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Abstract

This paper deals with estimation of the spectral density f(x) = |1− eix|−2df∗(x),
of a stationary fractional Gaussian process, where −1/2 < d < 1/2 and f∗ is positive.
The optimal rate of convergence of an estimate of f is shown not to depend on d but
only on the smoothness of f∗, and thus is the same for a long range (d > 0) and a
short range dependent (d = 0) process. When the Fourier coefficients of f∗ decrease
exponentially fast, the exact asymptotic behaviour of the minimax risk is obtained.
The log-periodogram regression estimate is shown to achieve the best possible rate of
convergence when the smoothness of f∗ is known, and to have adaptivity property
when this smoothness is unknown.

1 Introduction

Let (Xt)t∈Z be a stationary Gaussian process with covariance function γX(t) = E[X0Xt].
The spectral density fX of the process X is characterized, if it exists, by the relation

f̂X(t) =
∫ π

−π
f(x)eitxdx = γX(t).

A Gaussian process is usually said weakly dependent when its covariance function is ab-
solutly summmable. This implies that the spectral density is continuous and bounded.
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The probabilistic and statistical theory for such weakly dependent Gaussian processes is
well established. More recently, models with non summable covariance function have been
considered. Such processes are called by contrast strongly dependent processes. The best
known class of fractional processes is the class of fractionally integrated ARMA processes,
usually referred to as ARFIMA(p, d, q) processes, obtained by fractional differenciation of
a causally invertible ARMA process. It was first introduced by Adenstedt (1974), and pop-
ularized by Granger and Joyeux (1980) and Hosking (1981). Recall that an ARMA(p, q)
process Y is defined by the recurrence equation

Q(B)Y = P (B)ε, (1.1)

where B is the backshift operator, ε is a white noise sequence with zero mean and variance
σ2, and P and Q are mutually prime polynomials such that P (0) = Q(0) = 1. If Q has
no roots inside the closed unit disk, then (1.1) has a stationary solution Y whose spectral
density fY can be expressed as

fY (x) =
σ2

2π
|P (eiz)/Q(eiz)|2.

If moreover P has no roots inside the closed unit disk, then Y is causal and invertible.
Given a causal and invertible ARMA(p, q) process Y , and a real number d ∈ (−1/2, 1/2),
an ARFIMA (p, d, q) process X is defined by

X = (I −B)−dY,

where the fractional differencing operator (I − B)−d is defined for d 6= 0 by the infinite
series

(I −B)−d =
∞∑
j=0

Γ(d+ j)
j! Γ(d)

Bj .

This series is summable for d < 0 and square summable for d ∈ (0, 1/2). The spectral
density of X is given by

fX(x) = |1− eix|−2dfY (x) =
σ2

2π
|1− eix|−2d|P (eiz)/Q(eiz)|2.

A natural extension of the class of ARFIMA processes consists in assuming that the
spectral density of the process X can be expressed as

fX(x) = |1− eix|−2df∗(x), (1.2)

where d ∈] − 1/2, 1/2[ and no constraint is set on f∗ apart from positivity and a certain
degree of smoothness on [−π, π]. Such processes are often called fractional processes since
they can be obtained by fractional differentiation of a weakly dependent process with
spectral density f∗. They are strongly dependent when d > 0. When d < 0, then f is
bounded but vanishes at zero, and this significantly changes the nature of the process
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X. In both cases, the autocovariance coefficients γX(τ) decay hyperbolically at the rate
τ−1+2d instead of decaying exponentially fast as is the case for the autocovariance of an
ARMA process. Hence, if d 6= 0, the rate of decay of the autocovariance function is
entirely determined by d. Nevertheless, the smoothness of f∗ still determine the main
statistical properties of the process X. In particular, Giraitis, Robinson and Samarov
(1997) and Iouditsky, Moulines and Soulier (2001) have shown that the rate of convergence
of estimates of d depends only on the smoothness of f∗.

This paper is concerned with minimax and adaptive nonparametric estimation of the
spectral density of a fractional Gaussian process with spectral density given by (1.2). In
the weak dependence context (i.e. d = 0), these problems have been considered by several
authors, see for instance Efromoivich and Pinsker (1982) Golubev (1993), Efromovich
(1998) and Comte (1999). In this context, the measure of accuracy of estimation is the
L2 risk. In the context of long range dependence, this risk cannot be considered, since
the spectral density is not square integrable if d > 1/4. Hence an alternate measure of
accuracy of estimation is needed. In the signal processing litterature, it is customary
to consider the log-spectrum (often referred to as the cepstrum) instead of the spectral
density, and to use the logarithmic risk function, defined for positive functions f and h by

R(f, h) =
∫ π

−π
{log(f(x)− log(h(x))}2dx = ‖ log(f)− log(h)‖2.

To assess the performance of the estimate, we now define relevant functional classes and
give lower bounds for the estimation risk over these classes. The most natural family
of functional classes in time series analysis is the class of spectral density functions with
exponentially decaying Fourier coefficients. Since spectral densities are even functions, it
is enough to consider the normalized cosine basis defined as

h0 = 1/
√

2π, hj(x) = cos(jx)/
√
π, j ≥ 1.

For β > 0 and L > 0, define

A(β, L) = {h =
∞∑
j=0

θjhj ,

∞∑
j=0

e2βjθ2
j ≤ L2}.

This class is important since it is related to the ARMA and ARFIMA processes. If Y is an
ARMA(p, q) process given by (1.1) and such that P and Q have no roots inside a closed
disk centered at zero and with radius β, then its spectral density fY belongs to A(β, L) for
a relevant choice of the constant L, and so does log(fY ) since fY is strictly positive. The
spectral density of an ARFIMA process X can then be expressed as fX = |1 − eix|−2df∗

where f∗ and log(f∗) belong to A(β, L) for some β > 0 and L > 0.

In minimax estimation, it is also customary to consider Sobolev ellipsoids, that is,
classes defined, for β > 0 and L > 0, as follows,

S(β, L) = {h =
∞∑
j=0

θjhj , θ
2
0 +

∞∑
j=1

j2βθ2
j ≤ L2}.
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In the context of spectral density estimation for fractional processes these classes are
illustrated by the following example. Let X be a stationary invertible ARFIMA(p, d, q)
process with d > 0 and spectral density fX(x) = |1−eix|−2df∗X(x), and let ε be a Gaussian
white noise with variance σ2. Assume that the observed process is actually ξ = X + ε. In
that case, the spectral density of ξ is fξ(x) = |1− eix|−2df∗ξ (x) with

f∗ξ (x) = f∗X(x) +
σ2

2π
|1− eix|2d,

and the regularity of f∗ξ then depends on d. More precisely, if f∗X is bounded away from
zero, then log(f∗ξ ) ∈ S(β, L), for any β < 1/2 + 2d, and for a suitable choice of L.

For these functional classes, the following lower bounds hold, which are proved in
section 6

Theorem 1 For any γ > 0, β > 1/2, L > 0 and δ ∈ [0, 1/2[,

lim
n→∞

inf
l̂n

sup
|d|≤δ

sup
l∗∈A(γ,L)

n

log(n)
E[‖l̂n − l‖2] ≥ 2π/γ, (1.3)

lim inf
n

inf
l̂n

sup
|d|≤δ

sup
l∗∈S(β,L)

n
2β

2β+1 E[‖l̂n − l‖2] ≥ P(β, L), (1.4)

where the infimum is evaluated for all estimates l̂n of the log-spectrum l = dg + l∗ of a
stationary process with spectral density f = el, based on n observations and P(β, L) =
(4πβ/(β + 1))2β/(2β+1){L2(2β + 1)}1/(2β+1).

