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Abstract—A new algorithm is proposed for removing large objects from
digital images. The challenge is to fill in the hole that is left behind in a
visually plausible way.

In the past, this problem has been addressed by two classes of algo-
rithms: (i) “texture synthesis” algorithms for generating large image re-
gions from sample textures, and (ii) “inpainting” techniques for filling in
small image gaps. The former has been demonstrated for “textures” – re-
peating two-dimensional patterns with some stochasticity; the latter focus
on linear “structures” which can be thought of as one-dimensional patterns,
such as lines and object contours.

This paper presents a novel and efficient algorithm that combines the
advantages of these two approaches. We first note that exemplar-based tex-
ture synthesis contains the essential process required to replicate both tex-
ture and structure; the success of structure propagation, however, is highly
dependent on theorder in which the filling proceeds. We propose a best-first
algorithm in which the confidencein the synthesized pixel values is propa-
gated in a manner similar to the propagation of information in inpainting.
The actual colour values are computed using exemplar-based synthesis.

In this paper the simultaneous propagation of texture and structure in-
formation is achieved by asingle, efficient algorithm. Computational effi-
ciency is achieved by a block-based sampling process.

A number of examples on real and synthetic images demonstrate the
effectiveness of our algorithm in removing large occluding objects as well
as thin scratches. Robustness with respect to the shape of the manually
selected target region is also demonstrated. Our results compare favorably
to those obtained by existing techniques.

Keywords— Object Removal, Image Inpainting, Texture Synthesis, Si-
multaneous Texture and Structure Propagation.

I. I NTRODUCTION

This paper presents a novel algorithm for removing large ob-
jects from digital photographs and replacing them with visually
plausible backgrounds. Figure 1 shows an example of this task,
where the foreground person (manually selected as thetarget
region) is automatically replaced by data sampled from the re-
mainder of the image. The algorithm effectively hallucinates
new colour values for the target region in a way that looks “rea-
sonable” to the human eye. This paper builds upon and extends
the work in [8], with a more detailed description of the algorithm
and extensive comparisons with the state of the art.

In previous work, several researchers have considered texture
synthesis as a way to fill large image regions with “pure” tex-
tures – repetitive two-dimensional textural patterns with mod-
erate stochasticity. This is based on a large body of texture-
synthesis research, which seeks to replicate texturead infinitum,
given a small source sample of pure texture [1], [9], [11], [12],
[13], [14], [16], [17], [18], [22], [25]. Of particular interest are
exemplar-based techniqueswhich cheaply and effectively gen-
erate new texture by sampling and copying colour values from
the source [1], [11], [12], [13], [17].

As effective as these techniques are in replicating consistent
texture, they have difficulty filling holes in photographs of real-
world scenes, which often consist of linear structures andcom-
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Fig. 1. Removing large objects from images.(a) Original photograph. (b) The
region corresponding to the foreground person (covering about19% of the
image) has been manually selected and then automatically removed. Notice
that the horizontal structures of the fountain have been synthesized in the
occluded area together with the water, grass and rock textures.

posite textures– multiple textures interacting spatially [26]. The
main problem is that boundaries between image regions are a
complex product of mutual influences between different tex-
tures. In constrast to the two-dimensional nature of pure tex-
tures, these boundaries form what might be considered more
one-dimensional, or linear, image structures.

A number of algorithms specifically address the image fill-
ing issue for the task of image restoration, where speckles,
scratches, and overlaid text are removed [2], [3], [4], [7], [23].
Theseimage inpaintingtechniques fill holes in images by prop-
agating linear structures (calledisophotesin the inpainting lit-
erature) into the target region via diffusion. They are inspired
by the partial differential equations of physical heat flow, and
work convincingly as restoration algorithms. Their drawback is
that the diffusion process introduces some blur, which becomes
noticeable when filling larger regions.

The technique presented here combines the strengths of both
approaches into a single, efficient algorithm. As with inpainting,
we pay special attention to linear structures. But, linear struc-
tures abutting the target region only influence the fill order of
what is at core an exemplar-based texture synthesis algorithm.
The result is an algorithm that has the efficiency and qualita-
tive performance of exemplar-based texture synthesis, but which
also respects the image constraints imposed by surrounding lin-
ear structures.

The algorithm we propose in this paper builds on very recent
research along similar lines. The work in [5] decomposes the
original image into two components; one of which is processed
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by inpainting and the other by texture synthesis. The output im-
age is the sum of the two processed components. This approach
still remains limited to the removal of small image gaps, how-
ever, as the diffusion process continues to blur the filled region
(cf. [5], fig.5 top right). The automatic switching between “pure
texture-” and “pure structure-mode” of [24] is also avoided.

Similar to [5] is the work in [10], where the authors de-
scribe an algorithm that interleaves a smooth approximation
with example-based detail synthesis for image completion. Like
the work in [5] also the algorithm in [10] is extremely slow (as
reported processing may take between83 and158 minutes on a
384× 256 image) and it may introduce blur artefacts (cf. fig.8b,
last row of fig.13 and fig. 16c in [10]). In this paper we present a
simpler and faster region filling algorithm which does not suffer
from blur artefacts.

