyc

∏
x∈|X|

δ
a(X(x),F|X(x)

)

x/k Verx/k

(
εx(X(x),F|X(x)

, ω|X(x)
)
)
,

where N is the number of connected components of Xk, where |X| is the set of closed points
of X, where X(x) is the henselization of X at a closed point x, and where χcyc is the `-adic
cyclotomic character of k. All but finitely many terms in this product are identically equal to 1.

The formulation of the product formula in Theorem III.1.4 differs from Laumon’s ([La87],
Th. 3.2.1.1), but yields an equivalent formula. Indeed, if k is of cardinality q, then evaluat-
ing the product formula in Theorem III.1.4 at the geometric Frobenius Frobk yields that the
determinant det

(
Frobk | RΓ(Xk,F)

)−1 is equal to

qN(1−g(X))rk(F)
∏
x∈|X|

(−1)
([k(x):k]−1)a(X(x),F|X(x)

)
εx(X(x),F|X(x)

, ω|X(x)
)(Frobx),

and
∑
x∈X [k(x) : k]a(X(x),F|X(x)

) has the same parity as the Euler characteristic −χ(Xk,F) by
the Grothendieck-Ogg-Shafarevich formula, hence the product formula asserts that the quantity

qN(1−g(X))rk(F)
∏
x∈|X|

(−1)
a(X(x),F|X(x)

)
εx(X(x),F|X(x)

, ω|X(x)
)(Frobx),

coincides with the determinant det
(
−Frobk | RΓ(Xk,F)

)−1, as in Laumon’s formulation ([La87],
Th. 3.2.1.1).
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For `-adic sheaves with finite geometric monodromy, the product formula in Theorem III.1.4
reduces by Brauer’s induction theorem to the rank 1 case, and the latter follows from Tate’s
thesis, cf. ([La87], 3.2.1.7). A geometric proof of the product formula in rank 1 was given
by Deligne in his 1974 letter to Serre ([BE01], Appendix), using geometric class field theory.
Deligne’s proof in the rank 1 case, which we review in Section III.8, extends to the case of an
arbitrary perfect base field k, and constitutes an important ingredient in the proof of the main
theorem III.1.7 below.

III.1.5. Let us consider a quadruple (T,F , ω, s), where T is an equicharacteristic henselian
trait, with perfect residue field of positive characteristic p, equipped with an algebraic closure
s of its closed point s, where ω is a non zero meromorphic 1-form on T (cf. III.7.1) and where
F is a constructible étale Q`-sheaf on T .

Let us assume that F is irreducible, with vanishing fiber at s, and that k(s) is the per-
fection of a finitely generated extension of Fp, so that F has finite geometric monodromy by
Grothendieck’s local monodromy theorem (cf. III.9.9). If one wishes to construct an ε-factor
εs(T,F , ω) by using Brauer’s theorem from finite group theory, in order to reduce through addi-
tivity and induction to the rank 1 case, we need F to have finite monodromy, rather than merely
having finite geometric monodromy. When k is finite, the Galois group Gal(s/s) is procyclic,
hence some twist of F by a geometrically constant Q`-sheaf of rank 1 has finite monodromy, cf.
([De73], 4.10), and this allows Deligne and Langlands to reduce to the finite monodromy case.

In the general case, the Galois group Gal(s/s) is not procyclic, nor abelian, and twisting by
geometrically constant Q`-sheaves of rank 1 is not enough to reduce to the finite monodromy
case from the finite geometric monodromy case. However, it is possible to allow for such
a reduction by considering more general twists. More precisely, we can reduce to the finite
monodromy case at the following costs (cf. III.2.39, III.2.38):

(a) considering Q`-sheaves on T twisted by a Q×` -valued 2-cocycle on Gal(s/s), rather than
merely Q`-sheaves,

(b) allowing twists by higher rank (twisted) geometrically constant sheaves, rather than
rank 1 such sheaves.

The notion of twisted sheaf is recalled in III.3.7. Let us simply describe here the cor-
responding notion of twisted Q`-representation. If η is the generic point of T and if η is a
separable closure of ηs, with Galois group Gal(η/η) endowed with the natural homomorphism
r : Gal(η/η)→ Gal(s/s), then aQ`-representation of Gal(η/η) twisted by aQ×` -valued 2-cocycle
µ on Gal(s/s), is a continuous map

ρ : Gal(η/η)→ GL(V ),

where V is a finite dimensional vector space over some finite extension of Q` contained in Q`,
which satisfies

ρ(g)ρ(h) = µ(r(g), r(h))ρ(gh),

for all g, h in Gal(η/η). When µ = 1 is the trivial cocycle, a twisted Q`-representation of
Gal(η/η) is simply a Q`-Galois representation over η. The preliminary section III.2 is devoted
to a more thorough discussion of twisted representations.

III.1.6. Let k be a perfect field of positive characteristic p, with algebraic closure k, and
let `, ψ be as in III.1.1. Let us consider quadruples (T,F , ω, s) where T is a henselian trait over
k, whose closed point s is finite over k, equipped with a k-morphism s : Spec(k) → T , where
ω is a non zero meromorphic 1-form on T (cf. III.7.1) and where F is a potentially unipotent
(cf. III.9.8) constructible étale Q`-sheaf on T twisted (cf. III.3.7) by some unitary 2-cocycle
on Gal(s/s), i.e. a 2-cocycle which is continuous with values in a finite subgroup of Q×` (cf.
III.2.10).
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Here, the potential unipotency assumption means that some open subgroup of the inertia
group of T acts unipotently on the `-adic (twisted) Galois representation associated to F . If k
is finite, or more generally if k is the perfection of a finitely generated field of characteristic p,
then Grothendieck’s local monodromy theorem (cf. III.9.9) asserts that any constructible étale
Q`-sheaf on T has potentially unipotent restriction to the generic point of T , hence in these
cases any reference to potential unipotency can be dropped in what follows.

A theory of twisted `-adic local ε-factors over k, with respect to ψ, is a rule ε which assigns
to any such quadruple (T,F , ω, s) a map εs(T,F , ω) from the Galois group Gal(s/s) to Q×` ,
and which satisfies the following axioms:

(i) the map εs(T,F , ω) depends only on the isomorphism class of the quadruple (T,F , ω, s);
(ii) there exists a finite extension E of Q` contained in Q`, depending on F , such that

εs(T,F , ω) is a continuous map from Gal(s/s) to E×;
(iii) (cf. III.9.3) for any exact sequence

0→ F ′ → F → F ′′ → 0,

of potentially unipotent constructible étale Q`-sheaves on T twisted by the same unitary
2-cocycle, we have

εs(T,F , ω) = εs(T,F ′, ω)εs(T,F ′′, ω);

(iv) (cf. III.9.6) if F supported on the closed point of T , then the value of εs(T,F , ω) at
an element g of Gal(s/s) is given by

εs(T,F , ω)(g) = det (g | Fs)−1
;

(v) (cf. III.9.18) for each finite generically étale extension f : T ′ → T of henselian traits
T ′ and T over k, there exists a homomorphism λf (ω) from the Galois group Gal(s/s)

to Q×` such that

εs(T, f∗F , ω) = λf (ω)rk(F)δ
a(T ′,F,f∗ω)
s′/s Vers′/s (εs′(T

′,F , f∗ω)) ,

for any potentially unipotent constructible étale Q`-sheaf F on T ′, of generic rank
rk(F), twisted by some unitary 2-cocycle on Gal(s/s), where the signature δs′/s and the
verlagerung or transfer Vers′/s are defined in III.3.22;

(vi) if the fiber of F at the closed point s of T vanishes and if F is generically of rank 1,
with Swan conductor ν − 1, then the value of εs(T,F , ω) at an element g of Gal(s/s) is
prescribed as follows:

εs(T,F , ω)(g) = det
(
g | Hν

c

(
Picν+v(ω)(T, νs)s, χF ⊗ Lψ{Resω}(−v(ω))

))
,

where v(ω) is the valuation of ω (cf. III.7.1), where Picν+v(ω)(T, νs) is the component
of degree ν+v(ω) of the local Picard group (cf. III.5.20), where χF is the multiplicative
local system on the group Pic(T, νs) naturally associated to F by twisted local geometric
class field theory (cf. III.5.45), and where Lψ{Resω} is the Artin-Schreier local system
associated to the residue morphism Resω, cf III.7.5 for details;

(vii) (cf. III.9.5) if G is a geometrically constant Q`-sheaf on T , twisted by some unitary
2-cocycle on Gal(s/s) (possibly different from the 2-cocycle by which F is twisted), then
we have

εs(T,F ⊗ G, ω) = det(Gs)a(T,F,ω)εs(T,F , ω)rk(G),

where the conductor a(T,F , ω) is defined in III.7.2.
Our main result can then be stated as follows:
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Theorem III.1.7 (cf. III.9.20). Let k be a perfect field of positive characteristic p > 0.
Then for any prime number ` distinct from p and any non trivial homomorphism ψ : Fp → Q×` ,
there exists a unique theory of twisted `-adic local ε-factors over k, with respect to ψ. Moreover,
we have the following properties:

(viii) the map εs(T,F , ω) does not depend on the subfield k of k(s).
(ix) (cf. III.9.4) for any quadruple (T,F , ω, s) over k, where F is twisted by a unitary

2-cocyle µ on Gal(s/s), we have

εs(T,F , ω)(g)εs(T,F , ω)(h) = µ(g, h)a(T,F,ω)εs(T,F , ω)(gh)

for any elements g, h of Gal(s/s), where s is the closed point of T and where a(T,F , ω)
is the conductor defined in III.7.2. In particular the 2-cocycle µa(T,F,ω) is a coboundary
(cf. III.2.6).

In the untwisted case, the property (vii) is a consequence of (i)−(vi), since one can assume
that the twist G is of rank 1, and one can then use Brauer’s induction theorem together with
(i) − (v) to reduce to the case where F is also of rank 1, so that (vii) then follows from (vi),
cf. ([La87], 3.1.5.6).

When k is finite, then for any finite extension k(s) of k contained in k, any unitary 2-cocycle
on Gal(k/k(s)) is a coboundary, and thus the theory of twisted `-adic local ε-factors over k is
not more general than the classical theory of Deligne and Langlands. Actually, we have:

Theorem III.1.8 (cf. III.9.21). Let (T,F , ω, s) be a quadruple as in III.1.6 over a finite
field k, where F is untwisted, i.e. twisted by the trivial cocycle. Then the quantity

(−1)a(T,F)εs(T,F , ω)(Frobs),

Frobs is the geometric Frobenius in Gal(s/s), where s is the closed point of T and where a(T,F)
is the conductor of (T,F) (cf. III.7.2), coincides with the classical local ε-factor, normalized as
in ([La87], Th. 3.1.5.4).

This result will be deduced from the normalization (vi) of geometric local ε-factors and
from the Grothendieck-Lefschetz trace formula (cf. III.7.22).

As in the case of a finite base field (cf. III.1.5), we have a product formula:

Theorem III.1.9 (cf. 60). Let X be a connected smooth projective curve of genus g(X)
over a perfect field k, let ω be a non zero global meromorphic differential 1-form on X and let
F be a Q`-sheaf on X of generic rank rk(F), twisted by some unitary 2-cocycle on Gal(k/k)
(cf. III.3.7), such that for any closed point x of X the restriction of F to the henselization X(x)

of X at x is potentially unipotent. Then the trace function εk(X,F) on Gal(k/k) associated to
the twisted 1-dimensional representation det(RΓ(Xk,F))−1 (cf. III.8.2) admits the following
decomposition:

εk(X,F) = χN(g(X)−1)rk(F)
cyc

∏
x∈|X|

δ
a(X(x),F|X(x)

)

x/k Verx/k

(
εx(X(x),F|X(x)

, ω|X(x)
)
)
,

where N is the number of connected components of Xk, where |X| is the set of closed points of
X and χcyc is the `-adic cyclotomic character of k. All but finitely many terms in this product
are identically equal to 1.

We first prove Theorem III.1.9 in the case of (twisted) Q`-sheaves with finite geometric
monodromy, cf. III.10.3, and we then prove the general case in Section III.11 by using Laumon’s
`-adic stationary phase method. An important ingredient of the proof is the following extension
of Laumon’s formula (14):
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Theorem III.1.10 (cf. III.11.8). Let T be an henselian trait with closed point s, such that
k(s) is a perfect field of positive characteristic p, and let F be a potentially unipotent Q`-sheaf
on T with vanishing fiber at s, twisted by some unitary 2-cocycle on Gal(k/k) (cf. III.3.7). Let
π be a uniformizer on T , and let χ

det(F
(0,∞′)
π (F))

be the multiplicative Q`-local system associated

to det(F
(0,∞′)
π (F)) by geometric class field theory (cf. III.5.45), where F

(0,∞′)
π (F) is Laumon’s

local Fourier transform, cf. ([La87], 2.4.1). Then the trace map of the stalk of χ
det(F

(0,∞′)
π (F))

at π−1 coincides with εk(T,F , dπ).

Laumon’s proof of this result when k is finite starts with a reduction to the tamely ramified
case ([La87], 3.5.3.1), and then resort to a computation in the latter case ([La87], 2.5.3.1).
Instead of adapting Laumon’s proof to the general case, we choose to avoid these steps in our
treatment of Theorem III.1.10 : we give a direct proof by using the `-adic stationary phase
method (cf. III.11.5) and by specializing Theorem III.1.7 to the case where the base field k is
(the perfection of) a henselian discretely valued field of equicharacteristic p.

III.1.11. Let us briefly describe our definition of twisted `-adic local ε-factors over a
perfect field k of positive characteristic p (cf. III.1.6). Let (T,F , ω, s) be a quadruple over k as
in III.1.6, and let s be the closed point of T . We fix a uniformizer π of OT , and denote by π as
well the morphism

π : T → A1
s,

corresponding to the unique morphism k(s)[t] → OT of k(s)-algebras which sends t to π.
The theory of Gabber-Katz extensions, originating from [Ka86] and reviewed in Section III.4,
ensures the existence of a (twisted) Q`-sheaf π♦F on A1

s, unique up to isomorphism, such that:

(1) the pullback π−1π♦F is isomorphic to F ;
(2) the Q`-sheaf π♦F is tamely ramified at infinity;

(3) the restriction of π♦F to Gm,s is a local system whose geometric monodromy group has
a unique p-Sylow.

We then simply define

εs(T,F , dπ) = det
(
RΓc(A1

s, π♦F ⊗ L−1
ψ )
)−1

,

where Lψ is the Artin-Schreier sheaf on the affine line associated to ψ. Using geometric class
field theory, we then define εs(T,F , ω) for arbitrary meromorphic 1-forms ω on T , cf. III.9.2.

We then show in Section III.9, using a variant of Brauer’s induction theorem (cf. III.2.36),
that the resulting local ε-factor is independent of the choice of π (cf. III.9.16) and that it
satisfies the properties (i) − (ix) listed in III.1.6 and in Theorem III.1.7. The most notable of
these properties is the induction formula (v), which is proved using generalized Gabber-Katz
extensions (cf. III.4.18) and the product formula (cf. III.1.7) in generic rank 1, proved by
Deligne in his 1974 letter to Serre, the latter being published as an appendix in [BE01] and
reviewed in Section III.8.

III.1.12. We now describe the organization of this paper. Section III.2 contains prelim-
inary definitions and results on representations of groups twisted by a 2-cocycle. It notably
includes an extension of Brauer’s induction theorem to this context, namely Theorem III.2.36,
and a useful decomposition of a twisted representation according to its restriction to a finite
normal subgroup in Proposition III.2.39.

Section III.3 is devoted to basic definitions and results regarding `-adic sheaves and their
twisted counterparts.
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We review in Section III.4 the theory of Gabber-Katz extensions, following the exposition
by Katz in [Ka86]. We provide mild generalizations of the results found in the latter article,
namely an extension to twisted `-adic sheaves on arbitrary Gabber-Katz curves.

Section III.5 is devoted to geometric class field theory, in both of its global and local
incarnations. Since this topic is of independent interest, we choose to present more material
than what is strictly necessary in order to prove the main results of this text. We discuss
in particular the relations between different formulations of geometric local class field theory,
namely those of Serre [Se61], of Contou-Carrère [CC13] and Suzuki [Su13], or of Gaitsgory.
We also prove local-global compatibility in geometric class field theory (cf. III.5.36), as well as
functoriality with respect to the norm homomorphism (cf. III.5.37).

In Section III.6, we perform a series of computations aiming at describing multiplicative
local systems, namely the geometric analog of characters of abelian groups, on certain groups
schemes, such as the additive group Ga or the group of Witt vectors of length 2 over F2. All of
these computation can be considered as being part of the proof of the main proposition III.7.6
in Section III.7, which describes the cohomology groups appearing in our definition III.7.7 of
geometric local ε-factors in generic rank 1.

In Section III.8, we review Deligne’s 1974 letter to Serre on ε-factors, where the product
formula III.1.9 is proved in generic rank 1 by using geometric class field theory. We also provide
a mild generalization to the context of twisted `-adic sheaves.

Section III.9 is devoted to the proofs of the main results of this text, namely that the
twisted `-adic ε-factors defined with Gabber-Katz extensions as in III.1.11 are independent of
the choice of uniformizer and satisfy the properties (i) − (ix) listed in III.1.6 and in Theorem
III.1.7. Our main tools are the reduction to the rank 1 case allowed by the results of Section
III.2, and the product formula in generic rank 1 from Section III.8. We also prove Theorem
III.1.8 in this section.

Finally, we prove the product formula for (twisted) `-adic sheaves of arbitrary rank, first
for `-adic sheaves with finite geometric monodromy in section III.10, by using the results of
Section III.2 to reduce to the rank 1 case handled in Section III.8, and then in the general case
in Section III.11, by following closely Laumon’s proof in the finite field case.
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III.1.13. Conventions and notation. We fix a perfect field k of positive characteristic
p, and we denote by k a fixed algebraic closure of k. We denote by Gk = Gal(k/k) the Galois
group of the extension k/k. For any k-scheme X, and for any k-algebra k′, we denote by Xk′

the fiber product of X and Spec(k′) over Spec(k). The group Gk acts on the left on k, and thus
acts on the right on Xk.

We fix as well a prime number ` different from p, and we denote by C an algebraic closure
of the field Q` of `-adic numbers, endowed with the topology induced by the `-adic valuation.
We denote by Z`(1) the invertible Z`-module consisting of sequences (ζn)n≥0 of elements of k
such that ζ0 = 1 and ζ`n+1 = ζn for each n, endowed with the natural action of Gk. For each
integer ν, we denote by Z`(ν) the invertible Z`-module Z`(1)⊗ν . More generally, for any `-adic
sheaf F on a k-scheme (cf. III.3.5) we denote by F(ν) the tensor product of F and Z`(ν) over
Z`. We also denote by

χcyc : Gk → Z×`
g → Tr(g | Z`(1)),
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the character associated to the `-adic representation Z`(1) of Gk.

III.2. Preliminaries on representations of twisted groups

III.2.1. Let G be a profinite topological group, and let f : G→ X be a continuous map
onto a finite set X endowed with the discrete topology. The open normal subgroups of G form
a basis of open neighbourhoods at the unit element of G. Hence, for each element g of G,
there exists an open normal subgroup Ig such that the coset gIg is contained in the open subset
f−1(f(g)). Since G is compact, there exists a finite family (gj)j∈J of elements of G such that
the open subsets (gjIgj )j∈J form a cover of G. Thus, if I is the intersection of the open normal
subgroups (Igj )j∈J , then I is itself an open normal subgroup of G and f is both left and right
I-invariant.

III.2.2. An admissible `-adic ring is a commutative topological ring which is isomorphic
to one of the following:

(1) a finite local Z/`n-algebra for some integer n, endowed with the discrete topology,

(2) the ring of integers in a finite extension of Q`, endowed with the topology defined by
the `-adic valuation,

(3) a finite extension of Q`, endowed with the topology defined by the `-adic valuation.

An `-adic coefficient ring is a commutative topological ring Λ such that any finite subset of Λ
is contained in a subring of Λ, which is an admissible `-adic ring for the subspace topology. In
particular, any admissible `-adic ring is an `-adic coefficient ring as well.

Example III.2.3. The ring C (cf. III.1.13) endowed with the topology induced by the
`-adic valuation, is an `-adic coefficient ring.

Remark III.2.4. Any admissible `-adic ring is a finitely presented Z`-agebra. In particular,
the set of admissible `-adic subrings of an `-adic coefficient ring is filtered when ordered by
inclusion.

III.2.5. Let T be a topological space and let Λ be an `-adic coefficient ring (cf. III.2.2).
A map f : T → Λ is said to be Λ-admissible if it is continuous and if its image is contained in
an admissible `-adic subring of Λ.

Similarly, if V is a free Λ-module of finite rank, a map f : T → AutΛ(V ) (resp. f :
T → AutΛ(V )/Λ×) is said to be Λ-admissible if it is continuous and if there is an admissible
`-adic subring Λ0 of Λ and a Λ0-form V0 of V such that f factors through AutΛ0

(V0) (resp.
AutΛ0

(V0)/Λ×0 ).

III.2.6. Let G be a topological group, and let Λ be an `-adic coefficient ring (cf. III.2.2).
For each integer j, let Cj(G,Λ×) be the group of Λ-admissible maps from Gj to Λ×. We define
a complex

C1(G,Λ×)
d1

−→ C2(G,Λ×)
d2

−→ C3(G,Λ×),

as follows: if λ is an element of C1(G,Λ×), we set

d1(λ) : G2 → Λ×

(x, y)→ λ(x)λ(y)λ(xy)−1,
(15)

which is indeed Λ-admissible, and if µ is an element of C2(G,Λ×), we set

d2(µ) : G3 → Λ×

(x, y, z)→ µ(x, y)µ(xy, z)µ(x, yz)−1µ(y, z)−1,
(16)
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which is Λ-admissible as well. If λ is an element of C1(G,Λ×), then we have

d1(λ)(x, y)d1(λ)(xy, z) = λ(x)λ(y)λ(z)λ(xyz)−1 = d1(λ)(x, yz)d1(λ)(y, z),

and thus d2 ◦ d1 vanishes.

Definition III.2.7. An admissible 2-cocycle (resp. 2-boundary) on G with values in Λ×

is an element of the kernel of d2 (resp. of the image of d1). The second admissible cohomology
group of G with coefficients in Λ×, denoted H2

adm(G,Λ×), is the quotient of the group of
admissible 2-cocycles on G with values in Λ×, by the subgroup of admissible 2-boundaries.

We also have
H2

adm(G,Λ×) = colimΛ0
H2

adm(G,Λ×0 ),

where Λ0 runs over the filtered set of admissible `-adic subrings of Λ (cf. III.2.4), and the group
H2

adm(G,Λ×0 ) coincides with the second continuous cohomology group of G with coefficients in
Λ×0 .

Remark III.2.8. IfG is finite, then any map fromGj to Λ× is Λ-admissible. Thus the group
H2

adm(G,Λ×) coincides with the second cohomology group H2(G,Λ×) of G with coefficients in
Λ.

III.2.9. Let Λ be an `-adic coefficient ring (cf. III.2.2). A Λ-admissible multiplier on
a topological group G is an admissible 2-cocycle µ with values in Λ× (cf. III.2.7), such that
µ(1, 1) = 1. In particular, a multiplier µ satisfies the cocycle relation

µ(x, y)µ(xy, z) = µ(x, yz)µ(y, z),(17)

for all x, y, z in G. By specializing this relation to x = y = 1, we obtain µ(1, z) = 1 for any z
in G. Likewise, we have µ(x, 1) = 1 for any x in G.

Definition III.2.10. A Λ-admissible multiplier µ on a topological group G is said to be
unitary if there is an integer r ≥ 1 such that µr = 1.

Since the group of r-th roots of unity in Λ is a discrete subgroup of Λ×, any unitary
multiplier on a topological group G must be locally constant. If moreover G is profinite, then
any Λ-admissible multiplier on G must be left and right I-invariant for some open normal
subgroup I of G (cf. III.2.1).

Definition III.2.11. A Λ-twisted topological group (resp. a Λ-twisted group) is a pair
(G,µ), where G is a topological group (resp. a discrete group) and µ is a Λ-admissible multiplier
on G. A morphism of Λ-twisted topological groups from (G,µ) to (G′, µ′) is a continuous group
homomorphism f : G→ G′ such that µ(x, y) = µ′(f(x), f(y)) for all x, y in G.

Remark III.2.12. Let G be a topological group, and let λ : G→ Λ× be a Λ-admissible map
(cf. III.2.5) such that λ(1) = 1. Then the 2-boundary d1(λ) (cf. 15) is a multiplier on G. The
quotient of the group of Λ-admissible multipliers on G by the group of 2-coboundaries d1(λ)
such that λ(1) = 1, is isomorphic to the second admissible cohomology group H2

adm(G,Λ×),
since any Λ-admissible 2-cocycle µ on G factors as µ = cµ′, where µ′ is a Λ-admissible multiplier
on G and c = µ(1, 1) is a unit of Λ, and we have c = d1(c).

III.2.13. Let (G,µ) be a Λ-twisted topological group (cf. III.2.11). A Λ-admissible
representation of (G,µ) is a pair (V, ρ), where V is a free Λ-module of finite rank, and ρ : G→
AutΛ(V ) is a Λ-admissible map (cf. III.2.5) such that

ρ(x)ρ(y) = µ(x, y)ρ(xy),

for all x, y in G. Since µ(1, 1) = 1, this relation implies ρ(1) = idV .
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If (V, ρ) and (V ′, ρ′) are both Λ-admissible representations of (G,µ), we define a morphism
from (V, ρ) to (V ′, ρ′) to be a homomorphism f : V → V ′ of Λ-modules such that f ◦ ρ(x) =
ρ′(x) ◦ f for all x in G.

We will denote by RepΛ(G,µ) the category of Λ-admissible representations of (G,µ).

Remark III.2.14. If (V, ρ) is a Λ-admissible representation of (G,µ), then the composition
of ρ with the projection AutΛ(V )→ AutΛ(V )/Λ× to the projective general linear group of V is
a genuine group homomorphism, thereby defining a projective representation of G. Moreover,
any Λ-admissible projective representation of a discrete group G is obtained in this way from a
Λ-admissible representation of (G,µ), for some multiplier µ. However, the category RepΛ(G,µ)
is additive, unlike the category of projective representations of G.

Remark III.2.15. If λ : G → Λ× is a Λ-admissible map with λ(1) = 1, then the func-
tor (V, ρ) 7→ (V, λρ) is an equivalence of categories from RepΛ(G,µ) to RepΛ(G,µd1(λ)) (cf.
III.2.12). These categories are thus equivalent, although non canonically, since the isomorphism
just constructed depends on λ. In particular, RepΛ(G,µ) depends only on the cohomology class
of µ, up to non unique equivalence.

Proposition III.2.16. Let H be an open subgroup of finite index in a Λ-twisted topological
group (G,µ). Let V be a free Λ-module of finite rank, and let ρ : G→ AutΛ(V ) be a map such
that ρ(x)ρ(y) = µ(x, y)ρ(xy) for all x, y in G. If (V, ρ|H) is a Λ-admissible representation of
(H,µ|H), then (V, ρ) is a Λ-admissible representation of (G,µ).

Indeed, there exists an admissible `-adic subring Λ0 ⊆ Λ and a Λ0-form V0 of V such
that ρ|H factors through AutΛ0(V0) and such that the induced map ρ|H : H → AutΛ0(V0) is
continuous. Let (gi)i∈I be a finite family of left H-cosets representatives. Up to replacing Λ0

with a larger admissible `-adic subring of Λ, we can assume (and we do) that each ρ(gi) belongs
to AutΛ0

(V0), and that µ takes its values in Λ×0 . The restriction of ρ to the open subset Hgi is
then given by the formula

ρ(hgi) = µ(h, gi)
−1ρ(h)ρ(gi).

Thus the restriction ρ|Hgi take its values in AutΛ0
(V0) and is continuous. Therefore ρ takes its

values in AutΛ0(V0) and is continuous, and consequently (V, ρ) is a Λ-admissible representation
of (G,µ).

III.2.17. Non zero Λ-admissible representations of (G,µ) may not exist for every µ.
Indeed, if Λ is an algebraically closed field, then the cohomology class associated to µ (cf.
III.2.12) must have finite order for such a representation to exist, by the following proposition.

Proposition III.2.18. Assume that the `-adic coefficient ring Λ is an algebraically closed
field. If a Λ-twisted topological group (G,µ) admits a Λ-admissible representation of rank r ≥ 1,
then there exists a Λ-admissible map λ : G→ Λ× (cf. III.2.5) such that λ(1) = 1, and such that
µd1(λ) (cf. III.2.12) is unitary (cf. III.2.10), with values in the group of r-th roots of unity in
Λ×.

Indeed, let Λ0 ⊂ Λ be an admissible `-adic subring of Λ such that µ takes its values in Λ×0 ,
and such that there exists a Λ0-admissible representation (V, ρ) of (G,µ), of rank r ≥ 1. We
have

det(ρ(g)) det(ρ(h)) = µ(g, h)r det(ρ(gh)),

for all g, h in G. Thus, if λ : G→ Λ× is a Λ-admissible map such that λ(1) = 1 and λr = det ◦ρ,
then the multiplier µd1(λ) (cf. III.2.6) is unitary, with values in r-th roots of unity. It remains
to show the existence of such a continuous map λ.

If Λ0 is finite, then there exists a map f from Λ×0 to Λ× such that f(w)r = w for any w in
Λ×0 . We can then choose λ = f ◦ det ◦ρ.
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Otherwise, we can assume that Λ0 is a finite extension E of Q`, with ring of integers OE .
The subgroup 1 + r`2OE of E× is open, and the map

1 + r`2OE → 1 + `OE

1 + x→ (1 + x)
1
r =

∑
n≥0

r−1(r−1 − 1) · · · (r−1 − n+ 1)

n!
xn,

is continuous. Let H be an open subgroup of G such that det ◦ρ(H) is contained in 1 + r`2OE .
Let (gc)c∈G/H be a set of representatives for the right cosets of H in G, such that g1 = 1,
and let (λc)c∈G/H be elements of Λ such that λrc = det(ρ(gc)) and λ1 = 1. Then, setting
λ(hgc) = det(ρ(h))

1
r µ(h, gc)

−1λc for h and c in H and G/H respectively yields a Λ-admissible
map from G to Λ× such that λ(1) = 1 and λr = det ◦ρ, hence the result.

III.2.19. Let f : (G,µ) → (G′, µ′) be a morphism of Λ-twisted topological groups (cf.
III.2.11), and let (V, ρ) be a Λ-admissible representation of (G′, µ′) (cf. III.2.13). Then (V, ρf)
is a Λ-admissible representation of (G,µ), which we denote by f∗V . This yields a functor f∗
from RepΛ(G′, µ′) to RepΛ(G,µ).

III.2.20. Let (V1, ρ1) and (V2, ρ2) be Λ-admissible representations of Λ-twisted topolog-
ical groups (G1, µ1) and (G2, µ2) respectively. Then the formula

(µ1 ⊗ µ2)((x1, x2), (y1, y2)) = µ1(x1, y1)µ2(x2, y2)

for x1, y1 in G1 and x2, y2 in G2, defines a multiplier on the topological group G1 × G2. The
free Λ-module of finite rank V1 ⊗Λ V2 is then endowed with a structure of continuous linear
representation of (G1×G2, µ1⊗µ2) over Λ, by defining ρ(x1, x2) = ρ1(x1)⊗ ρ2(x2) for (x1, x2)
in G1 ×G2.

If G1 = G2, then the diagonal morphism G→ G×G is a morphism of Λ-twisted topological
groups from (G,µ1µ2) to (G1×G2, µ1⊗µ2). The restriction of the Λ-admissible representation
V1 ⊗Λ V2 of (G1 × G2, µ1 ⊗ µ2) through this diagonal morphism then defines a Λ-admissible
representation of (G,µ1µ2), still denoted by V1 ⊗Λ V2.

III.2.21. Let (G,µ) be a Λ-twisted group (cf. III.2.11). The twisted group algebra
Λ[G,µ] of (G,µ) over Λ is given by a free Λ-module with basis ([x])x∈G, endowed with the
Λ-bilinear product defined by

[x][y] = µ(x, y)[xy],

for all x, y in G. The cocycle relation 17 is equivalent to the associativity of this product.
Moreover, recall from III.2.9 that µ(x, 1) = µ(1, z) = 1 for all x, z in G, hence [1] is a (left and
right) neutral element, and thus Λ[G,µ] is a unital associative Λ-algebra.

Proposition III.2.22. Let (G,µ) be a finite discrete Λ-twisted group. The functor which
sends a left Λ[G,µ]-module V which is free of finite rank over Λ to the Λ-admissible represen-
tation of (G,µ) on V defined by the formula ρ(x)(v) = [x]v for x in G and v in V is a Λ-linear
equivalence of categories, from the category of left Λ[G,µ]-modules which are free of finite rank
over Λ to the category Λ-admissible representations of G over Λ (cf. III.2.13).

In particular, if G is finite, then Λ[G,µ] is itself a non zero Λ-admissible representation
of (G,µ). By combining this obervation with Proposition III.2.18, we recover the well-known
result that any multiplier on G is cohomologous to a unitary multiplier with values in |G|-th
roots of unity, and thus that the abelian group H2

adm(G,Λ×) = H2(G,Λ×) (cf. III.2.8) is finite
with exponent dividing |G| whenever Λ is an algebraically closed field. This observation admits
the following reformulation in terms of central extensions:
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Proposition III.2.23. Assume that the `-adic coefficient ring Λ is an algebraically closed
field. Let G∗ be a central extension of a finite group G by Λ×. Then there exists a section
σ : G→ G∗ with σ(1) = 1 such that the 2-cocycle

µ : G2 → Λ×

(x, y)→ σ(x)σ(y)σ(xy)−1,

is unitary.

Indeed, if σ0 : G→ G∗ is an arbitrary section such that σ0(1) = 1, with associated 2-cocycle
µ0, then we observed that there exists a map λ : G → Λ× such that λ(1) = 1 and such that
µ0d

1(λ) is unitary. Since µ0d
1(λ) is the 2-cocycle associated to the section λσ0 : G → G∗, we

can take σ = λσ0 in Proposition III.2.23.

III.2.24. Let H be an open subgroup of finite index in a Λ-twisted topological group
(G,µ). Then the restriction µ|H of µ to H × H endows H with a structure of Λ-twisted
topological group, such that the inclusion ι : H → G is a morphism of twisted topological
groups. The functor ι∗ (cf. III.2.19) from RepΛ(G,µ) to RepΛ(H,µ|H) admits a left adjoint
IndGH , given by

IndGH(V ) = Λ[G,µ]⊗Λ[H,µ|H ] V,

cf. III.2.22. In order to verify that IndGH(V ) is indeed a Λ-admissible representation of (G,µ), it
is sufficient by Proposition III.2.16 to check that the restriction of IndGH(V ) to the finite index
open subgroup K = ∩g∈G/HgHg−1 is a Λ-admissible representation of (K,µ|K). However, if
(gc)c∈G/H are left H-cosets representatives, then we have a decomposition

Λ[G,µ] =
⊕

c∈G/H

[gc]Λ[H,µ|H ],

as a right Λ[H,µ|H ]-module, which yields in turn a decomposition

IndGH(V ) =
⊕

c∈G/H

[gc]V,

where [gc]V is a Λ-admissible representation of (K,µ|K), since the action of K on this Λ-module
is given by

[k][gc]v = µ(k, gc)[kgc]v

= µ(k, gc)µ(gc, g
−1
c kgc)

−1[gc][g
−1
c kgc]v,

for k in K and v in V , so that [gc]V is isomorphic to the Λ-module V , endowed with the
Λ-admissible map ρc : K → AutΛ(V ) given by ρc(k) = µ(k, gc)µ(gc, g

−1
c kgc)

−1ρ(g−1
c kgc).

III.2.25. Let (G,µ) be a Λ-twisted topological group (cf. III.2.11), and let Z be a sub-
group of Λ× which contains the image of µ, and which is contained in an admissible `-adic
subring of Λ. Let us consider the central extension

1→ Z
ι−→ G∗

π−→ G→ 1,

associated to the 2-cocycle µ. The underlying topological space of G∗ is the product Z × G,
the group law is given by

(λ1, g1) · (λ2, g2) = (λ1λ2µ(g1, g2), g1g2),

and we have ι(λ) = (λ, 1) and π(λ, g) = g for (λ, g) in Z × G. The continuous map π admits
a distinguished continuous section, namely σ : g 7→ (1, g), which is a group homomorphism if
and only if µ is trivial, i.e. µ = 1.
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If (V, ρ) is a Λ-admissible representation of (G,µ) (cf. III.2.13), then the continuous map

ρ∗ : G∗ → AutΛ(V ),

(λ, g)→ λρ(g),

is a group homomorphism, hence (V, ρ∗) is a Λ-admissible representation of the topological
group G∗. If ζ : Z → Λ× is the character of Z given by the inclusion, then the restriction
of (V, ρ∗) to Z is ζ-isotypical, i.e. ρ∗ ◦ ι(λ)(v) = ζ(λ)v for all (λ, v) in Z × V . Conversely,
any Λ-admissible representation of G∗ with ζ-isotypical restriction to Z yields a Λ-admissible
representation of (G,µ) by composition with the section σ, and these two constructions are
quasi-inverse to each other. We have obtained:

Proposition III.2.26. The functor (V, ρ) 7→ (V, ρ∗) is an equivalence of categories from
RepΛ(G,µ) to the category of Λ-admissible representations of (G∗, 1) whose restriction to Z is
ζ-isotypical.