Remark These lower bounds are actually proved in the case d = 0, and the proof is
similar to the proof of the lower bound for the minimax risk over an ellipsoid in the
following regression problem

ξn,t = l∗(t/n) + ηn,t, 1 ≤ t ≤ n,

where (ηn,t)1≤t≤n is a triangular array of i.i.d. r.v.’s with zero mean and variance 2π and
l∗ is an even function on [0, 1]. For this problem, P(β, L) is known as Pinsker’s constant
(cf. Belitser, 2000).

2 Log-periodogram regression

In this section, we present an estimate of the log-spectrum l = log(f) of a fractional
Gaussian process. Let (hn,k), 1 ≤ k ≤ n, be a sequence of complex numbers to be precised
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later, and define H2
n =

∑n
k=1 |hn,k|2. The tapered discrete Fourier transform (DFT) and

periodogram are defined as

dn(x) = (2πH2
n)
−1/2

n∑
k=1

hn,kXke
ikx, In(x) = |dn(x)|2.

Choosing hk = 1, 1 ≤ k ≤ n, yields H2
n = n and In(x) is the ordinary periodogram. Let

xk = 2kπ/n, 1 ≤ k ≤ ñ := [(n − 1)/2] be the so-called Fourier frequencies. The ordinary
periodogram ordinates (In(xk))1≤k≤ñ have some well known properties which we recall
now. The most elementary one is that they are shift invariant, since

∑n
t=1 e

itxk = 0 for
k = 1, · · · , ñ. If the process X is Gaussian white noise, then the ordinay periodogram
ordinates are ñ i.i.d standard exponential random variables. If X is a Gaussian pro-
cess with smooth spectral density f , then for a fixed number u of Fourier frequencies,
the vector of ordinary periodogram ordinates In(xk)/f(xk1), · · · , In(xu)/f(xku) converge
in distribution to a vector whose components are u i.i.d standard exponential random
variables. In this sense, it is often said that periogram ordinates at Fourier frequencies
are asymptotically i.i.d standard exponential random variables. In the case of a frac-
tional process, this last property no longer holds and it has been shown that the vector
In(xk)/f(xk1), · · · , In(xu)/f(xku) converges in distribution to a vector whose components
are neither independent nor identically distributed. More precisely, the asymptotic distri-
bution can be represented as Z2

1 +Z2
2 , · · · , Z2

2u−1+Z
2
2u, where Z1, · · · , Z2u are 2u correlated

jointly Gaussian random variables : see for instance Hurvich and Beltrao (1993) and Terrin
and Hurvich (1994).

Data tapering has been used for quite a long time in time series analysis (see Tukey
(1967) for an early reference). In the long range dependence context, it was introduced by
Velasco (1999a,b) to deal with non stationary time series and by Giraitis, Robinson and
Samarov (2000) to reduce correlation between discrete Fourier transforms computed at
Fourier frequencies. Hurvich and Chen (2000) have introduced a family of complex valued
tapers which are well suited to the analysis of fractional processes. We will consider here
the simplest of these, defined by

hn,t = 1− e2iπt/n, 1 ≤ t ≤ n. (2.1)

This data taper has the desirable property of being shift invariant, contrarily to the Kol-
mogorov tapers used by Velasco (1999a,b). An adverse effect of tapering is that consecutive
tapered DFT ordinates are correlated, even if the observed process is a Gaussian white
noise, and this correlation does not vanish asymptotically. The taper used here neverthe-
less preserves this orthogonality property of non consecutive tapered DFT ordinates, and
non consecutive tapered DFT ordinates are significantly less correlated than in the non
tapered case (see section 5). This is very important when the observed process is a frac-
tional process. Hence, when tapering is performed, only half of the periodogram ordinates
will be used to define the estimates. This results in a twofold increase of the asymptotic
variance of these estimates. This is better than when using the cosine bell taper as in
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Giraitis, Robinson and Samarov (2000), which results in a threefold increase, because in
that case only one out of three Fourier frequencies is used. This efficiency loss can be
partially be compensated by aggregation or pooling of periodogram ordinates. This idea
was first introduced in the context of long range dependence by Robinson (1995). For a
fixed integer m ≥ 1, define

Īn,k =

{ ∑mk
t=m(k−1)+1 In(xt), 1 ≤ k ≤ [(n−m)/2m] (ordinary periodogram),∑mk
t=m(k−1)+1 In(x2t), 1 ≤ k ≤ [(n− 2m)/4m] (tapered periodogram).

In order to simplify the notations and unify the presentation of the estimates, we will
denote Kn = [(n − m)/2m] in the case of the ordinary (non-tapered) periodogram and
Kn = [(n− 2m)/4m] in the case of the tapered periodogram.

If X were a Gaussian white noise, then fX would be a constant and for any sequence
of frequencies (yk)1≤k≤Kn , the distribtion of Īn,k/f(yk) would be the Γ(m, 1) distribution,
that is the distribution of the sum ofm i.i.d. standard exponential r.v.’s. Recall that if Y is
a Γ(m, 1) random variable, then E[log(Y )] = ψ(m) and var(log(Y )) = ψ′(m), where ψ(z) =
Γ′(z)/Γ(z) is the digamma function (see Johnson, Kotz and Balakrishnan (1995)). For
instance, −ψ(1) is Euler’s constant and ψ′(1) = π2/6. Define g(x) = −2 log(|1− eix|), and
for k = 1, · · · ,Kn, yk = (2k−1)π/2Kn, For any process X, denote Yn,k = log(Īn,k)−ψ(m),
and εn,k = log(Īn,k/f(yk))−ψ(m). If X is a fractional process with spectral density as in
(1.2) : f(x) = |1−eix|−2df∗(x), where f∗ is a positive function on [−π, π], define l = log(f)
and l∗ = log(f∗). With these notations, we can write

Yn,k = log(f(yk)) + εn,k = dg(yk) + l∗(yk) + εn,k, 1 ≤ k ≤ Kn. (2.2)

As already mentionned, the heuristic claim behind spectral methods is that the renor-
malized periodogram ordinates can be replaced by i.i.d. standard exponential random
variables, hence the sequence (εn,k)1≤k≤Kn can be considered as an i.i.d. sequence with
zero mean and variance ψ′(m). Even though this is far from being true, the conclusion
derived from this heuristic claim can be justified rigorously when f∗, or equivalently l∗,
is smooth enough. More precisely it will be assumed that l∗ ∈ A(γ, L) for some γ > 0
or l∗ ∈ S(β, L) for some β > 3/2. To deal with less smooth spectral densities, we need
to introduce the following functional class. For M ≥ 0, let L∗(M) be the class of even
periodic functions l∗ on [−π, π] such that

sup
x∈[−π,π]

|l∗(x)| ≤M and sup
x,y∈[−π,π]\{0}

|l∗(x)− l∗(y)| ≤M
|x− y|
|x| ∧ |y|

.

When a given function l∗ belongs to L∗(M), then suitable bounds can be obtained. Un-
fortunately, the class L∗(M) is not compact since it is not equicontinuous at zero. Hence,
to obtain uniform bounds, necessary in the context of minimax estimation, attention must
be restricted to compact subclasses of L∗(M). This is not a practical restriction since the
classes of interest are S(β, L)

⋂
L∗(M) which are compact.
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The interest of these classes in the context of sectral density estimation is that they
contain the smooth part of the spectral density of an ARFIMA processX possibly observed
with noise. Recall that the spectral density of such a process can be expressed as f∗ξ (x) =
f∗(x) + σ2/2π|1 − eix|2d, where f∗ is a positive and smooth function, say at least twice
continuously differentiable. It is then easily seen that log(f∗ξ ) ∈ L∗(M) for a suitable M .
Since moreover log(f∗ξ ) ∈ S(β, L) for any β < 1/2+2d < 3/2, it is clear that this functional
class is well suited to our purpose. Finally, note that for β > 3/2, S(β, L) ⊂ L∗(M) for a
relevant choice of L.