One of the first attempts to use exemplar-based synthesis
specifically for object removal was by Harrison [15]. There, the
order in which a pixel in the target region is filled was dictated
by the level of “texturedness” of the pixel’s neighborhood1. Al-
though the intuition is sound, strong linear structures were often
overruled by nearby noise, minimizing the value of the extra
computation. A related technique drove the fill order by the
local shape of the target region, but did not seek to explicitly
propagate linear structures [6].

Recently Jiaet al. [19] have presented a technique for fill-
ing image regions based on a texture-segmentation step and
a tensor-voting algorithm for the smooth linking of structures
across holes. Their approach has a clear advantage in that it is
designed to connect curved structures by the explicit generation
of subjective contours, over which textural structures are propa-
gated. On the other hand, their algorithm requires (i) an expen-
sive segmentation step, and (ii) a hard decision about what con-
stitutes a boundary between two textures. Our approach avoids
both issues through the use of a continuous parameter based
on local gradient strength only. A careful fusion of these ap-
proaches may result in a superior algorithm, but results suggest
that both approaches already achieve a reasonable measure of
visual credibility in filling holes.

Finally, Zalesnyet al. [26] describe an algorithm for the par-
allel synthesis of composite textures. They devise a special-
purpose solution for synthesizing the interface between two
“knitted” textures. In this paper we show that, in fact, only one
mechanism is sufficient for the synthesis of both pure and com-
posite textures.
Paper outline. Section II presents the two key observations
which form the basis of our algorithm. The details of the pro-
posed algorithm are described in sect. III. Finally, a large gallery
of results on both synthetic images and real-scene photographs
is presented in sect. IV. Whenever possible our results are com-
pared to those obtained by state of the art techniques.

II. K EY OBSERVATIONS

A. Exemplar-based synthesis suffices

The core of our algorithm is an isophote-driven image-
sampling process. It is well-understood that exemplar-based ap-

1An implementation of Harrison’s algorithm is available from
www.csse.monash.edu.au/ ∼pfh/resynthesizer/

Fig. 2. Structure propagation by exemplar-based texture synthesis.(a)
Original image, with thetarget regionΩ, its contourδΩ, and thesource
regionΦ clearly marked. (b) We want to synthesize the area delimited by
the patchΨp centred on the pointp ∈ δΩ. (c) The most likely candi-
date matches forΨp lie along the boundary between the two textures in the
source region,e.g., Ψq′ andΨq′′ . (d) The best matching patch in the candi-
dates set has been copied into the position occupied byΨp, thus achieving
partial filling of Ω. Notice that both texture and structure (the separating
line) have been propagated inside the target region. The target regionΩ has,
now, shrank and its frontδΩ has assumed a different shape.

proaches perform well for two-dimensional textures [1], [11],
[17]. But, we note in addition that exemplar-based texture syn-
thesis is sufficient for propagating extended linear image struc-
tures, as well;i.e., a separate synthesis mechanism is not re-
quired for handling isophotes.

Figure 2 illustrates this point. For ease of comparison, we
adopt notation similar to that used in the inpainting literature.
The region to be filled,i.e., the target region is indicated byΩ,
and its contour is denotedδΩ. The contour evolves inward as
the algorithm progresses, and so we also refer to it as the “fill
front”. The sourceregion,Φ, which remains fixed throughout
the algorithm, provides samples used in the filling process.

We now focus on a single iteration of the algorithm to show
how structure and texture are adequately handled by exemplar-
based synthesis. Suppose that the square templateΨp ∈ Ω cen-
tred at the pointp (fig. 2b), is to be filled. The best-match sam-
ple from the source region comes from the patchΨq̂ ∈ Φ, which
is most similar to those parts that are already filled inΨp. In the
example in fig. 2b, we see that ifΨp lies on the continuation
of an image edge, the most likely best matches will lie along
the same (or a similarly coloured) edge (e.g., Ψq′ andΨq′′ in
fig. 2c).

All that is required to propagate the isophote inwards is a
simple transfer of the pattern from the best-match source patch
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Fig. 3. The importance of the filling order when dealing with concave target regions.(a) A diagram showing an image and a selected target region (in
white). The remainder of the image is the source. (b,c,d) Different stages in the concentric-layer filling of the target region. (d) The onion-peel approach
produces artefacts in the synthesized horizontal structure. (b’,c’,d’) Filling the target region by an edge-driven filling order achieves the desired artefact-free
reconstruction. (d’) The final edge-driven reconstruction, where the boundary between the two background image regions has been reconstructed correctly.

(fig. 2d). Notice that isophote orientation is automatically pre-
served. In the figure, despite the fact that the original edge is not
orthogonal to the target contourδΩ, the propagated structure has
maintained the same orientation as in the source region.

In this work we focus on a patch-based filling approach (as
opposed to pixel-based ones as in [11]) because, as noted in [22],
this improves execution speed. Furthermore, we note that patch-
based filling improves the accuracy of the propagated structures.

B. Filling order is critical

The previous section has shown how careful exemplar-based
filling may be capable of propagating both texture and struc-
ture information. This section demonstrates that the quality of
the output image synthesis is highly influenced by the order in
which the filling process proceeds. Furthermore, we list a num-
ber of desired properties of the “ideal” filling algorithm.