If H is a subgroup of G, endowed with the restriction of µ to H, then the corresponding
groupH∗ is the inverse image ofH by π. Let ι : H → G be the inclusion, which is a morphism of
Λ-twisted topological groups. Under the equivalence of Proposition III.2.26, the functor ι∗ (cf.
III.2.19) corresponds to the restriction functor from representations of G∗ to representations of
H∗. By taking left adjoints when available (cf. III.2.24), we obtain:

Proposition III.2.27. Let H be an open subgroup of finite index in G, with inverse image
H∗ in G∗. Under the equivalence of Proposition III.2.26, the functor IndGH corresponds to
IndG

∗

H∗ .

III.2.28. Let us recall that if (V, ρ) is a Λ-admissible representation of a Λ-twisted topo-
logical group (G,µ), then the composition

G
ρ−→ AutΛ(V )→ AutΛ(V )/Λ×,

is a genuine group homomorphism. In particular, its image is a subgroup of AutΛ(V )/Λ×.

Definition III.2.29. A Λ-admissible representation (V, ρ) of a twisted topological group
(G,µ) is said to have finite projective image if the composition of ρ with the projection from
AutΛ(V ) to AutΛ(V )/Λ× has finite image. We denote by Repfin

Λ (G,µ) the full subcategory of
RepΛ(G,µ) whose objects are the Λ-admissible representations of (G,µ) with finite projective
image.

Under the equivalence of Proposition III.2.26, the subcategory Repfin
Λ (G,µ) of RepΛ(G,µ)

is equivalent to the category of continuous linear representations of G∗ with finite projective
image and with ζ-isotypical restriction to Z (with notation from III.2.26).

III.2.30. Let (V, ρ) be an object of Repfin
Λ (G,µ), where Λ is an `-adic coefficient ring in

which ` is invertible. Then the Λ-module End(V ) is a Λ-admissible representation of (G, 1)
under the action given by g · u = ρ(g) ◦ u ◦ ρ(g)−1. Moreover, this action factors through the
image G′ of G in AutΛ(V )/Λ×, which is a finite group. Thus we can form the projector

P : End(V )→ End(V )

u 7→ 1

|G′|
∑
g∈G′

g · u,

whose image is the space of endomorphisms of (V, ρ). If an element π of End(V ) is a projector
onto a G-stable subspace W , then g · π is a projector onto W as well for each g in G′, hence
P (π) is a projector ontoW which commutes with the action of G. ThusW is a direct summand
of V in the additive category RepΛ(G,µ). We thus obtain the following extension of Maschke’s
theorem:
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Proposition III.2.31. Let (G,µ) be a Λ-twisted topological group, where Λ is an `-adic
coefficient ring in which ` is invertible. Then any object of Repfin

Λ (G,µ) is semisimple.

In particular, the indecomposable objects of Repfin
Λ (G,µ) are irreducible. Let us introduce

the Grothendieck group of the category Repfin
Λ (G,µ):

Definition III.2.32. Let (G,µ) be a Λ-twisted topological group. The Grothendieck group
Kfin

0 (G,µ,Λ) is the quotient of the free abelian group with basis ([V ])V indexed by all Λ-
admissible representations of (G,µ) with finite projective image and whose underlying Λ-module
is Λn for some integer n, by the relations

[V ′] + [V ′′]− [V ],

whenever V is an extension of V ′ by V ′′ in Repfin
Λ (G,µ). If G is finite, the group Kfin

0 (G,µ,Λ)
is simply denoted by K0(G,µ,Λ).

Remark III.2.33. The class of Λ-admissible representations of (G,µ) may not form a set,
hence the unnatural restriction to Λ-modules which are Λn for some n, rather than being merely
isomorphic to Λn for some n.

If V is a Λ-admissible representation of (G,µ) with finite projective image, then V is
isomorphic to a representation V ′ whose underlying Λ-module is Λn for some integer n, and
the class of [V ′] in Kfin

0 (G,µ,Λ) depends only on V . This class will be simply denoted by [V ].
By Corollary III.2.31, if ` is invertible in Λ then the group Kfin

0 (G,µ,Λ) is a free abelian group,
with basis given by the classes [V ] where V is an (isomorphism class of) irreducible Λ-admissible
representation of (G,µ) with finite projective image.

Before proceeding further, let us recall Brauer’s induction theorem for finite groups:

Theorem III.2.34 ([Se98], 10.5 Th. 20). If G is a finite group, then the abelian group
K0(G, 1, C) is generated by the classes of representations of the form IndGHV , where H is a
subgroup of G and V is a one-dimensional C-linear representation of H.

Brauer’s induction theorem III.2.34 is a consequence of the following two results:
(1) If G is a finite group, then K0(G, 1, C) is generated by the classes of representations of

the form IndGHV , where H is a nilpotent subgroup of G, and where V is an irreducible
representation of H.

(2) Any irreducible C-linear representation of a finite nilpotent group G is isomorphic to
IndGHV for some subgroup H and some one-dimensional representation V of H.

Moreover, it is sufficient for the first of these results to prove that the class of the trivial
representation of G is a linear combination in K0(G, 1) of representations of the form IndGHV ,
where H is a nilpotent subgroup of G. We refer to ([Se98], 10) for proofs of these results, and
for a more complete discussion of Brauer’s theorem. We will also need the following variant of
Brauer’s theorem:

Theorem III.2.35 ([De73], Prop. 1.5). If G is a finite group, then the abelian group
K0(G, 1, C) is generated by the class [C] of the trivial representation of G and by the classes of
the form [IndGHV ]− [IndGHC], where H is a subgroup of G and V is a one-dimensional C-linear
representation of H.

We will need an extension of Brauer’s theorem to continous representations of twisted
groups with finite projective image:

Theorem III.2.36. Let (G,µ) be a C-twisted topological group. Then the group Kfin
0 (G,µ,C)

(cf. III.2.32) is generated by the classes of C-admissible representations of the form IndGHV ,
where H is an open subgroup of finite index in G and V is a one-dimensional C-admissible
representation of (H,µ|H).
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Indeed, let (V, ρ) be an object of Repfin
C (G,µ), and let us consider the subgroup G′ =

C×ρ(G) of AutC(V ) generated by the image of ρ and by homotheties. The topological group
G′ is a central extension of the finite group G′/C× by C×. By Proposition III.2.23, there exists
a set-theoretic section σ from G′/C× to G′ such that σ(1) = 1, whose associated 2-cocycle is
unitary. There exists a unique continuous map λ : G→ C× such that

σ(ρ(g)C×) = λ(g)ρ(g),

for all g in G, and we have λ(1) = 1. By replacing (V, ρ) and (G,µ) by (V, λρ) and (G, d(λ)µ)
respectively (cf. III.2.15), we can therefore assume (and we do) that µ is unitary and that the
set ρ(G) is finite.

Since µ is now assumed to be unitary, we can choose Z to be a finite subroup of C× in
III.2.25. Moreover, the representation (V, ρ∗) of G∗ corresponding to (V, ρ) by Proposition
III.2.26 has finite image, namely Zρ(G). By applying Brauer’s induction theorem III.2.34 to
the finite group ρ∗(G∗), we obtain a decomposition

[V ] =
∑
i∈I

ni[IndG
∗

Hiχi],(18)

in Kfin
0 (G∗, 1), where ni is a (possibly negative) integer, Hi is an open subgroup of finite index

in G∗ and χi is a continuous character of Hi with finite image. Since Z is central in G∗, the
decomposition of a representation into the isotypical components of its restriction to Z yields
a splitting

Kfin
0 (G∗, 1) =

⊕
ζ′:Z→C×

Kfin
0 (G∗, 1)[ζ ′],

where ζ ′ runs through the set of characters of Z, and Kfin
0 (G∗, 1)[ζ ′] is generated by continuous

linear representations of G∗ with finite projective image and ζ ′-isotypical restriction to Z. By
projecting the relation 18 onto the factor corresponding to ζ, we obtain

[V ] =
∑
i∈I

ni[IndG
∗

Hiχi[ζ]],

in the abelian group Kfin
0 (G∗, 1)[ζ], where we denoted by [ζ] the ζ-isotypical component.

For each i in I, we can identify the representation IndG
∗

Hiχi with the C-vector space

{f : G∗ → C | ∀h ∈ Hi, g ∈ G∗, f(hg) = χi(h)f(g)},
endowed with the action (g · f)(x) = f(xg) for g, x in G∗. The ζ-isotypical component is then
the subspace of functions f : G∗ → C such that f(gh) = ζ(h)f(g) for all h in Z and all g in
G∗. Thus the ζ-isotypical component vanishes whenever χi and ζ do not coincide on Hi ∩ Z.
On the other hand, if χi and ζ do coincide on Hi ∩ Z, then there exists a unique character ψi
of ZHi such that ψi|Z = ζ and ψi|Hi = χi, in which case

IndG
∗

Hiχi[ζ] = {f : G∗ → C | ∀h ∈ ZHi, g ∈ G∗, f(hg) = ψi(h)f(g)},
= IndG

∗

ZHiψi.

If Gi is the image in G of ZHi, then Gi is an open subgroup of finite index in G, and ψi yields
a continuous one-dimensional linear representation of (Gi, µ|Gi), such that the relation

V =
∑
i∈I

χi|Hi∩Z=ζ|Hi∩Z

ni[IndGGiψi]

holds in Kfin
0 (G,µ) (cf. III.2.26, III.2.27), hence the conclusion of Theorem III.2.36.
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III.2.37. Let (G,µ) be a C-twisted topological group (cf. III.2.11), and let us consider
an extension

1→ I
ι−→ Q

π−→ G→ 1,

of topological groups, where I is a finite discrete group. It is assumed that G carries the
quotient topology from Q. Then the formula (π∗µ)(x, y) = µ(π(x), π(y)) for x, y in Q defines
a multiplier on Q, so that (Q, π∗µ) is a C-twisted topological group, and π is a morphism of
C-twisted topological groups (cf. III.2.11).

Proposition III.2.38. If a C-admissible representation of (Q, π∗µ) over C is irreducible
as a representation of I, then it has finite projective image (cf. III.2.29).

Indeed, if (V, ρ) is such a representation, then Schur’s lemma implies that any element of
the centralizer CQ(I) of I in Q must act on V as a homothety. The subgroup CQ(I) is the
kernel of the homomorphism ϕ : Q → Aut(I) given by the action of Q on I by conjugation,
i.e. sending an element q of Q to (t 7→ qtq−1), and must therefore have finite index in Q, since
Aut(I) is a finite group. The projective image of ρ is a quotient of the finite group Q/CQ(I),
and is thus finite as well.

Proposition III.2.39 (cp. [CR62], 51.7). Let (G,µ) be a C-twisted topological group, and
let

1→ I
ι−→ Q

π−→ G→ 1,

an extension of topological groups,where G (resp. I) carries the quotient topology (resp. induced
topology) from Q. Assume that the continuous map π has a section, and let (V, ρ) be a C-
admissible representation of (Q, π∗µ) such that ρ(I) is a finite group. Then there exists a finite
family (Gj)j∈J of open subgroups of finite index in G, and for each j, a C-admissible multiplier
νj on Gj, a C-admissible representation Wj of (Gj , µν

−1
j ), and a C-admissible representation

Ej of (Qj , π
∗νj), where Qj = π−1(Gj), such that:

(1) for each j in J , the restriction of Ej to I is irreducible and the action of I on Ej factors
through ρ(I);

(2) the C-admissible representation (V, ρ) of Q is isomorphic to the direct sum (cf. III.2.19,
III.2.20, III.2.24) ⊕

j∈J
IndQQj (Ej ⊗C π

∗Wj).

Remark III.2.40. The assumption of Proposition III.2.39 is fulfilled whenever Q is discrete,
or whenever it is a profinite group. Indeed, any epimorphism of profinite groups admits a section
in the category of topological spaces, cf. ([Se94], I.1.2, Prop. 1).

Remark III.2.41. Even if we start with a genuine representation of Q, namely if µ = 1, then
the cocycles νj appearing in Proposition III.2.39 are usually not trivial, nor cohomologically
trivial.

Remark III.2.42. If µ is unitary, then the multipliers νj which appear in Proposition
III.2.39 can be taken to be unitary as well. Indeed, one can assume that each Wj is non zero,
and thus by Proposition III.2.18, there exists for each j a C-admissible map λj : Gj → C×

such that λj(1) = 1 and such that νjd(λj) is unitary. Twisting Ej and Wj by λj ◦ π and λ−1
j

respectively (cf. III.2.15) then leaves the tensor product Ej ⊗C π∗Wj unaltered.

Let us prove Proposition III.2.39. Let (V, ρ) be a C-admissible representation of (G, π∗µ)
such that ρ(I) is a finite group. The subgroup K = I ∩ ker(ρ) of Q is normal, and is open
of finite index in I. By replacing (Q, I) with (Q/K, I/K), we can assume (and we do) that
I is finite. Since the restriction of π∗µ to I is trivial, the restriction ι∗V is a honest linear
representation of the finite group I. For each irreducible character χ of I, let V [χ] be the
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χ-isotypical component of (V, ρι). Let X be the set of irreducible characters χ such that V [χ]
is non zero, so that we have a decomposition

V =
⊕
χ∈X

V [χ].

Recall that we denoted by ϕ : Q → Aut(I) the action of Q on I by automorphisms given
by conjugation by an element of Q, i.e. sending an element q of Q to (t 7→ qtq−1). The
homomorphism ϕ is continuous when Aut(I) is endowed with the discrete topology, since I is
a finite discrete subgroup of Q. The group Q acts continuously on the left on X by q · χ =
χ ◦ ϕ(q)−1, and ρ(q) sends V [χ] onto V [q · χ]. Since χ is a central function on I, this action
factors through π, so that we obtain a continuous action of G on X. Let J be the set of G-orbits
in X and for each j in J , let χj be a member of the orbit j. Let Gj be the stabilizer of χj in
G, and let Qj be its inverse image in Q. Then the action of Q on V restricts to an action of
Qj on V [χj ], and the homomorphism

IndQQj (V [χj ])→
⊕

q∈Q/Qj

V [qχj ] =
⊕
χ∈j

V [χ]

[q]⊗ v 7→ ρ(q)v

is an isomorphism. Thus V is isomorphic to the direct sum⊕
j∈J

IndQQj (V [χj ]).

Let (Ej , ρj) be an irreducible representation of I with character χj , and let

Wj = HomC[I](Ej , V ) = HomC[I](Ej , V [χj ]),

considered as a trivial representation of I, so that the C-linear homomorphism

Ej ⊗C Wj → V [χj ]

e⊗ w 7→ w(e),
(19)

is an isomorphism of representations of I.
For each ψ in Aut(I) such that χj ◦ψ−1 = χj , the representations (Ej , ρj) and (Ej , ρj ◦ψ−1)

are isomorphic, hence there exists a C-linear automorphism λj(ψ) of Ej such that

ρj ◦ ψ−1(t) = λj(ψ)−1ρj(t)λj(ψ),

for all t in I. We can take λj(idI) = idEj . Note that Schur’s lemma implies that λj(ψ) is
uniquely determined up to multiplication by an invertible scalar, and that if we denote by
Aut(I)χj the subgroup of Aut(I) formed by the elements ψ of Aut(I) such that χj ◦ψ−1 = χj ,
then the composition

Aut(I)χj
λj−→ AutC(Ej)→ AutC(Ej)/C

×,

is a group homomorphism.
Let σ be a continuous section of the continuous map π, such that σ(1) = 1. For q = σ(g)t

in Qj , with t in I and g in Gj (so that g = π(q)), we set

ρ̃j(q) = (λj ◦ ϕ ◦ σ)(g)ρj(t).

For t in I, the automorphism λj(ϕ(t)) differs from ρj(t) only by an invertible scalar, hence for
each q in Qj , the automorphism ρ̃j(q) differs from λj ◦ ϕ(q) by an invertible scalar.

Lemma III.2.43. For each j in J , there exists a unique multiplier νj on Gj such that
(Ej , ρ̃j) is a continuous linear representation of (Qj , π

∗νj).



III.2. PRELIMINARIES ON REPRESENTATIONS OF TWISTED GROUPS 89

Assuming the conclusion of Lemma III.2.43, we can conclude the proof of Proposition
III.2.39 as follows. We first notice that the continuous map

Qj → AutC(Wj)

q 7→ (w 7→ ρ(q) ◦ w ◦ ρ̃j(q)−1).

is right I-invariant, hence uniquely factors as τj ◦π|Qj , where τj is a continuous map from Gj to
AutC(Wj). One then checks that (Wj , τj) is a C-admissible representation of (Gj , µν

−1
j ), so that

(19) is an isomorphism of C-admissible representations of (Qj , π
∗µ). Thus the decomposition

V '
⊕
j∈J

IndQQj (Ej ⊗C π
∗Wj).

provides the wanted conclusion.

III.2.44. Let us now prove Lemma III.2.43. The map λj factors through the continuous
homomorphism from Qj to the stabilizer of χj in Aut(I), which is a finite discrete group, hence
λj is continuous, and so is ρ̃j . Let us write

c(g1, g2) = σ(g2)−1σ(g1)−1σ(g1g2) ∈ I.
If q1 = σ(g1)t1 and q2 = σ(g2)t2 are elements of Gj , with t1, t2 in I, then we have

q1q2 = σ(g1g2)(c(g1, g2)−1(σ(g2)−1t1σ(g2))t2),

so that we have

ρ̃j(q1)ρ̃j(q2) = (λj ◦ ϕ ◦ σ)(g1)ρj(t1)(λj ◦ ϕ ◦ σ)(g2)ρj(t2)

= (λj ◦ ϕ ◦ σ)(g1)(λj ◦ ϕ ◦ σ)(g2)ρj(σ(g2)−1t1σ(g2)t2)

= (λj ◦ ϕ ◦ σ)(g1)(λj ◦ ϕ ◦ σ)(g2)(ρj ◦ c)(g1, g2)(λj ◦ ϕ ◦ σ)(g1g2)−1ρ̃j(q1q2).

Let us define

νj(g1, g2) = (λj ◦ ϕ ◦ σ)(g1)(λj ◦ ϕ ◦ σ)(g2)(ρj ◦ c)(g1, g2)(λj ◦ ϕ ◦ σ)(g1g2)−1,

so that we have

ρ̃j(q1)ρ̃j(q2) = νj(g1, g2)ρ̃j(q1q2).(20)

It remains to show that νj defines a multiplier on Gj , i.e. that νj(g1, g2) takes values in C× and
that it satisfies the cocycle formula (17). We noticed that for each q in Qj , the automorphism
ρ̃j(q) differs from λj ◦ ϕ(q) by an invertible scalar (cf. the discussion before Lemma III.2.43).
Thus, we have r ◦ ρ̃j = r ◦ λj ◦ ϕ, where r is the projection from AutC(Ej) to AutC(Ej)/C

×.
In particular, since r ◦ λj is a group homomorphism, so is r ◦ ρ̃j . This implies that r ◦ νj is
identically equal to 1. Thus νj takes values in C×, and the formula (20) then implies that νj
satisfies the cocycle condition (17). Consequently, (Ej , ρ̃j) is a C-admissible representation of
(Qj , π

∗νj).

III.2.45. Let (G,µ) be a C-twisted profinite topological group (cf. III.2.11), and let us
consider an extension

1→ I
ι−→ Q

π−→ G→ 1,

of profinite topological groups, where G (resp. I) carries the quotient topology (resp. induced
topology) from Q. Unlike the situation considered in III.2.37 we do not assume here that I is
finite.

Lemma III.2.46. Let V be a C-admissible representation of (Q, π∗µ). The following prop-
erties are equivalent:

(i) there exists an open subgroup Q′ of Q such that I ∩Q′ acts unipotently on V ,
(ii) there exists a normal open subgroup Q′ of Q such that I ∩Q′ acts unipotently on V ,
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(iii) there exists an open subgroup I ′ of I such that I ′ acts unipotently on V ,
(iv) there exists a normal open subgroup I ′ of I such that I ′ acts unipotently on V .

Indeed, if an open subgroup Q′ of Q is such that I ∩ Q′ acts unipotently on V , then the
normal closure Q′′ =

⋂
q∈Q/Q′ qQ

′q−1 is open as well in Q, and I ∩Q′′ acts unipotently on V ,
hence (i) implies (ii). By replacing (Q,G) by (I, 1), this also proves that (iii) implies (iv). If
Q′ is an open subgroup (resp. a normal open subgroup) of Q such that I ∩Q′ acts unipotently
on V , then I ′ = I ∩ Q′ is an open subgroup (resp. a normal open subgroup) of I which acts
unipotently on V , hence (i) implies (iii) (resp. (ii) implies (iv)). It remains to prove that (iv)
implies (i). Let I ′ be a normal open subgroup of I such that I ′ acts unipotently on V . Since
I carries the induced topology from Q, there exists an open neighbourhood U of the neutral
element in Q such that I ∩ U is contained in I ′. Since Q is profinite, there exists an open
subgroup Q′ of Q such that Q′ is contained in U . Then I ∩ Q′ is contained in I ′, hence acts
unipotently on V .

Definition III.2.47. A C-admissible representation V of (Q, π∗µ) is potentially unipotent
if it satisfies the equivalent properties of Lemma III.2.46.

Proposition III.2.48. If a C-admissible representation V of (Q, π∗µ) is potentially unipo-
tent and irreducible, then I acts on V through a finite quotient.

Let Q′ be a normal open subgroup of Q such that I ∩ Q′ acts unipotently on V . By a
theorem of Kolchin ([Ko48], 1. Lemma), the sub-C-vector space V I∩Q

′
of V consisting of

I ∩ Q′-invariant vectors in V is non zero. Since I ∩ Q′ is a normal subgroup of Q, the sub-
C-vector space V I∩Q

′
is a sub-C-admissible representation of (Q, π∗µ), hence it must coincide

with V by irreducibility. Thus I ∩Q′ acts trivially on V , hence the conclusion since I ∩Q′ has
finite index in I.

III.2.49. Let (G,µ) be a C-twisted profinite topological group (cf. III.2.11). As in
III.2.45, let us consider an extension

1→ I
ι−→ Q

π−→ G→ 1,

of profinite topological groups, where G (resp. I) carries the quotient topology (resp. induced
topology) from Q. Let Ku

0 (Q,G, µ,C) be the Grothendieck group of potentially unipotent
C-admissible representations of (Q, π∗µ) (cf. III.2.47). Thus any potentially unipotent C-
admissible representation V of (Q, π∗µ) has a well defined class [V ] in Ku

0 (Q,G, µ,C), and the
latter is generated by such classes with relations [V ] = [V ′]+ [V ′′] for each short exact sequence

0→ V ′ → V → V ′′ → 0,

of potentially unipotent C-admissible representations of (Q, π∗µ).

Proposition III.2.50. Let us consider an extension

1→ I
ι−→ Q

π−→ G→ 1,

of profinite topological groups, where G (resp. I) carries the quotient topology (resp. induced
topology) from Q. Then the abelian group⊕

µ

Ku
0 (Q,G, µ,C),

where the sum runs over all unitary C-admissible multipliers µ on G, and Ku
0 (Q,G, µ,C) is as

in III.2.49, is generated by its subset of elements of the following two types:

(1) the class [C] of the trivial representation in Ku
0 (Q,G, 1, C),
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(2) for any unitary C-admissible multiplier µ on G, any open subgroup Q′ of Q, any unitary
C-admissible multipliers µ1 and µ2 on the image G′ of Q′ in G such that µ1µ2 = µ|G′ ,
any C-admissible representation V1 of rank 1 of (Q′, π∗µ1), on which I∩Q′ acts through
a finite quotient, and any C-admissible representation V2 of (G′, µ2), the class

[IndQQ′(V1 ⊗ π∗V2)]− rk(V2)[IndQQ′C],

cf. III.2.20, III.2.24, in the sum of Ku
0 (Q,G, µ,C) and Ku

0 (Q,G, 1, C).

Let V be a potentially unipotent C-admissible representation of (Q, π∗µ), for some unitary
C-admissible multiplier µ on G. We must prove that the class [V ] belongs to the group gen-
erated by the classes described in Proposition III.2.50. We can assume (and we do) that V
is irreducible. By Proposition III.2.48, the kernel K of the representation V|I of I is an open
subgroup of I, which is normal in Q. By replacing (I,Q) by (I/K,Q/K), we can thus assume
(and we do as well) that I is finite.

By Proposition III.2.39, and Remarks III.2.40, III.2.42, we can further assume (and we
do) that V is of the form IndQQ′(E ⊗ π∗W ), where Q′ is an open subgroup of Q, where E is
a C-admissible representation of (Q′, π∗µ1), whose restriction to I is irreducible, and W is a
C-admissible representation of (G′, µ2), for some unitary C-admissible multipliers µ1 and µ2

on the image G′ of Q′ in G, such that µ1µ2 = µ|G′ .
By Proposition III.2.38 and Theorem III.2.36, we can assume (and we do) that E is of

the form IndQ
′

Q′′V1, where Q′′ is an open subgroup of Q′, and where V1 is a C-admissible
representation of rank 1 of (Q′′, π∗µ1). We then have an isomorphism

V = IndQQ′(IndQ
′

Q′′V1 ⊗ π∗W ) ∼= IndQQ′′(V1 ⊗ π∗W ),

hence a decomposition

[V ] =
(

[IndQQ′′(V1 ⊗ π∗W )]− rk(W )[IndQQ′′C]
)

+ rk(W )[IndQQ′′C].

The first term in this decomposition is of the required type (2), while the last term [IndQQ′′C]

belongs to the subgroup of Ku
0 (Q,G, 1, C) generated by elements of type (1) or of type (2) (with

trivial multipliers µ, µ1, µ2 and with trivial factor V2): indeed, the group Q acts on IndQQ′′C
through a finite quotient, hence the result follows from Theorem III.2.35.

III.3. Twisted `-adic sheaves

Let Λ be an `-adic coefficient ring (cf. III.2.2). We fix a unitary Λ-admissible mutiplier µ
on the topological group Gk (cf. III.1.13, III.2.9, III.2.10).

Definition III.3.1. A finite Galois extension k′/k contained in k is said to neutralize µ if
µ is the pullback of a multiplier on the finite quotient Gal(k′/k) of Gk.

By III.2.1, the unitary multiplier µ is neutralized by some finite Galois extension of k.

III.3.2. Assume that Λ is a finite `-adic coefficient ring, and let X be a k-scheme. We
denote by Loc(X,Λ) the category of locally constant constructible Λ-modules on the small étale
site of X. Moreover, we denote by Sh(X,Λ) the abelian category of constructible sheaves of
Λ-modules on the small étale site of X. Thus an object F of Sh(X,Λ) is a Λ-module in the
étale topos of X, such that for any affine open subset U of X, there exists a finite partition
U = tj∈JUj into constructible locally closed subschemes, such that F|Uj belongs to Loc(X,Λ).
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III.3.3. Assume that Λ is the ring of integers in a finite subextension of Q` in C, and
let X be a locally noetherian k-scheme. We denote by Sh(X,Λ) (resp. Loc(X,Λ)) the inverse
2-limit of the categories Sh(X,Λ/`n) (resp. Loc(X,Λ/`n)) where n ranges over all integers
(cf. III.3.2). Thus the objects of Loc⊗(G,Λ) are projective systems (Fn)n≥1 where Fn is
a multiplicative Λ/`n-local system on G, such that the transition maps Fn+1 → Fn induce
isomorphisms Fn+1 ⊗ Λ/`n → Fn, for each integer n.

The category Sh(X,Λ) is abelian by ([SGA5], VI 1.1.3).

III.3.4. Assume that Λ is a finite subextension of Q` in C, and let X be a locally noe-
therian k-scheme. Let Λ0 be the ring of integers in Λ. We denote by Sh(X,Λ) the quotient
of the abelian category Sh(X,Λ0) by the thick subcategory of torsion Λ0-sheaves, cf. ([De80],
1.1.1(c)), and by Loc(X,Λ) the essential image of Loc(X,Λ0) in Sh(X,Λ). In particular, the
category Sh(X,Λ) is abelian.

The natural functor Sh(X,Λ0)→ Sh(X,Λ) is essentially surjective, and will be denoted by
⊗Λ0

Λ. If X is noetherian then the natural homomorphism

HomΛ0
(F ,G)⊗Λ0

Λ→ HomΛ(F ⊗Λ0
Λ,G ⊗Λ0

Λ),

is an isomorphism for any objects F and G of Sh(X,Λ0).

III.3.5. LetX be a locally noetherian k-scheme. We denote by Sh(X,Λ) (resp. Loc(X,Λ))
the 2-colimit of the categories Sh(X,Λ0), where Λ0 ranges over admissible `-adic subrings of Λ
(cf. III.2.2). For Λ = C, this coincides with ([De80], 1.1.1(d)). We will simply refer to objects
of Sh(X,Λ) (resp. Loc(X,Λ)) as Λ-sheaves on X (resp. Λ-local systems on X). The category
Sh(X,Λ) is abelian, since it is a filtered 2-colimit of abelian categories.

III.3.6. Let X be a locally noetherian k-scheme. Let Λ→ Λ′ be a continuous homomor-
phism of `-adic coefficient rings. If Λ and Λ′ are admissible, we define a functor

⊗ΛΛ′ : Sh(X,Λ)→ Sh(X,Λ′),

as follows:

(1) if Λ is finite then so is Λ′, and ⊗ΛΛ′ is the functor which sends a Λ-sheaf F to the tensor
product F ⊗Λ Λ′,

(2) if Λ and Λ′ are rings of integers in finite extensions of Q`, then ⊗ΛΛ′ is the functor
which sends a projective system (Fn)n≥1 as in III.3.3 to (Fn ⊗Λ/`n Λ′/`n)n≥1

(3) if Λ is a ring of integers in a finite extension of Q` and if Λ′ is finite, then ⊗ΛΛ′ is the
functor which sends a projective system (Fn)n≥1 as in III.3.3 to Fn ⊗Λ/`n Λ′, where n
is an integer such that `n vanishes in Λ′.

(4) if Λ is the ring of integers in a finite extension of Q`, and if Λ′ is a finite extension
of Q` with ring of integers Λ′0, then ⊗ΛΛ′ is the functor which sends a Λ-sheaf F to
(F ⊗Λ Λ′0)⊗Λ′0

Λ′, cf. III.3.4.

(5) if Λ and Λ′ are finite extensions of Q`, and if Λ0 is the ring of integers in Λ, then ⊗ΛΛ′

is a functor which sends F ⊗Λ0
Λ to F ⊗Λ0

Λ′ for any Λ0-sheaf F .
In general we let ⊗ΛΛ′ be the 2-colimit of the functors

⊗Λ0
Λ′0 : Sh(X,Λ0)→ Sh(X,Λ′0),

where Λ0 and Λ′0 are admissible `-adic subrings of Λ and Λ′ respectively, such that Λ′0 contains
the image of Λ0 in Λ′.



III.3. TWISTED `-ADIC SHEAVES 93

III.3.7. Let X be a locally noetherian k-scheme. Let k′/k be a finite Galois subextension
of k neutralizing µ (cf. III.3.1). A µ-twisted Λ-sheaf on X, is a pair F = (Fk′ , (ρF (g))g∈Gal(k′/k)),
where Fk′ is Λ-sheaf on Xk′ (cf. III.3.5), and ρF (g) : g−1Fk′ → Fk′ is an isomorphism for each
g in Gal(k′/k), such that the diagram

g−1h−1Fk′ g−1Fk′ Fk′
g−1ρF (h) ρF (g)

µ(g, h)ρF (gh)

is commutative for any g, h in Gal(k′/k). In particular, the endomorphism ρF (1) is the identity
of F . If F and G are µ-twisted Λ-sheaves on X, a morphism from F to G is a morphism
f : Fk′ → Gk′ in Sh(Xk′ ,Λ) such that f ◦ ρF (g) = ρG(g) ◦ (g−1f) for any g in Gal(k′/k).

Remark III.3.8. Since the action of Gal(k′/k) on Xk′ is a right action, we have (gh)−1 =
g−1h−1 on Sh(Xk′ ,Λ).

If k′′/k′ is a finite extension contained in k such that k′′ is a Galois extension of k, then
k′′/k neutralizes µ as well. If π is the projection from Gal(k′′/k) to Gal(k′/k), then, by descent
along the Gal(k′′/k′)-torsor Xk′′ → Xk′ , the functor

(Fk′ , (ρF (g))g∈Gal(k′/k)) 7→ (Fk′|Xk′′ , (ρF (π(g))g∈Gal(k′′/k)),

is an equivalence between the corresponding categories of µ-twisted Λ-sheaves on X. We denote
by Sh(X,µ,Λ) the 2-limit of these categories along the filtered set of Galois extension of k
contained in k which neutralizes µ. The category Sh(X,µ,Λ) is abelian.

If Λ→ Λ′ is a continuous homomorphism of `-adic coefficient rings, the natural functor

Sh(X,µ,Λ)→ Sh(X,µ,Λ′),

will be denoted ⊗ΛΛ′.

III.3.9. Let k′′ be a finite extension of k, and letX be a locally noetherian k′′-scheme. Let
Σ be the set of morphisms of k-algebras from k′′ to k. Let k′/k be a finite Galois subextension
of k neutralizing µ (cf. III.3.1) and containing the image of any element of Σ. We thus have a
decomposition

X ⊗k k′ =
∐
ι∈Σ

Xι,

where Xι is the k′-scheme X⊗k′′,ιk′. In particular, a Λ-sheaf on Xk′ can be considered as a col-
lection (Fι)ι∈Σ, where Fι is a Λ-sheaf onXι for each ι. Moreover, if F = (Fk′ , (ρF (g))g∈Gal(k′/k))
is a µ-twisted Λ-sheaf on the k-scheme X, then Fk′ is a Λ-sheaf on Xk′ , and its component
(Fk′)ι is a µ|Gal(k/ι(k′′))-twisted Λ-sheaf on the k′′-scheme X.

Proposition III.3.10. Let X and k′′ be as in III.3.9. Let ι be an element of Σ, let Gal(ι)
be the Galois group of the extension ι : k′′ → k, and let µk′′ be the restriction of µ to Gk′′ .
The functor which sends a µ-twisted Λ-sheaf F = (Fk′ , (ρF (g))g∈Gal(k′/k)) on the k-scheme X
to the µk′′-twisted Λ-sheaf ((Fk′)ι, (ρF (g)ι)g∈Gal(ι)) on the k′′-scheme X, is an equivalence of
categories.

Indeed, a quasi-inverse to the functor from Proposition III.3.10 can be described as follows.
If (Fι, ρF (g))g∈Gal(ι) is a µk′′-twisted Λ-sheaf on the k′′-scheme X, then for each ι′ in Σ, we
define Fι′ to be the sub-Λ-sheaf of ∏

g∈Gal(k′/k)
gι=ι′

g−1Fι,
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on Xι′ , consisting of sections (sg)g such that for any g in Gal(k′/k) with gι = ι′ and any element
h of Gal(ι), we have

sgh = µ(g, h)ρF (h)−1sg.

The collection (Fι′)ι′∈Σ yields a Λ-sheaf on Xk′ which is naturally endowed with a structure
(ρF (g))g∈Gal(k′/k) of µ-twisted Λ-sheaf on the k-scheme X. For each h in Gal(k′/k) and for
each ι′ in Σ, the morphism ρF (h)ι′ sends a section (sg)gι=h−1ι′ of h−1Fh−1ι′ to the section
(µ(h, h−1g)sh−1g)gι=ι′ of Fι′ .

III.3.11. Assume that Λ is the ring of integers in a finite subextension of Q` in C, let X
be a locally noetherian k-scheme. Then the natural functor

Sh(X,µ,Λ)→ 2-limn Sh(X,µ,Λ/`n),

where n runs over all positive integers, is an equivalence of categories. Indeed, if k′/k is a finite
Galois extension contained in k which neutralizes µ, then the natural functor

Sh(Xk′ ,Λ)→ 2-limn Sh(Xk′ ,Λ/`
n),

is an equivalence of categories by definition, cf. III.3.3. Moreover, if F = (Fn)n≥1 is an object
of Sh(Xk′ ,Λ), then we have

HomΛ(g−1F ,F) = lim HomΛ/`n(g−1Fn,Fn),

for any g in Gal(k′/k), hence a structure of µ-twisted Λ-sheaf on F amounts to a compatible
system of structures of µ-twisted Λ-sheaves on each Fn.

III.3.12. Assume that Λ is a finite subextension of Q` in C, with ring of integers Λ0 ⊆ Λ,
let X be a locally noetherian k-scheme. Then µ takes its values in Λ0, and the natural functor

Sh(X,µ,Λ0)→ Sh(X,µ,Λ)(21)

induces an equivalence from the quotient of Sh(X,µ,Λ0) by its subcategory of torsion objects,
to the category of µ-twisted Λ-sheaves on X. Unlike III.3.11, this statement is not entirely
tautological.