We now return to the log-periodogram regression. Whether valid or not, the approxi-
mation of (εn,k)1≤k≤Kn by an i.i.d. sequence is the ground for log-periodogram regression
which consists in estimating the coefficients d, θ0, · · · , θp−1 by ordinary least squares :

(d̂, θ̂0, · · · , θ̂p−1) = arg min
d̄,θ̄0,··· ,θ̄p−1

Kn∑
k=1

(
log(Īn,k)− ψ(m)− d̄g(yk)−

p−1∑
j=0

θ̄jhj(yk)
)2
.

For a given p, an estimate of the log-spectrum is then defined as

l̂p = d̂pg +
p−1∑
j=0

θ̂jhj .

For convenience, the performance of the estimates will be measured with respect to a
discretized L2 norm. For any u ∈ RKn , define

‖u‖2
n =

2π
Kn

Kn∑
k=1

u2
k,

and a function φ will be identified with the vector (φ(y1), · · · , φ(yKn))T .

Theorem 2 Let γ > 0, β > 1/2, L > 0, M > 0 and δ ∈ [0, 1/2[. Denote pn(γ) =
[log(n)/2γ] and pn(L, β) = [L

2
2β+1n

1
2β+1 ]. Let X be a stationary Gaussian process with

log-spectrum l = dg+ l∗ and let l̂p is the log-periodogram regression estimate of the l based
either on the ordinary or the tapered periodogram. Then,

lim
n→∞

sup
|d|≤δ

sup
l∗∈A(γ,L)

n

log(n)
E[‖l̂pn(γ) − l‖2

n] = 2π%mψ′(m)/γ, (2.3)

lim sup
n→∞

sup
|d|≤δ

sup
l∗∈S(β,L)∩L∗(M)

L
− 2

2β+1n
2β

2β+1 E[‖l̂pn(L,β) − l‖2
n] ≤ 4π%mψ′(m) + 1, (2.4)

where % = 1 when the ordinary periodogram is used and % = 2 when the tapered periodogram
is used.
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Remarks
• As already mentioned, for β > 3/2, the condition l∗ ∈ L∗(M) is not a restriction.
• Even though the estimate based on the tapered periodogram is inefficient in the minimax
sense, we mention its performance here since it is used in the adaptive framework.
• As can be seen in the proof of Theorem 1 the bounds (1.3) and (1.4) hold for the norm
‖.‖n as well as for the L2-norm. Hence the log-periodogram estimate, whether based on the
ordinary or tapered periodogram, is minimax rate optimal in the classes A(γ, L) for γ > 0
and S(β, L) for β > 3/2. For β ∈ (1/2, 3/2], the log-periodogram estimate is rate optimal
over the class S(β, L) ∩ L∗(M), since it is easily seen that the lower bound obtained for
S(β, L) holds for S(β, L) ∩ L∗(M). Moreover, when based on the ordinary periodogram,
it is efficient up to a multiplicative constant mψ′(m) over the analytic class A(γ, L). Since
m can be chosen so that mψ′(m) is arbitrarily close to 1, we obtain as a corollary the
exact asymptotic behaviour of the minimax risk for the analytic class A(γ, L).

Corollary 2.1 Let γ > 0, L > 0 and δ ∈ [0, 1/2[.

lim
n→∞

inf
l̂n

sup
|d|≤δ

sup
l∗∈A(β,L)

n

log(n)
E[‖l̂n − l‖2] = 2π/γ.

The situation for the Sobolev class is not clear. If short range dependence is assumed, i.e.
if it is known that d = 0, then the projection estimator can be modified as in the case of
the regression with i.i.d. noise, to obtain an efficient estimator. Defining

ľ∗n =
qn∑
j=0

λj θ̂jhj ,

where λj = 1− q−βn jβ , 0 ≤ j ≤ qn := (L2(β+1)(2β+1)n/4πβ)
1

2β+1 , it can be proved that

lim
n→∞

sup
l∗∈S(β,L)∩L∗(M)

n
2β

2β+1 E[‖ľ∗n − l∗‖2] = mψ′(m)P(β, L). (2.5)

This upper bound can be proved as Theorem 3.4 in Belitser (2000), with a few additional
technicalities due to the fact that the noise here is not an i.i.d. sequence. Hence we obtain
the exact asymptotic minimax risk for the estimation of the log-spectrum of a shortly
dependent Gaussian process.

lim
n→∞

inf
l̃∗n

sup
l∗∈S(β,L)∩L∗(M)

n
2β

2β+1 E[‖l̃∗n − l∗‖2] = P(β, L).

If d is not assumed to be known and equal to zero, the above construction does not yield
an efficient estimator, because of the effect of the function g in the regression. Since our
original purpose is to consider only this latter case, we omit the proof of (2.5) and only
prove Theorem 2 in section 5.1.
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3 Adaptive estimation

The minimax estimates are unfeasible since they depend on the smoothness of the function
l∗, which cannot be assumed known, especially in the case of the signal observed in noise
where it depends on the parameter d, which is obviously unknown. Hence a data-driven
criterion is needed to select the truncation order p which defines the spectral density
estimate. Since the problem at hand is very similar to the problem of regression with i.i.d.
noise with known variance, it is natural to investigate model selection criterion commonly
used in this famework. For a given non decreasing sequence of integers p∗n ≤ Kn and a
positive real κ, define

Sp,n(κ) = ‖Yn − l̂p‖2
n + κ2ψ′(m)pK−1

n , (3.1)
p̂(κ) = arg min

1≤p≤p∗n
Sp,n(κ). (3.2)

The choice p∗n = Kn and κ = 2 yields the so-called Mallows’ CL criterion. It has been
shown in Moulines et Soulier (2000) that if the ordinary periodogram is used, Sp,n(2) is an
asymptotically unbiased estimate of the quadratic risk Rn(p) = E[‖l− l̂p‖2

n]. If the number
of non zero Fourier coefficients of the true l∗ is infinite, then Rn(p̂(2))/ inf1≤p≤Kn Rn(p)
converges in probability to 1. In the context of regression with i.i.d. noise, this result
was proved by Polyak and Tsybakov (1989). This kind of optimality is rather weak, and
falls short of providing a risk bound for the data-driven estimate l̂p̂(2). In the context
of regression with i.i.d. Gaussian noise, a modification of Mallows CL has recently been
investigated (see Barron, Birge, Massart (1999) for a comprehensive presentation of this
method). In these papers, a conservative penalization is used and risk bounds are ob-
tained. The main result of this section is an adaptation to the context of log-periodogram
regression of the model selection theory for regression with i.i.d. noise.

Theorem 3 Let δ ∈ [0, 1/2) and M > 0. Let F∗ be a compact subclass of L∗(M). Let
X be a stationary Gaussian process with spectral density f = edg+l

∗
with |d| ≤ δ and

l∗ ∈ F∗. Define p∗n =
√
Kn/ log(Kn) and for κ > 0, define p̂(κ) as in (3.2) where l̂p is the

log-periodogram regression estimate of the log-spectrum l = dg + l∗ based on the tapered
periodogram. There exists a constant κm > 0 (which depends only on m) and a constant
C(δ,F∗), such that

E[‖l̂p̂(κm) − l‖2
n] ≤ 4 inf

1≤p≤p∗n
{‖l −Πpl‖2

n + κm2πψ′(m)pK−1
n }+ C(δ,F∗)K−1

n .