A comparison between the standard concentric layer filling
(onion-peel) and the desired filling behaviour is illustrated in
fig. 3. Figures 3b,c,d show the progressive filling of aconcave
target region via an anti-clockwise onion-peel strategy. As it
can be observed, this ordering of the filled patches produces the
horizontal boundary between the background image regions to
be unexpectedly reconstructed as a curve.

A better filling algorithm would be one that gives higher pri-
ority of synthesis to those regions of the target area which lie on
the continuation of image structures, as shown in figs. 3b’,c’,d’.
Together with the property of correct propagation of linear struc-
tures, the latter algorithm would also be more robust towards
variations in the shape of the target regions.

A concentric-layer ordering, coupled with a patch-based fill-
ing may produce further artefacts (cf. fig. 4).

Therefore, filling order is crucial to non-parametric texture
synthesis [1], [6], [12], [15]. To our knowledge, however, de-
signing a fill order which explicitly encourages propagation of
linear structure (together with texture) has never been explored,
and thus far, the default favourite has been the “onion peel” strat-
egy.

Another desired property of a good filling algorithm is that of
avoiding “over-shooting” artefacts that occur when image edges
are allowed to grow indefinitely. The goal here is finding a good
balance between the propagation of structured regions and that
of textured regions (fig. 3b’,c’,d’), without employing two ad-
hoc strategies. As demonstrated in the next section, the algo-
rithm we propose achieves such a balance by combining the
structure “push” with a confidence term that tends to reduce
sharp in-shooting appendices in the contour of the target region.

As it will be demonstrated, the filling algorithm proposed in
this paper overcomes the issues that characterize the traditional
concentric-layers filling approach and achieves the desired prop-
erties of: (i) correct propagation of linear structures, (ii) robust-
ness to changes in shape of the target region, (iii) balanced si-
multaneous structure and texture propagation, all in a single, ef-
ficient algorithm. We now proceed with the details of our algo-
rithm.

III. O UR REGION-FILLING ALGORITHM

First, given an input image, the user selects a target region,Ω,
to be removed and filled. The source region,Φ, may be defined
as the entire image minus the target region (Φ = I − Ω), as
a dilated band around the target region, or it may be manually
specified by the user.

Next, as with all exemplar-based texture synthesis [12], the
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Fig. 4. The importance of the filling order in patch-based filling. (a) The
target region is shown in white. (b) Part of the outmost layer in the target
region has been synthesized by an onion-peel algorithm proceeding in clock-
wise order. (c) At a further stage of the filling process, the remainder of
the outmost layer has been filled by this clock-wise onion-peel filling. The
concentric-layer filling has produced artefacts in the reconstruction of the
diagonal image edge. A filling algorithm whose priority is guided by the
image edges would fix this problem.

size of the template windowΨ must be specified. We provide a
default window size of9 × 9 pixels, but in practice require the
user to set it to be slightly larger than the largest distinguishable
texture element, or “texel”, in the source region.

Once these parameters are determined, the region-filling pro-
ceeds automatically.

In our algorithm, each pixel maintains acolour value (or
“empty”, if the pixel is unfilled) and aconfidencevalue, which
reflects our confidence in the pixel value, and which is frozen
once a pixel has been filled. During the course of the algorithm,
patches along the fill front are also given a temporarypriority
value, which determines the order in which they are filled. Then,
our algorithm iterates the following three steps until all pixels
have been filled:

1. Computing patch priorities. Our algorithm performs the
synthesis task through a best-first filling strategy that depends
entirely on the priority values that are assigned to each patch on
the fill front. The priority computation is biased toward those
patches which: (i) are on the continuation of strong edges and
(ii) are surrounded by high-confidence pixels.

Given a patchΨp centred at the pointp for somep ∈ δΩ (see
fig. 5), we define its priorityP (p) as the product of two terms:

P (p) = C(p)D(p). (1)

We callC(p) theconfidenceterm andD(p) thedata term, and

Fig. 5. Notation diagram. Given the patchΨp, np is the normal to the contour
δΩ of the target regionΩ and∇I⊥p is the isophote (direction and intensity)
at pointp. The entire image is denoted withI.

they are defined as follows:

C(p) =

∑
q∈Ψp∩(I−Ω) C(q)

|Ψp| , D(p) =
|∇I⊥p · np|

α

where|Ψp| is the area ofΨp, α is a normalization factor (e.g.,
α = 255 for a typical grey-level image),np is a unit vector or-
thogonal to the frontδΩ in the pointp and⊥ denotes the orthog-
onal operator. The priorityP (p) is computed for every border
patch, with distinct patches for each pixel on the boundary of
the target region.

During initialization, the functionC(p) is set toC(p) = 0
∀p ∈ Ω, andC(p) = 1 ∀p ∈ I − Ω.

The confidence termC(p) may be thought of as a measure of
the amount of reliable information surrounding the pixelp. The
intention is to fill first those patches which have more of their
pixels already filled, with additional preference given to pixels
that were filled early on (or that were never part of the target
region).

As it will be illustrated in fig. 6a, this automatically incor-
porates preference towards certain shapes of the fill front. For
example, patches that include corners and thin tendrils of the
target region will tend to be filled first, as they are surrounded
by more pixels from the original image. These patches provide
more reliable information against which to match. Conversely,
patches at the tip of “peninsulas” of filled pixels jutting into the
target region will tend to be set aside until more of the surround-
ing pixels are filled in.