By glueing, we can assume (and we do) that X is noetherian. Let k′/k be a finite Galois
subextension of k, with Galois group G = Gal(k′/k), which neutralizes µ (cf. III.3.1). For any
objects F and G of Sh(X,µ,Λ0), the natural homomorphism

HomΛ0
(Fk′ ,Gk′)⊗Λ0

Λ→ HomΛ(Fk′ ⊗Λ0
Λ,Gk′ ⊗Λ0

Λ),

is an isomorphism, cf. III.3.4. Moreover, we have an exact sequence

0→ HomΛ0
(F ,G)→ HomΛ0

(Fk′ ,Gk′)
f 7→(fρF (g)−ρG(g)(g−1f))g−−−−−−−−−−−−−−−−−−→

∏
g∈Gal(k′/k)

HomΛ0
(g−1Fk′ ,Gk′).

By flatness of the ring homomorphism Λ0 → Λ, we deduce that the natural homomorphism

HomΛ0(F ,G)⊗Λ0 Λ→ HomΛ(F ⊗Λ0 Λ,G ⊗Λ0 Λ),

is an isomorphism as well, hence the full faithfullness of the functor (21).
It remains to prove that the functor (21) is essentially surjective. Let (Fk′ , (ρF (g))g∈G) be

a pair representing an object F of Sh(X,µ,Λ). Let H be a torsion free Λ0-sheaf on Xk′ such
that Fk′ is isomorphic to H⊗Λ0

Λ. For a sufficiently large integer n, we have for each element
g of G a homomorphism ρ̃F (g) from g−1H to H, which induces the homomorphism `nρF (g)
from g−1Fk′ to Fk′ . Let us consider the homomorphism

θ :
⊕
h∈G

h−1H → H,
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given by ρ̃F (h) on the component h−1H. We endow the source H′ =
⊕

h∈G h
−1H of θ with a

structure of µ-twisted Λ0-sheaf by equipping it for each g in G with the isomorphism

ρH′(g) : g−1H′ → H′,

which sends a tuple (xh)h∈G, where xh belongs to g−1h−1H, to the tuple (µ(g, g−1h)xg−1h)h∈G.
For each g in G, the diagram

g−1H′ g−1H

HH′

g−1θ

ρ̃F (g)`nρH′ (g)

θ

is commutative. Since H is torsion free, this implies that ρH′(g) induces an isomorphism from
the subobject g−1 ker(θ) of g−1H′ to the subobject ker(θ) of H′. Thus the kernel of θ is a µ-
twisted Λ0-subsheaf of H′. Consequently, the image of θ is a µ-twisted Λ0-sheaf as well. Since
Im(θ)⊗Λ0 Λ is isomorphic to F , this proves the essential surjectivity of the functor (21).

III.3.13. Let X be a locally noetherian k-scheme. Then the natural functor

2-colimΛ0
Sh(X,µ,Λ0)→ Sh(X,µ,Λ),

where Λ0 runs over all admissible `-adic subrings of Λ containing the image of µ, is an equivalence
of categories. Indeed, if k′/k is a finite Galois extension contained in k which neutralizes µ,
then the natural functor

2-colimΛ0
Sh(Xk′ ,Λ0)→ Sh(Xk′ ,Λ),

is an equivalence of categories by definition, cf. III.3.5. Moreover, if F is an object of
Sh(Xk′ ,Λ0), then the natural homomorphism

colimΛ1HomΛ1(g−1F ⊗Λ0 Λ1,F ⊗Λ0 Λ1)→ HomΛ(g−1F ⊗Λ0 Λ,F ⊗Λ0 Λ),

is an isomorphism for any g in Gal(k′/k), where Λ1 runs over all admissible `-adic subrings of
Λ containing Λ0 and the image of µ. Since Gal(k′/k) is finite, we obtain that a structure of
µ-twisted Λ-sheaf on F ⊗Λ0

Λ amounts to a structure of µ-twisted Λ1-sheaf on F ⊗Λ0
Λ1, for a

large enough admissible `-adic subring Λ1 of Λ.

III.3.14. Let f : X → Y be a separated morphism of k-schemes of finite type. If F is a
µ-twisted Λ-sheaf on X, given by a tuple (Fk′ , (ρF (g))g∈Gal(k′/k)) (cf. III.3.7), then Rνf∗Fk′
and Rνf!Fk′ are Λ-sheaves on Yk′ for each integer ν by ([SGA4

1
2 ], 7.1.1), and the isomorphisms

ρF (g) : Fk′ → g∗Fk′ ,

on Xk′ yield by functoriality isomorphisms

Rνf∗Fk′ → Rνf∗g∗Fk′ = g∗R
νf∗Fk′

Rνf!Fk′ → Rνf!g∗Fk′ = g∗R
νf!Fk′ ,

so that we obtain structures of µ-twisted Λ-sheaves on Rνf∗Fk′ and Rνf!Fk′ . We denote by
Rνf∗F and Rνf!F the resulting µ-twisted Λ-sheaves. In particular, by taking Y = Spec(k), we
obtain a structure of µ-twisted representation of Gk on the cohomology groups Hν

c (Xk,Fk).
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III.3.15. Let X be a k-scheme. For any geometric point x̄ of X, we denote by evx̄ the
functor which to a finite étale X-scheme Y associates the set Y (x̄) of x̄-points of Y . For a
couple (x0, x1) of geometric points of X, we denote by π1(X,x0, x1) the set of isomorphisms
from evx0

to evx1
, endowed with the coarsest topology such that for any finite étale X-scheme

Y , the map

π1(X,x0, x1)→ Hom(Y (x0), Y (x1)),

is continuous, where the target is endowed with the discrete topology. Thus π1(X,x0, x1) is a
profinite topological space. For a triple (x0, x1, x2) of geometric points of X, the composition
induces a continuous map

π1(X,x1, x2)× π1(X,x0, x1)→ π1(X,x0, x2),

which satisfies the natural associativity condition. In particular, π1(X,x0, x0) is a profinite
group, which will be simply denoted by π1(X,x0).

III.3.16. Let f : X → Y be a morphism of k-schemes, and let (x0, x1) be a couple of
geometric points of X. We have natural isomorphisms evf(x0)

∼= evx0 ◦ f−1 and evf(x1)
∼=

evx1 ◦ f−1, whence precomposition with f−1 induces a continuous map

f∗ : π1(X,x0, x1)→ π1(X, f(x0), f(x1)),

which is compatible with the composition laws. In particular, the formation of π1(X,x0, x1)
(resp. π1(X,x0)) is functorial in the triple (X,x0, x1) (resp. in the couple (X,x0)).

III.3.17. Let X be a locally noetherian connected k-scheme, and let x̄ be a geometric
point of X. Then the fiber functor F 7→ Fx̄ is an equivalence of categories from Loc(X,Λ) to
the category RepΛ(π1(X,x), 1) of Λ-admissible representations of the profinite group π1(X,x)
(cf. III.2.13). This statement reduces to the case where Λ is finite, which in turn follows from
([SGA1], V.7).

III.3.18. Let X be a locally noetherian geometrically connected k-scheme, let k′ be a
finite Galois extension of k and let x̄ be a geometric point of Xk′ . Let u : Xk′ → X be the
natural projection. By ([SGA1], IX 6.1), we have an exact sequence

1→ π1(Xk′ , x̄)
u∗−→ π1(X,u(x̄))

r−→ Gal(k′/k)→ 1,(22)

which we now proceed to describe in greater details. For each g in Gal(k′/k), the geometric
points x̄ and x̄g have the same image by u, so that we obtain a continuous map

u∗ : π1(Xk′ , x̄, x̄g)→ π1(X,u(x̄), u(x̄g)) = π1(X,u(x̄)).

The collection of these continuous maps yields a homeomorphism∐
g∈Gal(k′/k)

π1(Xk′ , x̄, x̄g)
u∗−→ π1(X,u(x̄)),(23)

whose composition with the homomorphism r : π1(X,u(x̄)) → Gal(k′/k) maps π1(Xk′ , x̄, x̄g)
to g for each g in Gal(k′/k). The homeomorphism above can be promoted to an isomorphism
of profinite groups if we endow its source with the following group law: for any elements α and
β of π1(Xk′ , x̄, x̄g) and π1(Xk′ , x̄, x̄h) respectively, we set α · β = h∗α ◦ β.
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III.3.19. Let X be a locally noetherian geometrically connected k-scheme, let k′/k be a
finite Galois subextension of k neutralizing µ (cf. III.3.1) and let x̄ be a geometric point of Xk′ .
We abusively denote by µ the pullback of µ by the homomorphism r : π1(X,u(x̄))→ Gal(k′/k)
from III.3.18.

Let Loc(X,µ,Λ) be the full subcategory of Sh(X,µ,Λ) consisting of objects F such that
Fk′ is a Λ-local system on Xk′ . Then the fiber functor F 7→ Fx̄ is an equivalence of categories
from Loc(X,µ,Λ) to the category RepΛ(π1(X,u(x)), µ) of Λ-admissible representations of the
Λ-twisted profinite group (π1(X,u(x)), µ) (cf. III.2.11, III.2.13).

Indeed, by III.3.17 the functor Fk′ 7→ Fk′,x̄ realizes an equivalence of categories from
Loc(X,Λ) to the category of Λ-admissible representations of the profinite group (π1(Xk′ , x), 1).
Moreover, for each g in Gal(k′/k), the morphism

HomΛ(g−1Fk′ ,Fk′)→ Homπ1(Xk′ ,x̄)(r
−1(g),AutΛ(Fk′,x̄))

ρ 7→ (α 7→ ρx̄ ◦ u−1
∗ (α)),

where u−1
∗ is the inverse of the isomorphism from (23), realizes an isomorphism onto the set

of left and right π1(Xk′ , x̄)-equivariant maps from r−1(g) to AutΛ(Fk′,x̄). Thus, structures of
µ-twisted Λ-sheaf on Fk′ correspond bijectively to structures of Λ-admissible representations of
(π1(X,u(x)), µ) on Fk′,x̄, hence the result.

Example III.3.20. For X = Spec(k), the category Sh(X,µ,Λ) is equivalent to the category
of Λ-admissible representations of (Gk, µ) (cf. III.2.13).

III.3.21. Let Y be a locally noetherian geometrically connected k-scheme, and let f :
X → Y be a finite étale morphism, where X is a geometrically connected k′′-scheme for some
finite extension k′′ of k contained in k. Let k′/k be a finite Galois subextension of k neutralizing
µ and containing k′′ (cf. III.3.1), let x̄ be a geometric point of Xk′ and let u : Xk′ → X be the
natural projection. The homomorphism

f∗ : π1(X,u(x))→ π1(Y, fu(x)),

is injective and its image is an open subgroup of finite index in π1(Y, fu(x)). Then the following
diagram is commutative.

Loc(X,µ,Λ) RepΛ(π1(X,u(x)), µ)

RepΛ(π1(Y, fu(x)), µ)Loc(Y, µ,Λ)

F 7→ Fu(x)

Ind
π1(Y,fu(x))

π1(X,u(x))
f∗

F 7→ Ffu(x)

In this diagram, the left vertical arrow is defined in III.3.15, while the right vertical arrow is
defined in III.2.24. The horizontal arrows are equivalences of categories by III.3.19.

III.3.22. Let s → Spec(k) be a finite extension of k, and let us fix a k-morphism s :
Spec(k) → s, corresponding to a k-linear embedding of k(s) in k, so that the Galois group
Gs = Gal(k/k(s)) can be considered as an open subgroup of finite index in Gk. We still denote
by µ the restriction of µ to Gs. We denote by δs/k the Λ-admissible character of rank 1 of Gk
given by

δs/k = det
(

IndGkGsΛ
)
.

Thus δs/k is the signature character associated the left action of Gk on the finite set Gk/Gs.



98 III. FACTEURS LOCAUX `-ADIQUES

Definition III.3.23. Let V be a Λ-admissible representation of (Gs, µ). The transfer or
verlagerung of V with respect to the extension k(s)/k is the Λ-admissible map Vers/k(V ) from
Gk to Λ× defined by

Vers/k(V ) = δ
−rk(V )
s/k det

(
IndGkGsV

)
,

where the induction is defined in III.2.24.

Proposition III.3.24. Let V be a Λ-admissible representation of (Gs, µ). Then the deter-
minant det(V ) is a Λ-admissible representation of (Gs, µ

rk(V )) and we have

Vers/k(V ) = Vers/k(det(V )).

Moreover, if χ1 and χ2 are Λ-admissible representations of rank 1 of (Gs, µ1) and (Gs, µ2)
respectively, for some multipliers ν1, ν2 on Gk, then

Vers/k(χ1χ2) = Vers/k(χ1)Vers/k(χ2).

Indeed, let (ti)i∈I be a family of Gs-left cosets representatives in Gk. Then we have a
splitting (cf. III.2.24)

IndGkGsV =
⊕
i∈I

[ti]V.

Let g be an element of Gk and let us write gti = tσ(g)(i)hg,i for some bijection σ(g) of I onto
itself, and some element hg,i of Gs. For any element v of V , we have

[g][ti]v = µ(g, ti)[gti]v

= µ(g, ti)µ(tσ(g)(i), hg,i)
−1[tσ(g)(i)][hg,i]v.

Consequently, we have

det(g | IndGkGsV ) = sgn(σ(g))rk(V )
∏
i∈I

µ(g, ti)
rk(V )µ(tσ(g)(i), hg,i)

−rk(V ) det(hg,i | V ),

where sgn is the signature homomorphism. The sign sgn(σ(g)) is equal to δs/k(g) and thus

Vers/k(V )(g) =
∏
i∈I

µ(g, ti)
rk(V )µ(tσ(g)(i), hg,i)

−rk(V ) det(hg,i | V ),

hence the conclusion of Proposition III.3.24.

Remark III.3.25. If µ = 1 then det(V ) is a group homomorphism from Gs to Λ× and the
computation above yields

Vers/k(V ) = det(V ) ◦ vers/k,

where vers/k : Gab
k → Gab

s is the usual transfer homomorphism, cf. ([Se68], VII.8 p.122) or
([De73], Prop. 1.2).

Corollary III.3.26. Let s′ → s be a finite extension. Then we have

δs′/k = δ
[k(s′):k(s)]
s/k Vers/k(δs′/s),

Vers′/k = Vers/k ◦Vers′/s.

This follows from Proposition III.3.24 and from the existence of a natural isomorphism

IndGkGs′V
∼= IndGkGs IndGsGs′V.
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III.3.27. Let s → Spec(k) be a finite extension of k, and let us fix a k-morphism s :
Spec(k) → s, corresponding to a k-linear embedding of k(s) in k, so that the Galois group
Gs = Gal(k/k(s)) can be considered as an open subgroup of finite index in Gk. We still denote
by µ the restriction of µ to Gs.

Let X be a separated s-scheme of finite type. For any element t of Gk/Gs, we denote by
t(s) the composition of s with the k-automorphism of Spec(k) induced by some element of Gk
lifting t, and by tX the k-scheme X ×s,t(s) Spec(k). Let us consider the product

X =
∏

t∈Gk/Gs

tX.

For each t in Gk/Gs and each g in Gk, the k-automorphism of Spec(k) induced by g yields an
isomorphism

gtX → tX.

By taking the product over t, we obtain an automorphism of X, and this produces a right
action of Gk on X. We denote by p1 be projection from X onto X through its factor X1 = Xs.
Let F be a µ-twisted Λ-sheaf on X. We construct a µ[k(s):k]-twisted Λ-sheaf F on X as follows.
For each choice g• = (gt)t∈Gk/Gs of left Gs-cosets representatives in Gk, we set

Fg• =
⊗

t∈Gk/Gs

g−1
t p−1

1 F .

If g̃• = (g̃t)t∈Gk/Gs is another set of left Gs-cosets representatives in Gk, then we can write
g̃t = gtht for some ht in Gs, hence an isomorphism

g−1
t p−1

1 ρF (ht) : g̃−1
t p−1

1 F ∼= g−1
t h−1

t p−1
1 F → g−1

t p−1
1 F ,

which yields an isomorphism F g̃• → Fg• by taking the tensor product over t. We then define
F to be the inverse limit of Fg• over all choices g• of left Gs-cosets representatives in Gk, with
respect to these transition maps.

If g is an element of Gk, then gg• is also a set of left Gs-cosets representatives in Gk, hence
the transition maps

g−1Fg• ∼= Fgg• → Fg• ,
yield an isomorphism ρF (g) : g−1F → F , which endows F with a structure of µ[k(s):k]-twisted
Λ-sheaf on X.

Proposition III.3.28. Let s, s,X,X be as in III.3.27. Let F be a µ-twisted Λ-sheaf on
X, and let us assume that RΓc(Xs,F) is concentrated in a single cohomological degree ν, and
that Hν

c (Xs,F) is a free Λ-module of rank 1. Let F be the µ[k(s):k]-twisted Λ-sheaf on X
constructed in III.3.27. Then RΓc(X,F) is concentrated in degree [k(s) : k]ν, and the Λ-
admissible representation

H [k(s):k]ν
c (X,F),

is of rank 1, isomorphic to δνs/kVers/kH
ν
c (Xs,F) (cf. III.3.22).

Indeed, for any choice g• = (gt)t∈Gk/Gs of left Gs-cosets representatives in Gk, the canonical
isomorphism F → Fg• , together with Künneth’s formula ([SGA4], XVII 5.4.3), yields that
RΓc(X,F) is concentrated in degree [k(s) : k]ν and that we have a canonical isomorphism⊗

t∈Gk/Gs

Hν
c (tX, g−1

t F)→ H [k(s):k]ν
c (X,F).(24)

It remains to understand how the action of Gk on the target of this isomorphism translates on
its source. Let g be an element of Gk. Then we can write ggt = gσ(g)(t)hg,t for some bijection
σ(g) of Gk/Gs onto itself and hg,t is some element of Gs. Since (24) is an isomorphism of
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graded vector spaces (cf. ([SGA4], XVII 1.1.4), the element g of Gk acts on the source of 24
by sgn(σ(g))ν = δνs/k(g) multiplied by∏

t∈Gk/Gs

µ(g, gt)µ(gσ(g)(t), hg,t)
−1Tr(hg,t | Hν

c (tX, g−1
t p−1

1 F)).

The latter is exactly Vers/kH
ν
c (Xs,F) evaluated at g, hence the conclusion of Proposition

III.3.28.

III.4. Gabber-Katz extensions

In this section, we review the theory of Gabber-Katz extensions from [Ka86], which will
constitute our main tool in order to define geometric local ε-factors in Section III.9.

Let T be the spectrum of a k-algebra, which is a henselian discrete valuation ring OT , with
maximal ideal m, and whose residue field OT /m is a finite extension of k of degree deg(s). Let
j : η → T be the generic point of T , and let i : s→ T be its closed point, so that T is canonically
an s-scheme. We fix a uniformizer π of OT , and we abusively denote by π as well the morphism

π : T → A1
s,

corresponding to the unique morphism k(s)[t] → OT of k(s)-algebras which sends t to π. We
fix a k-morphism s from Spec(k) to s, and a separable closure η of ηs̄ = η ×s s. We consider η
as a geometric point of A1

s through the morphism π. We denote by Gs the Galois group of the
extension k/k(s), and by Gη the Galois group of the extension k(η)/k(η).

III.4.1. Let T̂ be the spectrum of the m-adic completion of OT , and let
(
A1
s

)
(0)

(resp.

Â1
s(0)) be the henselization (resp. spectrum of the completion) of A1

s at 0. Then we have the
following commutative diagram.

T̂ T

Â1
s(0)

(
A1
s

)
(0)

ππ

The left vertical morphism is an isomorphism, while the two horizontal morphisms induce
isomorphisms on the corresponding étale sites, as it follows for example from Krasner’s lemma,
cf. ([SP], 09EJ). Thus the right vertical morphism induces an isomorphism on the corresponding
étale sites.

III.4.2. Following ([Ka86], 1.3.1), we define a category of special coverings of Gm,s. For
any scheme X, let Fét(X) be the category of finite étale X-schemes. By ([SGA1], V.7), the
functor which sends an object U → Gm,s of Fét(Gm,s) to the fiber Uη, endowed with the natural
action of π1(Gm,s, η), realizes an equivalence of categories from Fét(Gm,s) to the category of
finite sets endowed with a continuous left action of π1(Gm,s, η).

Definition III.4.3. ([Ka86], 1.3.1) The category Fét♦(Gm,s) of special finite étale Gm,s-
schemes is the full subcategory of Fét(Gm,s) (cf. III.4.2) whose objects are the finite étale
morphisms f : U → Gm,s such that:

(1) the morphism f is tamely ramified above ∞, i.e. the fiber product

U ×Gm,s Spec(k(s)((t−1)))→ Spec(k(s)((t−1))),

is a finite disjoint union of spectra of tamely ramified extensions of k(s)((t−1)).
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(2) the geometric monodromy group of f , namely the image of the composition

π1(Gm,s, η)→ π1(Gm,s, η)→ Aut(Uη),

has a unique p-Sylow subgroup.

Theorem III.4.4 ([Ka86], 1.4.1). Let Fét♦(Gm,s) be as in III.4.3. The functor

π−1
|η : Fét♦(Gm,s)→ Fét(η),

induced by the morphism π|η : η → Gm,s, is an equivalence of categories.

III.4.5. For example, if h is an element of k(η) then Theorem III.4.4 implies that the
Fp-torsor over η defined by the equation

x− xp = h,(25)

must extend to an Fp-torsor over Gm,s, which is tamely ramified above ∞, hence unramified
since Fp is a p-group. Let us write h as hπ(π) + rπ, for some polynomial hπ in k(s)[t−1] and
some element rπ of m. Since T is henselian, there exists a unique element uπ of m such that
rπ = uπ − upπ. Then the Fp-torsor over Gm,s defined by the equation

y − yp = hπ(t),(26)

is unramified at ∞ and its pullback to η by π|η is isomorphic to (25). Therefore (26) is (up to
isomorphism) the Fp-torsor over Gm,s associated to (25) by the equivalence in Theorem III.4.4.

The Laurent polynomial hπ(t) admits the following alternative description. Let ν ≥ 1
be an integer such that h is of valuation strictly larger than −ν, and let u be the generator
1⊗ 1− t⊗ π−1 of the OT /mν [t, t−1]-module k(s)[t, t−1]⊗k(s) m

−1/m−1+ν . Then we have

hπ(t) = −Res

(
h
du

u

)
,(27)

in k(s)[t, t−1]. This formula should be understood as follows: we first take a lift ũ of u in
π−1A[[π]], where A = k(s)[t, t−1], so that ũ is invertible in A((π)), and we then set

Res

(
h
du

u

)
= Res

(
h
dũ

ũ

)
,

where the right hand side is the specialization to A = k(s)[t, t−1] and r = 1 of the following
definition:

Definition III.4.6. For any k(s)-algebra A, any non negative integer r and any element
w =

∑
n<r wn ⊗ πn of A⊗ k(η)/mr, we define

dw =
∑
n<r

wn ⊗ nπn−1dπ,

in A⊗ (k(η)/mr−1)dπ, and
Res(wdπ) = w−1.

Let us prove (27). We consider the lift ũ = 1− tπ−1 of u in π−1A[[π]]. We have
dũ

ũ
=

tdπ

π(π − t)

= − dπ

π(1− t−1π)

= −
∑
n≥0

t−nπn
dπ

π
,
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in A((π))dπ. If we write the image of h in m1−ν/m as
∑ν−1
n=0 hnπ

−n for some elements (hn)0≤n<ν
of k(s), then this yields

Res

(
h
du

u

)
= −

∑
0≤n<ν

t−n ⊗ Res

(
hπn

dπ

π

)
= −

∑
0≤n<ν

hnt
−n,

and the latter Laurent polynomial is exactly −hπ(t), hence (27).

III.4.7. Let f : U → Gm,s be a connected special finite étale cover of Gm,s (cf. III.4.3).
Let η′ → η be the pullback of U to η by π, and let us fix an η-morphism η → η′, so that we can
consider η as a geometric point of U , henceforth denoted η′. Similarly, let s′ be a finite étale
extension of s such that U is a geometrically connected s′-scheme, and let us fix an s-morphism
s → s′, so that we can consider s as a geometric point, denoted s′, of the normalization T ′ of
T in η′, or as a geometric point, also denoted s′, of the normalization X of A1

s in U . We have
a natural morphism

π′ : T ′ → X,

whose restriction to η′ is the natural morphism from η′ to U .

Definition III.4.8. A finite étale morphism V → U is f -special if the composition

V → U
f−→ Gm,s

is special (cf. III.4.3). We denote by Fét♦(U, f) the category of f -special finite étale U -schemes,
or equivalently the category of U -objects in Fét♦(Gm,s).

Let us consider the fiber functor

Fét♦(U, f)→ Sets

(V → U) 7→ Vη′ = Homη′(η
′, V ).

(28)

Let π1(U, f, η′)♦ be the group of automorphisms of this functor, endowed with the coarsest
topology such that for any object V → U of Fét♦(U, f), the natural group homomorphism

π1(U, f, η′)♦ → Aut(Vη′),

is continuous, when the finite set Aut(Vη′) is endowed with the discrete topology.
The topological group π1(U, f, η′)♦ is profinite, and we have a natural surjective homomor-

phism
π1(U, η′)→ π1(U, f, η′)♦.

Moreover, the fiber functor (28) realizes an equivalence from Fét♦(U, f) to the category of finite
sets endowed with a continuous left action of π1(U, f, η′)♦, cf. ([Ka86], 1.3.3). The natural
surjective homomorphism

π1(U, η′)→ Gs′ ,

factors through π1(U, f, η′)♦, and we denote by π1(Us′ , f, η
′)♦ the kernel of the resulting sur-

jective homorphism from π1(U, f, η′)♦ to Gs′ .
By Theorem III.4.4, the homomorphism

(π′|η′)∗ : Gη′ → π1(U, f, η′)♦,(29)

is an isomorphism of profinite topological groups.
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III.4.9. Let U, f,X be as in III.4.7. Let Λ be a finite admissible `-adic ring (cf. III.2.2),
and let µ be a Λ-admissible unitary multiplier on Gk (cf. III.2.9). The category Sh♦(X, f, µ,Λ)
of f -special µ-twisted Λ-sheaves on X is the full subcategory of Sh(X,µ,Λ) (cf. III.3.7) whose
objects are the µ-twisted Λ-sheaves F = (Fk′ , (ρF (g))g∈Gal(k′/k)) on X such that:

(1) The restriction of Fk′ to Uk′ is a Λ-local system (cf. III.3.2).

(2) The restriction of Fk′ to any (equivalently, some) connected component of Uk′ is trivial-
ized on a finite étale cover which is f -special, cf. III.4.8. Equivalently, the Λ-admissible
representation Fη′ of (π1(U, η′), µ) (cf. III.3.19) factors through a Λ-admissible repre-
sentation of (π1(U, f, η′)♦, µ) (cf. III.4.7).

III.4.10. Let U, f,X be as in III.4.7. Let Λ be the ring of integers in a finite subextension
of Q` in C, and let µ be a Λ-admissible unitary multiplier on Gk (cf. III.2.9). The category
Sh♦(X, f, µ,Λ) of f -special µ-twisted Λ-sheaves on X is the full subcategory of Sh(X,µ,Λ) (cf.
III.3.11) consisting of its objects (Fn)n, where Fn is a µ-twisted Λ/`n-sheaf on X, such that
Fn is special for each n (cf. III.4.9).

III.4.11. Let U, f,X be as in III.4.7. Let Λ be a finite subextension of Q` in C, with ring
of integers Λ0, and let µ be a Λ-admissible unitary multiplier on Gk (cf. III.2.9). Then µ takes
its values in Λ×0 . We define the category Sh♦(X,µ,Λ) of f -special µ-twisted Λ-sheaves on X
to be the essential image of Sh♦(X, f, µ,Λ0) (cf. III.4.10) in Sh(X,µ,Λ) (cf. III.3.12).

III.4.12. Let U, f,X be as in III.4.7. Let Λ be an `-adic coefficient ring (cf. III.2.2), and
let µ be a Λ-admissible unitary multiplier on Gk. We define the category Sh♦(X, f, µ,Λ) of
f -special µ-twisted Λ-sheaves on X to be the full subcategory of Sh(X, f, µ,Λ) (cf. III.3.13)
whose objects belong to the essential image of Sh(X, f, µ,Λ0)♦ (cf. III.4.9, III.4.10, III.4.11),
for some admissible `-adic subring Λ0 of Λ containing the image of µ.

We define the category Sh♦(U, f, µ,Λ) of f -special µ-twisted Λ-sheaves on U to be the full
subcategory of Sh♦(X, f, µ,Λ) consisting f -special µ-twisted Λ-sheaves supported on the open
subscheme U of X.

III.4.13. Let U, f,X, η′, s′ be as in III.4.7, and let Λ and µ be as in III.4.12. By III.3.19
and III.4.7, the fiber functor F 7→ Fη′ realizes an equivalence from the category of f -special
µ-twisted Λ-sheaves on U (cf. III.4.12) to the category of Λ-admissible representations of
(π1(U, f, η′)♦, µ).

More generally, for any object F of the category Sh♦(X, f, µ,Λ), we have a cospecialization
homomorphism

cF,s′,η : Fs′ → Fη′ ,
and the functor F 7→ (Fs′ ,Fη′ , cF,s′,η′) realizes an equivalence of categories from Sh♦(X, f, µ,Λ)
to the category of triples (Vs′ , Vη′ , c), where Vη′ is a Λ-admissible representation of (π1(U, f, η′)♦, µ),
where Vs′ is a Λ-admissible representation of (Gs′ , µ), and where

c : Vs′ → V
π1(Us′ ,f,η

′)♦

η′ ,

is a homomorphism of Λ-admissible representations of (Gs′ , µ) from Vs′ to the subrepresentation
of Vη′ consisting of its π1(Us′ , f, η

′)♦-invariant elements (cf. III.4.7).

III.4.14. Let U, f,X, T ′, η′, s′ be as in III.4.7, and let Λ and µ be as in III.4.12. By
III.3.19, the fiber functor F 7→ Fη′ realizes an equivalence from the category of µ-twisted
Λ-sheaves on η′ (cf. III.3.7) to the category of Λ-admissible representations of (Gη′ , µ).

More generally, the functor F 7→ (Fs′ ,Fη′ , cF,s′,η′), where cF,s′,η′ : Fs′ → Fη′ is the
cospecialization homomorphism, realizes an isomorphism from Sh(T ′, µ,Λ) to the category of
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triples (Vs′ , Vη′ , c), where Vη′ is a Λ-admissible representation of (Gη′ , µ), where Vs′ is a Λ-
admissible representation of (Gs′ , µ), and where

c : Vs′ → V
Gη

s′
η′ ,

is a homomorphism of Λ-admissible representations of (Gs′ , µ) from Vs′ to the subrepresentation
of Vη′ consisting of its Gηs′ -invariant elements.

This remark, combined with the Galoisian description of f -special µ-twisted Λ-sheaves on
X (cf. III.4.13) and with the isomorphism (29), yields:

Theorem III.4.15. Let U, f,X, T ′, π′ be as in III.4.7, let Λ be an `-adic coefficient ring
(cf. III.2.2), and let µ be a Λ-admissible unitary multiplier on Gk (cf. III.2.9). The pullback
functor

(π′)−1 : Sh♦(X, f, µ,Λ)→ Sh(T ′, µ,Λ),

is an equivalence from the category of f -special µ-twisted Λ-sheaves on X (cf. III.4.12) to the
category of µ-twisted Λ-sheaves on T ′.

By restricting to µ-twisted Λ-sheaves with vanishing fiber at s′, we similarly obtain:

Theorem III.4.16. Let U, f, η′ be as in III.4.7, let Λ be an `-adic coefficient ring (cf.
III.2.2), and let µ be a Λ-admissible unitary multiplier on Gk (cf. III.2.9). The pullback functor

(π′|η)−1 : Sh♦(U, f, µ,Λ)→ Sh(η′, µ,Λ),

is an equivalence from the category of f -special µ-twisted Λ-sheaves on U (cf. III.4.12) to the
category of µ-twisted Λ-sheaves on η′.

III.4.17. For U = Gm,s and f = id, let us simply refer to f -special sheaves as special
sheaves. This agrees with the terminology in ([Ka86], 1.5). As a particular case of Theorem
III.4.15, we have the following extension result:

Theorem III.4.18. Let Λ be an `-adic coefficient ring (cf. III.2.2), and let µ be a Λ-
admissible unitary multiplier on Gk (cf. III.2.9). The pullback functor

π−1 : Sh♦(A1
s, µ,Λ)→ Sh(T, µ,Λ),

is an equivalence from the category of special µ-twisted Λ-sheaves on A1
s (cf. III.4.12) to the

category of µ-twisted Λ-sheaves on T .

By restricting to µ-twisted Λ-sheaves with vanishing special fiber we similarly obtain:

Theorem III.4.19. Let Λ be an `-adic coefficient ring (cf. III.2.2), and let µ be a Λ-
admissible unitary multiplier on Gk (cf. III.2.9). The pullback functor

π−1
|η : Sh♦(Gm,s, µ,Λ)→ Sh(η, µ,Λ),

is an equivalence from the category of special µ-twisted Λ-sheaves on Gm,s (cf. III.4.12) to the
category of µ-twisted Λ-sheaves on η.

When µ = 1, the latter theorem matches ([Ka86], Th. 1.5.6).

III.4.20. Let Λ be an `-adic coefficient ring (cf. III.2.2), let µ be a Λ-admissible unitary
multiplier on Gk (cf. III.2.9), and let U, f, η′ be as in III.4.7.

Lemma III.4.21. If F is an object of Sh♦(U, f, µ,Λ), then its pushforward f∗F (cf. III.3.14)
belongs to Sh♦(Gm,s, µ,Λ).
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We can assume (and we do) that Λ is finite, in which case the Λ-local system F is represented
by a finite étale morphism g : V → U which is f -special (cf. III.4.8). The Λ-local system f∗F
is then represented by the finite étale morphism fg : V → Gm,s, which is special, hence the
conclusion of Lemma III.4.21.

It follows from Lemma III.4.21 that we have the following commutative diagram (up to
natural isomorphisms).

Sh(η′, µ,Λ) Sh♦(U, f, µ,Λ)

Sh♦(Gm,s, µ,Λ)Sh(η, µ,Λ)

(π′|η)−1

f∗(f|η′ )∗

π−1
|η

The rows of this diagram are equivalences of categories by Theorems III.4.16 and III.4.19.

III.5. Geometric class field theory

We review in this section global and local geometric class field theory. Let Λ be an `-adic
coefficient ring (cf. III.1.13, III.2.2). The purpose of geometric class field theory is to establish
equivalences between groupoids of Λ-local systems of rank 1 on curves over k, or over germs of
curves, and groupoids of multiplicative local systems over certain group schemes. The notion
of multiplicative local system, which geometrizes the notion of character, is reviewed in III.5.1,
III.5.4, III.5.5 and III.5.6 below.

III.5.1. Let us assume that Λ is a finite `-adic coefficient ring (cf. III.2.2). Let S be a
k-scheme and let G be a commutative S-group scheme, with multiplication m : G ×S G → G.
A multiplicative Λ-local system on G is a Λ-local system L on G, of rank 1, together with an
isomorphism θ : p−1

1 L ⊗ p−1
2 L → m−1L of Λ-local systems on G × G where p1 and p2 are the

canonical projections, which satisfy the following two properties, cp. ([Gu18], Def. 2.5).

(1) Symmetry: if σ is the involution of G × G which switches the two factors, then the
isomorphism

p−1
2 L ⊗ p−1

1 L → σ−1(p−1
1 L ⊗ p−1

2 L)
σ−1θ−−−→ σ−1m−1L → m−1L

is the composition of θ with the canonical isomorphism p−1
2 L ⊗ p−1

1 L → p−1
1 L ⊗ p−1

2 L.
(2) Associativity: if qi : G×G×G→ G (resp. qij : G×G×G→ G×G) is the projection

on the i-th factor for i ∈ J1, 3K (resp. on the i-th and j-th factors for (i, j) ∈ J1, 3K2

such that i < j) and if m3 : G ×G ×G → G is the multiplication morphism, then the
diagram of Λ-local systems on G×G×G

q−1
1 L ⊗ q−1

2 L ⊗ q−1
3 L

q−1
1 L ⊗ (mq23)−1L

(mq12)−1L ⊗ q−1
3 L.

m−1
3 L

id⊗ q−1
23 θ

q−1
12 θ ⊗ id

(q1 ×mq23)−1θ

(mq12 × q3)−1θ
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is commutative.
A morphism between multiplicative Λ-local systems (L1, θ1) and (L2, θ2) onG is an isomorphism
α : L1 → L2 of Λ-local systems such that the diagram

p−1
1 L1 ⊗ p−1

2 L1

p−1
1 L2 ⊗ p−1

2 L2

m−1L1.

m−1L2

θ1

θ2

p−1
1 α⊗ p−1

2 α m−1α

is commutative.
We denote by Loc⊗(G,Λ) the groupoid of multiplicative Λ-local systems on G. The group

of automorphisms of an object of Loc⊗(G,Λ) is given by

AutLoc⊗(G,Λ)(Λ) = HomGrp/S(G,Λ×S ),

where Λ×S is the constant S-group scheme associated to Λ×. If S is connected and if G is an
extension of a constant S-group scheme, associated to a discrete group π0(G), by an S-group
scheme with connected geometric fibers, then we also have

AutLoc⊗(G,Λ)(Λ) = HomGrp(π0(G),Λ×).