The value of the constant κm is a crucial point to implement this method. It appears from
the proof of Theorem 3 that a suitable value is κm = {4096(1 +

√
24πψ′(m− 1/2))2 +

(
√

2π +
√

24πψ′(m− 1/2))2}/(πψ′(m)). This is far from being satisfactory, from the
theoretical as well as from the practical point of view. Nevertheless, minimax adaptive
properties of the data-driven estimate can be inferred from Theorem 3.
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Corollary 3.1 Let 0 < γ∗ < γ∗, 1/2 < β∗ < β∗, L∗ > 0, M > 0 and δ ∈ [0, 1/2[.

lim sup
n→∞

sup
β∗<β<β∗

sup
0<L<L∗

sup
|d|≤δ

sup
l∗∈A(γ,L)

n

log(n)
E[‖l̂p̂(κm) − l‖2

n] <∞,

lim sup
n→∞

sup
γ∗<β<γ∗

sup
0<L<L∗

sup
|d|≤δ

sup
l∗∈S(β,L)∩L∗(M)

n2β/(2β+1)E[‖l̂p̂(κm) − l‖2
n] <∞.

We have proved that the adaptive estimator is rate optimal, but we have failed to prove
exact adaptation up to the constant, at least in the case of the analytic class. In the weak
dependence context, this could probably be done using classical method such as the Stein
method. In the strong dependence context, it is unclear that these methods work, because
of the technical problems described after theorem 2. Hence we have chosen the model
selection approach, which on one hand is inefficient because of the constant κ, but on the
other hand is easy to prove since it only involves a standard chaining argument.

4 Conclusion

The objective of this paper was to obtain a data-driven estimator of the spectral density
f = edg+l

∗
of a Gaussian stationary process, where d ∈ (−1/2, 1/2) and l∗ belongs to a

certain functional class F∗. The case d = 0 corresponds to weak dependence and d > 0
to strong dependence. We have shown that the log-periodogram regression estimator is
rate optimal in various classes, and that its adaptive version is also rate optimal. We
have also found the exact asymptotic minimax risk when l∗ ∈ A(γ, L) for some γ > 0 and
L > 0, and shown that the log-periodogram regression estimator is quasi-efficient. Some
problems remain open.

• The exact asymptotic minimax risk must be computed for the Sobolev ellipsoids
S(β, L) when d 6= 0. The standard techniques have failed to produce this because of
the special role of the function g in the regression.

• Is exact adaptation up to the constant possible when d 6= 0 ?

In order to answer to these questions, it might be of interest to consider first the following
regression problem

ξn,t = dg(t/n) + l∗(t/n) + ηn,t, 1 ≤ t ≤ n,

where (ηn,t)1≤t≤n is a triangular array of i.i.d. r.v.’s with zero mean and known variance
and l∗ is an even smooth function on [0, 1]. The conclusions derived from this model could
probably be applied to the problem of log-periodogram regression, even though they are
not equivalent since the noise sequence (εn,k) is not asymptotically uncorrelated in the
strong dependence context.
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5 Technical material

Functionals of the periodogram (tapered or not) of a Gaussian process are functionals of
the discrete Fourier transforms which are jointly complex Gaussian vectors. Hence the
basic tools to study these functionals are covariance bounds for the discrete Fourier trans-
forms computed at the Fourier frequencies. Such bounds were first rigorously obtained
by Robinson (1995a,b) and Giraitis, Robinson and Samarov (1997,2000) in the context
of local estimation of the memory parameter d. Under the assumptions of this paper,
they were obtained by Moulines and Soulier (1999) in the non tapered case and Hurvich,
Moulines and Soulier (2000) in the tapered case. These bounds are then used in connec-
tion with general moment bounds for functions of Gaussian vectors. Such bounds have
been investigated for a long time, but their interest was revived by the study of long range
dependent Gaussian processes, in the time domain as well as in the frequency domain.
Moment bounds for functions of Gaussian variables were obtained by Taqqu (1977), and
generalizations to Gaussian vectors were obtained by Arcones (1994) and Soulier (1998).
In the context of adaptive estimation, exponential inequalities are a fondamental tool.
Such inequalities for tapered log-periodogram ordinates were first obtained by Giraitis,
Robinson and Samarov (2000) under different assumptions related to local estimation of
the memory parameter d, and adapted to the present context by Iouditsky, Moulines and
Soulier (2001) and Hurvich, Moulines and Soulier (2000). We summarize the tools used
in this paper in the following Theorem, adapted from the previous references.

Theorem 4 Let M > 0, and δ ∈ [0, 1/2). Let F∗ be a compact subclass of L∗(M). Let
(Xt)t∈Z be a stationary Gaussian process with spectral density given f = edg+l

∗
with |d| ≤ δ

and l∗ ∈ F∗. There exists a constant C(δ,F∗) such that for all 1 ≤ k < j ≤ Kn,

|cov(εk, εj)| ≤ C(δ,F∗)r2d(k, j), (5.1)

|E[εk]|+ |E[ε2k]− ψ′(m)| ≤ C(δ,F∗)rd(k, k + 1) (5.2)

with

rd(j, k) =
{

log(j)k−|d|j|d|−1 (ordinary periodogram)
k−1(j − k)−2(j/k)|d|, (tapered periodogram)

In the case of the tapered periodogram, if α, u1, · · · , uKn are real numbers verifying∑Kn
k=1 u

2
k ≤ 1 and αmax1≤k≤Kn |uk| ≤ 1/6, then

E[exp{α
Kn∑
k=1

ukεk} ≤ C(δ,F∗)e3ψ
′(m−1/2)α2

. (5.3)

5.1 Proof of Theorem 2

Let Lp denote the linear span in RK
n of the vectors g, h0, · · · , hp−1 and let Πp denote

the orthogonal projection operator on Lp. Define Yn = (Yn,1, · · · , Yn,Kn)T and εn =
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(εn,1, · · · , εn,Kn)T . With these notations, we obtain Yn = l + εn and

l̂p = ΠpYn = Πpl + Πpεn,

and, Πp being an orthogonal projector,

E[‖l̂p − l‖2
n] = ‖l −Πpl‖2

n + E[‖Πpεn‖2
n].

We now bound separately the bias and variance terms above.

Proposition 5.1 Let δ ∈ [0, 1/2) and M > 0. Let X be a stationary Gaussian process
with spectral density f = edg+l

∗
with |d| ≤ δ and l∗ ∈ L∗(M). There exists a constant

C(δ,F∗) such that for all p = 1, · · · ,Kn/6,∣∣E[‖Πpεn‖2
n]− 2πψ′(m)pK−1

n

∣∣ ≤ C(δ,F∗)p log5(Kn)K−2
n .

Proof of Proposition 5.1 For a positive integer p < Kn, denote h(p)
−1 = ‖g −

∑p−1
j=0 <

g, hj > hj‖−1
n {g −

∑p−1
j=0 < g, hj > hj}. Note that h(p)

−1 depends on n and p, but for

short, the dependence in n is omitted in the notation. Then {h(p)
−1, h0, · · · , hp−1} is an

orthonormal basis of Lp. Hence we get

‖Πpεn‖2
n =

p−1∑
j=−1

< hj , εn >
2 .

For any function u, denote |u|∞ = max1≤k≤Kn |u(yk)|. For j = −1, · · · , p − 1, applying
Theorem 4, we get∣∣E[< hj , εn >

2]− 2πψ′(m)K−1
n

∣∣ ≤ C(δ,F∗)|hj |2∞ logr(Kn)K−2
n ,

with r = 3 in the case of the ordinary periodogram and r = 1 in the case of the tapered
periodgram. By definition, for j ≥ 0, |hj |∞ ≤ π−1/2, and using the bounds obtained in
the proof of Proposition 3.1 in Iouditsky Moulines and Soulier (2001), it is easily seen that
for p ≤ Kn/6,

|h(p)
−1|∞ ≤ p1/2 log(K). (5.4)

The proof of Proposition 5.1 is then concluded by summing the previous bounds.