At a coarse level, the termC(p) of (1) approximately en-
forces the desirable concentric fill order. As filling proceeds,
pixels in the outer layers of the target region will tend to be char-
acterized by greater confidence values, and therefore be filled
earlier; pixels in the centre of the target region will have lesser
confidence values.

The data termD(p) is a function of the strength of isophotes
hitting the frontδΩ at each iteration. This term boosts the pri-
ority of a patch that an isophote “flows” into. This factor is of
fundamental importance in our algorithm because it encourages
linear structures to be synthesized first, and, therefore propa-
gated securely into the target region. Broken lines tend to con-
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nect, thus realizing the “Connectivity Principle” of vision psy-
chology [7], [20] (cf. fig. 7, fig. 11f’, fig. 13b and fig. 20f’).

2. Propagating texture and structure information. Once all
priorities on the fill front have been computed, the patchΨp̂

with highest priority is found. We then fill it with data extracted
from the source regionΦ.

In traditional inpainting techniques, pixel-value information
is propagated via diffusion. As noted previously, diffusion nec-
essarily leads to image smoothing, which results in blurry fill-in,
especially of large regions (see fig. 15f).

On the contrary, we propagate image texture by direct sam-
pling of the source region. Similar to [12], we search in the
source region for that patch which is most similar toΨp̂.2 For-
mally,

Ψq̂ = arg min
Ψq∈Φ

d(Ψp̂,Ψq) (2)

where the distanced(Ψa, Ψb) between two generic patchesΨa

and Ψb is simply defined as the sum of squared differences
(SSD) of the already filled pixels in the two patches. Pixel
colours are represented in theCIE Lab colour space [21] be-
cause of its property of perceptual uniformity3.

Having found the sourceexemplarΨq̂, the value of each
pixel-to-be-filled,p′ |p′ ∈ Ψp̂∩Ω, is copied from its corre-
sponding position insideΨq̂.

This suffices to achieve the propagation of both structure and
texture information from the sourceΦ to the target regionΩ,
one patch at a time (cf., fig. 2d). In fact, we note that any further
manipulation of the pixel values (e.g., adding noise, smoothing
etc.) that does not explicitly depend upon statistics of the source
region, is more likely to degrade visual similarity between the
filled region and the source region, than to improve it.

3. Updating confidence values.After the patchΨp̂ has been
filled with new pixel values, the confidenceC(p) is updated in
the area delimited byΨp̂ as follows:

C(p) = C(p̂) ∀p ∈ Ψp̂ ∩ Ω.

This simple update rule allows us to measure the relative confi-
dence of patches on the fill front, without image-specific param-
eters. As filling proceeds, confidence values decay, indicating
that we are less sure of the colour values of pixels near the cen-
tre of the target region.

A pseudo-code description of the algorithmic steps is shown
in table I. The superscriptt indicates the current iteration.

Some properties of our region-filling algorithm.As illustrated
in fig. 6a, the effect of the confidence term is that of smoothing
the contour of the target region by removing sharp appendices
and making the target contour close to circular. Also, in fig. 6a it
can be noticed that inwards-pointing appendices are discouraged
by the confidence term (red corresponds to low priority pixels).

Unlike previous approaches, the presence of the data term in
the priority function (1) tends to favour inwards-growing appen-
dices in the places where structures hit the contour (green pix-
els in fig. 6b), thus achieving the desired structure propagation.

2Valid patches must be entirely contained inΦ.
3Euclidean distances in Lab colour space are more meaningful than in RGB

space.

a

b

Fig. 6. Effects of data and confidence terms.(a) Theconfidence termassigns
high filling priority to out-pointing appendices (in green) and low priority to
in-pointing ones (in red), thus trying to achieve a smooth and roughly cir-
cular target boundary. (b) Thedata termgives high priority to pixels on the
continuation of image structures (in green) and has the effect of favouring
in-pointing appendices in the direction of incoming structures. The com-
bination of the two terms in Eq. (1) produces the desired organic balance
between the two effects, where the inwards growth of image structures is
enforced with moderation.

• Extract the manually selected initial frontδΩ0.
• Repeat until done:
1a. Identify the fill front δΩt. If Ωt = ∅, exit.
1b. Compute prioritiesP (p) ∀p ∈ δΩt.
2a. Find the patchΨp̂ with the maximum priority,

i.e., p̂ = arg maxp∈δΩt P (p).
2b. Find the exemplarΨq̂ ∈ Φ that minimizesd(Ψp̂, Ψq̂).
2c. Copy image data fromΨq̂ to Ψp̂ ∀p ∈ Ψp̂ ∩ Ω.
3. UpdateC(p) ∀p ∈ Ψp̂ ∩ Ω

TABLE I

Region filling algorithm.

But, as mentioned, the pixels of the target region in the proxim-
ity of those appendices are surrounded by little confidence (most
neighbouring pixels are un-filled), and therefore, the “push” due
to image edges is mitigated by the confidence term. As pre-
sented in the results section, this achieves a graceful and auto-
matic balance of effects and an organic synthesis of the target
region via the mechanism of a single priority computation for
all patches on the fill front. Notice that (1) only dictates the or-
der in which filling happens. The use of image patches for the
actual filling achieves texture synthesis [11].