Remark III.5.2. The functor L 7→ Isom(Λ,L) which sends a multiplicative Λ-local system
L on G to the Λ×-torsor of its local trivializations realizes an equivalence from the category
Loc⊗(G,Λ), to the groupoid of multiplicative Λ×-torsors on G in the sense of ([Gu18], Def.
2.5). By ([Gu18], Def. 2.9), the latter groupoid is equivalent to the groupoid of extensions of
G by Λ× in the category of commutative S-group schemes. Namely, to an extension

0→ Λ× → E → G→ 0,

of commutative S-group schemes, one associate the Λ-local system of rank 1 on G corresponding
to the Λ×-torsor E over G, where Λ× acts by left multiplication on E; this Λ-local system of
rank 1 on G is naturally endowed with a structure of multiplicative Λ-local system on G, cf.
([Gu18], Def. 2.4).

Example III.5.3. Assume that k is finite of cardinality q, and that G is a connected
commutative k-group scheme. The q-Frobenius morphism F : G→ G is then an homomorphism
of k-group schemes. Moreover, the sequence

0→ G(k)→ G
1−F−−−→ G→ 0,

is exact, cf. ([La90], 1.1.3). For any homomorphism χ : G(k)→ Λ×, the pushout of this exact
sequence provides an extension of G by Λ×, which yields in turn a multiplicative Λ-local system
Lχ on G by Remark III.5.2.

III.5.4. Let us assume that Λ is the ring of integers in a finite extension of Q`. Let S
be a connected k-scheme and let G be a commutative S-group scheme, which is an extension
of a constant S-group scheme, associated to a discrete group π0(G), by an S-group scheme
with connected geometric fibers. We define the groupoid Loc⊗(G,Λ) of multiplicative Λ-local
systems on G to be the 2-limit of the categories Loc⊗(G,Λ/`n) (cf. III.5.1), where n runs
over over all positive integers. Thus the objects of Loc⊗(G,Λ) are given by projective systems
(Ln)n≥1 where Ln is a multiplicative Λ/`n-local system on G, such that the transition maps
Ln+1 → Ln induce isomorphisms Ln+1 ⊗ Λ/`n → Ln, for each integer n.

The group of automorphisms of an object of Loc⊗(G,Λ) is given by

AutLoc⊗(G,Λ)(Λ) = lim
n

HomGrp(π0(G), (Λ/`n)×) = HomGrp(π0(G),Λ×).



III.5. GEOMETRIC CLASS FIELD THEORY 107

III.5.5. Let us assume that Λ is a finite extension of Q`, with ring of integers Λ0 ⊆ Λ. Let
S be a connected k-scheme and let G be a commutative S-group scheme, which is an extension
of a constant S-group scheme, associated to a discrete group π0(G), by an S-group scheme
with connected geometric fibers. We define the groupoid Loc⊗(G,Λ) of multiplicative Λ-local
systems on G to be the groupoid whose objects are those of Loc⊗(G,Λ0) (cf. III.5.4), and
whose morphisms are given by

IsomΛ(L1,L2) = HomGrp(π0(G),Λ×) ∧ IsomΛ0(L1,L2),

namely the quotient of HomGrp(π0(G),Λ×)×IsomΛ0(L1,L2) by the action of HomGrp(π0(G),Λ×0 )
given by u(λ, ϕ) = (u−1λ, uϕ) for u in HomGrp(π0(G),Λ×0 ) and (λ, ϕ) in HomGrp(π0(G),Λ×)×
IsomΛ0

(L1,L2). In particular, the group of automorphisms of an object of Loc⊗(G,Λ) is given
by

AutLoc⊗(G,Λ)(Λ) = HomGrp(π0(G),Λ×).

Isomorphisms between multiplicative Λ-local systems L1 and L2 on G can be alternatively
described as isomorphisms α : L1 → L2 of Λ-local systems (cf. III.3.4) such that the diagram

p−1
1 L1 ⊗ p−1

2 L1

p−1
1 L2 ⊗ p−1

2 L2

m−1L1.

m−1L2

θ1

θ2

p−1
1 α⊗ p−1

2 α m−1α

is commutative. Indeed, if π is a uniformizer of Λ, then such an isomorphism α must be of the
form α = πvϕ, where ϕ : L1 → L2 is an isomorphism of Λ0-local systems, and where v is a
map from π0(G) to Z. The commutativity of the diagram above implies that d1(πv) = πd

1(v)

(cf. 15) takes its values in Λ×0 , hence is trivial. Thus λ = πv is a group homomorphism from
π0(G) to Λ× and ϕ is an isomorphism of multiplicative Λ0-local systems.

III.5.6. We now consider an arbitrary `-adic coefficient ring Λ. Let S be a connected
k-scheme and let G be a commutative S-group scheme, which is an extension of a constant
S-group scheme, associated to a discrete group π0(G), by an S-group scheme with connected
geometric fibers. We define the groupoid Loc⊗(G,Λ) of multiplicative Λ-local systems on G to
be the 2-colimit of the groupoids Loc⊗(G,Λ0), where Λ0 runs over all admissible `-adic subrings
of Λ (cf. III.5.1, III.5.4 and III.5.5). The group of automorphisms of an object of Loc⊗(G,Λ)
is given by the group of Λ-admissible group homomorphisms from π0(G) to Λ× (cf. III.2.5).

Remark III.5.7. If the discrete group π0(G) is finitely generated, then any group homo-
morphism from π0(G) to Λ× is Λ-admissible.

Example III.5.8. Let us consider the discrete group scheme G = ZS . For each integer
n, let n : S → ZS be the section corresponding to the element n of Z. Then the pullback by
the section 1 realizes an equivalence from Loc⊗(ZS ,Λ) to the groupoid of Λ-local systems of
rank 1 on S. A quasi-inverse to this functor is given by sending a Λ-local system F of rank 1
on S to the multiplicative Λ-local system on ZS whose pullback by the section n is F⊗n, for
any integer n, together with the isomorphism θ : p−1

1 L ⊗ p−1
2 L → m−1L, whose pullback by a

section (n,m) of ZS ×S ZS is the canonical isomorphism

F⊗n ⊗F⊗m → F⊗(n+m).
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III.5.9. Let S be a connected k-scheme and let G1, G2 be commutative S-group schemes
as in III.5.6. Then G1 ×S G2 is an extension of the discrete group π0(G1) × π0(G2) by an
S-group scheme with connected geometric fibers. Let p1, p2 be the natural projections from
G1 ×S G2 to G1 and G2 respectively. Then the functor

Loc⊗(G1,Λ)× Loc⊗(G2,Λ)→ Loc⊗(G1 ×S G2,Λ)

(L1,L2) 7→ p−1
1 L1 ⊗ p−1

2 L2,

is an equivalence of categories. Indeed, if ι1, ι2 are the inclusions of the factors G1 and G2

respectively in G1 ×S G2, then for any multiplicative Λ-local system (L, θ) on G1 ×S G2, the
isomorphism θ produces an isomorphism

L → p−1
1 ι−1

1 L ⊗ p−1
2 ι−1

2 L.

III.5.10. Let G be a commutative k-group scheme as in III.5.6. Let i : H → G be a
closed connected sub-k-group scheme of G, so that G/H is also an extension of the constant
k-group scheme π0(G) by a quasi-compact connected k-group scheme. Let r : G→ G/H be the
canonical projection. Then the pullback functor r−1 induces an equivalence from the groupoid

Loc⊗(G/H,Λ)

of multiplicative Λ-local systems on G/H (cf. III.5.6) to the groupoid of triples (L, θ, ζ), where
(L, θ) is a multiplicative Λ-local systems on G and ζ : ΛH → i−1L is an isomorphism of
multiplicative Λ-local systems on H. Indeed, if (L, θ, ζ) is such a triple, if p1, p2,m are as in
III.5.1, and if ϕ is the isomorphism

ϕ : G×k H → G×G/H G

(g, h)→ (g, gh)

then we have a sequence of isomorphisms

ϕ−1p−1
1 L → p−1

1 L|G×kH
id⊗ζ−−−→ p−1

1 L ⊗ p−1
2 L|G×kH

θ|G×kH−−−−−→ m−1L|G×kH −→ ϕ−1p−1
2 L,

which yields a descent datum p−1
1 L → p−1

2 L on G×G/H G, with respect r, which is a morphism
of effective descent for the fibered category of Λ-local systems, as well as for the fibered category
of multiplicative Λ-local systems.

III.5.11. Let X be a smooth geometrically connected projective curve of genus g over k,
let i : D → X be an effective divisor of degree d ≥ 1 on X, and let U be the open complement of
D in X. Our aim is to describe Λ-local systems of rank 1 on U . One first introduces a measure
of the ramification at infinity of such a local system:

Definition III.5.12. A Λ-local system F of rank 1 on U has ramification bounded by D if
for any point x of D, the Swan conductor of the restriction of F to the spectrum of the fraction
field of the completed local ring of X at x is strictly less than the multiplicity of D at x.

The main theorem of geometric class field theory, namely Theorem III.5.15 below, states an
equivalence between the groupoid of Λ-local systems of rank 1 on U with ramification bounded
by D, and the groupoid of multiplicative Λ-local systems on a k-group scheme, the generalized
Picard scheme, which we now introduce:

Definition III.5.13. The generalized Picard functor Pick(X,D) associated to (X,D) is
the functor which to a k-scheme S associates the group of isomorphism classes of pairs (L, α)
where L is an invertible OXS -module and α : ODS → i∗SL is an isomorphism of ODS -modules.
Here, by XS , DS , iS we denote the base change of X,D, i along S → Spec(k).
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If the effective divisor D is given by a single k-point x of X with multiplicity 1, then the
morphism

Pick(X,x)→ Pick(X)

(L, α)→ L,
is an isomorphism, where Pick(X) is the Picard functor of X. The latter is well-known to be
representable by a k-group scheme, namely an extension of Zk by the Jacobian scheme of X,
which is an abelian k-scheme of dimension g. In general, we have:

Proposition III.5.14 ([Gu18], Prop. 4.8). The generalized Picard functor Pick(X,D) is
representable by a smooth separated k-group scheme of dimension d+ g − 1.

Let us consider the Abel-Jacobi morphism

Φ : U → Pick(X,D),(30)

which sends a section x of U to the pair (O(x), 1), where 1 : OD → O(x) ⊗OX OD is the
trivialization of O(x) on D induced by the canonical section 1 : OX ↪→ O(x). Global geometric
class field theory can then be stated as follows:

Theorem III.5.15 (Global geometric class field theory). Let F be a Λ-local system of rank
1 on U , with ramification bounded by D (cf. III.5.12). Then, there exists a unique (up to
unique isomorphism) pair (χF , β), where χF is a multiplicative Λ-local system on Pick(X,D)
(cf. III.5.6), and β : Φ−1χF → F is an isomorphism. The functor F 7→ χF is an equivalence
from the groupoid of Λ-local systems of rank 1 on U , with ramification bounded by D, to the
groupoid of multiplicative Λ-local systems on Pick(X,D).

This theorem reduces to the case where Λ is finite, which was originally proved by Serre
and Lang, cf. ([La56], 6) and [Se59], by using the Albanese property of Rosenlicht’s gener-
alized Picard schemes [Ro54]. Deligne gave another proof in the tamely ramified case. An
exposition of Deligne’s proof in the unramified case over a finite field can be found in [La90].
Deligne’s approach was later extended to allow arbitrary ramification simultaneously by the
author ([Gu18], Th. 1.1) and by Takeuchi ([Ta18], Th. 1.1).

III.5.16. Let T be the spectrum of a k-algebra, which is a henselian discrete valuation
ring whose residue field is a finite extension of k. Let η be the generic point of T , and let s be
its closed point, so that k(η) is a henselian discrete valuation field, with valuation subring OT,s,
and with residue field k(s) which is a finite extension of k. By Hensel’s lemma, there exists
a unique morphism T → s of k-schemes whose composition with the immersion s → T is the
identity. We can thus consider T as an s-scheme.

Definition III.5.17. Let D be a closed subscheme of T supported on s. A Λ-local system
F of rank 1 on η has ramification bounded by D if its Swan conductor is strictly less than the
multiplicity of D at s, namely the length of OD,s as an OT,s-module.

Before proceeding further, we need the following result:

Proposition III.5.18. Let D be a closed subscheme of T supported on s. The kernel I of
the homomorphism

OT ⊗k(s) OD → OD
f1 ⊗ f2 → f1f2,

is an invertible ideal of OT ⊗k(s) OD, which generates the unit ideal of k(η)⊗k(s) OD.
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Indeed, if π is a uniformizer of the discrete valuation field k(η), then the kernel of the
multiplication from OT ⊗k(s) OD to OD is generated by π ⊗ 1− 1⊗ π. Since 1⊗ π is nilpotent
in OT ⊗k(s) OD, the section π ⊗ 1− 1⊗ π becomes a unit in k(η)⊗k(s) OD. Since the natural
homomorphism from OT ⊗k(s) OD to k(η)⊗k(s) OD is injective, this proves that π ⊗ 1− 1⊗ π
generates an invertible ideal of OT⊗k(s)OD, and this concludes the proof of Proposition III.5.18.

III.5.19. We aim at describing the Λ-local systems F of rank 1 on η with ramification
bounded by D in terms of multiplicative Λ-local systems on a certain group scheme (cf. III.5.6),
the local Picard group, which we now introduce.

Definition III.5.20. Let D be a closed subscheme of T supported on s, and let I be the
invertible ideal of OT ⊗k(s) OD from Proposition III.5.18. The local Picard group Pic(T,D)
associated to the pair (T,D) is the functor which sends a T -scheme S to the group of pairs
(d, u), where d is a locally constant Z-valued map on S, and

u : OS ⊗k(s) OD → OS ⊗OT I−d

is an isomorphism of OS ⊗k(s) OD-modules.

One can informally think of a section (d, u) of Pic(T,D) over a T -scheme S as a trivialization
of the line bundleO(d∆) along the effective Cartier divisor S×sD on the germ of S-curve S×sT ,
where ∆ : S → S ×s T is the diagonal embedding.

Sending a section (d, u) of Pic(T,D) to d defines a homomorphism

Pic(T,D)→ ZT ,

of group valued functors. We denote by Pic0(T,D) the kernel of this homomorphism. The
special fiber Pic0(T,D)s is the functor which sends an s-scheme S to the group of units in
OS ⊗k(s) OD. The natural homomorphism

Pic0(T,D)s ×s T → Pic0(T,D),

which sends a unit u of OS ⊗k(s) OD to the pair (0, u) is an isomorphism.

Proposition III.5.21. Let D be a closed subscheme of T supported on s. The functor
Pic(T,D) is representable by a T -group scheme, which fits into a (split) exact sequence

1→ Pic0(T,D)→ Pic(T,D)→ ZT → 0,

where Pic0(T,D) is representable by a smooth separated affine T -group scheme, with geometri-
cally connected fibers of dimension equal to the multiplicity of D at s.

Indeed, if π is a uniformizer of the discrete valuation field k(η), then the ideal I of OT ⊗k(s)

OD is generated 1⊗π−π⊗ 1, hence for any S-point (d, u) of Pic(T,D) the isomorphism u can
be uniquely written as a sum

u =

 ∑
0≤n<ν

unπ
n

 (1⊗ π − π ⊗ 1)−d,

where ν is the multiplicity ofD at s, and (un)0≤n<ν are sections of OS , such that u0 is invertible.
Thus Pic(T,D) is representable by a product ZT ×T Gm,T ×T Aν−1

T , and this concludes the proof
of Proposition III.5.21.

Remark III.5.22. The exact sequence

1→ Pic0(T,D)→ Pic(T,D)→ ZT → 0,

is split, but the splitting constructed in the proof of Proposition III.5.21 depends on a choice
of uniformizer, and is therefore non canonical.
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III.5.23. By Proposition III.5.18, the natural homomorphismOT⊗k(s)OD → I−1 induces
an isomorphism

ucan : k(η)⊗k(s) OD → k(η)⊗OT I−1.

The pair (1, ucan) yields a k(η)-point of Pic(T,D), corresponding to a morphism

Φη : η → Pic(T,D),

of T -schemes, which plays the role of a local Abel-Jacobi morphism in Theorem III.5.25. Recall
that we have an isomorphism

α : Pic0(T,D)s ×s T → Pic0(T,D),

which sends a unit u of OS ⊗k(s) OD to the pair (0, u). Let us also denote by p1 the projection
of Pic0(T,D)s ×s T onto the first factor.

Definition III.5.24. We define the groupoid Trip(T,D,Λ) to be the category of triples
(χ, χ̃, β), consisting of

(1) a multiplicative Λ-local system χ on the s-group scheme Pic0(T,D)s (cf. III.5.6),
(2) a multiplicative Λ-local system χ̃ on the T -group scheme Pic(T,D) (cf. III.5.6),
(3) an isomorphism β : α−1χ̃→ p−1

1 χ on Pic0(T,D)s ×s T .
With this definition at hand, the main theorem of local geometric class field theory can be

stated as follows:

Theorem III.5.25 (Local geometric class field theory). Let D be a closed subscheme of
T supported on s. Then, the functor Φ−1

η , which sends an object (χ, χ̃, β) of Trip(T,D) to
the pullback Φ−1

η χ̃, is an equivalence from the groupoid Trip(T,D,Λ) to the groupoid of Λ-local
systems of rank 1 on η, with ramification bounded by D.

We postpone the proof of Theorem III.5.25 to the paragraph III.5.34 below. We now provide
an equivalent version of Theorem III.5.25, whose formulation is somewhat simpler, although
non canonical, as it depends on a choice of uniformizer. Let π be a uniformizer of k(η). Then
1 ⊗ π − π ⊗ 1 is a generator of I, and 1 ⊗ π is a generator of k(s) ⊗OT I as an OD-module.
Thus we obtain an isomorphism

απ : Pic(T,D)s ×s T → Pic(T,D)

(d, u) 7→ (d, u(1⊗ π)d(1⊗ π − π ⊗ 1)−d),

whose restriction to Pic0(T,D)s×s T coincides with α. Here, a section u over an s-scheme S is
considered as an isomorphism

OS ⊗k(s) OD → OS ⊗k(s) OD ⊗OT m−d,

where m denotes the defining ideal of s in T . If (χ, χ̃, β) is a triple as in Theorem III.5.25, then
we have a splitting

Pic(T,D)s ×s T ∼= (Pic0(T,D)s ×s T )×T ZT ,
of T -group schemes (cf. III.5.21), and a corresponding decomposition of α−1

π χ̃ as α−1χ̃ � γ,
where γ is a multiplicative Λ-local system on ZT (cf. III.5.9). The first factor α−1χ̃ is isomorphic
to p−1

1 χ by β. Since T is henselian, the pullback by the morphism T → s is an equivalence from
the groupoid of multiplicative Λ-local systems on Zs to the groupoid of multiplicative Λ-local
systems on ZT , hence γ descends to Zs (cf. III.5.8). Thus α−1

π χ̃ canonically descends to a
multiplicative Λ-local system on Pic(T,D)s. If we further note that α−1

π ◦ Φη is given by the
k(η)-point (1, u) of Pic(T,D)s ×s T , where

u = (1⊗ π)−1(1⊗ π − π ⊗ 1) = 1− π ⊗ π−1,

then we obtain that Theorem III.5.25 is equivalent to the following:
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Theorem III.5.26 (Local geometric class field theory, second version). Let D be a closed
subscheme of T supported on s, and let π be a uniformizer of k(η). Let Φη,π : η → Pic(T,D)s be
the morphism corresponding to the k(η)-point (1, 1−π⊗π−1) of Pic(T,D)s. Then, the functor
Φ−1
η,π is an equivalence from the groupoid of multiplicative Λ-local systems on Pic(T,D)s to the

groupoid of Λ-local systems of rank 1 on η, with ramification bounded by D.

III.5.27. Our deduction of Theorem III.5.26 from Theorem III.5.25 also shows that the
functor

Trip(T,D,Λ)→ Loc⊗(Pic(T,D)s,Λ),

which sends a triple (χ, χ̃, β) to the restriction of χ̃ to the special fiber Pic(T,D)s of Pic(T,D),
is an equivalence of groupoids. Moreover, the composition of Φ−1

η,π with this restriction functor
coincides with the functor Φ−1

η from Theorem III.5.25. In particular, the equivalence Φ−1
η,π from

Theorem III.5.26 does not depend on π, up to natural isomorphism. We denote by F 7→ χF a
quasi-inverse to Φ−1

η,π, which is well-defined up to natural isomorphism.

III.5.28. If (χ1, χ̃1, β1) and (χ2, χ̃2, β2) are objects of Trip(T,D,Λ) such that χ1 = χ2,
then Φ−1

η χ̃2 is isomorphic to Φ−1
η χ̃1 ⊗ G, where G is the pullback to η of a Λ-local systems

of rank 1 on s. We thus obtain a simpler (although weaker) version of Theorem III.5.25 by
ignoring twists by unramified Λ-local systems of rank 1 on η:

Theorem III.5.29 (Local geometric class field theory, third version). Let D be a closed
subscheme of T supported on s. If F is a Λ-local system of rank 1 on η, with ramification
bounded by D, then there exists a unique (up to isomorphism) multiplicative Λ-local system χ
on the s-group scheme Pic0(T,D)s, such that the Λ-local system χ� F on the product

Pic0(T,D)s ×s η
α·Φη−−−→
∼

Pic1(T,D)η,

extends to a Λ-local system on Pic1(T,D). This provides a bijection from the group of isomor-
phism classes of Λ-local systems of rank 1 on η with ramification bounded by D, up to twist by
unramified Λ-local systems of rank 1 on η, to the group of isomorphism classes of multiplicative
Λ-local systems on the s-group scheme Pic0(T,D)s.

One should note that the restriction functor from Pic1(T,D) to Pic1(T,D)η realizes an
equivalence between the groupoid of Λ-local systems on Pic1(T,D) and a full subcategory of
the groupoid of Λ-local systems on Pic1(T,D)η. The formulation of Theorem III.5.29 is due to
Gaitsgory, and can also be found in Bhatt’s Oberwolfach report ([Bh16], Th. 11).

III.5.30. We now describe the relation between our version of local geometric class field
theory, namely Theorem III.5.25, and Contou-Carrere’s theory of the local Jacobian. Let m
be the defining ideal of s, so that D is defined by mν for some nonnegative integer ν. Then
k(s)⊗OT I−d is naturally isomorphic to m−d/m−d+ν as a module over OD = OT /mν , and we
can identify Pic(T,D)s with the functor which sends an s-scheme S to the group of pairs (d, u),
where d is a locally constant Z-valued map on S, and

u : OS ⊗k(s) OT /mν → OS ⊗k(s) m
−d/m−d+ν

is an isomorphism of OS ⊗k(s) OT /mν-modules. The inverse limit over ν of these s-group
schemes can then be identified with the functor J(η) which sends a k(s)-algebra A to the group
of units in A⊗̂k(s)k(η) = (A⊗̂k(s)OT ) ⊗OT k(η), where A⊗̂k(s)OT is the m-adic completion of
A ⊗k(s) OT , which generate a sub-(A⊗̂k(s)OT )-module of the form m−d(A⊗̂k(s)OT ) for some
locally constant function d on Spec(A).
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Remark III.5.31. A unit of A⊗̂k(s)k(η) may not necessarily belong to J(η)(A). For ex-
ample, if a is a nilpotent element of A and if u is an element of k(η) which does not belong to
OT , then 1− a⊗ u is a unit of A⊗̂k(s)k(η) which does not belong to J(η)(A). However, if A is
reduced, then J(η)(A) is simply the group of units in A⊗̂k(s)k(η) by ([CC13], 0.8) or ([Gu18],
Prop. 3.4).

Proposition III.5.32. The functor J(η) is representable by an s-group scheme, which fits
into an exact sequence

1→ J(η)0 → J(η)→ Zs → 0,

where J(η)0 is representable by a geometrically connected affine s-group scheme.

Indeed, J(η)0 is the limit of the inverse system (Pic0(T,mν)s)ν≥0 of affine s-group schemes.

Theorem III.5.33 (Local geometric class field theory, fourth version). Let π be a uni-
formizer of k(η). Let Ψη,π : η → J(η) be the morphism corresponding to the k(η)-point
(1, 1− π ⊗ π−1) of J(η). Then, the functor Ψ−1

η,π is an equivalence from the groupoid of multi-
plicative Λ-local systems on J(η) to the groupoid of Λ-local systems of rank 1 on η.

If Λ is finite, then Theorem III.5.33 follows from Theorem III.5.26, since the category of
finite etale J(η)-schemes is the 2-colimit of the categories of finite etale Pic(T,mν)s-schemes
when ν ranges over all integers, and thus the groupoid Loc⊗(J(η),Λ) is the 2-limit of the
groupoids Loc⊗(Pic(T,mν)s,Λ). If Λ is the ring of integers in a finite extension of Q`, then the
conclusion of Theorem III.5.33 holds for the finite `-adic coefficient rings Λ/`n for each n, and
thus for Λ as well by taking 2-limits. This implies the validity of Theorem III.5.33 when Λ is
a finite extension of Q`, and by taking 2-colimits this yields the result when Λ is an arbitrary
`-adic coefficient ring.

The s-group scheme J(η) coincides Contou-Carrere’s local Jacobian, and the morphism Ψη,π

in Theorem III.5.29 is the morphism studied by Contou-Carrere or considered by Deligne in his
1974 letter to Serre ([BE01], p.74). Contou-Carrere established an Albanese property for the
morphism Ψη,π, which was used by Suzuki ([Su13], Th. A (1)) in order to give a different proof
of Theorem III.5.33. Moreover, Suzuki (op. cit.) showed that the equivalence constructed by
Serre in [Se61] when k is algebraically closed, is a quasi-inverse to the equivalence in Theorem
III.5.33.

III.5.34. We now prove Theorem III.5.25, by combining the Gabber-Katz extension the-
orem III.4.14 with global geometric class field theory, namely Theorem III.5.15. More precisely,
we prove its equivalent version III.5.26. Let D be a closed subscheme of T supported on s,
and let π be a uniformizer of k(η). The uniformizer π provides a morphism k(s)[t, t−1]→ k(η)
sending t to π, corresponding to a morphism

π : η → Gm,s,

of s-schemes.
By Theorem III.4.19, the restriction of the pullback functor π−1 to the category of special Λ-

sheaves on A1
s vanishing at 0 is an equivalence with the category of Λ-sheaves on η (cf. III.4.14).

Let π♦ be a quasi-inverse to this equivalence. Let F be a Λ-sheaf on η with ramification bounded
by D. Then π♦F is a Λ-local system on the open subscheme Gm,s of P1

s, extended by zero
at 0 and ∞, with ramification bounded by the divisor D′ = D + [∞]. Let us consider the
Abel-Jacobi morphism

Φ : Gm,s → Pics(P1
s, D

′),

which sends a section t of Gm,s to the pair (O(t), 1), cf. (30). Since the Picard scheme of
P1
s is the constant group scheme Zs, we can identify the connected component of degree d of

Pics(P1
s, D

′) with the functor which to an s-scheme S associates the quotient by Gm,s(S) of the
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group of isomorphisms α : OD′S → i
′∗
S O(d[0]), where i′ : D′ → P1

s is the inclusion. The latter
functor can be further identified with the functor which to an s-scheme S associates the group
of isomorphisms α : ODS → i∗SO(d[0]), where i : D → P1

s is the inclusion. Using the uniformizer
π, we obtain an isomorphism

θ : Pics(P1
s, D

′)→ Pic(T,D)s.

Consequently, if F has rank 1, then Theorem III.5.15 implies that π♦F is isomorphic to the
pullback by θ ◦ Φ of a multiplicative Λ-local system on Pic(T,D)s. We therefore deduce from
Theorems III.4.15 and III.5.15 that the pullback by θ ◦ Φ ◦ π induces an equivalence from the
groupoid of multiplicative Λ-local systems on Pic(T,D)s to the groupoid of Λ-local systems of
rank 1 on η, with ramification bounded by D.

It remains to check that the composition θ ◦ Φ ◦ π coincides with the morphism Φη,π
in Theorem III.5.26. If t is a section of Gm,s over an s-scheme S, then the isomorphism
O([t])→ O([0]) given by multiplication by 1− tx−1, where x is the coordinate on Gm,s, sends
the canonical trivialization 1 : OD′S → i′∗SO([t]) to the trivialization α : OD′S → i′∗SO([0])

corresponding to 1 − tx−1. Thus θ ◦ Φ sends t to the S-point Pic(T,D)s corresponding to
1 − t ⊗ π−1. By taking S = η and t = π, we obtain that θ ◦ Φ ◦ π coincides with Φη,π. This
concludes our proof of Theorem III.5.26, which in turn implies Theorems III.5.25, III.5.29 and
III.5.33.

Remark III.5.35. This proof of the main theorem of local geometric class field theory
III.5.25 uses global geometric class field theory. The latter admits geometric proofs which do
not use the local theory, cf. for example [Ta18], hence the argument is not circular. Moreover,
the use of local geometric class field theory in ([Gu18], Prop. 3.14) can be avoided by resorting
to a computation with Artin-Schreier-Witt theory, as in [Ta18].

III.5.36. In this paragraph, we describe the compatibility between local and global geo-
metric class field theory, namely Theorems III.5.15 and III.5.25. Let X be a smooth geometri-
cally connected projective curve of genus g over k, let i : D → X be an effective Cartier divisor
on X, and let U be the open complement of D in X. We introduced in III.5.13 the generalized
Picard group scheme Pick(X,D), and in (30) the Abel-Jacobi morphism

Φ : U → Pick(X,D),

which sends a section x of U to the pair (O(x), 1), where 1 : OD → O(x) ⊗OX OD is the
canonical trivialization of O(x) on D, cf. (30).

Let x be a point of D, and let X(x) be the henselisation of X at x, with generic point ηx.
We identify the closed point of X(x) with x, and we denote by Dx the pullback of D to X(x),
which is a closed subscheme of X(x) supported on x. Let x̃ be the X(x)-point of X ×k X(x)

given by the diagonal embedding. The restriction of x̃ to ηx factors through U ×k X(x). We
now define a morphism

τ : Pic(X(x), Dx)→ Pick(X,D)×k X(x)

of X(x)-group schemes as follows. Let (d, u) be a point of Pic(X(x), Dx) over an X(x)-scheme S
(cf. III.5.20). The image in OD⊗kOS of the kernel of the natural multiplication homomorphism

OX ⊗k OS → OS ,
is the ideal I as in Proposition III.5.18. Thus the pullback to D×kS of the line bundle O(dx̃) on
the S-curve X×k S is given by the invertible module OS ⊗OX(x)

I−d. Consequently, u provides
a trivialization of O(dx̃) on the divisor Dx ×k S of X ×k S. Moreover, the canonical section
1 : OX×kS → O(dx̃) provides a trivialization of O(dx̃) on the divisor (D \Dx)×k S. We thus
obtain a trivialization β : OD×kS → (i× idS)∗O(dx̃), and the pair (O(dx̃), β) defines an S-point
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of Pick(X,D)×k X(x). This construction is functorial in S, and thus defines a morphism τ as
above.

We also let τx : Pic(X(x), Dx)x → Pick(X,D) be the restriction of τ to the special fiber.
We then have the following commutative diagram.

Pic0(X(x), Dx)x ×x X(x)

Pic0(X(x), Dx)xηx Pic(X(x), Dx)

U ×k X(x) Pick(X,D)×k X(x) Pick(X,D)

p1

τx

α

Φη

x̃|ηx τ

Φ× id p1

The morphisms α and Φη in this diagram are defined in III.5.23, while p1 always denotes the
projection onto the first factor. Let Loc1(U,D,Λ) (resp. Loc1(ηx, Dx,Λ)) be the groupoid of
Λ-local systems of rank 1 on U with ramification bounded by D (resp. on ηx with ramification
bounded by Dx). If L is an object of Loc⊗(Pick(X,D),Λ), we obtain an object (χ̃, χ, θ) of
Trip(X(x), Dx,Λ) (cf. III.5.24) as follows: we set χ̃ = (p1 ◦ τ)−1L and χ = τ−1

x L, while
θ : α−1χ̃ → p−1

1 χ is the natural isomorphism resulting from the commutativity of diagram
above. We thus obtain a functor from Loc⊗(Pick(X,D),Λ) to Trip(X(x), Dx,Λ), which we
abusively denote by τ−1 for simplicity. This functor τ−1 fits into the following diagram, which
is commutative up to natural isomorphism.

Loc1(ηx, Dx,Λ) Trip(X(x), Dx,Λ)

Loc1(X,D,Λ) Loc⊗(Pick(X,D),Λ)

Φ−1
η

τ−1

Φ−1

The rows of this diagram are equivalences of groupoids by Theorem III.5.15 and III.5.25.
Thus the restriction functor, which is the left vertical arrow in this diagram, corresponds to the
functor τ−1 in terms of multiplicative Λ-local systems.

III.5.37. We now describe the functoriality property of geometric local class field theory.
Let T (resp. T ′) be the spectrum of a k-algebra, which is a henselian discrete valuation ring
OT (resp. OT ′), whose residue field is a finite extension of k. Let η (resp. η′) be the generic
point of T (resp. T ′), and let s (resp. s′) be its closed point, so that k(η) (resp. k(η′)) is a
henselian discrete valuation field, with valuation subring OT,s (resp. OT ′,s′), and with residue
field k(s) (resp. k(s′)) which is a finite extension of k.

Let f : T ′ → T be a finite morphism, such that the restriction f|η′ : η′ → η is étale,
namely such that the finite extension k(η)→ k(η′) induced by f is separable. Let D be a closed
subscheme of T supported on s, and let D′ be its pullback to T ′. Let I (resp. I ′) be the kernel
of the homomorphism

OT ⊗k(s) OD → OD
f1 ⊗ f2 → f1f2,
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(resp. of the homomorphism OT ′ ⊗k(s′) OD′ → OD′), which, by Proposition III.5.18, is a
principal invertible ideal of OT ⊗k(s) OD (resp. OT ′ ⊗k(s′) OD′) generating the unit ideal of
k(η)⊗k(s) OD (resp. k(η′)⊗k(s′) OD′).

For any T ′-scheme S, the OS ⊗k(s)OD-algebra OS ⊗k(s′)OD′ is free of finite rank equal to
the ramification index ef of the extension k(η′)/k(η), hence we can consider the norm map

Nf : OS ⊗k(s′) OD′ → OS ⊗k(s) OD,(31)

which sends a section u of OS ⊗k(s′) OD′ to the determinant of the OS ⊗k(s) OD-linear endo-
morphism x 7→ ux of OS ⊗k(s′) OD′ . The norm map Nf is homogeneous of degree ef , and
therefore the image by Nf of a principal ideal of OS ⊗k(s′) OD′ generates a principal ideal of
OS ⊗k(s) OD.

Lemma III.5.38. The ideal of OS ⊗k(s) OD generated by the image by Nf of the ideal
OS ⊗OT ′ I ′ of OS ⊗k(s′) OD′ is OS ⊗OT I.

Indeed, if π′ is a uniformizer of k(η′) then the ideal OS⊗OT ′ I ′ of OS⊗k(s′)OD′ is generated
by π′ ⊗ 1− 1⊗ π′. If Pπ′(X) = Xef + a1X

ef−1 + · · ·+ aef is the characteristic polynomial of
π′ in the totally ramified extension k(η′)/k(ηs′), where ηs′ = η ×s s′, then the ideal generated
by Nf (OS ⊗OT ′ I ′) is generated by the element

(1⊗ Pπ′)(π′ ⊗ 1) = π′ef ⊗ 1 + π′ef−1 ⊗ a1 + · · ·+ 1⊗ aef ,

of OS ⊗k(s′) ODs′ . Since Pπ′ is an Eisenstein polynomial, the elements (ai)i≤ef of OTs′ belong
to the maximal ideal, and aef is a uniformizer of k(ηs′). In particular, we can write ai = biaef ,
for some elements (bi)i≤ef of OTs′ . We obtain a decomposition

(1⊗ Pπ′)(π′ ⊗ 1) = Pπ′(π
′)⊗ 1 + (u⊗ 1)(1⊗ aef − aef ⊗ 1) + (1⊗ aef )v,

where we have set

u = 1 +

ef−1∑
j=1

bef−jπ
′j

v =

ef∑
j=1

(π′ef−j ⊗ 1)(1⊗ bj − bj ⊗ 1).

The term Pπ′(π
′) vanishes by the Cayley-Hamilton theorem. The elements 1 ⊗ aef − aef ⊗ 1

and v belong to the ideal OS ⊗OT I, while 1 ⊗ aef − aef ⊗ 1 generates the latter. Moreover,
the elements u⊗ 1 and 1⊗ aef are respectively invertible and nilpotent in OS ⊗k(s) OD. Thus
(1⊗ Pπ′)(π′ ⊗ 1) is a generator of OS ⊗OT I, hence the result.

Definition III.5.39. The norm morphism associated to f is the homomorphism

Nf : Pic(T ′, D′)→ Pic(T,D)×T T ′,

of T ′-group schemes (cf. III.5.20) which sends a section (d, u) of Pic(T ′, D′) over a T ′-scheme
S to the S-point (d,Nf (u)) of Pic(T,D), where Nf (u) is the trivialization of the invertible
OS ⊗k(s) OD-module generated by Nf (OS ⊗OT ′ I ′−d), which coincides with OS ⊗OT I−d by
Lemma III.5.38, obtained by applying the norm map (31) to u.

Let Φη (resp. Φη′) be the local Abel-Jacobi morphism for (T,D) (resp. (T,D′)), cf. III.5.23.
The following diagram is clearly commutative.
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η Pic(T,D)

η′ Pic(T ′, D′)

Φη

f|η′ Nf

Φη′

Correspondingly, the following diagram is commutative up to natural isomorphism.