Proposition 5.2 For any L > 0, β > 1/2 and γ > 0,

lim sup
n→∞

sup
l∗∈S(β,L)

n
2β

2β+1 ‖l −Πpn(β,L)l‖2
n ≤ L

2
2β+1 ,

lim
n→∞

sup
l∗∈A(γ,L)

n log−1(n)‖l −Πpn(γ)l‖2
n = 0.
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Proof of proposition 5.2 Recall that l̃p = Πpl and denote l∗p =
∑∞

j=p θjhj . By defini-
tion, for any p < K, Πp(l − l∗p) = l − l∗p, hence

‖l − l̃p‖n = ‖l −Πpl‖n = ‖l∗p −Πpl
∗
p‖n ≤ ‖l∗p‖n ≤ ‖l∗p‖+

∣∣‖l∗p‖n − ‖l∗p‖
∣∣.

If h is an even function defined on [−π, π], let h̄n be the even step function defined on
[0, π] as

h̄n(x) =
Kn∑
k=1

h(yk)1{yk−1≤x<yk},

where we have defined y0 = 0. With this notation, we get ‖h‖n = ‖h̄n‖, and∣∣‖h‖n − ‖h‖
∣∣ = ∣∣‖hn‖ − ‖h‖

∣∣ ≤ ‖h̄n − h‖.

If h ∈ S(β, L) for some β > 1/2 and L > 0, then it is known that

‖h̄n − h‖2 ≤ C(β, L)n−1.

If l∗ ∈ S(β, L), this implies that

‖l − l̃p‖n ≤ ‖l∗p‖+ C(β, L)n−1 ≤ L2p−2β + C(β, L)n−1.

Setting p = [L
2

2β+1n
1

2β+1 ] yields

‖l − l̃p‖n ≤ L
2

2β+1n
−2β
2β+1 + C(β, L)n−1 = L

2
2β+1n

−2β
2β+1 (1 + o(1)).

If l∗ ∈ A(γ, L), setting p = [log(n)/2γ] yields

‖l − l̃p‖n ≤ ‖l∗p‖+ C(β, L)n−1 = O(n−1).

This concludes the proof of Proposition 5.2. Theorem 2 is a straightforward consequence
of Propositions 5.1 and 5.2.

5.2 An exponential inequality

As usual in adaptive estimation, the main tool to the proof of Theroem 3 is an exponential
inequality. In the sequel, we consider only the tapered periodogram, since the basic tool
is the exponential inequality (5.5). Recall that Z(u) =< u, εn >= 2πK−1

n

∑Kn
k=1 εn,k.

Proposition 5.3 Let δ ∈ [0, 1/2) and M > 0. Let F∗ be a compact subclass of L∗(M).
Let X be a stationary Gaussian process with spectral density f = edg+l

∗
with |d| ≤ δ and

l∗ ∈ F∗. There exists a constant C(δ,F∗) such that for all x > 0, all 1 ≤ q ≤ Kn/6 and
all u ∈ Bq, it holds that

P
(
Z(u) > σm

√
x+ rq,Knx

)
≤ C(δ,F∗)e−Knx, (5.5)

with σ2
m = 24πψ′(m− 1/2) and rq,K = 4π(q + 1)1/2 log(K).
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Proof of Proposition 5.3 Set τ2
m = 3ψ′(m − 1/2). If α < 1/6|u|∞, (5.3) obviously

implies that

E[exp{α
Kn∑
k=1

ukεk} ≤ C(δ,F∗)eτ
2
mα

2/(1−3α|u|∞).

Hence, for any α < 1/6|u|∞ and any λ > 0, it holds that

P

(
Kn∑
k=1

ukεk > λ

)
≤ C(δ,F∗)e−αλ+τ2

mα
2/(1−3α|u|∞).

It is possible to choose α = λ/(2τ2
m + 6|u|∞λ) < 1/6|u|∞, and this choice yields, for any

λ > 0,

P

(
Kn∑
k=1

ukεk > λ

)
≤ C(δ,F∗)e−λ

2/(4τ2
m+3|u|∞λ).

For x > 0, let λ = 2τm
√
x+ 3|u|∞x. The previous bound becomes

P

(
Kn∑
k=1

ukεk > 2τm
√
x+ 3|u|∞x

)
≤ C(δ,F∗)e−x.

If ‖v‖n = 1, then
∑Kn

k=1 v
2
k = Kn/2π, hence, defining u =

√
2π/Knv, we get

∑Kn
k=1 u

2
k = 1,√

2π/Kn|v|∞ = |u|∞ and Z(v) =
√

2π/Kn
∑Kn

k=1 ukεn,k. Hence

P
(
Z(v) > 2τm

√
2πx/Kn + 6π|v|∞x/Kn}

)
= P

(
Kn∑
k=1

ukεk > 2τm
√
x+ 3|u|∞x

)
≤ C(δ,F∗)e−x.

Setting y = x/Kn yields, for all v such that ‖v‖n = 1,

P
(
Z(v) > 2τm

√
2πy + 4π|v|∞y

)
≤ C(δ,F∗)e−Kny. (5.6)

Recall now that v ∈ Bq means that v is a function in Lq, i.e. v can be expressed as∑q−1
j=−1 θjhj , and such that

‖v‖n =
2π
K

K∑
k=1

v2(yk) = 1.

The orthogonality properties of the functions h(q)
−1, h0, · · · , hq−1 imply that ‖v‖2

n can also
be expressed as

‖v‖2
n =

q−1∑
j=−1

θ2
j .
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Thus, v ∈ Bq implies that
∑q−1

j=−1 θ
2
j = 1, and by Hölder inequality,

∑q−1
j=−1 |θj | ≤ (q+1)1/2.

Applying (5.4) and the fact that if Kn ≥ 2, then log(Kn) ≥ π−1/2, we now obtain

|v|∞ ≤
q−1∑
j=−1

|θj ||hj |∞ ≤ |θ−1||h(q)
−1|∞ + π−1/2

q−1∑
j=0

|θj |

≤ log(Kn)
q−1∑
j=−1

|θj | ≤ log(Kn)(q + 1)1/2.

Recalling that σ2
m = 24πψ′(m − 1/2) = 8πτ2

m and rq,K = 6π(q + 1)1/2 log(K), we get for
all v ∈ Bq,

P (Z(v) > σm
√
y + rq,Kny) ≤ P

(
Z(v) > 2τm

√
2πy + 6π|v|∞y

)
≤ C(δ,F∗)e−Kny.

This concludes the proof of Proposition 5.3.

5.3 Proof of Theorem 3

The proof of Theorem 3 is adapted from the proof of similar results in the context of
regression with i.i.d. noise (see for instance the proof of Theorem 3.1 in Baraud et al.
(1999)). For short, denote p̂ = p̂(κ), pen(p) = 2πκψ′(m)p/Kn, and l̃p = Πpl. Denote
<,> the scalar product associated to the norm ‖‖n (we omit the index n in the notation).
Since for any fixed p, l̂p is the OLS estimate of dg +

∑p−1
j=0 θjhj , by definition of p̂, for all

1 ≤ p ≤ p∗n, it holds that

‖Yn − l̂p̂‖2
n + pen(p̂) ≤ ‖Yn − l̂p‖2

n + pen(p) ≤ ‖Yn − l̃p‖2
n + pen(p).