Furthermore, since the fill order of the target region is dic-
tated solely by the priority functionP (p), we avoid having to
predefine an arbitrary fill order as done in existing patch-based
approaches [11], [22]. Our fill order is function of image proper-
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ties, resulting in an organic synthesis process that eliminates the
risk of “broken-structure” artefacts (as in fig. 11f). Furthermore,
since the gradient-based guidance tends to propagate strong
edges, blocky and mis-alignment artefacts are reduced (though
not completely eliminated), without a patch-cutting (quilting)
step [11] or a blur-inducing blending step [22].

It must be stressed that our algorithm does not use explicit nor
implicit segmentation at any stage. For instance, the gradient
operator in (1) is never thresholded and real valued numbers are
employed.

Implemetation details. In our implementation the contourδΩ
of the target region is modelled as a dense list of image point
locations. These points are interactively selected by the user via
a simple drawing interface. Given a pointp ∈ δΩ, the nor-
mal directionnp is computed as follows: i) the positions of the
“control” points ofδΩ are filtered via a bi-dimensional Gaussian
kernel and, ii)np is estimated as the unit vector orthogonal to
the line through the preceding and the successive points in the
list. Alternative implementation may make use of curve model
fitting. The gradient∇Ip is computed as the maximum value of
the image gradient inΨp ∩ I. Robust filtering techniques may
also be employed here. Finally, pixels are classified as belong-
ing to the target regionΩ, the source regionΦ or the remainder
of the image by assigning different values to their alpha compo-
nent. The image alpha channel is, therefore, updated (locally) at
each iteration of the filling algorithm.

IV. RESULTS AND COMPARISONS

Here we apply our algorithm to a variety of images, ranging
from purely synthetic images to full-colour photographs that in-
clude complex textures. Where possible, we make side-by-side
comparisons to previously proposed methods. In other cases,
we hope the reader will refer to the original source of our test
images (many are taken from previous literature on inpainting
and texture synthesis) and compare these results with the results
of earlier work.

In all of the experiments, the patch size was set to be greater
than the largest texel or the thickest structure (e.g., edges) in the
source region. Furthermore, unless otherwise stated the source
region has been set to beΦ = I − Ω. All experiments were run
on a 2.5GHz Pentium IV with 1GB of RAM.

The Kanizsa triangle and the Connectivity Principle. We
perform our first experiment on the well-known Kanizsa trian-
gle [20] to show how the algorithm works on a structure-rich
synthetic image.

As shown in fig. 7, our algorithm deforms the fill frontδΩ
under the action of two forces: isophote continuation (the data
term, D(p)) and the “pressure” from surrounding filled pixels
(the confidence term,C(p)).

The sharp linear structures of the incomplete green triangle
are grown into the target region. But also, no single struc-
tural element dominates all of the others. This balance among
competing isophotes is achieved through the naturally decaying
confidence values (fig 10 will illustrate the large-scale artefacts
which arise when this balance is missing). Figures 7e,f also
show the effect of the confidence term in smoothing sharp ap-
pendices such as the vertices of the target region.

a

b c

d e
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Fig. 7. Realization of the “Connectivity Principle” on a synthetic example.
(a) Original image, the “Kanizsa triangle” with random noise added. (b) The
occluding white triangle in the original image has been manually selected as
the target region (24% of total image area) and marked with a red boundary.
(c. . .f) Different stages of the filling process. (d) Notice that strong edges
are pushed inside the target region first and that sharp appendices (e.g., the
vertices of the selected triangle) are rapidly smoothed. (f) When no struc-
tures hit the frontδΩ the target region evolves in a roughly circular shape.
(g) The output image where the target region has been filled,i.e., the oc-
cluding triangle removed. Little imperfections are present in the curvature
of the circles in the reconstructed areas, while the sides of the internal trian-
gle have been correctly connected. The blur typical of diffusion techniques
is completely avoided. See figs. 11, 13, 20 for further examples of structural
continuation.

As described above, the confidence is propagated in a man-
ner similar to the front-propagation algorithms used in inpaint-
ing. We stress, however, that unlike inpainting, it is the con-
fidence values that are propagated along the front (and which
determine fill order), not colour values themselves, which are
sampled from the source region.

Finally, we note that despite the large size of the removed
region, edges and lines in the filled region are as sharp as any
found in the source region;i.e., there is no diffusion-related blur.
This is a property of exemplar-based texture synthesis.

Comparing different filling orders. Figures 8, 9 and 11
demonstrate the effect of different filling strategies.
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Fig. 8. Effect of filling order on a synthetic image. (a) The original image;
(b) The target region has been selected and marked with a red boundary;
(c) Filling the target region in raster-scan order; (d) Filling by concentric
layers; (e) The result of applying Harrison’s technique which took2 ′ 45 ′′;
(f) Filling with our algorithm which took5 ′′. Notice that even though the
triangle upper vertex is not complete our technique performs better than the
others.

Figure 8f shows how our filling algorithm achieves the best
structural continuation in a simple, synthetic image. Our syn-
thesis algorithm has been compared with three other existing
techniques.