Loc1(η,D,Λ) Trip(T,D,Λ)

Loc1(η′, D′,Λ) Trip(T ′, D′,Λ)

Φ−1
η

f−1

|η′ N−1
f

Φ−1

η′

The rows of this diagram are equivalences of groupoids by Theorem III.5.24.

III.5.40. Let k be an algebraic closure of k. We denote by Gk = Gal(k/k) the Galois
group of the extension k/k and by µ a unitary Λ-admissible mutiplier on the topological group
Gk (cf. III.2.9, III.2.10). Let k′/k be a neutralizing extension of k contained in k, cf. III.3.1.

Definition III.5.41. Let S be a connected k-scheme and let G be a commutative S-group
scheme, which fits into an exact sequence

1→ G0 → G
d−→ ZS → 0,

where G0 is an S-group scheme with connected geometric fibers. A µ-twisted multiplicative
Λ-local system on G, is a pair L = (Lk′ , (ρL(g))g∈Gal(k′/k)), where Lk′ is a multiplicative
Λ-local system on the Sk′ -group scheme Gk′ (cf. III.3.5), and ρL(g) : g−1Lk′ → Lk′ is an
isomorphism of multiplicative Λ-local systems for each g in Gal(k′/k), such that the diagram

g−1h−1Lk′ g−1Lk′ Lk′
g−1ρL(h) ρL(g)

µ(g, h)dρL(gh)

is commutative for any g, h in Gal(k′/k). Here µ(g, h)d is the section of Λ× on G which is
constant equal to µ(g, h)r on the inverse image of r by the given homomorphism d : G → ZS ,
for each integer r.

If L andM are µ-twisted multiplicative Λ-local systems on G, a morphism from L toM
is an isomorphism f : Lk′ → Mk′ of multiplicative Λ-local systems such that f ◦ ρL(g) =
ρM(g) ◦ (g−1f) for any g in Gal(k′/k).

Remark III.5.42. If S is a also a k′′-scheme, for some finite extension k′′ of k, and if
ι : k′′ → k is a k-linear embedding, with Galois group Gal(ι), then as in III.3.10, the groupoid
of µ-twisted multiplicative Λ-local systems on G, where S is considered as a k-scheme, is
equivalent to the groupoid of µ|Gal(ι)-twisted multiplicative Λ-local systems on the S-group
scheme G, where S is now considered as a k′′-scheme.

III.5.43. Let T, η and s be as in III.5.16, and let Σ be the set of k-linear embeddings
of k(s) in k, and assume that k′ contains the image of any element of Σ. We then have a
decomposition

Tk′ =
∐
ι∈Σ

Tι,
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where Tι = T⊗k(s),ιk
′ is the spectrum of an henselian discrete valuation k′-algebra with residue

field k′. If F = (Fk′ , (ρF (g))g∈Gal(k′/k)) is a µ-twisted Λ-local system of rank 1 on η, then the
Swan conductor of the restriction Fι of Fk′ to Tι is independent of ι.

Definition III.5.44. LetD be a closed subscheme of T supported on s. A µ-twisted Λ-local
system F = (Fk′ , (ρF (g))g∈Gal(k′/k)) of rank 1 on η has ramification bounded by D if for each ι
in Σ (or equivalently, some ι), the Swan conductor of Fι is strictly less than the multiplicity of
D at s.

Theorem III.5.45 (Local geometric class field theory, twisted version). Let D be a closed
subscheme of T supported on s, and let π be a uniformizer of k(η). Let Φη,π : η → Pic(T,D)s
be the morphism corresponding to the k(η)-point (1, 1 − π ⊗ π−1) of Pic(T,D)s. Then, the
functor Φ−1

η,π is an equivalence from the groupoid of µ-twisted multiplicative Λ-local systems
on Pic(T,D)s (cf. III.5.41) to the groupoid of µ-twisted Λ-local systems of rank 1 on η, with
ramification bounded by D.

This follows immediately from Theorem III.5.26, and from the functoriality of local geo-
metric class field theory, cf. III.5.37.

III.5.46. Let X be a smooth geometrically connected projective curve over k, let i : D →
X be an effective Cartier divisor on X, and let U be the open complement of D in X.

Definition III.5.47. A µ-twisted Λ-local system F of rank 1 on U has ramification bounded
by D if for any point x of D, the restriction of F to the generic point of the henselization X(x)

of X at x has ramification bounded by the restriction of D to X(x) (cf. III.5.44).

Let us consider the Abel-Jacobi morphism

Φ : U → Pick(X,D),

which sends a section x of U to the pair (O(x), 1), cf. 30. As in III.5.43, we have the following
twisted version of the main theorem of global geometric class field theory:

Theorem III.5.48 (Global geometric class field theory, twisted version). Let X,U,D be as
in III.5.46. Then the pullback Φ−1 by the Abel-Jacobi morphism of (X,D) realizes an equivalence
from the groupoid of µ-twisted multiplicative Λ-local systems on Pick(X,D) (cf. III.5.41) to the
category of groupoid of µ-twisted Λ-local systems of rank 1 on U , with ramification bounded by
D (cf. III.5.47).

III.6. Extensions of additive groups

Let A be a perfect Fp-algebra, and let S be its spectrum. In this section, we denote by
Sfppf the topos of sheaves of sets on the small fppf site of S, cf. ([SGA4], VII.4.2), and by
Ab(Sfppf) the category of commutative group objects in Sfppf . The purpose of this section is to
study extensions of the group scheme Ga,S by a finite abelian group Γ, or equivalently to study
short exact sequences

0→ Γ→ E → Ga,S → 0,

of abelian groups in Ab(Sfppf), where Γ is considered as a constant S-group scheme. In such
an exact sequence, the action of Γ on E by left multiplication turns E into a left Γ-torsor over
Ga,S , hence E is representable by a finite étale Ga,S-scheme.
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III.6.1. Let Γ be a finite abelian group, and let G be a finitely presented S-group scheme
with geometrically connected fibers. The extensions of G by Γ in Ab(Sfppf) are classified by
the elements of the abelian group ExtAb(Sfppf )(G,Γ).

Proposition III.6.2. Let i : Γ′ → Γ be an injective homomorphism of finite abelian groups
and let G be a finitely presented S-group scheme with geometrically connected fibers. Then the
natural homomorphism

ExtAb(Sfppf )(G,Γ
′)

i−→ ExtAb(Sfppf )(G,Γ),

is injective.

Indeed, we have an exact sequence

HomAb(Sfppf )(G,Γ/Γ
′)→ ExtAb(Sfppf )(G,Γ

′)→ ExtAb(Sfppf )(G,Γ),

whose first term vanishes since G has geometrically connected fibers over S.

Proposition III.6.3. Let G be a finitely presented S-group scheme with geometrically con-
nected fibers, annihilated by an integer n ≥ 1. Let Γ be a finite abelian group and let Γ[n] be its
subgroup of n-torsion elements. Then the natural homomorphism

ExtAb(Sfppf )(G,Γ[n])→ ExtAb(Sfppf )(G,Γ),

is an isomorphism.

Indeed, if Γ′ ⊆ Γ is the image of the multiplication by n in Γ, then we have a short exact
sequence

0→ Γ[n]→ Γ
n−→ Γ′ → 0,

which yields an exact sequence

HomAb(Sfppf )(G,Γ
′)→ ExtAb(Sfppf )(G,Γ[n])→ ExtAb(Sfppf )(G,Γ)

n−→ ExtAb(Sfppf )(G,Γ
′),

whose first term vanishes since G has geometrically connected fibers over S, and whose last
homomorphism vanishes as well, since its composition with the injective homomorphism

ExtAb(Sfppf )(G,Γ
′)→ ExtAb(Sfppf )(G,Γ),

cf. III.6.2, is the multiplication by n on ExtAb(Sfppf )(G,Γ), which is zero since n annihilates G.

III.6.4. Let G be a finitely presented affine commutative S-group scheme, and let H be
an object of Ab(Sfppf) such that any H-torsor over a finitely presented affine S-scheme is trivial.
Let us consider an extension

0→ H
ι−→ E

r−→ G→ 0,(32)

of G by H in Ab(Sfppf). The action of H by left multiplication on E turns the latter into a
left H-torsor over G. Since G is affine and finitely presented over S, this torsor is trivial, and
thus we can assume (and we do) that E is H ×S G as an object of Sfppf , that r(h, g) = g
for any local sections h and g of H and G, and that the left action of H on E is given by
(h′, 0) + (h, g) = (h′ + h, g). The addition on E must then take the form

(h1, g1) + (h2, g2) = (h1 + h2 + c(g1, g2), g1 + g2),(33)

for some morphism of sheaves c from G×S G to H. Since E is a commutative group under the
law (33), we have the relations

c(g1, g2) = c(g2, g1),(34)
c(g1, g2 + g3) + c(g2, g3) = c(g1, g2) + c(g1 + g2, g3),(35)

corresponding respectively to the commutativity and the associativity of the law (33).
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Conversely, if c is a morphism from G ×S G to H which satisfies the relations (34) and
(35), then the formula (33) defines an extension Ec of G by H in Ab(Sfppf), whose underlying
S-scheme is H ×S G.

Proposition III.6.5. Let G be a finitely presented affine commutative S-group scheme, and
let H be an object of Ab(Sfppf) such that any H-torsor over a finitely presented affine S-scheme
is trivial. Let C(G,H) be the group of morphisms from G×S G to H in Sfppf which satisfy the
relations ( 34) and ( 35). We then have an exact sequence

0→ HomAb(Sfppf )(G,H)→ HomSfppf
(G,H)

d−→ C(G,H)
c7→Ec−−−−→ ExtAb(Sfppf )(G,H)→ 0,

where d : HomSfppf
(G,H)→ C(G,H) is the homomorphism given on sections by

d(f)(g1, g2) = f(g1 + g2)− f(g1)− f(g2).

Indeed, we already know that the map c 7→ Ec from C(G,H) to ExtAb(Sfppf )(G,H) is
surjective, and its kernel consists of the elements c of C(G,H) for which Ec is a trivial extension
of G by H. If c is such a morphism, then the surjective homomorphism Ec → G has a section,
which must take the form g 7→ (f(g), g) for some morphism f from G to H. We have

(f(g1 + g2), g1 + g2) = (f(g1), g1) + (f(g2), g2) = (f(g1) + f(g2) + c(g1, g2), g1 + g2),

for any local sections g1, g2 of G, hence d(f) = c. Conversely, any element f of HomSfppf
(G,H)

such that d(f) = c provides a section g 7→ (f(g), g) of the extension Ec. Thus the sequence
in Proposition III.6.5 is exact at C(G,H). The result then follows from the description of
homomorphisms from G to H as elements f of HomSfppf

(G,H) such that d(f) vanishes.

Example III.6.6. Let c be the image in Fp[U1, U2] of the polynomial

Up1 + Up2 − (U1 + U2)p

p
= −

p−1∑
i=1

(p− 1)!

i!(p− i)!U
i
1U

p−i
2 ∈ Z[U1, U2].

Then the morphism from Ga,Fp×FpGa,Fp to Ga,Fp corresponding to c belongs to C(Ga,Fp ,Ga,Fp).
The corresponding extension Ec of Ga,Fp by itself is isomorphic to the Fp-group scheme of Witt
vectors of length 2.

III.6.7. The group G = H = Ga,S satisfy the assumptions of Proposition III.6.5, and
thus satisfy its conclusion. We therefore have a homomorphism

HomSfppf
(Ga,S ,Ga,S)

d−→ C(Ga,S ,Ga,S),

with kernel HomAb(Sfppf )(Ga,S ,Ga,S) and with cokernel ExtAb(Sfppf )(Ga,S ,Ga,S). Moreover, the
group HomSfppf

(Ga,S ,Ga,S) can be identified with the group A[U ] of polynomials in one variable
over A, while C(Ga,S ,Ga,S) can be identified with the group A[U1, U2] of polynomials c in two
variables over A, which satisfy the relations

c(U1, U2) = c(U2, U1),

c(U1, U2 + U3) + c(U2, U3) = c(U1, U2) + c(U1 + U2, U3).

Proposition III.6.8 ([Se68], V.5). A polynomial f in A[U ] belongs to HomAb(Sfppf )(Ga,S ,Ga,S)
if and only if it is of the form

f(U) =
∑
r≥0

arU
pr ,

for some elements (ar)r≥0 of A.
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Indeed, a polynomial f(U) =
∑
m≥0 bmU

m of A[U ] belongs to HomAb(Sfppf )(Ga,S ,Ga,S) if
and only if the element

d(f) =
∑
m≥0

bmd(Um),

of A[U1, U2] vanishes. Since each bmd(Um) is a homogeneous polynomial of degree m, it is
the homogeneous part of degree m of d(f). Consequently, d(f) vanishes if and only if so does
bmd(Um) for each m. The conclusion of Proposition III.6.8 then follows from the fact that for
each integer m ≥ 1, we have d(Um) = 0 if and only if m is a power of p. Indeed, if m = pvn with
n prime to p, then d(Um) = d(Un)p

v

vanishes if and only if d(Un) does. We have d(U) = 0,
and if n > 1, then the coefficient of U1U

n−1
2 in d(Un) is n, whence d(Un) is non zero since n is

prime to p.

Proposition III.6.9. Let E be an extension of Ga,S by itself in Ab(Sfppf), whose pushout
by the homomorphism t 7→ t−tp from Ga,S to itself is a trivial extension of Ga,S by itself. Then
E is a trivial extension of Ga,S by itself.

Indeed, let c be an element of C(Ga,S ,Ga,S) such that Ec−cp a trivial extension of Ga,S by
itself. By Proposition III.6.5, there exists an element f =

∑
n≥0 bnU

n of A[U ] such that we
have d(f) = c− cp. We thus have

c(U1, U2) = c(U1, U2)p +
∑
n≥0

bnd(Un).

In particular, we have c(0, 0) = c(0, 0)p − b0 since d(1) = −1, and thus

c(U1, U2)− c(0, 0) = (c(U1, U2)− c(0, 0))p +
∑
n≥1

bnd(Un).

By iterating this identity, we obtain a relation

c(U1, U2)− c(0, 0) =
∑
v≥0

∑
n≥1

bnd(Un)

pv

=
∑
m≥1

cmd(Um),

in the power series ring A[[U1, U2]], where cm =
∑
m=pvn b

pv

n . For each integerm, the polynomial
d(Um) is homogeneous of degree m. In particular, the polynomial cmd(Um) is the homogeneous
part of degree m of c(U1, U2)− c(0, 0). Since c(U1, U2)− c(0, 0) is a polynomial, we must have
cmd(Um) = 0 for m large enough. Thus the power series

−c(0, 0) +
∑
m≥1

d(Um) 6=0

cmU
m,

is a polynomial, whose image by d is c. Consequently, Ec is a trivial extension of Ga,S by itself.

III.6.10. Let F : Ga,S → Ga,S be the Frobenius homomorphism, given on sections by
t 7→ tp. We then have the so-called Artin-Schreier exact sequence

0→ Fp,S → Ga,S
1−F−−−→ Ga,S → 0.(36)

By applying the functor Hom(Ga,S ,−) to this short exact sequence, we obtain a long exact
sequence

HomAb(Sfppf )(Ga,S ,Fp) HomAb(Sfppf )(Ga,S ,Ga,S) HomAb(Sfppf )(Ga,S ,Ga,S)

ExtAb(Sfppf )(Ga,S ,Fp) ExtAb(Sfppf )(Ga,S ,Ga,S) ExtAb(Sfppf )(Ga,S ,Ga,S)

1− F

δ

1− F
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whose first term vanishes since Ga,S has geometrically connected fibers over S, and whose last
homomorphism is injective by Proposition III.6.9. We thus have a short exact sequence

0→ HomAb(Sfppf )(Ga,S ,Ga,S)
1−F−−−→ HomAb(Sfppf )(Ga,S ,Ga,S)

δ−→ ExtAb(Sfppf )(Ga,S ,Fp)→ 0.

(37)

Proposition III.6.11. If we denote, for each element a of the ring A = Γ(S,OS), by ma

the endomorphism of Ga,S which sends a section t to at, then the homomorphism

A⊕HomAb(Sfppf )(Ga,S ,Ga,S)→ HomAb(Sfppf )(Ga,S ,Ga,S)

(a, u) 7→ ma + F (u)− u,
is an isomorphism.

Indeed, the group HomAb(Sfppf )(Ga,S ,Ga,S) is the group of polynomials v in A[T ] which are
additive, in the sense that

v(T + S) = v(T ) + v(S).

These are exactly the polynomials of the form v(T ) =
∑
j≥0 ajT

pj , where (aj)j≥0 is a finite
family of elements of A, cf. Proposition III.6.8. By writing successively monomials of the form
aT p

j

with j ≥ 1 as ap
−1

T p
j−1

+ (F − 1)(u), where u = ap
−1

T p
j−1

, we obtain that any such
polynomial v can be decomposed as

v(T ) = aT + (F − 1)(u),

for some additive polynomial u, and with a =
∑
j≥0 a

p−j

j . The homomorphism in Proposition
III.6.11 is thus surjective.

On the other hand, if an additive polynomial u =
∑
j≥0 ujT

pj is such that (F − 1)(u) is of
the form aT for some element a of A, then we have

aT =
∑
j≥0

upjT
pj+1 −

∑
j≥0

ujT
pj = −u0T +

∑
j≥1

(upj−1 − uj)T p
j

,

so that a = −u0 and upj−1 = uj for each j ≥ 1. This implies that for each j ≥ 0, there exists

an integer N such that up
N

j = 0, and thus uj = 0 since A is reduced. Thus such an additive
polynomial u must be zero, which proves that the homomorphism in Proposition III.6.11 is
injective.

Corollary III.6.12. The homomorphism of abelian groups

A→ ExtAb(Sfppf )(Ga,S ,Fp)
a 7→ δ(ma)

is an isomorphism.

This follows immediately from Proposition III.6.11 and from the exact sequence (37). For
each element a of A, the extension δ(ma) can be explicitly described as the pullback of the
extension (36) by the homomorphism ma.

III.6.13. Let Λ be an `-adic coefficient ring, and let ψ : Fp → Λ× be a non trivial (hence
injective) homomorphism. The pushout by ψ of the Artin-Schreier Fp-torsor (cf. 36) yields a
multiplicative Λ-local system on Ga,S (cf. III.5.6), which we denote by Lψ. More generally, if
f : X → Ga,S is a morphism of S-schemes, we denote by Lψ{f} the Λ-local system of rank
1 on X given by the pullback of Lψ by f . If moreover X is an S-group scheme and if f is a
homomorphism of S-group schemes, then Lψ{f} is a multiplicative Λ-local system on X.
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Proposition III.6.14. Let V be a finitely generated projective A-module, and let V be the
corresponding S-group scheme. Then any multiplicative Λ-local system on V is isomorphic to
Lψ{v∗}, for a unique A-linear homomorphism v∗ : V → A, considered as a homomorphism
from V to Ga,S.

By III.5.9, we can assume (and we do) that V is the A-module A, and thus that V is Ga,S .
Moreover, we can assume (and we do as well) that Λ is finite, in which case multiplicative
Λ-local systems on Ga,S correspond to extensions in Sfppf of Ga,S by the finite abelian group
Λ×. Since ψ realizes an isomorphism from Fp to the p-torsion subgroup of Λ×, we deduce from
Proposition III.6.3 that the homomorphism

ExtAb(Sfppf )(Ga,S ,Fp)
ψ−→ ExtAb(Sfppf )(Ga,S ,Λ

×),

induced by ψ is an isomorphism. The conclusion then follows from Corollary III.6.12.

Corollary III.6.15. Assume that A = k is an algebraically closed field. Let V be a k-
vector space of finite dimension r ≥ 1, let V be the corresponding k-group scheme and letM be
a multiplicative Λ-local system on V. Then the cohomology group

Hν
c (V,M)

vanishes for each integer ν, unless ν = 2r andM is trivial, in which case it is a free Λ-module
of rank 1.

By Proposition III.6.14, we can assume that V is kr and that M is Lψ{x1}, where x1 :

kr → k is the first coordinate. If Fp is the algebraic closure of Fp in k, then for each integer ν
the group

Hν
c (V,M) = Hν

c (Gra,k,Lψ{x1})
is isomorphic to Hν

c (Gr
a,Fp

,Lψ{x1}), which vanishes by ([SGA4
1
2 ], [Sommes trig.] Th. 2.7).

Corollary III.6.16. Assume that A = k is an algebraically closed field of characteristic
p 6= 2. Let V be a k-vector space of finite dimension r ≥ 1, let V be the corresponding k-group
scheme, let γ : V → k be a non zero linear form and let M be a multiplicative Λ-local system
on V. Then the cohomology group

Hν
c (V,M⊗Lψ{γ2})

vanishes for each integer ν, unless ν = 2r−1 andM is isomorphic to Lψ{αγ} for some element
α of k, in which case it is a free Λ-module of rank 1.

Indeed, if t is the coordinate on Ga,S , then the projection formula yields an isomorphism

Rγ!(M⊗Lψ{γ2}) ∼= Rγ!(M)⊗ Lψ{t2}.
By Corollary III.6.15 and by multiplicativity ofM, the geometric fibers of this complex vanish
unless the restriction ofM to the kernel of γ is trivial. By Proposition III.6.14, the multiplicative
Λ-local systemM is isomorphic to Lψ{v∗} for a unique linear form v∗ on V . We thus obtain
that Rγ!(M⊗Lψ{γ2}) vanishes unless the restriction of v∗ to the kernel of γ vanishes, in which
case we have v∗ = αγ for some element α of k.

WhenM is isomorphic to Lψ{αγ} for some element α of k, we have

Rγ!(M⊗Lψ{γ2}) ∼= Rγ!(Λ)⊗ Lψ{αt+ t2}
∼= Lψ{αt+ t2}(−r)[−2r],

and the conclusion then follows from the fact that the cohomology group

Hν
c (Ga,k,Lψ{αt+ t2})
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is of rank 1 for ν = 1, and vanishes otherwise. Indeed, this group vanishes for ν = 0 since
Lψ{αt + t2} has no punctual sections, it vanishes for ν = 2 by Poincaré duality, and its Euler
characteristic is −1 by the Grothendieck-Ogg-Shafarevich formula, since the Swan conductor
of Lψ{αt+ t2} at ∞ is 2.

III.6.17. We now assume that S is of characteristic p = 2. The element c = U1U2 of
A[U1, U2] belongs to C(Ga,S ,Ga,S) (cf. III.6.5), and thus defines an extension G = Ec of Ga,S
by itself, cf. III.6.7. Thus G is Ga,S ×S Ga,S as an S-scheme, endowed with the multiplication

(t1, u1) + (t2, u2) = (t1 + t2 + u1u2, u1 + u2),

for sections t1, u1, t2, u2 of Ga,S . Equivalently, the S-group scheme G is the pullback to S of
the group of Witt vectors of length 2 over F2, cf. III.6.6.

The group G satisfies the assumptions of Proposition III.6.5, and thus satisfies its conclu-
sion. We therefore have a homomorphism

HomSfppf
(G,G)

d−→ C(G,G),

with kernel HomAb(Sfppf )(G,G) and with cokernel ExtAb(Sfppf )(G,G). The group HomSfppf
(G,G)

can be identified with the group of couples f = (f0, f1) of elements of A[T,U ].

Proposition III.6.18. For p = 2, let G be the extension of Ga,S by itself defined by
c(U1, U2) = U1U2 (cf. III.6.7). A couple f = (f0, f1) of elements of A[T,U ] belongs to
HomAb(Sfppf )(G,G) if and only if it is of the form(

a
(
T

1
2

)2

+ ã(U) + b(U), a(U)

)
,

where a(U) =
∑
r≥0 arU

2r and b(U) are additive polynomials, and where

a
(
T

1
2

)2

=
∑
r≥0

a2
rT

2r ,

ã(U) =
∑

r1>r2≥0

ar1ar2U
2r1+2r2 .

Indeed, such a couple f = (f0, f1) belongs to HomAb(Sfppf )(G,G) if and only if d(f) vanishes,
namely if and only if the relations

f0(T1 + T2 + U1U2, U1 + U2) = f0(T1, U1) + f0(T2, U2) + f1(T1, U1)f1(T2, U2)(38)
f1(T1 + T2 + U1U2, U1 + U2) = f1(T1, U1) + f1(T2, U2),(39)

hold in A[T1, U1, T2, U2]. Setting U1 = T2 = 0 in (39), we obtain

f1(T1, U2) = f1(T1, 0) + f1(0, U2).

Setting U1 = U2 = 0 in (39), we obtain that f1(T, 0) is an additive polynomial, so that we can
write

f1(T, 0) =
∑
r≥0

xrT
2r ,

for some elements (xr)r of A (cf. Proposition III.6.8), while setting T1 = T2 = 0 in (39) yields

f1(0, U1 + U2) + f1(U1U2, 0) = f1(0, U1) + f1(0, U2).

Writing f1(0, U) as
∑
n≥0 ynU

n for some elements (yn)n of A, we obtain∑
n≥0

yn ((U1 + U2)n − Un1 − Un2 ) +
∑
r≥0

xrU
2r

1 U2r

2 = 0.
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For each integer r ≥ 0, the homogeneous part of degree 2r+1 in this relation yields the vanishing
of xrU2r

1 U2r

2 , hence xr = 0. We thus have

f1(T,U) = a(U),

and a(U) = f1(0, U) is an additive polynomial.
Setting U1 = T2 = 0 in (38), we obtain

f0(T1, U2) = f0(T1, 0) + f0(0, U2) + f1(T1, 0)f1(0, U2) = f0(T1, 0) + f0(0, U2),

since f1(T1, 0) = a(0) vanishes. Setting U1 = U2 = 0 in (38), we obtain that f0(T, 0) is an
additive polynomial, so that we can write

f0(T, 0) =
∑
r≥0

crT
2r ,

for some elements (cr)r of A (cf. Proposition III.6.8), while setting T1 = T2 = 0 in (38) yields

f0(0, U1 + U2) + f0(U1U2, 0) = f0(0, U1) + f0(0, U2) + a(U1)a(U2).(40)

Let us write the additive polynomial a(U) as
∑
r≥0 arU

2r , cf. Proposition III.6.8, and let us
write the polynomial f0(0, U) as

∑
n≥0 bnU

n for some elements (bn)n of A, so that (40) can be
written as ∑

n≥0

bn ((U1 + U2)n − Un1 − Un2 ) =
∑

r1,r2≥0

ar1ar2U
2r1
1 U2r2

2 −
∑
r≥0

crU
2r

1 U2r

2 .

For each integer r ≥ 0, the homogeneous part of degree 2r+1 in this relation yields the vanishing
of (a2

r − cr)U2r

1 U2r

2 , hence cr = a2
r. Furthermore, for each integer n which is not a power of 2,

the homogeneous part of degree n in this relation yields bn = ar1ar2 if n = 2r1 + 2r2 for some
pair of distinct integers (r1, r2), and bn = 0 otherwise. We thus have

f0(0, U) = ã(U) + b(U),

where b(U) =
∑
r≥0 b2rU

2r is an additive polynomial and where ã(U) =
∑
r1>r2≥0 ar1ar2U

2r1+2r2 .
Moreover, the relation cr = a2

r yields f0(T, 0) = a(T
1
2 )2, so that

f0(T,U) = f0(T, 0) + f0(0, U) = a
(
T

1
2

)2

+ ã(U) + b(U),

hence the conclusion of Proposition III.6.18.

Proposition III.6.19. For p = 2, let G be the extension of Ga,S by itself defined by
c(U1, U2) = U1U2 (cf. III.6.7), and let F be the endomorphism (t, u) 7→ (t2, u2) of G. Let E be
an extension of G by itself in Ab(Sfppf), whose pushout by the endomorphism 1− F of G is a
trivial extension of G by itself. Then E is a trivial extension of G by itself.

We prove Proposition III.6.19 by an argument similar to the one we used to prove Proposi-
tion III.6.9. We endow A[T,U ] (resp. A[T1, U1, T2, U2]) with a structure of N-graded A-algebra
by assigning weight 2 to the variable T (resp. T1, T2), and weight 1 to the variable U (resp.
U1, U2). If B is an N-graded A-algebra, an element f = (b0, b1) of G(B) is said to be homoge-
neous of degree n if b0 and b1 are homogeneous elements of degrees n and n

2 respectively in B.
In particular, we have b1 = 0 if n is odd. One should note that for each integer n, the subset
of G(B) consisting of homogeneous elements of degree n is a subgroup of G(B). Any element
f of G(B) can be uniquely written as a finite sum

f =
∑
n≥0

fn,

where fn is a homogeneous element of degree n in G(B). The element fn of G(B) will be
referred to as the homogeneous part of degree n of f .
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Let γ be an element of C(G,G) such that Eγ−F (γ) is a trivial extension of G by itself. By
Proposition III.6.5, there exists an element f of G(A[T,U ]) such that d(f) = γ − F (γ). Let us
write f =

∑
n≥0 fn as the sum of its homogeneous parts, as above. We have

γ(T1, U1, T2, U2) = F (γ(T1, U1, T2, U2)) +
∑
n≥0

d(fn),

in A[T1, U1, T2, U2]. In particular, we have γ(0) = F (γ(0)) + d(f0), and thus

γ(T1, U1, T2, U2)− γ(0) = F (γ(T1, U1, T2, U2)− γ(0)) +
∑
n≥1

d(fn).

By iterating this identity, we obtain a relation

γ(T1, U1, T2, U2)− γ(0) =
∑
v≥0

F v

∑
n≥1

d(fn)

 =
∑
m≥1

d(gm),

in the group G(A[[T1, U1, T2, U2]]), where gm =
∑
m=pvn F

v(fn) is homogeneous of degree m.
For each integer m, the element d(gm) of G(A[T1, U1, T2, U2]) is homogeneous of degree m. In
particular, the homogeneous part of degree m of γ(T1, U1, T2, U2) − γ(0) is d(gm). Since the
element γ(T1, U1, T2, U2) − γ(0) of G(A[T1, U1, T2, U2]) has a non zero homogeneous part of
degree m for only finitely many integers m, we must have d(gm) = 0 for m large enough. Thus
the element

−γ(0) +
∑
m≥1

d(gm)6=0

gm,

of G(A[[T1, U1, T2, U2]]) belongs to G(A[T1, U1, T2, U2]), and its image by d is γ. Consequently,
Eγ is a trivial extension of G by itself.

III.6.20. For p = 2, let G be the extension of Ga,S by itself defined by c(U1, U2) = U1U2

(cf. III.6.7), and let F be the endomorphism (t, u) 7→ (t2, u2) of G. We then have the Lang-
Artin-Schreier exact sequence

0→ G(F2)→ G
1−F−−−→ G→ 0.(41)

By applying the functor Hom(G,−) to this short exact sequence, we obtain a long exact sequence

HomAb(Sfppf )(G,G(F2)) HomAb(Sfppf )(G,G) HomAb(Sfppf )(G,G)

ExtAb(Sfppf )(G,G(F2)) ExtAb(Sfppf )(G,G) ExtAb(Sfppf )(G,G)

1− F

δ

1− F

whose first term vanishes since G has geometrically connected fibers over S, and whose last
homomorphism is injective by Proposition III.6.19. We thus have a short exact sequence

0→ HomAb(Sfppf )(G,G)
1−F−−−→ HomAb(Sfppf )(G,G)

δ−→ ExtAb(Sfppf )(G,G(F2))→ 0.(42)

Remark III.6.21. There is a unique isomorphism of abelian groups

Z/4Z→ G(F2)

which sends 1 to (0, 1).

For any additive polynomials a(U) =
∑
r≥0 arU

2r and b(U) with coefficients in A, let us
denote by 〈a, b〉 the element of HomAb(Sfppf )(Ga,S ,Ga,S) given by

〈b, a〉 =

(
a
(
T

1
2

)2

+ ã(U) + b(U), a(U)

)
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where we have set ã(U) =
∑
r1>r2≥0 ar1ar2U

2r1+2r2 . By Proposition III.6.18, any endomor-
phism of G is of the form 〈b, a〉 for a (necessarily unique) couple (a, b) of additive polynomials
with coefficients in A.

Proposition III.6.22. The map

A2 ×HomAb(Sfppf )(G,G)→ HomAb(Sfppf )(G,G)

((β, α), f) 7→ 〈βU, αU〉+ f − F ◦ f,
is bijective.

Let 〈b, a〉 be an endomorphism of G, where a(U) =
∑
r≥0 arU

2r and b(U) are additive
polynomials with coefficients in A. By Proposition III.6.11, there exists a unique element α
of A and a unique additive polynomial g(U) with coefficients in A such that a(U) is equal to
αU + g(U)− g(U)2. We thus have

〈b, a〉 = 〈b′, αU〉+ (1− F )(〈0, g〉),
for a uniquely determined additive polynomial b′. By Proposition III.6.11 again, there exists a
unique element β of A and a unique additive polynomial h(U) with coefficients in A such that
b′(U) is equal to βU + h(U)− h(U)2. We then have

〈b, a〉 = 〈βU, αU〉+ (1− F )(〈h, 0〉) + (1− F )(〈0, g〉)
= 〈βU, αU〉+ (1− F )(〈h, g〉),

hence the conclusion of Proposition III.6.22.

Corollary III.6.23. For p = 2, let G be the extension of Ga,S by itself defined by
c(U1, U2) = U1U2 (cf. III.6.7). Then the map

G(A)→ ExtAb(Sfppf )(G,G(F2))

(β, α) 7→ δ(〈β 1
2U,αU〉)

is an isomorphism of abelian groups.

The bijectivity of the map in Corollary III.6.23 follows immediately from Proposition
III.6.22 and from the exact sequence (42). The fact that this map is a group homomorphism
follows from the following computation: if (β1, α1) and (β2, α2) are elements of G(A), then we
have

〈β
1
2
1 U,α1U〉+ 〈β

1
2
2 U,α2U〉 = 〈(β1 + β2)

1
2U + α1α2U

2, (α1 + α2)U〉,
and the right hand side can be decomposed as

〈(β1 +β2)
1
2U+α1α2U

2, (α1 +α2)U〉 = 〈(β1 +β2 +α1α2)
1
2U, (α1 +α2)U〉−(1−F )(〈α

1
2
1 α

1
2
2 U, 0〉),

hence the conclusion.

III.6.24. For p = 2, let G be the extension of Ga,S by itself defined by c(U1, U2) = U1U2

(cf. III.6.7). Let Λ be an `-adic coefficient ring, and let ξ : G(F2) → Λ× be an injective
homomorphism of abelian groups; this amounts to a choice of primitive fourth root of unity in
Λ, cf. Remark III.6.21.

The pushout by ξ of the Lang-Artin-Schreier G(F2)-torsor (cf. 36) yields a multiplicative Λ-
local system on G (cf. III.5.6), which we denote by Lξ. More generally, if f = (f0, f1) : X → G
is a morphism of S-schemes, we denote by Lξ{f0, f1} the Λ-local system of rank 1 on X given
by the pullback of Lξ by f . If moreover X is an S-group scheme and if f = (f0, f1) is a
homomorphism of S-group schemes, then Lξ{f0, f1} is a multiplicative Λ-local system on X.
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If f = (f0, f1) and f ′ = (f ′0, f
′
1) are S-morphisms from an S-scheme X to G, then multi-

plicativity of Lξ on G yields an isomorphism

Lξ{f0, f1} ⊗ Lξ{f ′0, f ′1} ∼= Lξ{f0 + f ′0 + f1f
′
1, f1 + f ′1}(43)

of Λ-local systems on X.

Remark III.6.25. For any morphism f : X → Ga,S of S-schemes, the Λ-local system
Lξ{f, 0} is isomorphic to the Artin-Schreier local system Lψ{f} from III.6.13, where ψ is the
restriction of ξ to the subgroup F2 of G(F2). Moreover, the composition of ψ with the surjective
homomorphism G(F2)→ F2 is equal to ξ2, and we have isomorphisms by 43

Lξ{f0, f1}⊗2 ∼= Lξ{f2
1 , 0} ∼= Lψ{f2

1 } ∼= Lψ{f1},
for any morphism f = (f0, f1) : X → G of S-schemes.

Proposition III.6.26. Let V be a finitely generated projective A-module, and let V be the
corresponding S-group scheme. Let γ : V → A be a surjective A-linear homomorphism, and let
Ṽ be the extension of V by Ga,S defined by the element c : (v1, v2) 7→ γ(v1)γ(v2) of C(V,Ga,S),
cf. III.6.5. We denote by t : Ṽ → Ga,S and by v : Ṽ → V the canonical projections.

Then any multiplicative Λ-local system on Ṽ is isomorphic to Lξ{α2t + v∗(v), αγ(v)}, for
a unique A-linear homomorphism v∗ : V → A, considered as a homomorphism from V to Ga,S,
and a unique element α of A.

By III.5.9 and by Proposition III.6.14, we can assume (and we do) that V is the A-module
A, that γ is the identity, and thus that Ṽ is G. Moreover, we can assume (and we do as well)
that Λ is finite, in which case multiplicative Λ-local systems on G correspond to extensions in
Sfppf of G by the finite abelian group Λ×. Since ξ realizes an isomorphism from G(F2) to the
4-torsion subgroup of Λ×, we deduce from Proposition III.6.3 that the homomorphism

ExtAb(Sfppf )(G,G(F2))
ξ−→ ExtAb(Sfppf )(G,Λ

×),

induced by ξ is an isomorphism. The conclusion then follows from Corollary III.6.23.