Since Yn = l + εn, it follows that

‖l − l̂p̂‖2
n ≤ ‖l − l̃p‖2

n + 2 < εn, l̃p − l̂p̂ > +pen(p)− pen(p̂),

= ‖l − l̃p‖2
n + 2 < εn, l − lp̂ > +2 < εn, lp̂ − l̂p̂ > +2 < εn, l̃p − l > +pen(p)− pen(p̂)

≤ ‖l − l̃p‖2
n + 2‖lp̂ − l̂p̂‖nZ(û) + 2Z(l − lp̂)− 2Z(l − l̃p) + pen(p)− pen(p̂),

where we have defined for all u ∈ RKn (or any function u identified to a Kn-dimensional
vector as explained above) Z(u) =< u, εn > and w(p̂) = ‖lp̂− l̂p̂‖−1

n (lp̂− l̂p̂). Note that by
definition, ‖w(p̂)‖n = 1. For any α > 0, it holds that 2ab ≤ αa2 + α−1b2. Applying this
inequality to 2‖lp̂ − l̂p̂‖nZ(w(p̂)) yields

‖l − l̂p̂‖2
n ≤ ‖l − l̃p‖2

n + α‖lp̂ − l̂p̂‖2
n + α−1Z2(w(p̂))

+ 2Z(l − lp̂)− 2Z(l − l̃p) + pen(p)− pen(p̂)

= ‖l − l̃p‖2
n + α‖l − l̂p̂‖2

n − α‖l − lp̂‖2
n + α−1Z2(w(p̂))

+ 2Z(l − lp̂)− 2Z(l − l̃p) + pen(p)− pen(p̂),
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whence

(1− α)‖l − l̂p̂‖2
n ≤‖l − l̃p‖2

n + pen(p) + α−1Z2(w(p̂))

+ 2Z(l − lp̂)− α‖l − lp̂‖2
n − 2Z(l − l̃p)− pen(p̂). (5.7)

We will prove in Lemmas 5.1, 5.2 and 5.3 below that there exist constants C(δ,F∗), C∗
m

and D∗
m (which depend only on their arguments) such that

E[{Z2(w(p̂))− C∗
mp̂K

−1
n }+] ≤ C(δ,F∗)K−1

n ,

E
[{
Z(l − lp̂)− (α/2)‖l − lp̂‖2

n −D∗
mp̂/(αKn)

}+
]
≤ C(δ,F∗)K−1

n ,

2|E[Z(l − l̃p)]| ≤ ‖l − l̃p‖2
n + C(δ,F∗)K−1

n .

Using these bounds, Eq. (5.7) becomes

(1− α)E[‖l − l̂p̂‖2
n] ≤ ‖l − l̃p‖2

n + pen(p)

+ 2α−1E
[
Z(w(p̂))2 − C∗

mp̂K
−1
n

]
+ E

[
2Z(l − lp̂)− α‖l − lp̂‖2

n −D∗
mp̂/(αKn)

]
− 2E[Z(l − l̃p)] + E

[
−pen(p̂) + α−1(2C∗

m +D∗
m)p̂K−1

n

]
+ C(δ,F∗)K−1

n

≤ 2‖l − l̃p‖2
n + pen(p) + C(δ,F∗)K−1

n + E
[
−pen(p̂) + α−1(2C∗

m +D∗
m)p̂K−1

n

]
.

Choosing α = 1/2 and κ = (2C∗
m +D∗

m)/(πψ′(m)) yields,

E[‖l − l̂p̂‖2
n] ≤ 4‖l − l̃p‖2

n + 2pen(p) + C(δ,F∗)K−1
n .

Since the left hand side above is independent of p, the right hand side can be minimized
in p, which concludes the proof of Theorem 3.

Lemma 5.1 Let δ ∈ [0, 1/2) and M > 0. Let F∗ be a compact subclass of L∗(M). Let X
be a stationary Gaussian process with spectral density f = edg+l

∗
with |d| ≤ δ and l∗ ∈ F∗.

There exists a constant C(δ,F∗), and a constant C∗
m such that

E[{Z2(w(p̂))− C∗
mp̂K

−1
n }+] ≤ C(δ,F∗)K−1

n .

Proof of Lemma 5.1 For q ≤ Kn, let Bq denote the unit ball of Lq for the norm ‖.‖n.
Denote

Z̄(q) = sup
u∈Bq

Z(u).

Since by definition ‖lq − l̂q‖−1
n (lq − l̂q) ∈ Bq, then for all q ≤ Kn, Z(‖̂lq − l̂q‖−1

n (lq − l̂q)) ≤
Z̄(q). We now use a chaining argument sometimes referred to as the “peeling device” (cf.
Van de Geer, 2000) to obtain an exponential inequality for Z̄(q). For any δ0 ∈]0, 1] and
any k ≥ 0, set δk = δ02−k. For all k ≥ 0, Bq can be covered by a collection of at most
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(3/δk)q balls {B(u, δk), u ∈ Tk} with center u ∈ Bq and radius δk (see Van de Geer (2000),
Lemma 2.5). Any u ∈ Bq can then be expressed as

u = u0 +
∑

k≥1
(uk − uk−1),

with uk ∈ Tk and ‖x−uk‖n ≤ δk, which implies that δk ≤ ‖uk−uk−1‖n ≤ δk+δk−1 = 3δk.
Let x = (xk)k∈N be a sequence of real numbers to be precised later and define ηk =
σm

√
xk + rq,Knxk and v = (η0 +

∑
k≥1 3δkηk).

P(Z̄(q) > v) ≤ P
(
∀k ∈ N,∃uk ∈ Tk, Z(u0) +

∑
k≥1

Z(uk − uk−1) > v(η)
)

≤
∑

u∈T0

P(Z(u) > η0) +
∑

k≥1

∑
u∈Tk,v∈Tk−1,‖u−v‖n≤3δk

P(Z(u− v) > 3δkηk).

Applying Proposition 5.3, we get

∀u ∈ T0, P[Z(u) > η0] ≤ C(δ,F∗)e−Knx0 ,

and for all u ∈ Tk and w ∈ Tk−1 such that ‖u− w‖n ≤ 3δk,

P[Z(u− w) > 3δkηk] ≤ P[Z(‖u− w‖−1
n (u− w)) > ηk] ≤ C(δ,F∗)e−Knxk .

Since Tk has at most (3/δk) elements, denoting Hk = q log(3/δk), we obtain

P[Z̄(q) > v] ≤ C(δ,F∗)eH0−Knx0 + C(δ,F∗)
∑

k≥1
eHk+Hk−1−Knxk .

For ξ ∈ R+, k ∈ N∗ and q ∈ N∗, defineKnx0 = H0+q+ξ, Knxk = Hk+Hk−1+(k+1)(q+ξ).
We now obtain

P[Z̄(q) > v] ≤ C(δ,F∗)eH0−Knxk + C(δ,F∗)
∞∑
k=1

eHk+Hk−1−Knxk

≤ C(δ,F∗)
∞∑
k=0

e−k(q+ξ) = C(δ,F∗)e−(q+ξ)/(1− e−(q+ξ)) ≤ C(δ,F∗)e−(q+ξ)/(1− e−1).

We must now evaluate v in terms of k and q. By definition, Hk = q log(3/δ0) + kq log(2),
and the series

∑∞
k=1 kδk is summable, hence we can write

v(η) ≤ A(δ0)(σm
√
q/Kn + rq,Knq/Kn) +B(δ0)(σm

√
ξ/Kn + rq,Knξ/Kn),

where A(δ0) and B(δ0) can be computed explicitely and minimized with respect to δ0. For
short, we just choose δ0 = 1 and a rough evaluation yields

v(η) ≤ 32{σm
√
q/Kn + rq,Knq/Kn}+ 15{σm

√
ξ/Kn + rq,Knξ/Kn}.