Also, as stated previously, in the case only the edge term is
used, then the overshoot artefact may arise, as demonstrated in
fig 10.

Figure 9 further demonstrates the validity of our algorithm
on an aerial photograph. The40 × 40-pixel target region has
been selected to straddle two different textures (fig. 9b). The
remainder of the200× 200 image in fig. 9a was used as source
for all the experiments in fig. 9.

With raster-scan synthesis (fig. 9c) not only does the top re-
gion (the river) grow into the bottom one (the city area), but
visible seams also appear at the bottom of the target region.
This problem is only partially addressed by a concentric filling
(fig 9d). Similarly, in fig. 9e the sophisticated ordering proposed
by Harrison [15] only moderately succeeds in preventing this
phenomenon.

In all of these cases, the primary difficulty is that since the
(eventual) texture boundary is the most constrained part of the
target region, it should be filled first. But, unless this is explic-
itly addressed in determining the fill order, the texture boundary
is often the last part to be filled. The algorithm proposed in this
paper is designed to address this problem, and thus more natu-
rally extends the contour between the two textures as well as the
vertical grey road in the figure.

In the example in fig. 9, our algorithm synthesizes the target
region in only2 seconds. Harrison’s resynthesizer [15], which
is the nearest in quality, requires approximately45 seconds.

a b

c d

e f

Fig. 9. Effect of filling order on an aerial photograph. (a) The original
image, an aerial view of London. (b) The target region has been selected and
marked with a red boundary; Notice that it straddles two different textures;
(c) Filling with raster-scan order; (d) Filling by concentric layers; (e) The
result of applying Harrison’s technique (performed in45 ′′); (f) Filling with
our algorithm (performed in2 ′′). See text for details.

Fig. 10. The “overshoot” artefact. The use of the data term only in the priority
function may lead to undesired edge “over-shoot” artefacts. This is due to
the fact that some edges may grow indiscriminately. A balance between
structure and texture synthesis is highly desirable and achieved in this paper.
cf. fig 8f.

Figure 11 shows yet another comparison between the con-
centric filling strategy and the proposed algorithm. In the pres-
ence of concave target regions, the “onion peel” filling may lead
to visible artefacts such as unrealistically broken structures (see
the pole in fig. 11f). Conversely, the presence of the data term
of (1) encourages the edges of the pole to grow “first” inside the
target region and thus correctly reconstruct the complete pole
(fig. 11f’). This example demonstrates the robustness of the pro-
posed algorithm with respect to the shape of the selected target
region.

Figure 12 shows a visualization of the priority function re-
lated to the example in fig 11c’,...,f’. Notice that due to the
data term of (1) the pixels belonging to the reconstructed pole
are characterized by larger (brighter) values ofP (p). Similarly,
pixels on thin appendices (larger confidence) of the target region



8 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 9, SEP 2004

a b

onion peel our algorithm

c c’

d d’

e e’

f f’

Fig. 11. Onion peel vs. structure-guided filling. (a) Original image. (b) The
target region has been selected and marked with a red boundary. (c,d,e,f)
Results of filling by concentric layers. (c’,d’,e’,f’) Results of filling with
our algorithm. Thanks to thedata termin (1) the sign pole is reconstructed
correctly by our algorithm.

tend to have large priority values associated with them.

Comparisons with diffusion-based inpainting.We now turn
to some examples from the inpainting literature. The first two
examples show that our approach works at least as well as in-
painting.

The first (fig. 13) is a synthetic image of two ellipses [4]. The
occluding white torus is removed from the input image and the
two dark background ellipses reconstructed via our algorithm
(fig. 13b). This example was chosen by authors of the original
work on inpainting to illustrate the structure propagation capa-

a b

Fig. 12. Priority function for the example in fig 11f’. (a) The priorities
associated to the target region in fig 11 are initialized as 0 inside (dark
pixels) and 1 outside (bright pixels). (b) The final priorities at the end of
the filling process. Notice that larger values of the priority functionP (p)
are associated with pixels on the continuation of strong edges (i.e., the pole)
and on thin outward-pointing appendices.

a b

Fig. 13. Comparison with traditional structure inpainting. (a) Original
image from [4]. The target region is the white ellipse in the centre. (b)
Object removal and structure recovery via our algorithm.

bilities of their algorithm. Our results are visually identical to
those obtained by inpainting (cf. fig.4 in [4]).

We now compare results of the restoration of an hand-drawn
image. In fig. 14 the aim is to remove the foreground text. Our
results (fig. 14b) are mostly indistinguishable with those ob-
tained by traditional inpainting4. This example demonstrates
the effectiveness of both techniques in image restoration appli-
cations.

It is in real photographs with large objects to remove, how-
ever, that the real advantages of our approach become apparent.
Figure 15 shows an example on a real photograph, of a bungee
jumper in mid-jump (from [4], fig.8). In the original work, the
thin bungee cord is removed from the image via inpainting. In
order to prove the capabilities of our algorithm we removed the
entire person (fig. 15e). Structures such as the shore line and the
edge of the house have been automatically propagated into the
target region along with plausible textures of shrubbery, water
and roof tiles; and all this with noa priori model of anything
specific to this image.

For comparison, figure 15f shows the result of filling the same
target region (fig. 15b) by image inpainting5. Considerable blur
is introduced into the target region because of inpainting’s use of
diffusion to propagate colour values. Moreover, high-frequency
textural information is entirely absent.

