TD 11

Exercice 1.

Décomposer sous forme de combinaison linéaire de carrés les formes quadratiques réelles suivantes; en déduire leur signature et leur rang.

- 1. $f(x, y, z) = x^2 2y^2 + xz + yz$.
- 2. $f(x, y, z) = 2x^2 2y^2 6z^2 + 3xy 4xz + 7yz$.
- 3. $f(x, y, z) = 3x^2 + 3y^2 + 3z^2 2xy 2xz 2yz$.
- 4. f(x, y, z, t) = xy + yz + zt + tx.
- 5. $f(x_1, \ldots, x_n) = \sum_{1 \le i < j \le n} x_i x_j$.
- 6. $f(A) = \operatorname{tr}(A^2)$, pour $A \in M_n(\mathbb{R})$.
- 7. $f(A) = \operatorname{tr}({}^{t}AA)$, pour $A \in M_n(\mathbb{R})$.
- 8. $f(A) = \operatorname{tr}(A)^2$, pour $A \in M_n(\mathbb{R})$.

Exercice 2.

Soit $n \ge 1$ et soit $\mathbb{R}_n[X]$ l'espace vectoriel des polynômes réels de degré inférieur ou égal à n. Pour tous $P, Q \in \mathbb{R}_n[X]$, on pose :

$$B(P,Q) = \int_0^1 tP(t)Q'(t)dt \qquad \text{et} \qquad f(P) = B(P,P).$$

- 1. Montrer que B est une forme bilinéaire. Est-elle symétrique? Antisymétrique?
- 2. La forme f a-t-elle des vecteurs isotropes non nuls?
- 3. Calculer la matrice de f dans la base $(1, X, \ldots, X^n)$.
- 4. Pour n=2, déterminer la signature de f. La forme f est-elle positive? Négative?

Exercice 3.

Soit K un corps de caractéristique différente de 2. Soit P un K-espace vectoriel de dimension 2, muni d'une forme quadratique f. Quelles sont valeurs possibles pour le nombre de droites isotropes de f? Donner un exemple dans chaque cas.

Exercice 4.

Soit K un corps de caractéristique différente de 2 et soit E un K-espace vectoriel de dimension finie. Soient f et f' des formes quadratiques sur E vérifiant $f^{-1}(0) = (f')^{-1}(0)$.

- 1. Supposons K algébriquement clos. Montrer qu'il existe $a \in K^{\times}$ tel que l'on ait f' = af.
- 2. Donner un contre-exemple pour $K = \mathbb{R}$ et $E = \mathbb{R}^2$.

Exercice 5.

Soit K un corps de caractéristique différente de 2, soit E un K-espace vectoriel de dimension finie non nulle et soit E un hyperplan de E. Soient de plus E une forme quadratique non dégénérée sur E et E une fement de E vérifiant E une forme quadratique non dégénérée sur E et E une fement de E vérifiant E vér

- 1. Si $f_{|H}$ est non dégénérée, montrer que u est soit l'identité, soit la réflexion orthogonale d'hyperplan H.
- 2. Si $f_{|H}$ est dégénérée, montrer que u est l'identité.

Exercice 6.

Soit $n \ge 1$ et soit $E = \mathbb{R}^{n+1}$ muni de la forme quadratique

$$f(x_0, \dots, x_n) = x_0^2 - (x_1^2 + \dots + x_n^2),$$

de forme bilinéaire b. Un sous-espace F de E est dit elliptique si $f_{|F}$ est définie négative, hyperbolique si $f_{|F}$ est de signature (1, m) avec $m \ge 1$ et parabolique si $f_{|F}$ est dégénérée.

- 1. Soit F un sous-espace de dimension au moins 2 tel qu'il existe $x \in F$ avec f(x) > 0. Montrer que F est hyperbolique.
- 2. Soit F un sous-espace elliptique de dimension au plus n-1. Montrer que F^{\perp} est hyperbolique.
- 3. Soit F un sous-espace parabolique. Montrer que $f|_F$ est de rang dim F-1.

Exercice 7.

Soient $p \neq q$ deux nombres premiers impairs. On note $\left(\frac{p}{q}\right)$ l'entier qui vaut 1 si p est un carré modulo q et -1 sinon. On note $S := \{(x_1, \dots, x_p) \in \mathbb{F}_q^p : \sum_i x_i^2 = 1\}.$

- 1. Montrer que $\left(\frac{q}{p}\right) \equiv q^{\frac{p-1}{2}} [p]$.
- 2. En considérant une action de groupe, montrer que $|S| \equiv 1 + \left(\frac{p}{q}\right)$ [p].
- 3. Montrer qu'il existe une base de \mathbb{F}_q^p dans laquelle la forme quadratique $\sum_i X_i^2$ admet pour matrice

diag
$$\left(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, (-1)^{\frac{p-1}{2}} \right)$$
.

- 4. En déduire que $|S| = q^{\frac{p-1}{2}}(q^{\frac{p-1}{2}} + (-1)^{\frac{p-1}{2}\frac{q-1}{2}}).$
- 5. Conclure que $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2}\frac{q-1}{2}}$ (c'est la loi de réciprocité quadratique).

Exercice 8.

Soient $a, b, c \in \mathbb{Z}$ sans facteurs carrés. On considère la forme quadratique $f(x, y, z) := ax^2 + by^2 + cz^2$ sur \mathbb{Q}^3 .

- 1. À quelle condition sur a, b, c la forme f est-elle isotrope sur \mathbb{R} ?
- 2. On suppose a, b > 0 et c = -1 et on note d le pgcd de a et b. Montrer que la forme quadratique f est isotrope sur \mathbf{Q} si et seulement si les trois conditions suivantes sont satisfaites
 - (a) a est un carré modulo b.
 - (b) b est un carré modulo a.
 - (c) $-\frac{ab}{d^2}$ est un carré modulo d.
- 3. On suppose désormais a, b, c deux-à-deux premiers entre eux. Montrer que f est isotrope sur \mathbf{Q} si et seulement si f est isotrope sur \mathbb{R} et les trois conditions suivantes sont satisfaites
 - (a) -ab est un carré modulo c.
 - (b) -ac est un carré modulo b.
 - (c) -bc est un carré modulo a.
- 4. Sous les hypothèses de la question c), montrer que f est isotrope sur \mathbb{Q} si et seulement si f est isotrope sur \mathbb{R} et pour tout nombre premier p, pour tout entier $m \geq 1$, il existe $(x, y, z) \in \mathbb{Z}^3$ non tous divisibles par p tels que $f(x, y, z) \equiv 0$ $[p^m]$.
- 5. Vérifier que dans l'équivalence précédente, il suffit de prendre p|abc et m=2.
- 6. Soit q une forme quadratique non dégénérée sur \mathbb{Q}^3 . Donner un algorithme permettant de décider si q est isotrope.