Corollary III.6.27. Assume that A = k is an algebraically closed field of characteristic
p = 2. Let V a k-vector space of finite dimension r ≥ 1, let V be the corresponding k-group
scheme, let γ : V → k be a non zero linear form, and let Ṽ be the extension of V by Ga,S defined
by the element c : (v1, v2) 7→ γ(v1)γ(v2) of C(V,Ga,S), cf. III.6.5. We denote by t : Ṽ → Ga,S
and by v : Ṽ → V the canonical projections.

Let M be a multiplicative Λ-local system on V, and let α be an element of k. Then the
cohomology group

Hν
c (Ṽ,M⊗Lξ{α2t, 0})

vanishes for each integer ν, unless ν = 2r+ 2, α = 0 andM is trivial, or ν = 2r+ 1, α is non
zero andM is isomorphic to Lξ{α2t+ δγ(v), αγ(v)} for some element δ of k, in which case it
is a free Λ-module of rank 1.

By Proposition III.6.26, the multiplicative Λ-local system M isomorphic to Lξ{β2t +
v∗(v), βγ(v)} for some k-linear form v∗ : V → k, and some element β of k. The projection
formula yields an isomorphism

Rv!(M⊗Lξ{α2t, 0}) ∼= Rv!(Lξ{(β2 + α2)t, 0})⊗ Lξ{v∗(v), βγ(v)},
and this complex is quasi-isomorphic to 0 by Corollary III.6.15 and Remark III.6.25, unless
β = α, in which case it is quasi-isomorphic to Lξ{v∗(v), βγ(v)}[−2]. We can thus assume (and
we do) that β = α, and we must prove that

Hν
c (V,Lξ{v∗(v), αγ(v)})
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vanishes for each integer ν, unless ν = 2r andM is trivial, or ν = 2r− 1 and v∗ = δγ for some
element δ of k, in which case it is a free Λ-module of rank 1.

If α = 0, this follows from Corollary III.6.15 and Remark III.6.25. We now assume that α
is non zero. In this case, by Corollary III.6.15 and Remark III.6.25 again, the complex

Rγ!(Lξ{v∗(v), αγ(v)}) ∼= Rγ!(Lξ{v∗(v), 0})⊗ Lξ{0, αx},
where x is the coordinate on Ga,k, vanishes unless the restriction of v∗ to the kernel of γ
vanishes, namely if and only v∗ = δγ for some element δ of k, in which case it is isomorphic by
the projection formula to

Rγ!(Λ)⊗ Lξ{δx, 0} ⊗ Lξ{0, αx} ∼= Lξ{δx, αx}[2− 2r].

It remains to prove that
Hν
c (Ga,k,Lξ{δx, αx})

vanishes for each integer ν, unless ν = 1, in which case it is of rank 1. Since Lξ{δx, αx} has
no punctual sections, this group vanishes for ν = 0, and by Poincaré duality it vanishes as well
for ν = 2. In order to conclude, it remains to compute the Euler characteristic with compact
supports of Lξ{δx, αx} on Ga,k.

The Swan conductor of Lξ{δx, αx} at infinity is equal to the highest ramification jump of
the extension k((x−1))[t, u] of k((x−1)) where

u− u2 = αx,

t− t2 = u3 + δx,

corresponding to the equation (t, u) − (t2, u2) = (δx, αx) in G. The only ramification jump
of the extension k((x−1))[t, u]/k((x−1))[u] (resp. k((x−1))[u]/k((x−1))), which is a degree 2
Galois extension, is 3 (resp. 1). Thus the extension k((x−1))[t, u] of k((x−1)) has two ram-
ification jumps, namely 1 and some rational number j > 1. The slope between 1 and 3 of
the Herbrand function of the extension k((x−1))[t, u]/k((x−1)), cf. ([Se68], IV.3), is equal 1

2 ,
namely the inverse of the degree of the subextension k((x−1))[u]/k((x−1)). This slope is also
equal to j−1

3−1 = j−1
2 hence j − 1 = 1, and thus the second ramification jump of the extension

k((x−1))[t, u]/k((x−1)) is equal to j = 2. Consequently, the Swan conductor of Lξ{δx, αx} at
infinity is equal to 2, and the Grothendieck-Ogg-Shafarevich formula implies that the Euler
characteristic with compact supports of Lξ{δx, αx} on Ga,k is equal to −1, which concludes
the proof of Proposition III.6.27.

III.7. Geometric local ε-factors for sheaves of generic rank at most 1

Let Λ be an `-adic coefficient ring (cf. III.1.13, III.2.2) which is a field, and let ψ : Fp → Λ×

be a non trivial homomorphism. We fix a unitary Λ-admissible mutiplier µ on the topological
group Gk (cf. III.2.9, III.2.10).

Let T be the spectrum of a k-algebra, which is a henselian discrete valuation ring OT ,
with maximal ideal m, and whose residue field OT /m is a finite extension of k. Let j : η → T
be the generic point of T , and let i : s → T be its closed point, so that T is canonically an
s-scheme, as in III.5.16. We fix a k-point s : Spec(k)→ T of T above s, so that the Galois group
Gs = Gal(k/k(s)) can be considered as a subgroup of Gk. We still denote by µ the restriction
of µ to Gs. We also fix a geometric point η of T above η.

III.7.1. We denote by Ω1
η = Ω1

η/k the one-dimensional k(η)-vector space of 1-forms over
η; it is endowed with a differential d : k(η)→ Ω1

η, which is continuous for the valuation topology,
and such that dπ is non zero for any uniformizer π of k(η). We also denote by Ω1,×

η the k(η)×-
torsor of non zero elements of Ω1

η. If ω is an element of Ω1,×
η , we denote by v(ω) the unique

integer such that for any uniformizer π of k(η), the element ω
dπ of k(η)× has valuation v(ω).
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III.7.2. Let F be a Λ-sheaf on T . The conductor of the couple (T,F) is the integer

a(T,F) = rk(Fη) + sw(Fη)− rk(Fs).
Following Laumon ([La87], 3.1.5.1), if ω is an element of Ω1,×

η (cf. III.7.1), we define the
conductor of the triple (T,F , ω) to be the integer

a(T,F , ω) = a(T,F) + rk(Fη)v(ω).

III.7.3. Let f : T ′ → T be a finite generically étale morphism, where T ′ is the spectrum
of a henselian discrete valuation ring, with generic extension η′ → η and residual extension
s′ → s. Let F be a Λ-sheaf on T ′, and let ω be an element of Ω1,×

η′ . We then have

a(T, f∗F) = [s′ : s]a(T,F) + v(∂η′/η)rk(Fη),

by ([Se68], IV.2 Prop. 4), where ∂η′/η denotes the discriminant of the separable extension
η′ → η, cf. ([Se68], III.3). We have v(∂η′/η) = [s′ : s]v(∂η′/ηs′ ), and

[η′ : ηs′ ]v(ω) + v(∂η′/ηs′ ) = v(f∗ω),

hence the formula
a(T, f∗F , ω) = [s′ : s]a(T,F , f∗ω).

III.7.4. Let F be a µ-twisted Λ-sheaf on T supported on s (cf. III.3.7), where T is
considered either as a k-scheme or as an s-scheme (cf. III.3.10), and let ω be an element
of Ω1,×

η . For any element ω of Ω1,×
η , we define the ε-factor of the triple (T,F , ω) to be the

Λ-admissible map

εs(T,F , ω) : Gs → Λ×

g 7→ det (g | Fs)−1

The map εs(T,F , ω) defines a Λ-admissible representation of rank 1 of (Gs, µ
−rkFs) which

is isomorphic to det (Fs)−1. In particular, we have

d1(εs(T,F , ω)) = µ−rkFs = µa(T,F,ω),

cf. III.2.6 and III.7.2 for the notation.

III.7.5. Let F be a µ-twisted Λ-sheaf on T (cf. III.3.7, III.3.10), supported on η, such that
j−1F is of rank 1, and let ω be an element of Ω1,×

η . Then j−1F is a µ-twisted Λ-local system of
rank 1 on η. Let D = νs be an effective Cartier divisor on T such that j−1F has ramification
bounded by D (cf. III.5.44). Theorem III.5.45 then produces a µ-twisted multiplicative Λ-local
system χj−1F (cf. III.5.41, III.5.42) on the s-group scheme Pic(T,D)s (cf. III.5.20).

Recall from III.5.30 that Pic(T,D)s is naturally isomorphic to the functor which sends an
s-scheme S to the group of pairs (d, u), where d is a locally constant Z-valued map on S, and

u : OS ⊗k(s) OT /mν → OS ⊗k(s) m
−d/m−d+ν

is an isomorphism of OS ⊗k(s) OT /mν-modules. Denoting by Picd(T,D)s the component of
degree d of Pic(T,D)s, we consider the morphism

Resω : Pica(T,F,ω)(T,D)s → Ga,s
u 7→ Res(uω),

cf. III.4.6, which is well defined since ν − a(T,F , ω) is greater than or equal to −v(ω).

Proposition III.7.6. The cohomology group

Hj
c

(
Pica(T,F,ω)(T,D)s, χj−1F ⊗ Lψ{Resω}

)
,

vanishes for j 6= 2ν − a(T,F), and is a Λ-module of rank 1 if j = 2ν − a(T,F).
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The Artin-Schreier sheaf Lψ{Resω} is defined in the paragraph III.6.13. An equivalent
version of Proposition III.7.6 appears with a lacunary proof in Section g.(B) of Deligne’s 1974
letter to Serre, published as an appendix in [BE01]. We postpone the proof of Proposition
III.7.6 to the paragraphs III.7.14, III.7.15, III.7.16, III.7.18 and III.7.20 below.

Definition III.7.7. Let F be a µ-twisted Λ-sheaf on T , supported on η, such that j−1F
is of rank 1, and let D be an effective Cartier divisor on T such that j−1F has ramification
bounded by D (cf. III.5.17), namely sw(Fη) is strictly less than the multiplicity ν of D at
s. Let ω be an element of Ω1,×

η . The ε-factor of the triple (T,F , ω) is the Λ-admissible map
εs(T,F , ω) : Gs → Λ× such that

εs(T,F , ω)(g) = Tr
(
g | H2ν−a(T,F)

c

(
Pica(T,F,ω)(T,D)s, χj−1F ⊗ Lψ{Resω}(ν − a(T,F , ω))

))
,

for any g in Gs.

Since χj−1F ⊗Lψ{Resω} is a µa(T,F,ω)-twisted Λ-sheaf on Pica(T,F,ω)(T,D)s (cf. III.5.41),
and since the cohomology group in III.7.7 is of rank 1 by Proposition III.7.6 we obtain

d1(εs(T,F , ω)) = µa(T,F,ω),

cf. III.3.14.
The notation εs(T,F , ω) suggests that the choice of D is irrelevant. We have indeed:

Proposition III.7.8. Let F , D, ω be as in III.7.7. Then the map εs(T,F , ω) is independent
of the choice of D.

Indeed, if δ is a positive integer, let us consider the projection morphism

τ : Pica(T,F,ω)(T,D + δs)s → Pica(T,F,ω)(T,D)s,

which sends for any k-scheme S a trivialization u of OS ⊗k(s) m
−a(T,F,ω)/m−a(T,F,ω)+ν+δ to

its image in OS ⊗k(s) m
−a(T,F,ω)/m−a(T,F,ω)+ν . It is a (trivial) fibration in affine spaces of

dimension δ. Let G be the Λ-sheaf χj−1F ⊗ Lψ{Resω} on Pica(T,F,ω)(T,D)s. The trace homo-
morphism

Rτ!τ
−1G(δ)[2δ]→ G,

is an isomorphism, and thus the Leray spectral sequence for (τ,G) yields that the Λ-admissible
representation given by

H2ν+2δ−a(T,F)
c

(
Pica(T,F,ω)(T,D + δ)s, τ

−1G(ν + δ − a(T,F , ω))
)
,

is isomorphic to

H2ν−a(T,F)
c

(
Pica(T,F,ω)(T,D)s,G(ν − a(T,F , ω))

)
,

hence the result.

III.7.9. Let F be a µ-twisted Λ-sheaf on T , such that Fη is of rank at most 1 over Λ,
and let ω be an element of Ω1,×

η . If F is supported on a single point of T , then we defined the
ε-factor of (T,F , ω) in III.7.4 and III.7.7. We combine these two definitions as follows:

Definition III.7.10. Let F be a µ-twisted Λ-sheaf on T , such that j−1F is of rank at most
1 over Λ. The ε-factor of the triple (T,F , ω) is the Λ-admissible map from Gs to Λ× given by

εs(T,F , ω) = εs(T, j!j
−1F , ω)εs(T, i∗i

−1F , ω).

It follows from III.7.4 and III.7.7 that we have

d1(εs(T,F , ω)) = µa(T,F,ω).
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III.7.11. Let F be a µ-twisted Λ-sheaf of rank 1 on η, with ramification bounded by
D = νs (cf. III.5.44). If z is an element of valuation d in k(η)×, then the image of z−1 in
m−d/m−d+ν yields an s-point of Picd(T,D)s. The restriction χF|z−1 of χF to this s-point is a
Λ-local system of rank 1 on s, and we define

〈χF 〉(z) : Gs → Λ×

g 7→ det
(
g | (χF|z−1)s

)
,

so that d1(〈χF 〉(z)) = µd. The map 〈χF 〉(z) depends only on F and z, and not on the choice
of D. By multiplicativity of the local system χF (cf. III.5.1), we have

〈χF 〉(z1z2) = 〈χF 〉(z1)〈χF 〉(z2)

for any elements z1, z2 of k(η)×.

Proposition III.7.12. Let F be a µ-twisted Λ-sheaf on T , such that j−1F is of rank 1 over
Λ. For any element α of k(η)×, of valuation v(α), we have

εs(T,F , αω) = 〈χj−1F 〉(α)χ−v(α)
cyc εs(T,F , ω),

where 〈χj−1F 〉 is as in III.7.11, and χcyc is the `-adic cyclotomic character of k (cf. III.1.13).

Indeed, we have an isomorphism

θ : Pica(T,F,ω)(T,D)s → Pica(T,F,αω)(T,D)s

u 7→ α−1u,

of s-schemes, such that the pullback of χj−1F ⊗Lψ{Resαω}(ν−a(T,F , αω)) by θ is isomorphic
to the twist of χj−1F ⊗ Lψ{Resω}(ν − a(T,F , ω)) by (χj−1F )|α−1(−v(α)).

Proposition III.7.13. Let n ≥ 1 be an integer prime to p, and let h be an element of k(η)
of valuation −n, and let us consider the Artin-Schreier Λ-sheaf Lψ{h} on η (cf. III.6.13). Let
M be a µ-twisted Λ-sheaf on η of rank 1 with ramification bounded by the divisor dn2 es, and let
us consider the µ-twisted Λ-sheaf F =M⊗Lψ{−h}. For any element ω of Ω1,×

η , we have:
— if n = 2n′ − 1 is odd then

εs(T, j!F , ω) = 〈χF 〉
( ω
dh

)
χ
−v( ω

dh )+n′

cyc ,

— if n = 2n′ is even then p is odd and we have

εs(T, j!F , ω) = 〈χF 〉
( ω
dh

)
χ
−v( ω

dh )+n′+1
cyc γψ(−nh0),

where h0 is an element of k(s)× such that h
h0

is a square in k(η)×, and where, for any
element c of k(s), we have set

γψ(c) : Gs → Λ×

g 7→ det

(
g | H1

c

(
Ga,s,Lψ{

ct2

2
})
))

.

When k is a finite field of odd characteristic, the conclusion of Proposition III.7.13 follows
from ([AS10], Prop. 8.7) and from Proposition III.7.22 below.

We note that the Swan conductor of a µ-twisted Λ-sheaf F as in Proposition III.7.13 is n.
By Proposition III.7.12, it is sufficient to prove Proposition III.7.13 when ω = dπ

πn+1 , for a fixed
uniformizer π, in which case ω

dh has valuation 0. The conclusion then follows from the proof of
Proposition III.7.6 below, cf. Porisms III.7.17 and III.7.19.
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III.7.14. We now prove Proposition III.7.6. Let us first consider the projection morphism

τ : Pica(T,F,ω)(T,D)s → Pica(T,F,ω)(T, a(T,F)s)s,

of relative dimension δ = ν − a(T,F), which sends for any k-scheme S a trivialization u of
OS ⊗k(s) m

−a(T,F,ω)/m−a(T,F,ω)+ν to its image in OS ⊗k(s) m
−a(T,F,ω)/m−v(ω). Let G be the

Λ-sheaf χj−1F ⊗Lψ{Resω} on the s-group scheme Pica(T,F,ω)(T, a(T,F)s)s. As in the proof of
III.7.8, we have an isomorphism

Rτ!τ
−1G(δ)[2δ]→ G,

hence the Leray spectral sequence for (τ,G) implies that it is enough to prove Proposition III.7.6
when the multiplicity ν of D at s is exactly a(T,F).

Let us now assume that ν is equal to a(T,F). Let π be a uniformizer of k(η). Let us write
ω = α−1 dπ

πν for some element α of k(η)× of valuation −a(T,F , ω) = −ν − v(ω), and let us
consider the isomorphism

θ : Pic0(T,D)s → Pica(T,F,ω)(T,D)s

u 7→ αu.

The pullback of χj−1F by θ coincides with χj−1F on Pic0(T,D)s, up to twist by the fiber
α−1χj−1F of χj−1F at the s-point α, while the pullback of Lψ{Resω} is isomorphic to Lψ{Resπ−νdπ}.
Thus we can assume that ω is equal to dπ

πν , so that we have a(T,F , ω) = 0.

III.7.15. Let us prove Proposition III.7.6 when ω is equal to dπ
πν and when ν = a(T,F)

is equal to 1. In this case, the s-group scheme Pic0(T,D)s is simply the multiplicative group
Gm,s, and Lψ{Resω} coincides with Lψ{t}. Any multiplicative Λ-local system on Gm,s, such as
χj−1F , is tamely ramified at 0 and ∞, cf. for example ([Gu18], 3.15). Thus the Λ-local system
χj−1F ⊗ Lψ{t} on Gm,s has Swan conductor 0 at 0, and 1 at infinity. By the Grothendieck-
Ogg-Shafarevich formula, we have

χc(Gm,s, χj−1F ⊗ Lψ{t}) = 2− 1− 2 = −1.

Moreover, the cohomology groups H0
c (Gm,s, χj−1F ⊗ Lψ{t}) and H0(Gm,s, χ−1

j−1F ⊗ Lψ{−t})
both vanish, and so does the group

H2
c (Gm,s, χj−1F ⊗ Lψ{t}),

by Poincaré duality. This proves that the cohomology group

Hj
c (Gm,s, χj−1F ⊗ Lψ{t}),

vanishes when j 6= 1, and is of rank 1 when j is equal to 1.

III.7.16. Let us prove Proposition III.7.6 when ω is equal to dπ
πν and when ν = a(T,F)

is even, hence of the form 2ν′ for some integer ν′ ≥ 1. Let us consider the projection morphism

σ : Pic0(T,D)s → Pic0(T, ν′s)s,

which is a homomorphism of s-group schemes. Let V be the additive s-group scheme associated
to the finite dimensional s-vector space V = mν

′
/mν . Then the morphism

r : V → Pic0(T,D)s

x 7→ 1 + x,
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realizes an isomorphism of s-group schemes from V onto the kernel of σ. By Proposition III.6.14,
the multiplicative Λ-local system r−1χj−1F is isomorphic to an Artin-Schreier sheaf Lψ{−v∗},
for some linear form v∗ on V . The k(s)-linear map

OT /mν
′ → Homk(s)(V, k(s))

y 7→ Resyω = (x 7→ Res(xyω)),
(44)

is an isomorphism onto the k(s)-linear dual of V = mν
′
/mν . Thus there exists a unique element

y of OT /mν
′
such that v∗ is equal to Resyω.

Since the ramification of χj−1F is not bounded by the divisor (ν−1)s = sw(Fη)s, it follows
from Theorem III.5.45 and from III.5.10 that the restriction of r−1χj−1F to the sub-s-group
scheme corresponding to mν−1/mν is non trivial. Thus the restriction of v∗ = Resyω to mν−1/mν

is non trivial, and consequently y is a unit of OT /mν
′
. In particular, y defines an s-point of

Pic0(T, ν′s)s.
Let t be the spectrum of an algebraically closed extension of k(s), and let u be a t-point of

Pic0(T,D)t. The morphism

ur : Vt → Pic0(T,D)t

x 7→ u(1 + x),

realizes an isomorphism onto the fiber of σ above σ(u). Let G be the Λ-sheaf χj−1F⊗Lψ{Resω}
on the s-group scheme Pic0(T,D)s. The pullback of G by ur is isomorphic to Lψ{Res(u−y)ω},
with notation as in (44), up to twist by the stalk Gu of G at the geometric point u of Pic0(T,D)s.
Together with Proposition III.6.15, this implies that the complex

RΓc(σ
−1(σ(u)),G),

vanishes unless σ(u) is equal to y, in which case it is concentrated in degree 2ν′ = ν, and the
cohomology group Hν

c (σ−1(σ(u)),G) is of rank 1. We obtain that Rσ!G is of the form y∗L[−ν],
where L is a Λ-sheaf of rank 1 on s, and thus that the complex

RΓc(Pic0(T,D)s,G) ∼= RΓc(Pic0(T, ν′s)s, Rσ!G),

is isomorphic to Ls[−ν], hence the conclusion of Proposition III.7.6.

Porism III.7.17. Let us assume that F = M⊗ Lψ{−h} is as in Proposition III.7.13, so
that ν = n+ 1 and n = 2ν′ − 1. We keep the notation from III.7.16. SinceM has ramification
bounded by ν′, the restriction r−1χM is trivial. Moreover, by III.4.5 and III.5.25, we have
χF = χM ⊗Lψ{Res(hduu )}, where u is the universal unit parametrized by Pic(T,D)s. For any
section x of V, we have

Res

(
h
d(1 + x)

1 + x

)
= Res(hdx)− Res

(
xh

dx

1 + x

)
= −Res(xdh)− Res

(
xh

dx

1 + x

)
,

which is equal to −Res(xdh) since xhdx
1+x has nonnegative valuation. Thus the element y of

OT /mν
′
which appears in the proof above is equal to dh

ω . Thus Rνσ!G is concentrated on
the s-point dh

ω of Pic0(T, ν′s)s, and its restriction to the s-point dh
ω is χF| dhω (−ν′), hence the

conclusion of Proposition III.7.13 when n is odd.
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III.7.18. Let us prove Proposition III.7.6 when ω is equal to dπ
πν , when ν = a(T,F) is

of the form 2ν′ + 1 for some integer ν′ ≥ 1, and when the characteristic p of k is odd. As in
III.7.16, let us consider the projection morphisms

Pic0(T,D)s Pic0(T, (ν′ + 1)s)s Pic0(T, ν′s)s,
σ1 σ2

σ

so that σ, σ1 and σ2 are all homomorphisms of s-group schemes. Let V be the additive s-group
scheme associated to the finite dimensional s-vector space V = mν

′
/mν . Then the morphism

r : V → Pic0(T,D)s

x 7→ 1 + x+
x2

2
,

realizes an isomorphism of s-group schemes from V to the kernel of σ. By Proposition III.6.14,
the multiplicative Λ-local system r−1χj−1F is isomorphic to an Artin-Schreier sheaf Lψ{−v∗},
for some linear form v∗ on V . Let y be the unique element of OT /mν

′+1 such that v∗ coincides
with the linear form

Resyω : mν
′
/mν → k(s)

x 7→ Res(xyω).

As in III.7.16, the element y is a unit of OT /mν
′+1, whence y defines an s-point of Pic0(T, (ν′+

1)s)s.
Let t be the spectrum of an algebraically closed extension of k(s), and let u be a t-point of

Pic0(T,D)t. The morphism

ur : Vt → Pic0(T,D)t

x 7→ u(1 + x+
x2

2
),

realizes an isomorphism onto the fiber of σ above σ(u). Let G be the Λ-sheaf χj−1F⊗Lψ{Resω}
on the s-group scheme Pic0(T,D)s. The pullback of G by ur is isomorphic to Lψ{Res(u−y)ω +

αγ2}, up to twist by the stalk Gu of G at the geometric point u of Pic0(T,D)s, where α is the
image of u2 in k(t)× and γ : V → k(s) is the linear form which sends an element x to the image
of π−ν

′
x in k(s). Together with Proposition III.6.16, this implies that the complex

RΓc(σ
−1(σ(u)),G),

vanishes unless the linear form Res(u−y)ω on V is proportional to γ, namely unless σ(u) = σ2(y),
in which case this complex is concentrated in degree 2(ν′ + 1) − 1 = ν, and the cohomology
group Hν

c (σ−1(σ(u)),G) is of rank 1. We obtain that Rσ!G is of the form σ2(y)∗L[−ν], where
L is a Λ-sheaf of rank 1 on s, and thus that the complex

RΓc(Pic0(T,D)s,G) ∼= RΓc(Pic0(T, ν′s)s, Rσ!G),

is isomorphic to Ls[−ν], hence the conclusion of Proposition III.7.6.

Porism III.7.19. Let us assume that F = M⊗ Lψ{−h} is as in Proposition III.7.13, so
that ν = n + 1 and n = 2ν′. We keep the notation from III.7.18. Since M has ramification
bounded by ν′, the restriction r−1χM is trivial. Moreover, by III.4.5 and III.5.25, we have
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χF = χM ⊗ Lψ{Res(hduu )}, where u is the universal unit parametrized by Pic(T,D)s (cf.
III.5.30). For any section x of V, we have

Res

(
h
d(1 + x+ x2

2 )

1 + x+ x2

2

)
= Res(hdx)− Res

(
x2h

dx

2(1 + x)

)
= −Res(xdh)− Res

(
x2h

dx

2(1 + x)

)
,

which is equal to −Res(xdh) since x2h dx
2(1+x) has nonnegative valuation. Thus the element y

of OT /mν
′+1 which appears in the proof above is equal to dh

ω . Thus Rνσ!G is concentrated on
the s-point dh

ω of Pic0(T, ν′s)s. Moreover, choosing u = y = dh
ω in the computation above, the

restriction (ur)−1χF ⊗ Lψ{Resω} is isomorphic to χF| dhω ⊗ Lψ{αγ
2}, where α is the image of

dh
2ω in k(s)×. If h0 is the image in k(s)× of πnh, then we have α = −nh0

2 . We thus have

εs(T, j!F , ω)(g) = 〈χF 〉
( ω
dh

)
(g)χcyc(g)ν

′+1Tr

(
g | Hν

c

(
Vs,Lψ{−

nh0γ
2

2
})
))

,

for any g in Gs, hence the conclusion of Proposition III.7.13 when n is even.

III.7.20. Let us prove Proposition III.7.6 when ω is equal to dπ
πν , when ν = a(T,F) is of

the form 2ν′ + 1 for some integer ν′ ≥ 1, and when k is of characteristic p = 2. As in III.7.18,
let us consider the projection morphisms

Pic0(T,D)s Pic0(T, (ν′ + 1)s)s Pic0(T, ν′s)s,
σ1 σ2

σ

so that σ, σ1 and σ2 are all homomorphisms of s-group schemes. Let V be the additive s-group
scheme associated to the finite dimensional k(s)-vector space V = mν

′
/mν . Let γ : V → k(s)

be the k(s)-linear form which sends an element v of V to the image in k(s) of the element π−ν
′
v

of OT /mν
′+1, and let Ṽ be the extension of V by Ga,s defined by the element c : (v1, v2) 7→

γ(v1)γ(v2) of C(V,Ga,S), cf. III.6.5. For any sections (t1, v1) and (t2, v2) of the k(s)-scheme
Ṽ = Ga,s ×s V, we have

(t1, v1) + (t2, v2) = (t1 + t2 + γ(v1)γ(v2), v1 + v2),

in Ṽ, and we have

(1 + v1 + π2ν′t1)(1 + v2 + π2ν′t2) = 1 + v1 + v2 + π2ν′
(
t1 + t2 + (π−ν

′
v1)(π−ν

′
v2)
)
,

in Pic0(T,D)s. Thus the morphism

r : Ṽ → Pic0(T,D)s

(t, v) 7→ 1 + v + π2ν′t,

of s-schemes is a homomorphism of s-group schemes. It surjects onto the kernel of σ, and its
kernel is isomorphic to Ga,s (cf. 45 below).

Let G be the extension of Ga,S by itself defined by c(U1, U2) = U1U2 (cf. III.6.7), and let
ξ : G(F2)→ Λ× be an injective character (cf. III.6.24), whose restriction to the subgroup F2 of
G(F2) is ψ. By Proposition III.6.26, the multiplicative Λ-local system r−1χj−1F is isomorphic
to Lξ{α2t+v∗(v), αγ(v)} (cf. III.6.24 for the notation), for some linear form v∗ on V and some
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element α of k. Let y be the unique element of OT /mν
′+1 such that v∗ coincides with the linear

form

Resyω : mν
′
/mν → k(s)

x 7→ Res(xyω).

Since the homomorphism of s-group schemes

τ : Ga,s → Ṽ
t 7→ (t, π2ν′t),

(45)

realizes an isomorphism onto the kernel of r, the pullback Lψ{(α2 + v∗(π2ν′))t} of r−1χj−1F
by τ is trivial, hence α2 = v∗(π2ν′) by Proposition III.6.14.

Since the ramification of χj−1F is not bounded by the divisor (ν−1)s = sw(Fη)s, it follows
from Theorem III.5.45 and from III.5.10 that the restriction of r−1χj−1F to the sub-s-group
scheme Ga,s of Ṽ is non trivial, hence α is non zero. This implies that the scalar v∗(π2ν′) = α2

is non zero, and consequently that y is a unit of OT /mν
′+1. In particular, y defines an s-point

of Pic0(T, (ν′ + 1)s)s.
Let x be the spectrum of an algebraically closed extension of k(s), and let u be an x-point

of Pic0(T,D)x. The morphism

ur : Ṽx → Pic0(T,D)x

(t, v) 7→ u(1 + v + π2ν′t),

surjects onto the fiber of σ above σ(u). Let G be the Λ-sheaf χj−1F ⊗Lψ{Resω} on the s-group
scheme Pic0(T,D)s. The pullback of G by ur is isomorphic to Lξ{(α2+β)t+Res(u−y)ω(v), αγ(v)},
up to twist by the stalk Gu of G at the geometric point u of Pic0(T,D)s, where β is the image
in k(x) of u. The trace morphism

R(ur)!(ur)
−1G[2](1)→ G|σ−1(σ(u)),

is an isomorphism, since ur is a Ga-torsor over σ−1(σ(u)). Together with Proposition III.6.27,
this implies that the complex

RΓc(σ
−1(σ(u)),G),

vanishes unless β = α2 and the linear form Res(u−y)ω on V is proportional to γ, namely unless
σ(u) = σ2(y), in which case it is concentrated in degree 2(ν′ + 1)− 1 = ν, and the cohomology
group Hν

c (σ−1(σ(u)),G) is of rank 1. We obtain that Rσ!G is of the form σ2(y)∗L[−ν], where
L is a Λ-sheaf of rank 1 on s, and thus that the complex

RΓc(Pic0(T,D)s,G) ∼= RΓc(Pic0(T, ν′s)s, Rσ!G),

is isomorphic to Ls[−ν], hence the conclusion of Proposition III.7.6.
This, together with the paragraphs III.7.14, III.7.15, III.7.16, and III.7.18 concludes the

proof of Proposition III.7.6.

III.7.21. We now assume that k is a finite field of cardinality q, that Λ is C, and that
µ = 1 is the trivial C-admissible mutiplier on Gk. The k-automorphism x 7→ xq is a topological
generator of Gk, and we denote by Frobk its inverse. Similarly, Frobs = Frobfk is a topological
generator of the subgroup Gs of Gk, where f is the degree of the extension k(s)/k.

If F is C-local system of rank 1 on η, and let D be an effective Cartier divisor on T such
that F has ramification bounded by D (cf. III.5.17), namely sw(Fη) is strictly less than the
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multiplicity ν of D at s. Then Theorem III.5.26 produces a multiplicative C-local system χF
on the s-group scheme Pic(T,D)s. Moreover, the map

χF : k(η)× → C×

z 7→ 〈χF 〉(z)(Frobs)

is a group homomorphism, cf. III.7.11.

Proposition III.7.22. Let F be a C-local system of rank 1 on η, and let c be an arbitrary
element of k(η) of valuation a(T, j∗F , ω). Then we have

(−1)a(T,j∗F)εs(T, j∗F , ω)(Frobs) =

∫
c−1O×T

χ−1
F (z)ψ(Trk/FpRes(zω))dz,

if F is ramified, where dz is the Haar measure on k(η) normalized so that
∫
OT dz = 1. If F is

unramified, then we have a(T, j∗F) = 0 and

εs(T, j∗F , ω)(Frobs) = χF (c)qfv(ω).

Let Ψω : k(η) → Λ× be the additive character given by z 7→ ψ(Trk/Fp(zω)). Proposition
III.7.22 can then be summarized as an equality

(−1)a(T,j∗F)εs(T, j∗F , ω)(Frobs) = ε(χF ,Ψω),

where ε(χF ,Ψω) is the automorphic ε-factor of the pair (χF ,Ψω), cf ([La87], 3.1.3.2).

III.7.23. We now prove Proposition III.7.22. Let us first assume that F is unramified, so
that F is the pullback to η of a C-local system G of rank 1 on s. We can take D = s and ν = 1
above. For each integer d, the multiplicative C-local system χF is given on the component
Picd(T, s)s by the pullback of G⊗d. The C-admissible representations of rank 1 corresponding
to εk(T, i∗i

−1j∗F , ω) and εk(T, j!j
−1j∗F , ω) are then respectively isomorphic to G−1

s and to

H2ν−a(T,j!F)
c

(
Pica(T,j!F,ω)(T, s)s,Lψ{Resω}(ν − a(T,F , ω))

)
⊗ G⊗a(T,j!F,ω)

s

=H1
c

(
Pic1+v(ω)(T, s)s,Lψ{Resω}(−v(ω))

)
⊗ G⊗(1+v(ω))

s .

Let π be a uniformizer of k(η), and let us write ω as αdππ for some element α of k(η)× of
valuation 1 + v(ω). We have an isomorphism

θ : Gm,s → Pic1+v(ω)(T, s)s

t 7→ tα−1,

so that θ−1Lψ{Resω} is isomorphic to Lψ{t}. By Proposition III.7.6 and by the Grothendieck-
Lefschetz trace formula ([Gr66], éq. (25)), we have

Tr
(

Frobs | H1
c

(
Pic1+v(ω)(T, s)s,Lψ{Resω}

))
= Tr

(
Frobs | H1

c (Gm,s,Lψ{t})
)

= −
∑

t∈k(s)×

ψ(Trk/Fp(t))

= 1.

We thus obtain that the quantity εs(T, j!F , ω)(Frobs) is given by Tr (Frobs | Gs)1+v(ω)
qfv(ω).

This implies that the value of εs(T, j∗F , ω) at Frobk is given by Tr (Frobs | Gs)v(ω)
qfv(ω), hence

the result since we have

χF (c) = Tr (Frobs | Gs)v(c)
= Tr (Frobs | Gs)v(ω)

.
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III.7.24. We now prove Proposition III.7.22 in the case where F is ramified. In this
situation, the C-sheaf j∗F is supported on η, and the quantity (−1)a(T,j∗F)εs(T, j∗F , ω)(Frobs)
is thus equal to

(−1)a(T,j!F)qfa(T,j!F,ω)−fνTr
(

Frobs | H2ν−a(T,j!F)
c

(
Pica(T,j!F,ω)(T,D)s, χF ⊗ Lψ{Resω}

))
.

By Proposition III.7.6 and by the same Grothendieck-Lefschetz trace formula ([Gr66], éq.
(25)), the latter quantity coincides with

qfa(T,j!F,ω)−fν
∑

u∈c−1(OT /mν)×

χ−1
F (u)ψ(Trk/Fp(uω)).

The factor qfa(T,j!F,ω)−fν is equal to
∫
c−1(u+mνOT )

dz for any element u of (OT /mν)×, so that
we obtain

(−1)a(T,j∗F)εs(T, j∗F , ω)(Frobs) =
∑

u∈(OT /mν)×

∫
c−1(u+mνOT )

χ−1
F (z)ψ(Trk/Fp(zω))dz

=

∫
c−1O×T

χ−1
F (z)ψ(Trk/Fp(zω))dz,

hence the result.

III.8. The product formula for sheaves of generic rank at most 1 (after Deligne)

We review in this section Deligne’s computation of the determinant of the cohomology of
rank 1 local systems on curves, as exposed in his 1974 letter to Serre, which is published as an
appendix in [BE01]. The material of this section is thus entirely due to Deligne, besides the
terminology regarding twisted sheaves.

III.8.1. Let us recall that the base field k is assumed throughout to be a perfect field
of characteristic p. Let ψ : Fp → C× be a non trivial homomorphism. We fix a unitary
C-admissible mutiplier µ on the topological group Gk (cf. III.2.9, III.2.10).

Definition III.8.2. Let X be a connected smooth curve over k, and let F be a µ-twisted C-
sheaf on X. The global ε-factor of the pair (X,F) is the Λ-admissible map εk(X,F) : Gk → C×

defined by

εk(X,F)(g) = det(g,RΓc(Xk,F))−1,

for any g in Gk, cf. III.3.14.