Figure 16 compares our algorithm to the recent “texture and
structure inpainting” technique described in [5]. The original
image in fig. 16a and fig. 16b are from [5]. Figure 16c shows the
result of our filling algorithm and it demonstrates that also our

4www.ece.umn.edu/users/marcelo/restoration4.html
5120,000 iterations were run using the implementation in

www.bantha.org/ ∼aj/inpainting/
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a b

c d e

Fig. 14. Image restoration example. (a) Original image. The text occupies
9% of the total image area. (b) Result of text removal via our algorithm. (c)
Detail of (a). (e) Result of filling the “S” via traditional image-inpainting.
(d) Result of filling the “S” via our algorithm. We also achieve structure
propagation.

technique accomplishes the simultaneous propagation of struc-
ture and texture inside the selected target region. Moreover,
the lack of diffusion step in our method avoids blurring prop-
agated structures (see the vertical edge in the encircled region)
and makes the algorithm more computationally efficient.

Comparison with Drori et al.“Fragment-based Image Com-
pletion”. Figure 17 shows the results of our region-filling al-
gorithm on one of the examples used in [10]. As it can be no-
ticed by comparing fig. 17d and the last image in fig.13 of [10],
our algorithm does not introduce the edge blur that character-
izes the latter figure. In fig. 17d the sharpness of the table edge
is retained since no smoothing is introduced at any stage of our
filling algorithm.

Comparison with Jia et al. “Image Repairing”. Figure 18
compares the results of our region-filling algorithm with those
obtained by Jiaet al. in [19]. The image in fig. 18c has been ob-
tained by the region-filling algorithm in [19], and fig. 18d shows
the result of our algorithm. Notice that our algorithm succeedes
in filling the target region without implicit or explicit segmenta-
tion.

Synthesizing composite textures.Fig. 19 demonstrates that our
algorithm behaves well also at the boundary between two differ-
ent textures, such as the ones analyzed in [26]. The original
image in fig. 19a is one of the examples used in [26]. The tar-
get region selected in fig. 19c straddles two different textures.
The quality of the “knitting” in the contour reconstructed via
our approach (fig. 19d) is similar to the original image and to
the results obtained in the original work (fig. 19b), but again,
this has been accomplished without complicated texture models
or a separate boundary-specific texture synthesis algorithm.

It must be stressed that in cases such as that of fig. 19c where
the band around the target region does not present dominant gra-
dient directions the filling process proceeds in a roughly uniform

a b

c d

e f

Fig. 15. Removing large objects from photographs.(a) Original image from
[4], 205 × 307pix. (b) The target region (in white with red boundary)
covers12% of the total image area. (c,d) Different stages of the filling
process. Notice how the isophotes hitting the boundary of the target region
are propagated inwards while thin appendices (e.g., the arms) in the target
region tend to disappear quickly. (e) The final image where the bungee
jumper has been completely removed and the occluded region reconstructed
by our automatic algorithm (performed in18 ′′, to be compared with10 ′
of Harrison’s resynthesizer). (f) The result of region filling by traditional
image inpainting. Notice the blur introduced by the diffusion process and
the complete lack of texture in the synthesized area.

way, similar to the concentric-layer approach. This is achieved
automatically through the priority equation (1).

Further examples on photographs.We show more examples
on photographs of real scenes.

Figure 20 demonstrates, again, the advantage of the proposed
approach in preventing structural artefacts. While the onion-
peel approach produces a deformed horizon (fig. 20f), our algo-
rithm reconstructs the boundary between sky and sea as a con-
vincing straight line (fig. 20f’). During the filling process the



10 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 9, SEP 2004

Fig. 16. Comparison with “texture and structure inpainting” [5]. (a) Orig-
inal image. The target regions are marked in white. (b) Region filling via
“Simultaneous Structure and Texture Propagation”. Notice the blur of the
edge in the circled region. (c) The result of our algorithm. Both structure
and texture have been nicely propagated inside the target region. The edge
in the circled region is noticeably sharper.

a b

c d

Fig. 17. Comparison with “Fragment-Based Image Completion” [11]. (a)
A photo of the oil painting “Still Life with Apples”, P. Ćezanne, c. 1890,
The Hermitage, St. Petersburg. (b) The manually selected target region. (c)
The result of our automatic region-filling algorithm. (d) The data which has
been used to fill the target region. Notice the sharply reconstructed table
edge, see text for details.

topological changes of the target region are handled effortlessly.
In fig. 21, the foreground person has been manually se-

lected and the corresponding region filled in automatically. The
synthesized region in the output image convincingly mimics
the complex background texture with no prominent artefacts
(fig. 21f).

Finally, figs 22... 27 present a gallery of further examples of
object removal and region filling from real photographs. Those
results demonstrate the power and versatility of our algorithm.