By definition of rq,K , and since it is assumed that q <
√
Kn/ log(Kn), we further get

v(η) ≤ 32(σm + 1)
√
q/Kn + 15{σm

√
ξ/Kn + rq,Knξ/Kn}.
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We have obtained

P(Z̄(q) > 32(1 + σm)
√
q/Kn + 15{σm

√
ξ/Kn + rq,Knξ/Kn) ≤ C(δ,F∗)e−q−ξ. (5.8)

Denote C∗
m = 2048(1 + σm)2. By linearity and symmetry, Z̄(q) is a non negative random

variable, hence

E
[{
Z̄2(q)− C∗

mqK
−1
n

}+] =
∫ ∞

0
P
(
Z̄2(q)− C∗

mqK
−1
n > v

)
dv

=
∫ ∞

0
P
(
Z̄(q) >

√
C∗
mqK

−1
n + v

)
dv

≤
∫ ∞

0
P
(
Z̄(q) > 32(1 + σm)

√
q/Kn +

√
v/2
)
dv.

Set a = 15σm/
√
Kn and b = 15rq,Kn/Kn, and v = 4a2ξ + 4b2ξ in the last integral above.

Applying (5.8), we get

E
[{
Z̄2(q)− C∗

mqK
−1
n

}+] ≤ ∫ ∞

0
P
(
Z̄(q) > 32(1 + σm)

√
q/Kn +

√
v/2
)
dv

≤
∫ ∞

0
P
(
Z̄(q) > 32(1 + σm)

√
q/Kn + a

√
ξ + bξ

)
(4a2 + 8b2ξ)dξ

≤ C(δ,F∗)e−q
∫ ∞

0
e−ξ(4a2 + 8b2ξ)dξ.

By assumption, if q ≤ p∗n, then r2q,Kn
≤ Kn, hence we conclude that

E
[{
Z̄2(q)− C∗

mqK
−1
n

}+] ≤ C(δ,F∗)K−1
n e−q.

Summing these bounds over q yields

E[{Z2(w(p̂))− C∗
mp̂K

−1
n }+] ≤

p∗n∑
q=1

E
[{
Z̄2(q)− C∗

mqK
−1
n

}+
]

≤ C(δ,F∗)K−1
n

∞∑
q=1

e−q ≤ C(δ,F∗)K−1
n .

Lemma 5.2 Let δ ∈ [0, 1/2) and M > 0. Let F∗ be a compact subclass of L∗(M). Let X
be a stationary Gaussian process with spectral density f = edg+l

∗
with |d| ≤ δ and l∗ ∈ F∗.

There exists a constant C(δ,F∗), and a constant D∗
m which depends only on m such that

E
[{
Z(l − lp̂)− (α/2)‖l − lp̂‖2

n −D∗
mp̂/(αKn)

}+
]
≤ C(δ,F∗)K−1

n .
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Proof of Lemma 5.2 For any non negative integer q, define vq = ‖l− lq‖−1
n (l− lq). For

x > 0 and ε > 0, it holds that

P
(
Z(l − lq) > ε

‖l − lq‖2
n + x2

2x

)
≤ P

(
Z(vq) > ε

‖l − lq‖2
n + x2

2x‖l − lq‖n

)
≤ P (Z(vq) > ε) .

Choosing x = ε/α and ε = σm
√
y/2π + rq,Kny for some y > 0 and applying (5.6) yields

P
(
Z(l − lq)− (α/2)‖l − lq‖2

n > α−1(σm
√
y/2π + |vq|∞y)2

)
≤ C(δ,F∗)e−Kny,

where |v|∞ = max1≤k≤Kn |v(yk)|. If ‖v‖n = 1, then it necessarily holds that |v|∞ ≤√
Kn/2π. Choosing Kny = 2π

√
q + ξ for q ≥ 1 and ξ ≥ 0 yields

P
(
Z(l − lq)− (α/2)‖l − lq‖2

n > α−1(σm(q + ξ)1/4 +
√

2π(q + ξ))2K−1
n

)
≤ C(δ,F∗)e−

√
q+ξ,

Define now D∗
m = (

√
2π + σm)2. Since q + ξ ≥ 1, the previous inequality implies that

P
(
Z(l − lq)− (α/2)‖l − lq‖2

n > α−1D∗
m(q + ξ)K−1

n

)
≤ C(δ,F∗)e−

√
q+ξ,

Integrating and summing this bound finally yields

E
[{
Z(p̂)− (α/2)‖l − lp̂‖2

n −D∗
mp̂/(αKn)

}+]
≤ C(δ,F∗)K−1

n .

Lemma 5.3 Let δ ∈ [0, 1/2) and M > 0. Let F∗ be a compact subclass of L∗(M). Let X
be a stationary Gaussian process with spectral density f = edg+l

∗
with |d| ≤ δ and l∗ ∈ F∗.

There exists a constant C(δ,F∗),

2|E[Z(l − l̃p)]| ≤ ‖l − l̃p‖2
n + C(δ,F∗)K−1

n .

Proof of Lemma 5.3 Applying Cauchy-Schwarz inequality and the bound (5.2),

|2E[Z(p)]| = 2|E[< εn, l − lp >]| ≤ ‖l − lp‖2
n +

2π
Kn

Kn∑
k=1

E2[εn,k] ≤ ‖l − lp‖2
n + C(δ,F∗)K−1

n .

6 Proof of Theorem 1

We follow here the proof of Theorem 3.2 in Belitser (2000). Apart from Lemma 6.1 below,
there are no significant differences, so we omit most technicalities.
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Let λ be a continuously differentiable probability density function on [−1, 1], such that
λ(−1) = λ(1) = λ′(−1) = λ′(1) = 0 and with finite information :

Iλ :=
∫ 1

−1
(λ′(x))2/λ(x)dx <∞.

Let (pn)n≥1 be a non decreasing sequence of integers, such that for all n, pn ≤ K, let mj

1 ≤ j ≤ pn and R be positive real numbers and let Θn =
∏pn

j=1[−Rmj , Rmj ].

Let Λ be the probability density function on Θn defined as

Λ(x) =
pn∏
i=1

(Rmj)−1λ(Rmjxj).

Let Θ denote either S(β, L) or A(γ, L) and rn = inf θ̂n
supθ∈Θ Eθ[‖θ − θ̂‖2]. In the sequel,

we identify a sequence θ = (thetaj)j≥0 with the function
∑

j≥0 θjhj . The orthonormality
properties of the hj ’s yield that for any

‖θ − θ′‖2 =
∞∑
j=0

(θj − θ̂j)2,

and if θj = θ′j = 0 if j ≥ Kn, then it also holds that ‖θ − θ′‖2
n =

∑∞
j=0(θj − θ̂j)2. Hence

we have

rn ≥ inf
θ̂n

∫
Θ

∞∑
j=0

Eθ(θ̂j − θj)2Λ(dθ) = inf
θ̂n∈Θn

∫
Θ

∞∑
j=0

Eθ(θ̂j − θj)2Λ(dθ)

≥ inf
θ̂n∈Θn

∫
Θn

∞∑
j=0

Eθ(θ̂j − θj)2Λ(dθ)− sup
θ̂n∈Θn

∫
Θn\Θ

∞∑
j=0

Eθ(θ̂j − θj)2Λ(dθ)

= inf
θ̂n∈Θn

pn∑
j=1

E(θ̂j − θj)2 − 4R2Λ(Θn \Θ)
pn∑
j=1

m2
j ,

where the infimum inf θ̂ is taken over all possible estimates of θ based on a realization
{X1, · · · , Xn} of a stationary Gaussian process (Xt)t∈Z with spectral density elθ , Eθ de-
notes the distribution of this process, and E denotes the joint ditribution of (θ,X) when
the distribution of θ is Λ.

