TD 10

Dans cette feuille, par "représentation" on entend "représentation complexe de dimension finie".

Exercice 1.

Soit V une représentation irréductible d'un groupe fini G. Soit Z le centre de G.

1. Démontrer que pour tout $n \ge 1$, la représentation $V^{\otimes n}$ de G^n est irréductible. L'action de G^n est ici donnée par

$$(g_1,\ldots,g_n)(v_1\otimes\cdots\otimes v_n)=g_1(v_1)\otimes\cdots\otimes g_n(v_n).$$

- 2. Soit K_n les sous-groupe de G^n formé des (g_1, \ldots, g_n) dans Z^n tels que $g_1 \cdots g_n = 1$. Démontrer que K_n agit trivialement sur $V^{\otimes n}$.
- 3. En déduire que $\deg(V)^n$ divise $[G^n:K_n]=[G:Z]^n|Z|$, puis que $\deg(V)$ divise [G:Z].

Exercice 2.

Soit N un sous-groupe distingué d'un groupe fini G, et V une représentation de G. On écrit

$$V = \bigoplus_{\chi \in X} V[\chi],$$

où $V[\chi] \neq 0$ est la composante χ -isotypique de $V_{|N}$, où χ parcourt un ensemble de caractères irréductibles de N. Le groupe G agit sur X via $g \cdot \chi = (x \mapsto \chi(g^{-1}xg))$. On note G_{χ} le stabilisateur de χ pour cette action.

- 1. Démontrer que $gV[\chi]$ est égal à $V[g \cdot \chi]$. En particulier, $V[\chi]$ est une représentation de G_{χ} .
- 2. Démonter que l'on a un isomorphisme

$$V \cong \bigoplus_{\chi \in G \setminus X} \operatorname{Ind}_{G_{\chi}}^{G} V[\chi].$$

Rappelons que l'induction $\operatorname{Ind}_H^G W$ est définie par

$$\operatorname{Ind}_{H}^{G}W = \{ f : G \to V \mid \forall x \in G, \forall h \in H, \ f(hx) = hf(x) \},\$$

et
$$(g \cdot f)(x) = f(xg)$$
.

3. Si N est abélien, démontrer par récurrence que toute représentation irréductible de G est de degré divisant [G:N].

Exercice 3.

Soit G un p-groupe.

- 1. Si G n'est pas commutatif, démontrer que celui-ci contient un sous-groupe abélien distingué non central.
- 2. Si G n'est pas commutatif, et si V est une représentation irréductible fidèle de G, démontrer que V est de la forme $\operatorname{Ind}_H^G W$, où H est un sous-groupe strict de G et W est une représentation irréductible de H.
- 3. Démontrer par récurrence que toute représentation irréductible de G est de la forme $\operatorname{Ind}_H^G W$, où H est un sous-groupe de G et W est une représentation de degré 1 de H.

Exercice 4.

Soit G un groupe fini qui est le produit semi-direct d'un p-groupe par un groupe abélien. Démontrer que toute représentation irréductible de G est de la forme $\operatorname{Ind}_H^G W$, où H est un sous-groupe de G et W est une représentation de degré 1 de H.

Exercice 5.

Un groupe fini est réputé p-quasi-élémentaire s'il contient un sous-groupe cyclique distingué dont le quotient est un p-groupe.