V. CONCLUSION AND FUTURE WORK

This paper has presented a novel algorithm for removinglarge
objects from digital photographs. The result is an image in
which the selected object has been replaced by a visually plausi-

a b

c d

Fig. 18. Comparison with Jia et al. “Image Repairing” [20]. (a)Moor , orig-
inal input image. (b) The manually selected target region. (c) The resulting
region-filling achieved byJia et al. . (d) The result of our region-filling
algorithm. The missing portion of rainbow is reconstructed convincingly.
Figures (c) and (d) are of comparable quality, but our algorithm avoids the
image segmentation step with considerable increase in speed.

a b

c d

Fig. 19. Comparison with “Parallel Composite Texture Synthesis” [27].(a)
Original image, the fur of a zebra. (b) The result of the synthesis algorithm
described in “Parallel Composite Texture Synthesis”. (c) Original image
with the target region marked with a red boundary (22% of total image
size). (d) The target region has been filled via our algorithm. The “knitting”
effect along the boundary between the two textures is correctly reproduced
also by our technique.

ble background that mimics the appearance of the source region.
Our approach employs an exemplar-based texture synthesis

technique modulated by a unified scheme for determining thefill
order of the target region. Pixels maintain a confidence value,
which together with image isophotes, influence their fill priority.

The technique is capable of propagating both linear structure
and two-dimensional texture into the target region with a single,
simple algorithm. Comparative experiments show that a simple
selection of the fill order is necessaryand sufficient to handle
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a b

onion peel our algorithm

c c’

d d’

e e’

f f’

Fig. 20. Concentric-layer filling vs. the proposed guided filling algorithm.
(a) Original image. (b) The manually selected target region (20% of the
total image area) has been marked in white with a red boundary. (c,d,e,f)
Intermediate stages in the concentric-layer filling. The deformation of the
horizon is caused by the fact that in the concentric-layer filling sky and sea
grow inwards at uniform speed. Thus, the reconstructed sky-sea boundary
tends to follow theskeletonof the selected target region. (c’,d’,e’,f’) Inter-
mediate stages in the filling by the proposed algorithm, where the horizon
is correctly reconstructed as a straight line.

this task.

Our method performs at least as well as previous techniques
designed for the restoration ofsmallscratches, and, in instances
in which largerobjects are removed, it dramatically outperforms
earlier work in terms of both perceptual quality and computa-
tional efficiency.

Moreover, robustness towards changes in shape and topology
of the target region has been demonstrated, together with other
advantageous properties such as: (i) preservation of edge sharp-

a b

c d

e f

Fig. 21. Removing large objects from photographs. (a) Original image.
(b) The target region (10% of the total image area) has been blanked out.
(c. . .e) Intermediate stages of the filling process. (f) The target region has
been completely filled and the selected object removed. The source region
has been automatically selected as a band around the target region. The
edges of the stones have been nicely propagated inside the target region
together with the water texture.

a

b

Fig. 22. Removing an object on a highly textured background.(a) Original
photograph. (b) One of the two people has been removed. This demon-
strates that our algorithm works correctly also for the (simpler) case of
“pure” texture.
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a b

c d

Fig. 23. Region-filling on an image of a text.(a) Original photo of typewritten
text, a favourite example of texture synthesis researchers. (b) A portion of
the image (marked with a red boundary) has been removed. (c) The result
of our filling algorithm. (d) As in (c) with just the text synthesized in the
target region highlighted. Even though the generated text does not make
much sense it still looks plausible. This example further demonstrates the
correct behaviour of our algorithm in the case of pure texture synthesis.

a

b

c

Fig. 24. Removing several objects from a photograph.(a) Original image, a
photograph from Ghana. Courtesy of P. Anandan. (b,c) The crowd of peo-
ple and other objects are gradually removed by our algorithm. The source
regions have been selected as dilated bands around the target regions. Back-
ground texture and structure have seamlessly replaced the original charac-
ters.

a

b

c

d

Fig. 25. Removing multiple objects from photographs. (a) Original photo-
graph of Kirkland (WA). (b,c,d) Several objects are sequentially removed.
Notice how well the shore line and other structures have been reconstructed.

ness, (ii) no dependency on image segmentation and (iii) bal-
anced region filling to avoid over-shooting artefacts.

Also, patch-based filling helps achieve: (i) speed efficiency,
(ii) accuracy in the synthesis of texture (less garbage growing),
and finally (iii) accurate propagation of linear structures.

Limitations of our technique are: (i) the synthesis of regions
for which similar patches do not exist does not produce reason-
able results (a problem common to [10], [19]); (ii) the algo-
rithm is not designed to handle curved structures, (iii) finally,
like in [10], [19], our algorithm does not handle depth ambigui-
ties (i.e., what is in front of what in the occluded area?).
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a

b

Fig. 26. Completing panoramas.(a) A panorama of Keble College in Oxford.
Courtesy of D. Capel and A. Zisserman [7]. (b) The “bow-tie” effect which
characterizes image stitching has been removed here by automatic region
in-filling.

a b

c d

Fig. 27. Final examples of object removal from photographs.(a,c) Original
images. (b,d) After object removal. Objects and people are removed by
realistic edge and texture synthesis in the selected target regions.

Currently, we are investigating the possibility of constructing
ground-truth data and designing evaluation tests that would al-
low us to quantify the performance of each algorithm. This turns
out to be a non-trivial task. Furthermore we are ivestigating ex-
tensions of the current algorithm to handle accurate propagation
of curved structures in still photographs as well as removing ob-
jects from video, which promise to impose an entirely new set
of challenges.
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