Applying the Van Trees inequality (cf. Gill et Levit (1995)), we get

E(θ̂j − θj)2 ≥
1

E[In(θj)] +m−2
j Iλ

,

where In(θj) is the j-th diagonal element of the Fisher information matrix of the distri-
bution of the vector (X1, · · · , Xn).

The only difference with the proof of Theorem 3.2 of Belitser (2000) lies in the evalu-
ation of In(θj). We state it as a Lemma whose proof is postponed.
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Lemma 6.1 Assume that there exists a integer s such that limn→∞ n2/spn
∑pn

j=1m
2
j = 0.

Then, uniformly with respect to θ ∈ Θn and 1 ≤ j ≤ pn, it holds that

In(θj) = (4π)−1n(1 + o(1)).

Using this bound, we now obtain

rn ≥
4π
n

pn∑
j=1

m2
j

m2
j (1 + o(1)) + 4πIλ/n

− 4R2Λ(Θn \Θ)
pn∑
j=1

m2
j . (6.1)

If Θ = A(γ, L), then assumption F2 of Theorem 3.2 of Belitser (2000) holds. Hence we
can choose R = 1, pn = {log(n)− log log(n)}/2γ and

m2
j =

4π(1− eγj/
√
n)√

neγj
, 1 ≤ j ≤ pn.

Then the assumption of Lemma 6.1 holds, Θn ⊂ Θ for large enough n and

4π
n

pn∑
j=1

m2
j

m2
j (1 + o(1)) + 4πIλ/n

=
4πpn
n

− 4π
n

pn∑
j=1

4πIλ
nm2

j (1 + o(1)) + 4πIλ
=

4πpn
n

+O(1/n).

Altogether, this yields rn = 2π log(n)
γn (1 + o(1)).

If Θ = S(β, L), tehn the assumption of Lemma 6.1 holds. Assumption F1 of The-
orem 3.2 of Belitser (2000) also holds, and this allows to choose pn = {L2(β + 1)(2β +
1)n/(4πβ)}

1
2β+1 ,

m2
j =

4π(1− p−βn jβ)

np−βn jβ
, 1 ≤ j ≤ pn,

and for any ε > 0, we can choose R = Rε and the measure λ in such a way that Iλ ≤ 1+ ε
and

Λ(Θn \Θ)
pn∑
j=1

m2
j = o(n−2β/(2β+1)),

(cf. Belitser (2000), pp. 71-72 for details). Similar computations also yields that

4π
n

pn∑
j=1

m2
j

m2
j (1 + o(1)) + 4πIλ/n

≥ 4π
n(1 + ε)

pn∑
j=1

m2
j

m2
j (1 + o(1)) + 4π/n

≥ 4π
n(1 + ε)

pn∑
j=1

1− p−βn jβ

1 + o(1)
=
P(β, L)
1 + ε

n−2β/(2β+1)(1 + o(1)).

Since ε is arbitrary, we conclude that rn ≥ P(β, L)n−2β/(2β+1)(1 + o(1)). This concludes
the proof of Theorem 1.
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Proof of Lemma 6.1 Let Σ(θ) denote the covariance matrix of the Gaussian vector
(X1, · · · , Xn)T . The Fisher information matrix In(θ) has diagonal elements In(θj) given
by

In(θj) =
1
2
tr
{(

Σ(θ)−1∂θj
Σ(θ)

)2}
.

For a given integrable function φ, let Tn(φ) denote the n-th order Toeplitz matrix of φ,
with entries

Tn(φ)u,v =
∫ π

−π
φ(x)ei(u−v)xdx, 1 ≤ u, v ≤ n.

Let Jn denote the n-dimensional identity matrix and hθ = eθ−1−θ. With these notations,
we can write

Σ(θ) = Tn(eθ) = Tn(1 + θ + hθ) = 2πJn + Tn(θ) + Tn(hθ).

Recall that the spectral radius ρ(A) of a symmetric matrix A = (Ai,j)1≤i,j≤q is the greatest
eigenvalue of AAT , and that it is bounded by max1≤i≤q

∑q
j=1 |Ai,j |. We will also use the

following properties : for all symmetrix matrices A and B, it holds that

ρ(AB) ≤ ρ(A)ρ(B), tr(AB) = tr(BA), |tr(AB2) ≤ ρ(A)tr(B2). (6.2)

Let ρn(θ) denote the spectral radius of Wn(θ) := (2π)−1Σ(θ)− Jn = (2π)−1Tn(eθ − 1). If
ρn(θ) < 1, then Σ−1(θ) = (2π)−1(Jn + Vn(θ)), with Vn(θ) =

∑∞
k=1(−1)kW k

n (θ) and the
spectral radius of Vn(θ) verifies ρ(Vn(θ)) ≤ ρn(θ)/(1− ρn(θ)). Hence, using the properties
(6.2)

4π2tr
{
(Σ−1(θ)∂θj

Σ(θ))2
}

= tr
{
(∂θj

Σ(θ))2
}

+ 2tr
{
Vθ(∂θj

Σ(θ))2
}

+ tr
{
V 2
θ (∂θj

Σ(θ))2
}

= tr
{
(∂θj

Σ(θ))2
}

(1 +O(ρn(θ))). (6.3)

Note now that ∂θj
Σ(θ) = ∂θj

Tn(eθ) = Tn(hjeθ). Applying the Parseval-Bessel Theorem,
we get

tr(T 2
n(hjeθ)) = 2πn(1 + o(1))

∫ π

−π
h2
j (x)e

2θ(x)dx = n(1 + o(1))
∫ π

−π
e2θ(x)dx.

By definition, if θ ∈ Θn, then

‖θ‖∞ ≤ π−1/2
pn∑
j=1

mj = o(1),

uniformly with respect to θ ∈ Θn under the assumptions of Lemma 6.1. Hence limn→∞
∫ π
−π e

2θ(x)dx =
2π, and ∂θj

Σ(θ) = 2πn(1 + o(1)).

We must now prove that limn→∞ ρn(θ) = 0, uniformly with respect to θ ∈ Θn. Denote
γk(θ) = (2π)−1

∫ π
−π(e

θ − 1)eikxdx. With this notation, we get

ρn(θ) ≤
n−1∑
k=0

|γk(θ)|.
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Let s ≥ 3 be an integer. A Taylor expansion of the function x → (ex − 1) up to the s-th
order yields

γk(θ) =
√
πθk +

s−1∑
r=2

1
2πr!

∫ π

−π
θr(x)eikxdx+

1
2πs!

∫ π

−π
rθ,s(x)eikxdx,

where |rθ,s| ≤ |θ|se|θ|. If θ ∈ Θn, then

‖θ‖∞ ≤ π−1/2
pn∑
j=1

mj ≤ p1/2
n ηn,

where we have defined η2
n :=

∑pn

j=1m
2
j . Also, for r ≥ 1, θr is a trigonometric polynomial of

degree at most rpn, thus
∫ π
−π θ

r(x)eikxdx = 0 if k > rpn. Let C denote a generic numerical
constant whose value can change upon each appearance. By the Parseval-Bessel inequality,

n∑
k=1

∣∣∣∣∫ π

−π
θr(x)eikxdx

∣∣∣∣ ≤ Cp1/2
n ‖θ2r‖ ≤ Cp1/2

n εr−1
n ‖θ2‖ ≤ Cp1/2

n ηn.

The last term in the expansion is bounded by

n∑
k=1

∣∣∣∣∫ π

−π
rθ,s(x)eikxdx

∣∣∣∣ ≤ Cn

pn∑
j=1

mj ≤ Cnps/2n ηsn

Altogether, we get,
n−1∑
k=0

|γk(θ)| ≤ Cp1/2
n ηn + Cnps/2n ηsn = o(1),

uniformly with respect to θ ∈ Θn under the assumptions of Lemma 6.1. This concludes
the proof of Lemma 6.1.
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