For any smooth connected projective curve over k, we denote by |X| the set of closed points
of X and by X(x) the henselization of X at a closed point x.

Theorem III.8.3. Let X be a smooth connected projective curve of genus g over k, let ω
be a non zero global meromorphic differential 1-form on X and let F be a µ-twisted C-sheaf on
X of generic rank rk(F) at most 1. Then, for all but finitely many closed points x of X the
ε-factor of the triple (X(x),F|X(x)

, ω|X(x)
) is identically equal to 1, and we have

εk(X,F) = χN(g−1)rk(F)
cyc

∏
x∈|X|

δ
a(X(x),F|X(x)

)

x/k Verx/kεx(X(x),F|X(x)
, ω|X(x)

),

where N is the number of connected components of Xk, where x is a k-morphism from Spec(k)
to x, and where δx/k and Verx/k are defined in III.3.22.
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In Theorem III.8.3, the image by d1 of the left hand side (cf. III.2.6) is

d1(εk(X,F)) = µ−χ(Xk,F),

cf. III.3.14, while the image by d1 of the right hand side is
∏
x∈|X| µ

deg(x)a(X(x),F|X(x)
,ω|X(x)

) (cf.
III.7.2, III.7.9), where the conductor a(X(x),F|X(x)

, ω|X(x)
) vanishes for all but finitely many

closed points x of X. Thus the conclusion of Theorem III.8.3 is consistent with the identity

−χ(Xk,F) =
∑
x∈|X|

deg(x)a(X(x),F|X(x)
, ω|X(x)

),

which results from the Grothendieck-Ogg-Shafarevich formula.

III.8.4. We now describe Deligne’s proof of Theorem III.8.3. Let X, g,N, ω,F be as in
III.8.3. By replacing k with a finite extension if necessary, we can assume (and we do) that
X is geometrically connected over k, so that N = 1. Let j : U → X be a non empty open
subscheme such that j−1F is a µ-twisted C-local system on U . We have an exact sequence

0→ j!j
−1F → F →

⊕
x∈X\U

ix∗i
−1
x F → 0,

where ix : x→ X is the inclusion of a closed point of X. The product formula III.8.3 holds for
ix∗i

−1
x F for each x in |X|, hence we can assume (and we now do) that F vanishes outside U ,

i.e. F = j!j
−1F . By replacing U with a smaller non empty open subscheme of X if necessary,

we can further assume (and we do as well) that the complement X \ U contains at least two
closed points and that j−1F is of rank rk(F) = 1.

Let us consider the effective Cartier divisor

D =
∑

x∈X\U

(1 + swx(F))x,

where swx(F) is the Swan conductor of F at x. Equivalently, we have

D =
∑
x∈|X|

a(X(x),F|X(x)
)x,

cf. III.7.2. The Grothendieck-Ogg-Shafarevich formula then implies that the Euler character-
istic of F , namely

χc(U, j
−1F) =

∑
i∈Z

(−1)i dimHi
c(U, j

−1F),

is equal to −d, where d = deg(D) − 2 + 2g is a nonnegative integer. Since the canonical line
bundle ωX of X has degree 2g − 2, the integer d is also the degree of the line bundle ωX(D).

The µ-twisted C-local system j−1F of rank 1 on U has ramification bounded by D, cf.
III.5.47, and consequently there exists a µ-twisted multiplicative C-local system χF (cf. III.5.41)
on Pick(X,D) (cf. III.5.13) whose pullback by the Abel-Jacobi morphism

Φ : U → Pick(X,D),

cf. 30, is isomorphic to j−1F .
Let Symd

k(U) be the quotient of Ud by the group of bijection of {1, . . . , d} onto itself,
acting by permuting the d factors of Ud, cf. ([Gu18], Prop. 2.27). The C-local system
p−1

1 j−1F ⊗ · · · ⊗ p−1
d j−1F on Ud, where (pi)

d
i=1 are the projections on each factor, descends

to a C-local system F [d] of rank 1 on Symd
k(U), cf. ([Gu18], Prop. 2.32). The symmetric

Künneth formula ([SGA4], XVII 5.5.21) implies that we have a natural isomorphism

RΓc(Symd
k(U)k,F [d])[d] ∼= LΓd

(
RΓc(Uk, j

−1F)
)

[d],(46)
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where the functor LΓd is defined in ([Ill72], I.4.2.2.6). By ([Ill72], I.4.3.2.1), we have Quillen’s
shift formula

LΓd
(
RΓc(Uk, j

−1F)
)

[d] ∼= LΛd
(
RΓc(Uk, j

−1F)[1]
)
,(47)

where the derived d-th exterior power LΛd is also defined in ([Ill72], I.4.2.2.6). The shifted
complex RΓc(Uk, j

−1F)[1] is of rank d, and the isomorphism

det(Λrk(V )V ) ∼= det(V ),

valid for any finite dimensional C-vector space V , extends to an isomorphism

det
(
LΛd

(
RΓc(Uk, j

−1F)[1]
)) ∼= det(RΓc(Uk, j

−1F)[1]).(48)

By combining 46, 47 and 48, we obtain a natural isomorphism

detRΓc(Uk, j
−1F)−1 ∼= detRΓc(Symd

k(U)k,F [d])(−1)d .(49)

Moreover, if we denote by

Φd : Symd
k(U)→ Pick(X,D),(50)

the d-th Abel-Jacobi map, whose composition with the canonical projection Ud → Symd
k(U)

sends a section (xi)
d
i=1 of Ud to

∏d
i=1 Φ(xi), then the multiplicativity of χF implies that the

pullback of Φ−1
d χF to Ud is isomorphic

((Φp1)(Φp2) . . . (Φpd))
−1
χF ∼= p−1

1 Φ−1χF ⊗ · · · ⊗ p−1
d Φ−1χF ∼= p−1

1 j−1F ⊗ · · · ⊗ p−1
d j−1F ,

and thus the pullback Φ−1
d χF is isomorphic to F [d].

The Leray spectral sequence for (Φd,F [d]) and the projection formula then yield

detRΓc(Symd
k(U)k,F [d]) ∼= ⊗q∈Z detRΓc(Pick(X,D)k, R

qΦd!Φ
−1
d χF )(−1)q

∼= ⊗q∈Z detRΓc(Pick(X,D)k, χF ⊗RqΦd!C)(−1)q .
(51)

III.8.5. Let i : D → X be the closed immersion of D into X, and let J (resp. J0) be the
functor which associates to a k-scheme S the set of isomorphisms α : ODS → i∗SωX(D) of ODS -
modules (resp. of automorphisms of ODS as a module over itself). Then J0 is representable
by a smooth connected affine group scheme of dimension deg(D) over k, and J is a J0-torsor.
In particular, since the action of Gm,k by multiplication on OD turns Gm,k into a sub-k-group
scheme of J0, the J0-torsor J is naturally endowed with an action of Gm,k by left multiplication.
Moreover, the morphism

f : J ′ → Pick(X,D)

α→ (ωX(D), α),

where J ′ = J/Gm,k, is a closed immersion, its image being the fiber of the canonical projection
Pick(X,D)→ Pick(X) at ωX(D).

Let us denote by ResD : i∗ωX(D)→ k the residue homomorphism, given by

ResD(α) =
∑
x∈|D|

Trk(x)/kResx(α),

where Resx denotes the residue homomorphism at a closed point x (cf. III.4.6). We denote by
g : Σ → J the closed subscheme consisting of isomorphisms α such that ResD(α) = 0, and by
g′ : Σ′ → J ′ its quotient by Gm,k, which is a closed immersion as well.

Lemma III.8.6 ([BE01], p.82). The C-sheaves RqΦd!C (cf. 50) on Picdk(X,D) admit the
following description:
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(1) for q = 2g − 2, there exists a short exact sequence

0→ R2g−2Φd!C → C(1− g)→ f∗C(1− g)→ 0,

of C-sheaves on Picdk(X,D).

(2) for q = 2g, the C-sheaf R2gΦd!C is isomorphic to (fg′)∗C(−g),

(3) the C-sheaf RqΦd!C vanishes if q is not equal to 2g or 2g − 2.

Let t be the spectrum of an algebraically closed extension of k, and let (L, α) be a t-point
of Picdk(X,D) (cf. III.5.13). The fiber of Φd above (L, α) parametrizes sections σ in H0(Xt,L)
whose image in H0(Dt,L) is α, cf. ([Gu18], Prop. 4.12). The degree of the line bundle L(−D)
is 2g − 2, and the Riemann-Roch theorem yields:

(1) if L is not isomorphic to ωX(D), then the fiber of Φd above (L, α) is a torsor under
the additive t-group scheme associated to the (g − 1)-dimensional k(t)-vector space
H0(Xt,L(−D)).

(2) if L = ωX(D) and if ResD(α) = 0 then the fiber of Φd above (L, α) is a torsor
under the additive t-group scheme associated to the g-dimensional k(t)-vector space
H0(Xt,L(−D)).

(3) if L = ωX(D) and if ResD(α) 6= 0 then the fiber of Φd above (L, α) is empty.

Let w : W → Picdk(X,D) be the open complement of the image of the closed immersion f .
Then we have a distinguished triangle

w!w
−1RΦd!C → RΦd!C → f∗f

−1RΦd!C
[1]−→ .

Above W , the morphism Φd is a fibration in affine spaces, of relative dimension g − 1, hence
w−1RΦd!C is quasi-isomorphic to C(1−g)[2−2g]. Moreover, the description above of the fibers
of Φd imply that f−1RΦd!C is supported on Σ′. Above Σ′, the morphism Φd is a fibration in
affine spaces, of relative dimension g, hence f−1RΦd!C is quasi-isomorphic to g′∗C(−g)[−2g].
Thus RqΦd!C vanishes if q is not equal to 2g or 2g − 2, and we have isomorphisms

R2g−2Φd!C ∼= w!C(1− g),

R2gΦd!C ∼= (fg′)∗C(−g),

hence the conclusion of Lemma III.8.6.

III.8.7. By combining the formula 51 with Lemma III.8.6, we obtain that the determinant
of the complex

RΓc(Symd
k(U)k,F [d]),

is isomorphic to

detRΓc(Picdk(X,D)k, χF (1− g)) detRΓc(Σ
′
k
, (fg′)−1χF (−g))

detRΓc(J ′k, f
−1χF (1− g))

.(52)

Lemma III.8.8 ([BE01], p.82). The factor detRΓc(Picdk(X,D)k, χF (1− g)) is isomorphic
to C, as a C-admissible representation of Gk of rank 1.

When F is everywhere tamely ramified, then Picdk(X,D)k is a torsor under the k-group
scheme Pic0

k(X,D)k, which is an extension of an abelian scheme of dimension g by a torus of
dimension deg(D). The result follows in this case from the fact that the determinant of the
cohomology of a tame Λ-local system on an extension of an abelian k-scheme by a torus of
dimension at least 2 is canonically trivial. We refer to ([BE01], Constr. 1 p.70) for a proof of
the latter result.
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When F is not everywhere tamely ramified, there exists a closed point x on D such that
the multiplicity ν of D at x is at least 2. Since Picdk(X,D) is a torsor over the k-group scheme
Pic0

k(X,D) and since χF is multiplicative, it is sufficient to prove that the complex

RΓc(Pic0
k(X,D)k, χF ),

is quasi-isomorphic to 0. The projection

τ : Pic0
k(X,D)→ Pic0

k(X,D − x),

is a homomorphism of k-group schemes, whose kernel is the additive k-group scheme associated
to the k-vector space mν−1

x /mνx, where mx is the maximal ideal of OX,x. Since the ramification
of F is not bounded by the divisor D−x, Theorem III.5.48 and III.5.10 imply that the restric-
tion of χF to the kernel of τ is non trivial. Together with Proposition III.6.15 and with the
multiplicativity of F , this implies the vanishing of Rτ!χF , hence the result.

III.8.9. By combining the formula 52 with Lemma III.8.8, we obtain an isomorphism

detRΓc(Symd
k(U)k,F [d]) ∼= detRΓc(Σ

′
k
, (fg′)−1χF (−g)) detRΓc(J

′
k
, f−1χF (1− g))−1.(53)

Let τ : J → J ′ be the natural projection (cf. III.8.5).

Lemma III.8.10 ([BE01], p.84). The C-sheaves Rqτ!Lψ{Res} admits the following descrip-
tion:

(1) the C-sheaf R1τ!Lψ{Res} is isomorphic to the constant sheaf C on J ′,

(2) the C-sheaf R2τ!Lψ{Res} is isomorphic to g′∗C(−1), with g′ as in III.8.5.

(3) the C-sheaf Rqτ!Lψ{Res} vanishes when q is not equal to 1 or 2.

Recall that τ is a Gm-torsor. Let J be the quotient of Ga,k ×k J by the action of Gm,k
given by t · (y, α) = (t−1y, tα), and let Res : J → Ga,k be the morphism which sends the class
in J of a section (y, α) of J to yRes(α). Let u : J → J be the open immersion which sends a
section α to the class of (1, α), and let τ : J → J ′ be the morphism which sends the class of a
section (y, α) to τ(α). Let i : J ′ → J be the section of τ which sends τ(α) to the class of (0, α)
in J , for any section α of J . We then have an exact sequence

0→ u!Lψ{Res} → Lψ{Res} → i∗C → 0.

By applying the funtor Rτ !, we obtain a distinguished triangle

Rτ!Lψ{Res} → Rτ !Lψ{Res} → C[0]
[1]−→ .(54)

Moreover, the fiber of τ over a geometric point α of J ′ is isomorphic to Ga and the restriction of
Lψ{Res} to this fiber is a multiplicative C-local system, which is trivial if and only if α factors
through g′ (cf. III.8.5). Thus Proposition III.6.15 implies that Rτ !Lψ{Res} is supported on
the image Σ′ of g′, and consequently

Rτ !Lψ{Res} ∼= g′∗g
′−1Rτ !Lψ{Res} ∼= g′∗R(τ |τ−1(Σ′))!C.

Above Σ′, the morphism τ is a fibration in affine spaces, of relative dimension 1, hence
Rτ !Lψ{Res} is quasi-isomorphic to g′∗C(−1)[−2]. The conclusion of Lemma III.8.10 then fol-
lows from 54.
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III.8.11. By combining the formula 53 with Lemma III.8.10, we obtain an isomorphism

detRΓc(Symd
k(U)k,F [d]) ∼= detRΓc(J

′
k
, f−1χF (1− g)⊗Rτ!Lψ{Res})

∼= detRΓc(Jk, (fτ)−1χF (1− g)⊗ Lψ{Res})
(55)

By Proposition III.7.12 and Proposition III.3.24, the product formula III.8.3 for some non
zero meromorphic 1-form ω onX implies the product formula for all such 1-forms. In particular,
we can assume (and we do) that ω is a global section of ωX(D) such that i∗ω : OD → i∗ωX(D)
is an isomorphism. For any closed point x of X, we denote by ix : Dx → X(x) the restriction of
D to the henselization X(x) of X at x, by Fx and ωx the restrictions of F and ω to X(x), and
by Σx the set of k-linear embeddings of k(x) into k.

The sections of J over a k-scheme S consist of all isomorphisms α : ODS → i∗SωX(D) of
ODS -modules. We have a decomposition

ODS ∼= (OD ⊗k k)⊗k OS ∼=
∏
x∈D

∏
ι∈Σx

(ODx ⊗k(x),ι OS),

hence α can be identified with a tuple (αx,ι)x∈D,ι∈Σx , where each αx,ι is a trivialization of the
(ODx ⊗k(x),ι OS)-module i∗xωX(Dx)⊗k(x),ι OS . In particular, the morphism

δ :
∏
x∈D

∏
ι∈Σx

Pic0(X(x), Dx)ι,k → Jk

(ux)x∈D,ι∈Σx → (uxωx)x∈D,ι∈Σx ,

is an isomorphism of k-schemes, which fits into a commutative diagram∏
x∈D

∏
ι∈Σx

Pic0(X(x), Dx)ι,k Jk

J ′
k

Picdk(X,D)k,Pic0
k(X,D)k

δ

τ

f

where the bottom horizontal arrow is the translation by the k-point of Picdk(X,D) which
is the image by Φd of the k-point of Symd(U) corresponding to

∑
x/∈D

∑
ι∈Σx

vx(ω)ι(x). If
(px,ι)x∈D,ι∈Σx are the natural projections from the source of δ onto each factor, then we have
decompositions

δ−1Lψ{Res} ∼=
⊗
x∈D

⊗
ι∈Σx

p−1
x,ιLψ{Resωx},

(fτδ)−1χF ∼=
⊗
x∈D

⊗
ι∈Σx

p−1
x,ιχFx ⊗

⊗
x/∈D

⊗
ι∈Σx

F⊗v(ωx)
x,ι ,

by the compatibility of local and global geometric class field theory, cf. III.5.36. By Proposition
III.7.6, each complex

RΓc(Pic0(X(x), Dx)ι,k, χFx ⊗ Lψ{Resωx})
is a one-dimensional C-vector space concentrated in degree ax = a(X(x),F|X(x)

). By Künneth’s
formula ([SGA4], Thm. 5.4.3), and by Proposition III.3.28, we obtain that the complex

RΓc(Jk, (fτ)−1χF ⊗ Lψ{Res})
is concentrated in degree

∑
x∈D ax = deg(D), and that Gk acts on its cohomology group of

degree deg(D) through the C-admissible map given by∏
x∈D

δaxx/kVerx/kH
ax
c (Pic0(X(x), Dx)x, χFx ⊗ Lψ{Resωx})

∏
x/∈D

Verx/kF⊗v(ωx)
x ,
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with notation as in III.3.22, and the latter is equal to∏
x∈|X|

δaxx/kVerx/k

(
χv(ωx)

cyc εx(X(x),F|X(x)
, ω|X(x)

)
)
.

Since d has the same parity as deg(D), the latter map is equal by (55) to the trace function
on Gk of the C-admissible representation detRΓc(Symd

k(U)k,F [d])(−1)d(g− 1) of (Gk, µ
d), and

thus to the trace function of detRΓc(Uk, j
−1F)−1(g − 1) as well by (49), hence the conclusion

of Theorem III.8.3, since we have∏
x∈|X|

Verx/k

(
χv(ωx)

cyc

)
=
∏
x∈|X|

χ[k(x):k]v(ωx)
cyc = χ2g−2

cyc .

III.9. Geometric local ε-factors in arbitrary rank

Let ψ : Fp → C× be a non trivial homomorphism, hence producing a multiplicative C-local
system Lψ on Ga,k, cf. III.6.13.

As in III.7, let T be the spectrum of a k-algebra, which is a henselian discrete valuation ring
OT , with maximal ideal m, and whose residue field OT /m is a finite extension of k of degree
deg(s). Let j : η → T be the generic point of T , and let i : s → T be its closed point, so that
T is canonically an s-scheme, as in III.5.16. We fix a k-point s : Spec(k) → T of T above s,
so that the Galois group Gs = Gal(k/k(s)) can be considered as a subgroup of Gk. We fix a
unitary C-admissible mutiplier µ on the topological group Gs (cf. III.2.9, III.2.10).

III.9.1. Let π be a uniformizer of OT . We abusively denote by π as well the morphism

π : T → A1
s,

corresponding to the unique morphism k(s)[t] → OT of k(s)-algebras which sends t to π. By
Theorem III.4.18, the pullback functor π−1 realizes an equivalence from the category of special
µ-twisted C-sheaves on A1

s to the category of C-sheaves on T . We denote by π♦ a quasi-inverse
to this equivalence.

Definition III.9.2. Let F be a µ-twisted C-sheaf on T , and let ω be an element of Ω1,×
η

(cf. III.7.1). Then the ε-factor of the triple (T,F , ω) is the C-admissible map επ,s(T,F , ω)
from Gs to C× defined by

Gs → C×

g 7→ 〈χdet(j−1F)〉(
ω

dπ
)(g)χcyc(g)−v(ω)rk(j−1F) det

(
g | RΓc

(
A1
s, π♦F ⊗ L−1

ψ

))−1

,

cf. III.7.11 and III.7.12, or equivalently by

επ,s(T,F , ω) = 〈χdet(j−1F)〉(
ω

dπ
)χ−v(ω)rk(j−1F)

cyc εs(A1
s, π♦F ⊗ L−1

ψ ),

cf. III.8.2.

It is clear from Definition III.9.2 that ε-factors are multiplicative in short exact sequences:

Proposition III.9.3. For any exact sequence

0→ F ′ → F → F ′′ → 0,

of C-sheaves on T , and for any element ω of Ω1,×
η , we have

επ,s(T,F , ω) = επ,s(T,F ′, ω)επ,s(T,F ′′, ω).
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Proposition III.9.4. Let F be a µ-twisted C-sheaf on T , and let ω be an element of Ω1,×
η .

The coboundary of επ,s(T,F , ω) (cf. III.2.6) is then given by

d1 (επ,s(T,F , ω)) = µa(T,F,ω),

cf. III.7.2 for the notation.

Indeed, det(j−1F) is a µrk(j−1F)-twisted C-sheaf of rank 1 on η, hence

d1
(
〈χdet(j−1F)〉(

ω

dπ
)
)

= µv(ω)rk(j−1F).

Moreover, π♦F ⊗ L−1
ψ is a µ-twisted C-sheaf on A1

s, and consequently we have

d1
(
εs(A1

s, π♦F ⊗ L−1
ψ )
)

= µ−χc(A
1
s,π♦F⊗L

−1
ψ ).

The Swan conductor of π♦F ⊗L−1
ψ at infinity is equal to rk(j−1F), hence the conductor of the

pair (π♦F⊗L−1
ψ , dt) at infinity is equal to rk(j−1F)(2+v∞(dt)) = 0, so that the Grothendieck-

Ogg-Shafarevich formula yields

−χc(A1
s, π♦F ⊗ L−1

ψ ) = a(T,F , dπ),

hence the conclusion of Proposition III.9.4.

Proposition III.9.5. Let F be a µ-twisted C-sheaf on T , and let G be a ν-twisted C-local
system on T , for some C-admissible multiplier ν on Gs. We then have

επ,s(T,F ⊗ G, ω) = det(Gs)a(T,F,ω)επ,s(T,F , ω)rk(G),

where det (Gs) is the C-admissible map on Gs which sends an element g of Gs to the determinant
of its action on the stalk Gs of G at s.

We can assume (and we do) that ω is dπ, in which case the conclusion of Proposition III.9.5
follows from the definition III.9.2 and from the fact that π♦(F⊗G) = π♦F⊗π♦G is the twist of
π♦F by π♦G, the geometrically constant ν-twisted C-sheaf on A1

s associated to the fiber i−1G.
Proposition III.9.6. Let F be a µ-twisted C-sheaf on s. Then we have

επ,s(T, i∗F , ω) = det (Fs)−1
,

where det (Fs) is the C-admissible map on Gs which sends an element g to the determinant of
its action on the stalk Fs of F at s. In particular, επ,s(T, i∗F , ω) agrees with the local ε-factor
εs(T, i∗F , ω) defined in III.7.4.

Indeed, the µ-twisted C-sheaf π♦i∗F is supported on the s-point 0 of A1
s, with restriction

F to 0, and consequently we have

RΓc

(
A1
s, π♦F ⊗ L−1

ψ

)
∼= Fs[0],

hence the conclusion of Proposition III.9.6.

III.9.7. Let k(η) be a separable closure of k(ηs) and let η → ηs be the corresponding
morphism of k-schemes. We then have an exact sequence

1→ Iη → Gη → Gs → 1,

where Gs is the Galois group of the extension k/k(s) and Gη = π1(η, η) is the Galois group of
the extension k(η)/k(η), while Iη = π1(ηs, η) is the inertia group of this extension. The functor
F 7→ Fη is then an equivalence from the category of µ-twisted C-sheaves on η to the category
of C-admissible representations of (Gη, µ), cf. III.3.19.

Definition III.9.8. A µ-twisted C-sheaf F on η is potentially unipotent if so is the C-
admissible representation Fη of (Gη, µ) (cf. III.2.47).
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Proposition III.9.9. (Grothendieck’s `-adic monodromy theorem) Assume that the `-adic
cyclotomic character χcyc : Gs → Z×` has infinite image. Then any µ-twisted C-sheaf F on η
is potentially unipotent.

By replacing η with ηk′ , for some finite extension k′ of k(s) contained in k, we can assume
(and we do) that µ is the trivial multiplier 1. In this case, the conclusion follows from ([ST68],
Appendix) or from ([FO], Th. 1.24).

Corollary III.9.10. If the base field k is the perfection of a finitely generated field exten-
sion of Fp, then any µ-twisted C-sheaf F on η is potentially unipotent.

Indeed, the assumption in Proposition III.9.9 is stable by finite extensions, and holds for
(perfections of) purely transcendental extensions of Fp, since for such a field k, the natural
homomorphism Gk → GFp , through which the cyclotomic character χcyc factors, is surjective,
and the cyclotomic character for k = Fp has infinite image.

III.9.11. Let K0(T, µ, C) be the Grothendieck group of the full subcategory Sh(T, µ, C)
consisting of µ-twisted C-sheaves on T with potentially unipotent restriction to η (cf. III.9.8).
Thus any µ-twisted C-sheaf F on T , with potentially unipotent restriction to η, has a well
defined class [F ] in K0(T, µ, C), and the latter is generated by such classes with relations
[F ] = [F ′] + [F ′′] for each short exact sequence

0→ F ′ → F → F ′′ → 0,

of µ-twisted C-sheaves on T , with potentially unipotent restriction to η.

Proposition III.9.12. Let K0(T, µ, C) be as in III.9.11. The abelian group⊕
ν

K0(T, ν, C),

where the sum runs over all unitary C-admissible multipliers on Gs, is generated by its subset
of elements of the following three types:

(1) the class [j!C] in K0(T, 1, C),

(2) for any unitary C-admissible multiplier ν on Gs and any ν-twisted C-sheaf G on s, the
class [i∗G] in K0(T, ν, C),

(3) for any unitary C-admissible multiplier ν on Gs, any connected finite étale cover η′ → η
with normalization f : T ′ → T , for any s-morphism s′ : Spec(k) → T ′ over the closed
point s′ of T ′ such that f(s′) = s, any unitary C-admissible multipliers ν1 and ν2 on Gs′
such that ν1ν2 = ν|Gs′ , any ν1-twisted C-sheaf F1 of rank 1 over η′ with finite geometric
monodromy, and any unramified ν2-twisted C-sheaf F2 over η′, the class

[f∗j
′
!(F1 ⊗F2)]− rk(F2)[f∗j

′
!C],

in the sum of K0(T, ν, C) and K0(T, 1, C), where j′ : η′ → T ′ is the canonical open
immersion.

Indeed, let us consider the class [F ] of a µ-twisted C-sheaf F on T with potentially unipotent
restriction to η. We have an exact sequence

0→ j!j
−1F → F → i∗i

−1F → 0,

hence it is sufficient to prove that [j!j
−1F ] belongs to the subgroup generated by classes of type

(1) or (3). This follows from Proposition III.2.50 and from the dictionary between µ-twisted
C-sheaves on η and C-admissible representations of (Gη, µ), cf. III.3.19, III.3.21.
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Proposition III.9.13. Let η′ → η be a connected finite étale cover of η, with normalization
f : T ′ → T . Let s′ : Spec(k) → T ′ be an s-morphism over the closed point s′ of T ′ such that
f(s′) = s, and let j′ : η′ → T ′ be the natural inclusion. Let µ1 and µ2 be unitary C-admissible
multipliers on Gs′ such that µ1µ2 = µ|Gs′ , let F1 be a µ1-twisted C-sheaf of rank 1 over η′ and
let F2 be a geometrically constant µ2-twisted C-sheaf over T ′. Then for any element ω of Ω1,×

η ,
there exists a Λ-admissible homomorphism λf,π(ω) from Gs to C×, depending only on f, π and
ω, such that the map επ,s(T, f∗(j′!F1 ⊗F2), ω) is equal to

λf,π(ω)rk(F2)δ
a(T ′,j′!F1,f

∗ω)rk(F2)

s′/s Vers′/s

(
det
(
F2,s′

)a(T ′,j′!F1,f
∗ω)

εs′(T
′, j′!F1, f

∗ω)rk(F2)

)
,

where εs′(T ′, j′!F1, f
∗ω) is the ε-factor defined in III.7.7 and where δs′/s,Vers′/s are defined in

III.3.22 and III.3.23 respectively. When η′ = η, the factor λf,π(ω) is identically equal to 1.

By Proposition III.7.12 and Proposition III.3.24, we can further assume (and we do) that
ω = dπ. Let us now consider the special cover f ′ : U → Gm,s (cf. III.4.3) associated to π and to
the extension η′ of η, cf. Theorem III.4.4. Let G2 be a ν2-twisted C-sheaf on s′ whose pullback
to η′ is isomorphic to F2. Let G1 be the f ′-special ν1-twisted C-local system of rank 1 on U
associated to F1 by Theorem III.4.16, so that the pullback of G1 to η′ is isomorphic to F1. The
ν1-twisted C-local system π♦j!f∗(F1) vanishes at 0, and its restriction to Gm,s is isomorphic to
f ′∗G, cf. III.4.20. We thus have

επ,s(T, f∗j
′
!(F1 ⊗F2), dπ) = εs(Gm,s, f ′∗(G1 ⊗ G2)⊗ Lψ{−t})

= εs(U,G1 ⊗ G2 ⊗ Lψ{−f ′})
= δ
−χc(Us′ ,G1⊗G2⊗Lψ{−f ′})
s′/s Vers′/s (εs′(U,G1 ⊗ G2 ⊗ Lψ{−f ′})) .

Let u : U → X be a smooth compactification of U , so that X is a geometrically connected
smooth projective curve over s. Let D be the closed complement in X of the union of U and
the closed point of T ′. For any point x of D, we have

a(X(x), u!G1 ⊗ G2 ⊗ Lψ{−f ′}, df ′) = (1 + swx(Lψ{−f ′}) + vx(df ′))rk(F2)

= 0,

since G1⊗G2 is tamely ramified at x (cf. III.4.3) and since swx(Lψ{−f ′}) is equal to the valuation
vx(f ′) of f ′ at x, the latter being an integer prime to p. Consequently, the Grothendieck-Ogg-
Shafarevich formula ([La87], 3.1.5.3) yields

−χc(Us′ ,G1 ⊗ G2 ⊗ Lψ{−f ′}) = αrk(F2),

where α = a(T ′, j′!F1, f
−1dπ). We also have

εs′(U,G1 ⊗ G2 ⊗ Lψ{−f ′}) = det(G2,s′)
−χc(Us′ ,G1⊗Lψ{−f ′})εs′(U,G1 ⊗ Lψ{−f ′})rk(F2),

with −χc(Us′ ,G1 ⊗ Lψ{−f ′}) = α, hence

επ,s(T, f∗j
′
!(F1 ⊗F2), dπ) = δ

αrk(F2)
s′/s Vers′/s

(
det
(
F2,s′

)α
εs′(U,G1 ⊗ Lψ{−f ′})rk(F2)

)
.(56)

If we have a formula of the form

επ,s′(Ts′ , f∗j
′
!F1, dπ) = λεs′(T

′, j′!F1, f
∗ω),(57)

for some C-admissible homomorphism Λ from Gs′ to C×, then (56) applied to s = s′ and
F2 = C yields

λεs′(T
′, j′!F1, f

∗ω) = εs′(U,G1 ⊗ Lψ{−f ′}),
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and inserting the latter formula in (56) yields the required result with λf,π(dπ) = Vers′/s(λ).
It is therefore sufficient to prove (57), so that we can assume that s = s′ and F2 = C (and we
henceforth do), in which case the formula to be proved is

επ,s(T, f∗j
′
!F1, dπ) = λf,π(dπ)εs(T

′, j′!F1, f
∗dπ),

for some C-admissible map λf,π(dπ) from Gs to C×. We now apply the product formula III.8.3
with ω = f ′∗dt = df ′, according to which the map εs(U,G1 ⊗ Lψ{−f ′}) is equal to

λf,π(dπ)εs(T
′, j′!F1, f

∗dπ),

where we have set

λf,π(dπ) = χg−1
cyc

∏
x∈D

δ
1−vx(f ′)
x/s Verx/s

(
εx(X(x), u!G1 ⊗ Lψ{−f ′}|X(x)

, df ′)
)
,

and g is the genus of X. Moreover, for each point x of D, the valuation vx(f ′) of f ′ at x is
prime to p since f ′ is tamely ramified at this point (cf. III.4.3), and the restriction u!F|X(x)

is
tamely ramified as well, since F is f ′-special. Hence we can apply Proposition III.7.13, which
implies

εx(X(x), u!G1 ⊗ Lψ{−f ′}|X(x)
, df ′) = εx(X(x),Lψ{−f ′}|X(x)

, df ′).

Thus we obtain the required formula with

λf,π(dπ) = χg−1
cyc

∏
x∈D

δ
1−vx(f ′)
x/s Verx/s

(
εx(X(x),Lψ{−f ′}|X(x)

, df ′)
)
,(58)

which depends indeed only on f and π. When f = id, we have X = P1
s and D is the closed

point ∞, so that Proposition III.7.13 applies with n = 1 and yields

εs(P1
s,(∞),Lψ{−t}|P1

s,(∞)
, dt) = χcyc.

By inserting this identity in (58), in which g = 0, we obtain λid,π(dπ) = 1, which in turn implies
λid,π(ω) = 1 for any ω; this concludes the proof of Proposition III.9.13.

Remark III.9.14. The formula (58), combined with Proposition III.7.13, yields an expres-
sion of λf,π(dπ) as a product of certain quadratic Gauss sums and of a power of the cyclotomic
character. More precisely, with notation as in (58), let D+ (resp. D−) be the closed subset of
X consisting of the points of D such that vx(f ′) is odd (resp. even), endowed with its reduced
scheme structure. Then we have, for any totally ramified extension f ,

λf,π(dπ) = χ
g−1+deg(D−)+ 1

2 (deg(f)+deg(D+))
cyc

∏
x∈D−

δx/sVerx/s (γψ(vx(f ′)hx)) ,

with notation as in III.7.13, where hx is an element of k(x)× such that hxf ′ is a square in the
field of fractions of OX(x)

. This formula simplifies greatly when p = 2, since D− is then empty.

Corollary III.9.15. Let F be a µ-twisted C-sheaf on T such that j−1F is of rank at most
1. Then for any element ω of Ω1,×

η , we have

επ,s(T,F , ω) = εs(T,F , ω),

where εs(T,F , ω) is the ε-factor defined in III.7.7.

Indeed, this results from Proposition III.9.6 if F is supported on s, or from Proposition
III.9.13 with η′ = η and s′ = s if F is supported on η.

Corollary III.9.16. Let π′ be an other uniformizer of k(η). Then for any element ω of
Ω1,×
η and any µ-twisted C-sheaf F on T such that j−1F is potentially unipotent (cf. III.9.8),

we have
επ,s(T,F , ω) = επ′,s(T,F , ω).
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Indeed, by multiplicativity of επ and επ′ in short exact sequences (cf. III.9.3), the maps
F 7→ επ,s(T,F , ω) and F 7→ επ′,s(T,F , ω) extend to homomorphisms επ,s(T, ω) and επ′,s(T, ω)
respectively from the abelian group ⊕

ν

K0(T, ν, C),

where the sum runs over all unitary C-admissible multipliers on Gk (cf. III.9.11), to C×.
It is therefore sufficient to prove that επ′,k(T, ω) and επ′,k(T, ω) agree on the three types of
generators described in Proposition III.9.12. For generators of type (1) or (2) this follows from
Corollary III.9.15, while this follows from Proposition III.9.13 for generators of type (3).

Notation III.9.17. Let F be a µ-twisted C-sheaf on T such that j−1F is potentially
unipotent III.9.8, and let ω be an element of Ω1,×

η . We denote by εs(T,F , ω) the C-admissible
map επ,s(T,F , ω) (cf. III.9.2), which does not depend on the uniformizer π by Corollary III.9.16.

By Corollary III.9.16, this definition does not depend on the choice of the uniformizer π,
and by Corollary III.9.15 this does not conflict with the definition III.7.10 when j−1F is of rank
at most 1.

Proposition III.9.18. Let η′ → η be a connected finite étale cover of η, with normalization
f : T ′ → T . Let s′ : Spec(k) → T ′ be an s-morphism over the closed point s′ of T ′ such that
f(s′) = s, and let j′ : η′ → T ′ be the natural inclusion. Then for any element ω of Ω1,×

η , there
exists a (unique) Λ-admissible homomorphism λf (ω) from Gs to Λ×, depending only on f and
ω with the following property: for any µ-twisted C-sheaf F on T ′ such that j′−1F is potentially
unipotent (cf. III.9.8), we have

εs(T, f∗F , ω) = λf (ω)rk(j′−1F)δ
a(T ′,F,f∗ω)
s′/s Vers′/s (εs′(T

′,F , f∗ω)) ,

where δs′/s and Vers′/s are defined in III.3.22 and III.3.23 respectively.