- 1. Démontrer qu'un sous-groupe d'un groupe p-quasi-élémentaire est encore p-quasi-élémentaire.
- 2. Soit G un groupe p-quasi-élémentaire. Démontrer qu'il existe un sous-groupe cyclique distingué $C \triangleleft G$ d'ordre premier à p, tel que G/C soit un p-groupe. En déduire que G est (isomorphe à) un produit semi-direct de G/C par C.
- 3. Soit x un élément d'un groupe fini G et p un nombre premier. Soit C le plus grand sous-groupe de $\langle x \rangle$ d'ordre premier à p, et soit H/C un sous-groupe de Sylow de $N_G(C)/C$ qui contient l'image de x. Démontrer que H est un sous-groupe p-quasi-élémentaire de G qui contient x.
 - Une action d'un groupe fini G sur un ensemble X est réputée quasi-élémentaire si chaque stabilisateur est p-quasi-élémentaire pour un certain nombre premier p. Soit Q(G) le sous-groupe abélien de $\mathcal{C}(G)$ engendré par les caractères des représentations de la forme $\mathbb{C}[X]$, où X est un ensemble fini muni d'une action à gauche quasi-élémentaire de G.
- 4. Démontrer que Q(G) est stable par multiplication, et que les éléments de Q(G) sont des fonctions centrales à valeurs entières.
- 5. Démontrer que Q(G) est aussi le sous-groupe abélien de $\mathcal{C}(G)$ engendré par les représentations de la forme $\mathbb{C}[G/H]$, où H parcourt l'ensemble des sous-groupes de G qui sont p-quasi-élémentaires pour un certain nombre premier p.
- 6. Soit x un élément de G et p un nombre premier. Soit H le sous-groupe p-quasi-élémentaire de G introduit dans la question 3. Démontrer que la valeur en x du caractère de $\mathbb{C}[G/H]$ n'est pas divisible par p.
- 7. Soit A un groupe abélien de fonctions à valeurs entières sur un ensemble fini non vide S, qui est stable par multiplication, mais qui ne contient pas la fonction constante 1. Démontrer qu'il existe un nombre premier p un un élément x de S tel que f(x) est divisible par p pour tout f dans A.
- 8. En déduire que Q(G) contient la fonction constante 1. Autrement dit, il existe une relation

$$1 = \sum_{H \subseteq G} n_H \chi_{\mathbb{C}[G/H]},$$

avec n_H dans \mathbb{Z} , où la somme porte sur les sous-groupes quasi-élémentaires de G. Il s'agit du théorème de Solomon.

9. Soit χ un caractère de G et soit $(n_H)_H$ comme ci-dessus. Démontrer que l'on a

$$\chi = \sum_{H \subseteq G} n_H \operatorname{Ind}_H^G(\chi_{|H}).$$

10. Soit χ un caractère de G. Démontrer à l'aide de l'exercice précédent que l'on a une relation

$$\chi = \sum_{i} m_{i} \operatorname{Ind}_{H_{i}}^{G}(\chi_{i}),$$

où H_i sont des sous-groupes de G, où chaque χ_i est un caractère de degré 1 de H_i , et où les m_i sont des entiers relatifs. Il s'agit du théorème de Brauer.

Exercice 6.

Soient p, q deux nombres premiers, $\alpha, \beta \in \mathbb{N}$. Soit G groupe fini tel que $|G| = p^{\alpha}q^{\beta}$. L'objectif de l'exercice est de montrer que G est résoluble (theorème de Burnside).

1. Soit α un nombre algébrique de module < 1, dont tous les conjugués sont de module au plus 1. Démontrer que α est nul.

- 2. Soient $\zeta_1, \ldots, \zeta_n \in \mathbb{C}$ des racines de l'unité. Montrer que $\frac{\zeta_1 + \cdots + \zeta_n}{n}$ est un entier algébrique si et seulement si $\zeta_1 + \cdots + \zeta_n = 0$ ou $\zeta_i = \zeta_1$ pour tout i.
- 3. Soit H un groupe fini, ρ une représentation irréductible de H sur \mathbb{C} , de caractère χ .
 - (a) Montrer que pour tout $h \in H$, si c(h) désigne le cardinal de la classe de conjugaison de h dans H, alors $c(h)\frac{\chi(h)}{\chi(1)}$ est un entier algébrique.
 - (b) Montrer que pour tout $h \in H$, si c(h) est premier avec $\chi(1)$, alors $\frac{\chi(h)}{\chi(1)}$ est un entier algébrique.
 - (c) Sous les hypothèses de la question b)ii), montrer que si $\chi(h) \neq 0$, alors $\rho(h)$ est une homothétie.
 - (d) Soit $h \in H$ tel que c(h) soit une puissance d'un nombre premier p. Démontrer qu'il existe un caractère irréductible χ tel que $\frac{\chi(1)\chi(h)}{p}$ n'est pas un entier algébrique. En déduire qu'il existe un sous-groupe distingué $N \triangleleft H$ tel que l'image de h dans H/N soit centrale.
- 4. Montrer par récurrence que G est résoluble.

Exercice 7.

Soit $n \ge 1$ un entier et soit λ une partition de n, c'est-à-dire une suite $(\lambda_k)_{k\ge 1}$ d'entiers naturels vérifiant $n = \sum_k \lambda_k$ avec $\lambda_k \ge \lambda_{k+1}$ pour tout k. À cette partition λ , on associe un tableau de Young T_{λ} , qui est un tableau de n cases alignées à gauche dans lequel la i-ème ligne a λ_i colonnes.