Indeed, Corollary III.9.16 implies that the group homomorphism λf,π(ω) from Proposition
III.9.13 does not depend on π. Let us denote it by λf (ω). The maps

A : F 7→ εs(T, f∗F , ω)

B : F 7→ λf (ω)rk(j′−1F)δ
a(T ′,F,f∗ω)
s′/s Vers′/s (εs′(T

′,F , f∗ω)) ,

both extend by multiplicativity (cf. III.9.3) to homomorphisms from the abelian group⊕
ν

K0(T ′, ν, C),

where the sum runs over all unitary C-admissible multipliers on Gs (cf. III.9.11), to C×.
Consequently, it is sufficient to check that the homomorphisms A and B coincide on the three
type of generators described in Proposition III.9.12. For the generator of type (1), this follows
from Proposition III.9.13 with ν1 = ν2 = 1 and G1 = G2 = C, while it holds as well for
generators of type (2) by Proposition III.9.6. It remains to handle generators of the third type
described in Proposition III.9.12.

Let η′′ → η′ be a connected finite étale cover of η′, with normalization f ′ : T ′′ →′ T . Let
s′′ : Spec(k)→ T ′′ be an s′-morphism over the closed point s′′ of T ′′ such that f(s′′) = s′, and
let j′′ : η′ → T ′ be the natural inclusion. Let µ1 and µ2 be unitary C-admissible multipliers
on Gs′′ such that µ1µ2 = µ|Gs′′ , let F1 be a µ1-twisted C-sheaf of rank 1 on η′′, with finite
geometric monodromy, and let F2 be an unramified µ2-twisted C-sheaf on η′′. We must prove
that the homomorphisms A and B associate the same map to the class

[f ′∗j
′′
! (F1 ⊗F2)]− rk(F2)[f ′∗j

′′
! C].
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By applying Proposition III.9.13 to the extension η′′ → η′, we obtain an equality

A(f ′∗j
′′
! (F1 ⊗F2)) = λff ′(ω)rk(F2)δas′′/sVers′′/s (L) ,

with a = a(T ′′, j′′! F1, (ff
′)∗ω)rk(F2) and

L = det (F2,s′′)
a(T ′′,j′′! F1,(ff

′)∗ω)
εs′′(T

′′, j′′! F1, (ff
′)∗ω)rk(F2).

A second application of Proposition III.9.13 yields, together with III.7.3,

B(f ′∗j
′′
! (F1 ⊗F2)) = λf (ω)rk(F2)deg(f ′)δ

[s′′:s′]a
s′/s Vers′/s

(
λf ′(f

∗ω)rk(F2)δas′′/s′Vers′′/s′ (L)
)
,

hence by Proposition III.3.24 we have

B(f ′∗j
′′
! (F1⊗F2)) =

(
λf (ω)Vers′/s (λf ′(f

∗ω))
)rk(F2)

δ
[s′′:s′]a
s′/s Vers′/s

(
δs′′/s′

)a
Vers′/sVers′′/s′(L),

By Corollary III.3.26, this yields

(A/B)(f ′∗j
′′
! (F1 ⊗F2)) =

(
λff ′(ω)λf (ω)−1Vers′/s (λf ′(f

∗ω))
−1
)rk(F2)

.

By applying this formula to F1 = F2 = C, we obtain

(A/B)(f ′∗j
′′
! (F1 ⊗F2)) = (A/B)(f ′∗j

′′
! C)rk(F2),

hence the equality

A([f ′∗j
′′
! (F1 ⊗F2)]− rk(F2)[f ′∗j

′′
! C]) = B([f ′∗j

′′
! (F1 ⊗F2)]− rk(F2)[f ′∗j

′′
! C]),

which concludes our proof of Corollary III.9.18.

Corollary III.9.19. Let us consider a tower η′′ → η′ → η of connected finite separable
extensions, and let

T ′′
f ′−→ T ′

f−→ T,

be the normalizations of T in η′ and η′′, with closed points s′′ and s′. Then for any element ω
of Ω1,×

η , we have
λff ′(ω) = λf (ω)Vers′/s (λf ′(f

∗ω)) ,

with notation as in Proposition III.9.18.

This is an immediate consequence of Propositions III.9.18 and III.3.26.

III.9.20. We can now prove Theorem III.1.7. The rule ε defined in III.9.17 and III.9.2
clearly satisfies the properties (i) and (ii) from III.1.6. It also satisfies the properties (iii), (iv), (v), (vi), (vii)
from III.1.6 by III.9.3, III.9.6, III.9.18, III.9.15 and III.9.5 respectively. This proves the existence
statement in Theorem III.1.7, while the uniqueness is an immediate consequence of Proposition
III.9.12. The property (viii) in Theorem III.1.7 follows from the uniqueness, while the property
(ix) follows from Proposition III.9.4.

III.9.21. Let us now prove Theorem III.1.8. We assume that k is a finite field. By
Theorem III.1.7 and by Proposition III.7.22, the rule which associates the quantity

(−1)a(T,F)εs(T,F , ω)(Frobs),

to any quadruple (T,F , ω, s), where T is a henselian trait over k, with closed point s finite over
k, where s : Spec(k) → T is a k-morphism, where F is a C-sheaf on T and where ω is a non
zero meromorphic 1-form on T , satisfies all the properties listed in ([La87], Th. 3.1.5.4), hence
must coincide with the local ε-factor considered there.

III.10. The product formula for sheaves with finite geometric monodromy

Let ψ : Fp → C× be a non trivial homomorphism. We fix a unitary C-admissible mutiplier
µ on the topological group Gk (cf. III.2.9, III.2.10).
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III.10.1. For any connected smooth projective curve X over k, let s be the spectum of
a finite extension of k, such that X is a geometrically connected s-scheme, and let us fix a
k-morphism s : Spec(k) → s. If η is the generic point of X and if η is the spectrum of a
separable closure of k(η), then for any non empty open subscheme U in X, we have an exact
sequence

1→ π1(Us, η)→ π1(U, η)→ Gs → 1,

where Gs is the Galois group of the extension k/k(s).

Definition III.10.2. A µ-twisted C-sheaf F on a connected smooth projective curve X has
finite geometric monodromy if there exists a non empty open subscheme U of X such that F|U
is a µ-twisted C-local system and such that the group π1(Us, η) acts through a finite quotient
on the C-admissible representation Fη of (π1(U, η), µ).

If X is a connected smooth projective curve X, we denote by |X| the set of its closed points.
For any closed point x of X, we denote by X(x) the henselization of X at x. We then have the
following product formula:

Theorem III.10.3. Let X be a connected smooth projective curve of genus g over k, let ω
be a non zero global meromorphic differential 1-form on X and let F be a µ-twisted C-sheaf
on X with finite geometric monodromy (cf. III.10.2), of generic rank rk(F). Then, for all but
finitely many closed points x of X the ε-factor of the triple (X(x),F|X(x)

, ω|X(x)
) (cf. III.9.2,

III.9.17) is identically equal to 1, and we have

εk(X,F) = χN(g−1)rk(F)
cyc

∏
x∈|X|

δ
a(X(x),F|X(x)

)

x/k Verx/k

(
εx(X(x),F|X(x)

, ω|X(x)
)
)
,

where N is the number of connected components of Xk, and where δx/k and Verx/k are defined
in III.3.22.

This theorem will be proved in section III.10.7. It is usually convenient to introduce the
character

δX/k(ω) = χN(g−1)
cyc

∏
x∈|X|

δ
vx(ω)
x/k ,(59)

so that we have, by noting that δvx(ω)
x/k = δ

−vx(ω)
x/k , the following equivalent formulation of the

product formula:

εk(X,F) = δX/k(ω)rk(F)
∏
x∈|X|

δ
a(X(x),F|X(x)

,ω|X(x)
)

x/k Verx/k

(
εx(X(x),F|X(x)

, ω|X(x)
)
)
.(60)

Corollary III.10.4. Let f : X ′ → X be a finite generically étale morphism of connected
smooth projective curves over k, of respective genera g′ and g. Then for any non zero global
meromorphic differential 1-form ω on X, we have∏

x′∈|X′|

Verf(x′)/k

(
λfx′ (ω|X(f(x′))

)
)

= δX′/k(f∗ω)δX/k(ω)−1,

where fx′ : X ′(x) → X(f(x′)) is for each closed point x′ of X ′ the morphism induced by f

on the henselizations of X ′ and X at x′ and f(x′) respectively, where λfx′ (ω|X(f(x′))
) is the

homomorphism defined in III.9.18, and where δX′/k(f∗ω), δX/k(ω) are as in 59.

Indeed, this follows from Proposition III.9.18 and from Theorem III.10.3 for the triples
(X ′, C, f∗ω) and (X, f∗C,ω), since ε(X, f∗C) is equal to ε(X ′, C).
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III.10.5. Let X be a connected smooth projective curve over k. Let s be the spectum of
a finite extension of k, such that X is a geometrically connected s-scheme, and let us fix a k-
morphism s : Spec(k)→ s. Let K0(X,µ,C) be the Grothendieck group of the full subcategory
of Sh(X,µ,C) consisting of µ-twisted C-sheaves on X with finite geometric monodromy (cf.
III.10.2). Thus any µ-twisted C-sheaf F on X with finite geometric monodromy has a well
defined class [F ] in K0(X,µ,C), and the latter is generated by such classes with relations
[F ] = [F ′] + [F ′′] for each short exact sequence

0→ F ′ → F → F ′′ → 0,

of µ-twisted C-sheaves on X, with finite geometric monodromy.

Proposition III.10.6. Let X be a connected smooth projective curve over k, let s, s and
K0(X,µ,C) be as in III.10.5. The abelian group⊕

ν

K0(X, ν,C),

where the sum runs over all unitary C-admissible multipliers on Gk, is generated by its subset
of elements of the following three types:

(1) the class [C] in K0(X, 1, C),
(2) for any unitary C-admissible multiplier µ on Gk, any closed point ix : x→ X of X and

any µ-twisted C-sheaf G on x, the class [ix∗G] in K0(T, µ, C),

(3) for any finite extension s′ → s, together with an s-morphism s′ : Spec(k) → s′ whose
composition with s′ → s is s, for any unitary C-admissible multiplier µ on Gs, for any
non empty open subscheme j : U → X, any finite étale morphism f : U ′ → U such that
U ′ is a geometrically connected s′-scheme, any unitary C-admissible multipliers µ1 and
µ2 on Gs′ such that µ1µ2 = µ|Gs′ , any µ1-twisted C-sheaf F1 of rank 1 over U ′ with
finite geometric monodromy, and any geometrically constant µ2-twisted C-sheaf F2 over
U ′, the class [j!f∗(F1⊗F2)]− rk(F2)[j!f∗C] in the sum of K0(X,µ,C) and K0(X, 1, C).

Let F be a µ-twisted C-sheaf on X with finite geometric monodromy. Let j : U → X be
a non empty open subscheme of X such that j−1F is a µ-twisted C-local system. We have an
exact sequence

0→ j!j
−1F → F →

⊕
x∈|X\U |

ix∗i
−1
x F → 0,

hence we can assume (and we do) that F = j!j
−1F . The result then follows from Proposition

III.2.50 by using the dictionary between µ-twisted C-local systems on U and C-admissible
representations of (π1(U, η), µ), for a fixed geometric point η over the generic point of X, cf.
III.3.19 and III.3.21.

III.10.7. We now prove Theorem III.10.3, in its equivalent form 60. Let s, s be as in
III.10.5. The maps

A : F 7→ εk(X,F),

B : F 7→ δX/k(ω)rk(F)
∏
x∈|X|

δ
a(X(x),F|X(x)

,ω|X(x)
)

x/k Verx/k

(
εx(X(x),F|X(x)

, ω|X(x)
)
)
,

both extend by multiplicativity to homomorphisms from the abelian group⊕
ν

K0(X, ν,C),

where the sum runs over all unitary C-admissible multipliers on Gk (cf. III.10.5), to C×. It is
therefore sufficient to prove that the homomorphisms A and B coincide on the three type of
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generators described in Proposition III.10.6. For the generator of type (1), this follows from the
product formula III.8.3 in generic rank 1, while it holds for generators of type (2) by Proposition
III.9.6.

We now consider a generator of the third type described in Proposition III.10.6. Let s′ → s
be a finite extension, together with an s-morphism s′ : Spec(k) → s′ whose composition with
s′ → s is s, let µ be a unitary C-admissible multiplier on Gs, let j : U → X be a non
empty open subscheme of X, let f : U ′ → U be a finite étale morphism such that U ′ is
a geometrically connected s′-scheme, let µ1 and µ2 be unitary C-admissible multipliers on
Gs′ such that µ1µ2 = µ|Gs′ , let F1 be a µ1-twisted C-sheaf of rank 1 over U ′ with finite
geometric monodromy, and let F2 be a µ2-twisted C-sheaf over s′. We must prove that the
homomorphisms A and B agree on the class [j!f∗(F1 ⊗F2)]− rk(F2)[j!f∗C].

First, we have

A(j!f∗(F1 ⊗F2)) = εk(U ′,F1 ⊗F2)

= det
(
RΓ(U ′

k
,F1 ⊗F2)

)−1

= det
(

IndGkGs′RΓ(U ′s′ ,F1)⊗F2,s′

)−1

= δ
−χc(Us′ ,F1⊗F2)
s′/k Vers′/k (RΓ(U ′s′ ,F1)⊗F2,s′)

−1

= δ
−χc(Us′ ,F1⊗F2)
s′/k Vers′/k

(
det(F2,s′)

−χc(Us′ ,F1)εs′(U
′,F1)rk(F2)

)
.

Let X ′ → X be the extension of f to a smooth compactification X ′ of U ′, with an open
immersion j′ : U ′ → X ′, and let g′ the genus of X ′. For any closed point x′ of X ′, let us write

ax′ = a(X ′(x′), j
′
!F1|X′

(x′)
, f∗ω|X′

(x′)
)

Lx′ = Verx′/s′
(
εx′
(
X ′(x′), j

′
!F1|X′

(x′)
, f∗ω|X′

(x′)

))
.

Then Proposition III.9.18, together with III.7.3, implies that B(j!f∗(F1⊗F2)) is equal to (with
notation as in Corollary III.10.4)

δX/k(ω)rk(F2)
∏
x∈|X|

 ∏
x′∈|X′|
f(x′)=x

δ
[k(x′):k(x)]ax′ rk(F2)
x/k

Verx/k

(
εx

(
X(x), j!f∗(F1 ⊗F2)|X(x)

, ω|X(x)

))
,

while the induction formula III.9.18 and Propositions III.9.5, III.3.26 yield

Verx/k

(
εx

(
X(x), j!f∗(F1 ⊗F2)|X(x)

, ω|X(x)

))
=

∏
x′∈|X′|
f(x′)=x

Verx/k

(
δ
ax′ rk(F2)
x′/x λfx′ (ω|X′(x′)

)rk(F2)Verx′/x

(
εx′
(
X ′(x′), j

′
!(F1 ⊗F2)X′

(x′)
, f∗ω|X′

(x′)

)))

=
∏

x′∈|X′|
f(x′)=x

Verx/k

(
δ
ax′
x′/xλfx′ (ω|X′(x′)

)
)rk(F2)

Verx′/k

(
εx′
(
X ′(x′), j

′
!(F1 ⊗F2)X′

(x′)
, f∗ω|X′

(x′)

))

=
∏

x′∈|X′|
f(x′)=x

Verx/k

(
δ
ax′
x′/xλfx′ (ω|X′(x′)

)
)rk(F2)

Vers′/k

(
det(F2,s′)

[k(x′):s′]ax′Lrk(F2)
x′

)
.
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Thus we can write B(j!f∗(F1 ⊗F2)) as a product DE where D is given by

D = δX/k(ω)rk(F2)
∏

x′∈|X′|

Verf(x′)/k(λfx′ (ω|X′(x′)
))rk(F2)

and E is given by

E =
∏

x′∈|X′|

(
δ

[k(x′):k(f(x′))]
x/k Verf(x′)/k(δx′/f(x′))

)ax′ rk(F2)

Vers′/k

(
det(F2,s′)

[k(x′):s′]ax′Lrk(F2)
x′

)

= δ
−χc(Us′ ,F1⊗F2)
s′/k Vers′/k

 ∏
x′∈|X′|

δ
ax′ rk(F2)
x′/s′ det(F2,s′)

[k(x′):s′]ax′Lrk(F2)
x′


= δ
−χc(Us′ ,F1⊗F2)
s′/k Vers′/k

det(F2,s′)
−χc(Us′ ,F1)

∏
x′∈|X′|

δ
ax′ rk(F2)
x′/s′ Lrk(F2)

x′

 ,

by the Grothendieck-Ogg-Shafarevich formula. By Theorem III.8.3, we also have

E = Vers′/k
(
δX′/s′(f

∗ω)
)−rk(F2)

δ
−χc(Us′ ,F1⊗F2)
s′/k Vers′/k

(
det(F2,s′)

−χc(Us′ ,F1)εs′(U
′,F1)rk(F2)

)
= Vers′/k

(
δX′/s′(f

∗ω)
)−rk(F2)

A(j!f∗(F1 ⊗F2)).

Consequently, we have

(B/A)(j!f∗(F1⊗F2)) =

δX/k(ω)Vers′/k
(
δX′/s′(f

∗ω)
)−1 ∏

x′∈|X′|

Verf(x′)/k(λfx′ (ω|X′(x′)
))

rk(F2)

.

By applying this identity to F1 = F2 = C we obtain

(B/A)(j!f∗(F1 ⊗F2)) = (B/A)(j!f∗C)rk(F2),

hence the equality

A([j!f∗(F1 ⊗F2)]− rk(F2)[j!f∗C]) = B([j!f∗(F1 ⊗F2)]− rk(F2)[j!f∗C]),

which concludes our proof of Theorem III.10.3.

III.11. The product formula : the general case

Let ψ : Fp → C× be a non trivial homomorphism. We fix a unitary C-admissible mutiplier
µ on the topological group Gk (cf. III.2.9, III.2.10). We prove in this section the following
product formula.

Theorem III.11.1. Let X be a connected smooth projective curve of genus g over k and
let ω be a non zero global meromorphic differential 1-form on X. Let F be a µ-twisted C-sheaf
on X of generic rank rk(F), such that for any closed point x of X the restriction of F to the
henselization X(x) of X at x is potentially unipotent. The trace function εk(X,F) on Gal(k/k)

associated to the twisted 1-dimensional representation det(RΓ(Xk,F))−1 admits the following
decomposition:

εk(X,F) = χN(g−1)rk(F)
cyc

∏
x∈|X|

δ
a(X(x),F|X(x)

)

x/k Verx/k

(
εx(X(x),F|X(x)

, ω|X(x)
)
)
,

where N is the number of connected components of Xk, where |X| is the set of closed points of
X, where δx/k and Verx/k are defined in III.3.22 and χcyc is the `-adic cyclotomic character of
k. All but finitely many terms in this product are identically equal to 1.
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We postpone the proof of Theorem III.11.1 to III.11.11 below. When k is finite, this result
is due to Laumon ([La87], 3.2.1.1). For the general case, we follow closely Laumon’s proof, or
rather its exposition by Katz in [Ka88]. The main ingredient we use is the `-adic stationary
phase method, of which we only use the special case stated in Theorem III.11.5 below, and
which was already established by Laumon ([La87], 2.3.3.1) in the case of an arbitrary perfect
base field of positive characteristic. The only innovation in our proof lies in the treatment of
Theorem III.11.8 below. Laumon’s proof of the latter result when k is finite ([La87], 3.5.1.1)
starts with a reduction to the tamely ramified case ([La87], 3.5.3.1), and then resorts to a
computation in the latter case ([La87], 2.5.3.1). We give instead a direct proof in the general
case by using geometric local class field theory.

III.11.2. Throughout this section, we consider two copies A = Spec(k[t]) and A′ =
Spec(k[t′]) of the affine line over k, with natural compactifications P and P′ respectively, and
we denote by pr and pr′ the projections of A×kA′ onto its first and second factors respectively.
For any µ-twisted C-sheaf F on A, we denote by Fψ(F) its Fourier transform defined as follows:

Fψ(F) = R1pr′!
(
pr−1F ⊗ Lψ{tt′}

)
,

which is a µ-twisted C-sheaf on A′. This functor Fψ would be denoted H0(Fψ) in Laumon’s
notation ([La87], 1.2.1.1), and is called the “naive Fourier transform” by Katz in ([Ka88],
p.112).

III.11.3. For any closed points s, s′ of P and P′ respectively, with respective separable
closures s and s′, we denote by ηs (resp. ηs′) the generic point of the henselisation P(s) (resp.
P′(s′)) of P at s (resp. of P′ at s′), and by ηs (resp. ηs′) a separable closure thereof. For any

µ-twisted C-sheaf F on A(s) with vanishing fiber at s, we denote by F
(s,s′)
ψ (F) its local Fourier

transform defined as follows:

F
(s,s′)
ψ (F) = H1

((
(P×k P′)(s,s′)

)
ηs′

, u!(pr−1F ⊗ Lψ{tt′})
)
,

where u is the natural open immersion of A×kA′ into P×kP′. Thus F
(s,s′)
ψ (F) is a C-admissible

representation of (Gηs′ , µ), where Gηs′ = Gal(ηs′/ηs′).

III.11.4. We now state a special case of Laumon’s `-adic stationary phase method.

Theorem III.11.5 (`-adic stationary phase). Let F be a µ-twisted C-sheaf on P, whose
fibers at 0 and∞ vanish, whose restriction to A\{0} is a C-local system, and whose ramification
at ∞ is bounded by 1, i.e. the ramification slopes of F|η∞ are strictly less than 1. Then the
C-sheaf Fψ(F|A) on A′ (cf. III.11.2) has the following properties:

(i) the restriction of Fψ(F|A) to A′ \ {0} is a C-local system;
(ii) there is a functorial isomorphism

Fψ(F|A)|η∞′
∼= F

(0,∞′)
ψ (F|A(0)

),

of C-admissible representations of (Gη∞′ , µ) (cf. III.11.3);
(iii) the restriction of Fψ(F) to η0′ fits into a functorial exact sequence,

0→ H1(Pk,F)→ Fψ(F|A)|η0′
→ F

(∞,0′)
ψ (F|P(∞)

)→ H2(Pk,F)→ 0,

of C-admissible representations of (Gη0′ , µ) (cf. III.11.3), where Hν(Pk,F) is considered
as an unramified representation of (Gη0′ , µ) by the natural homomorphism Gη0′ → Gk.

By functoriality, Theorem III.11.5 follows from its untwisted special case, i.e. when µ = 1,
which follows itself from ([Ka88], Th. 3 and 10) or from ([La87], 2.3.3.1, 2.3.2), the latter
being applied to the perverse sheaf F [1].



III.11. THE PRODUCT FORMULA : THE GENERAL CASE 157

Corollary III.11.6. Let F be a µ-twisted C-sheaf on P, whose fibers at 0 and ∞ vanish,
whose restriction to A \ {0} is a C-local system, and whose ramification at ∞ is bounded by 1.
Then we have an equality

εk(P,F)〈χ
det(F

(∞,0′)
ψ (F|P(∞)

))
〉(t′) = 〈χ

det(F
(0,∞′)
ψ (F|A(0)

))
〉(t′−1),

of C-admissible maps on Gk, with notation as in III.7.11.

Indeed, Theorem III.11.5(iii) yields

εk(P,F)〈χ
det(F

(∞,0′)
ψ (F|P(∞)

))
〉(t′) = 〈χdet(Fψ(F|A)|η

0′
)〉(t′).

Let D be an effective Cartier divisor on P′, supported on 0′ and ∞′, such that the µ-twisted
C-local system det(Fψ(F|A))|A′\{0′} of rank 1 (cf. III.11.5(i)) has ramification bounded by
D, and let χdet(Fψ(F|A)) be the µ-twisted multiplicative C-local system on Pick(P′, D)k asso-
ciated to det(Fψ(F|A)) by geometric class field theory, cf. III.5.48. If x0 is the k-point of
Pick(P′, D)k corresponding to the line bundle O([0′]) trivialized by t′−1 at 0′ and by 1 at
∞′, then 〈χdet(Fψ(F|A)|η

0′
)〉(t′) is the trace function of the stalk of χdet(Fψ(F|A)|η

0′
) at t′−1 (cf.

III.7.11), or alternatively of the stalk of χdet(Fψ(F|A)) at x0, by local-global compatibility (cf.
III.5.36).

Likewise, Theorem III.11.5(ii) yields

〈χ
det(F

(0,∞′)
ψ (F|A(0)

))
〉(t′−1) = 〈χdet(Fψ(F|A)|η∞′

)〉(t′−1),

and the latter coincides, by local-global compatibility (cf. III.5.36), with the trace function of
the stalk of χdet(Fψ(F|A)) at x∞, where x∞ is the k-point of Pick(P′, D)k corresponding to the
line bundle O([∞′]) trivialized by 1 at 0′ and by t′ at∞′. The conclusion of Proposition III.11.6
then follows from the fact that x0 = x∞ in Pick(P′, D)k.

III.11.7. Let T be the spectrum of a k-algebra, which is a henselian discrete valuation
ring OT with residue field k, and let i : s → T be its closed point. Let π be a uniformizer of
k(η), and let

π : T → A(0),

be the k-morphism sending π to the t. Laumon’s cohomological formula for local ε-factors
([La87], 3.5.1.1) admits the following extension to the case of an arbitrary perfect base field of
positive characteristic p.

Theorem III.11.8. Let F be a potentially unipotent µ-twisted C-sheaf on T , with vanishing
fiber at s. Then we have

εk(T,F , dπ) = 〈χdet(F(0,∞′)(π∗F))〉(t′−1),

with notation as in III.7.11.

Let us prove Theorem III.11.8. We can assume (and we do) that T is the henselization A(0)

of A at 0, and that π = t (cf. III.4.1). Let F be a potentially unipotent µ-twisted C-sheaf on
A(0), with vanishing fiber at 0, and let t♦F be its Gabber-Katz extension to A with respect to
the uniformizer t (cf. III.4.18). Thus t♦F is tamely ramified at ∞, and its fiber at 0 vanishes.
By Theorem III.11.5(ii), we have an isomorphism

F
(0,∞′)
ψ (F) ∼= Fψ(t♦F)|η∞′ ,

of C-admissible representations of (Gη∞′ , µ). Let ηperf
∞′ (resp. ηperf

∞′ ) be the perfection of η∞′
(resp. η∞′), so that ηperf

∞′ is an algebraic closure of ηperf
∞′ . By the proper base change theorem,
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we have

Fψ(t♦F)|η∞′
∼= H1

c (Aη∞′ , t♦F ⊗ Lψ{tt′})
∼= H1

c (Aηperf

∞′
, t♦F ⊗ Lψ{tt′}).

Since the complex RΓc(Aηperf

∞′
, t♦F ⊗ Lψ{tt′}) is concentrated in degree 1, we obtain

det
(

F
(0,∞′)
ψ (F)

)
∼= det

(
Fψ(t♦F)|η∞′

) ∼= det
(
RΓc(Aηperf

∞′
, t♦F ⊗ Lψ{tt′})

)−1

.(61)

Let us consider the uniformizer t̃ = −t′t on (Aηperf

∞′
)(0), and the isomorphism θ from Aηperf

∞′

to itself which sends t to −t′−1t. The natural morphism t : (Aηperf

∞′
)(0) → Aηperf

∞′
factors as a

composition

(Aηperf

∞′
)(0)

t̃−→ Aηperf

∞′

θ−→ Aηperf

∞′
,

hence we have isomorphisms

θ−1t♦F ∼= t̃♦F
θ−1Lψ{tt′} ∼= L−1

ψ ,

where t̃♦F is the Gabber-Katz extension of (the restriction to (Aηperf

∞′
)(0) of) F to A with respect

to the uniformizer t̃ (cf. III.4.18). Hence (61) yields

det
(

F
(0,∞′)
ψ (F)

)
∼= det

(
RΓc(Aηperf

∞′
, t̃♦F ⊗ L−1

ψ )
)−1

.

By Definition III.9.2 with π = t̃, we obtain that the composition of εk(A(0),F , dt) with the
canonical surjective homomorphism r from Gηperf

∞′
= Gη∞′ to Gk is given by

εk(A(0),F , dt) ◦ r = εηperf

∞′
((Aηperf

∞′
)(0),F , dt)

= 〈χdet(j−1F)〉
(
dt

dt̃

)
det
(

F
(0,∞′)
ψ (F)

)
= 〈χdet(j−1F)〉

(
−t′−1

)
det
(

F
(0,∞′)
ψ (F)

)
,

(62)

where χdet(j−1F) is the multiplicative C-local system on Pic(A(0), ν[0])k, for some integer ν such
that det(j−1F) has ramification bounded by ν, associated to det(j−1F) by geometric local class
field theory, cf. III.5.45, and 〈χdet(j−1F)〉

(
−t′−1

)
is the trace function of the stalk of χdet(j−1F)

at the η∞′ -point of Pic0(A(0), ν[0])k corresponding to the unit −t′ (cf. III.5.30). Let us rewrite
(62) as

det
(

F
(0,∞′)
ψ (F)

)
= 〈χdet(j−1F)〉 (−t′)

(
εk(A(0),F , dt) ◦ r

)
.(63)

We now use (63) in order to compute the multiplicative C-local system associated to the de-
terminant of F

(0,∞′)
ψ (F) by geometric local class field theory, cf. III.5.45. Let us consider the

local Abel-Jacobi morphism Φη∞′ ,t′−1 corresponding to the divisor [∞′] on P′(∞′) (cf. III.5.45).
The morphism Φη∞′ ,t′−1 factors as the composition

η∞′
t′−1

−−→ Gm,k
t7→1−tt′−−−−−→ Pic1(P′(∞′), [∞′])k.

Let us consider the k-isomorphism τ from Pic1(P′(∞′), [∞′])k to Gm,k which sends a section u
(cf. III.5.30) to the section t′−1u of Pic0(P′(∞′), [∞′])k = Gm,k. For any section t of Gm,k,
the sections 1 − tt′ and −tt′ of Pic1(P′(∞′), [∞′])k coincides, hence the following commutative
diagram.
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η∞′ Pic1(P′(∞′), [∞′])k Gm,k
Φη∞′ ,t

′−1
τ

−t′−1

Let χ0 be the restriction of χdet(j−1F) to the subgroup Gm,k of Pic0(A(0), ν[0])k, and let χ̃ be
the pullback of χ0⊗ εk(A(0),F , dt) by τ , where εk(A(0),F , dt) is considered as a C-local system
on Spec(k), pulled back to Gm,k. Then the commutative diagram above, together with (63),
shows that Φ−1

η∞′ ,t
′−1 χ̃ is isomorphic to det

(
F

(0,∞′)
ψ (F)

)
.

Moreover, χ̃ is the restriction to Pic1(P′(∞′), [∞′])k of the unique (up to isomorphism)
multiplicative C-local system on Pic(P′(∞′), [∞′])k, still denoted by χ̃, whose restriction to
Pic0(P′(∞′), [∞′])k = Gm,k is given by χ0, and whose stalk at the k-point t′ of Pic1(P′(∞′), [∞′])k
is given by εk(A(0),F , dt). Thus the multiplicative C-local system associated to det

(
F

(0,∞′)
ψ (F)

)
by geometric local class field theory (cf. III.5.45) is χ̃ (up to isomorphism). We therefore obtain
the equality

〈χ
det
(

F
(0,∞′)
ψ (F)

)〉(t′−1) = 〈χ̃〉(t′−1) = εk(A(0),F , dt),

which concludes the proof of Theorem III.11.8.

Remark III.11.9. This proof of Theorem III.11.8 incidentally shows that det
(

F
(0,∞′)
ψ (F)

)
is tamely ramified. The latter fact alternatively follows from the Hasse-Arf theorem and from
([La87], 2.4.3(i)(b)), which asserts that the ramification breaks of F

(0,∞′)
ψ (F) are strictly less

than 1.

Corollary III.11.10. Let F be a potentially unipotent µ-twisted C-sheaf on P(∞), with
vanishing fiber at ∞ and with ramification bounded by 1. Then we have

εk(P(∞),F , dt)〈χdet(F
(∞,0′)
ψ (F))

〉(t′) = χrk(F)
cyc .

We can assume (and we do) that j−1F is irreducible, so that its geometric monodromy is
finite (cf. III.2.48). By Theorem III.4.18 there exists a C-sheaf G on A, with vanishing fiber
at 0, with finite geometric monodromy, which is tamely ramified at 0, and such that G|P(∞)

is
isomorphic to F . Then Corollary III.11.6 and Theorem III.11.8 yield

εk(A,G)〈χ
det(F

(∞,0′)
ψ (F))

〉(t′) = εk(A(0),G, dt),(64)

while the product formula for µ-twisted C-sheaves with finite geometric monodromy (cf. III.10.3)
yields

εk(A,G) = χ−rk(F)
cyc εk(A(0),G, dt)εk(P(∞),F , dt).(65)

The conclusion of Corollary III.11.10 then follows by combining (64) with (65).

III.11.11. We now prove Theorem III.11.1. Its conclusion holds when F has finite geo-
metric monodromy by III.10.3. In particular, it holds for the constant sheaf C. Thus Theorem
III.11.1 is equivalent to the formula

εk(X,F1)

εk(X,F2)
=
∏
x∈|X|

δ
a(X(x),F1|X(x)

)−a(X(x),F2|X(x)
)

x/k Verx/k

(
εx(X(x),F1|X(x)

, ω|X(x)
)

εx(X(x),F2|X(x)
, ω|X(x)

)

)
,

for any F1,F2 satisfying the assumptions of Theorem III.11.1 (twisted by possibly different
cocycles), with the same generic rank. If f : X → P is a finite generically étale k-morphism,
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then the latter formula holds for (X,F1,F2) if and only if it does for (P, f∗F1, f∗F2). Thus the
conclusion of Theorem III.11.1 holds in general if and only if it holds for X = P. If X = P,
then there exists a non empty open subscheme U of A such that F1|U and F2|U are C-local
systems, and we can find a polynomial h in k[t] whose vanishing locus in A is the complement
of U in A. The k-morphism θ : P → P which sends t to (t − h(t)−p)−1 is finite, and induces a
finite étale morphism from U onto P \ {0}. By replacing (P,F1,F2) with (P, θ∗F1, θ∗F2), we
can thus assume that the restrictions of F1 and F2 to P \ {0} are C-local systems.

Remark III.11.12. The last reduction to C-sheaves on P with ramification concentrated
on a single point is due to Katz, cf. ([Ka88], Lemma 16).

In order to prove Theorem III.11.1, we can thus assume (and we do) that X = P and that
F is a C-sheaf on P, whose restriction to A \ {0} is a C-local system, which is unramified at
∞, and which is potentially unipotent at 0. We can further assume (and we do) that the fibers
of F at 0 and ∞ vanish. The formula to be proved is then

εk(P,F) = χ−rk(F)
cyc εk(A(0),F , dt)εk(P(∞),F , dt),

By Corollary III.11.6, we have

εk(P,F) = 〈χ
det(F

(0,∞′)
ψ (F|A(0)

))
〉(t′−1)〈χ

det(F
(∞,0′)
ψ (F|P(∞)

))
〉(t′)−1,

and the conclusion then results from the formulas

〈χ
det(F

(0,∞′)
ψ (F|A(0)

))
〉(t′−1) = εk(A(0),F , dt),

〈χ
det(F

(∞,0′)
ψ (F|P(∞)

))
〉(t′)−1 = χ−rk(F)

cyc εk(P(∞),F , dt),

which follow respectively from Theorem III.11.8 and from Corollary III.11.10.
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Titre : Facteurs locaux `-adiques

Mots clés : Géométrie algébrique, Cohomologie étale, Facteurs epsilon

Résumé : Cette thèse est composée de deux par-
ties indépendantes. Dans la première, nous donnons
une démonstration alternative du théorème d’aplatis-
sement par éclatements de Raynaud-Gruson. Celle-ci
repose sur la construction et l’étude de certains es-
paces valuatifs, et nous permet de dégager la notion
de Φ-anneau, qui fournit un substitut algébrique aux
anneaux topologiques adiques : la notion correspon-
dante de Φ-schéma est aux schémas ce que les espaces
rigides sont aux schémas formels.
Dans une seconde partie, nous nous inspirons de

travaux de Laumon et de Deligne pour démontrer
l’existence de facteurs epsilon locaux dans un cadre
géometrique. Nous démontrons ensuite, en usant de la
méthode la phase stationnaire `-adique, une formule
du produit pour le déterminant de la cohomologie d’un
faisceau `-adique sur une courbe en caractéristique
p 6= ` positive : cela étend des résultats précédemment
connus pour un corps de base fini. Parmi les outils uti-
lisées figure la théorie du corps de classes géométrique,
dont nous donnons une démonstration s’inspirant de
l’approche de Deligne pour le cas non ramifié.

Title : Local factors in `-adic cohomology

Keywords : Algebraic geometry, Étale cohomology, Epsilon factors

Abstract : This thesis is composed of two inde-
pendent parts. In the first part, we give an alterna-
tive demonstration of Raynaud-Gruson’s theorem re-
garding flattening by blow-ups. This is based on the
construction and study of certain valuative spaces,
and motivates the introduction of the notion of Φ-
ring, which provides an algebraic substitute for adic
topological rings: the corresponding Φ-schemes are to
schemes what rigid spaces are to formal schemes.
In the second part, we draw inspiration from the work

of Laumon and Deligne to prove the existence of local
ε-factors in a geometric setting. We then prove, using
the `-adic stationary phase method, a product formula
for the determinant of the cohomology of a `-adic sheaf
on a curve of positive characteristic p 6= `: this extends
results previously known for a finite base field. Class
field theory is replaced in our approach by its geometric
counterpart, of which we give a demonstration based
on Deligne’s approach to the unramified case.
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