Le groupe symétrique \mathfrak{S}_n s'identifie au groupe de permutations des cases de T_λ . On définit alors le sous-groupe P_λ (resp. Q_λ) comme étant respectivement le stabilisateur des lignes (resp. des colonnes) de T_λ . On appelle projecteurs de Young les éléments de $\mathbb{C}[\mathfrak{S}_n]$ suivants

$$a_{\lambda} = \frac{1}{|P_{\lambda}|} \sum_{P_{\lambda}} g, \quad b_{\lambda} = \frac{1}{|Q_{\lambda}|} \sum_{Q_{\lambda}} \varepsilon(g) g,$$

où $\varepsilon(g)$ désigne la signature de la permutation g. On pose $c_{\lambda} = a_{\lambda}b_{\lambda}$.

- 1. Supposons $g \in \mathfrak{S}_n \setminus P_{\lambda}Q_{\lambda}$. Montrer qu'il existe une transposition $t \in P_{\lambda}$ vérifiant $g^{-1}tg \in Q_{\lambda}$.
- 2. En déduire l'existence d'une application linéaire $l_{\lambda} : \mathbb{C}[\mathfrak{S}_n] \to \mathbb{C}$ telle que l'on ait $a_{\lambda}gb_{\lambda} = l_{\lambda}(g)c_{\lambda}$ pour tout $g \in \mathbb{C}[\mathfrak{S}_n]$.
- 3. Soit μ une partition de n. On introduit l'ordre lexicographique sur les partitions de n: on a $\lambda > \mu$ s'il existe $j \ge 1$ tel que $\lambda_j > \mu_j$ et $\lambda_i = \mu_i$ pour tout i < j. Supposons $\lambda > \mu$. Montrer que l'on a $a_{\lambda}\mathbb{C}[\mathfrak{S}_n]b_{\mu} = 0$.
- 4. Un élément e d'un anneau A est dit idempotent s'il vérifie $e^2 = e$. Montrer que c_{λ} est proportionnel à un idempotent de $\mathbb{C}[\mathfrak{S}_n]$.
- 5. Soit V_{λ} la représentation de \mathfrak{S}_n donnée par multiplication à gauche sur l'espace $\mathbb{C}[\mathfrak{S}_n]c_{\lambda}$. Montrer que l'application $\lambda \mapsto V_{\lambda}$ induit une bijection entre l'ensemble des partitions de n et l'ensemble des classes d'isomorphisme de représentations irréductibles de \mathfrak{S}_n sur \mathbb{C} .

Exercice 8.

On garde les notations de l'exercice précédent. Soit U_{λ} la représentation $\operatorname{Ind}_{P_{\lambda}}^{\mathfrak{S}_n}\mathbb{C}$.

- 1. Montrer que la représentation obtenue par multiplication à gauche sur $\mathbb{C}[\mathfrak{S}_n]a_{\lambda}$ est isomorphe à U_{λ} .
- 2. Montrer la décomposition $U_{\lambda} = \bigoplus_{\mu \geq \lambda} K_{\mu\lambda} V_{\mu}$, où les $K_{\mu\lambda}$ sont des entiers naturels avec $K_{\lambda\lambda} = 1$.

Les entiers $K_{\mu\lambda}$ sont appelés nombres de Kostka.

On définit les ensembles suivants, qui correspondent à ajouter ou enlever une case sur le tableau de Young T_{λ} :

$$A(\lambda) = \{ \nu \text{ partition de } n+1 \mid \exists j, \forall i, \nu_i = \lambda_i + \delta_{ij} \},$$

$$R(\lambda) = \{ \nu \text{ partition de } n-1 \mid \exists j, \forall i, \nu_i = \lambda_i - \delta_{ij} \}.$$

- c) Montrer que V_{λ} est isomorphe à $\bigoplus_{\nu \in R(\lambda)} V_{\nu}$ en tant que \mathfrak{S}_{n-1} -représentation.
- d) Montrer que $\operatorname{Ind}_{\mathfrak{S}_{n-1}}^{\mathfrak{S}_n} V_{\nu} \simeq \bigoplus_{\lambda \in A(\nu)} V_{\lambda}$ est un isomorphisme de \mathfrak{S}_n -représentations.