THE CENTRAL LIMIT THEOREM FOR STATIONARY ASSOCIATED SEQUENCES

S. LOUHICHI (Paris) and Ph. SOULIER (Evry)

Abstract. We study the problem of convergence in distribution of a suitably normalized sum of stationary associated random variables. We focus on the infinite variance case. New results are announced.

1. Introduction

Let $(X_n)_{n\in\mathbb{N}}$ be a stationary sequence of associated random variables i.e.

$$Cov (f(X_1, \ldots, X_n), g(X_1, \ldots, X_n)) \ge 0,$$

for all coordinatewise non-decreasing functions f, g and all $n \in \mathbb{N}$. We refer to Esary et al. [11] for this notion as well as for its main properties. Association describes the positive dependence structure of several models from reliability theory (cf. Barlow and Proschan [2]), statistical physics (cf. Newman [21]) and percolation theory (cf. Cox and Grimmett [7]). Let $S_n = X_1 + \ldots + X_n$. The purpose of this paper is to give sufficient conditions ensuring the existence of numerical sequences A_n , B_n for which the quantity

$$\frac{S_n - B_n}{A_n}$$

converges in distribution. We first review the existing results.

Independent observations. For i.i.d. sequences, which are also associated (cf. (\mathcal{P}_5)) of Esary et al. [11]), the above mentioned problem is completely solved and the limit distribution of (1) is Gaussian or a non-Gaussian stable law (cf. Feller [12] or Araujo and Giné [1], Ch. 2). The condition

(2)
$$H: x \to \mathbf{E}(X_1^2 \mathbf{1}_{|X_1| \le x})$$
 is a slowly varying function,

 $[\]it Key\ words\ and\ phrases:$ associated sequences, characteristic function, central limit theorem, stable limit theorem, infinite variance.

 $^{{\}it 1991~Mathematics~Subject~Classification:~60} Fo 5.$

is necessary and sufficient for the convergence in distribution to a nondegenerate normal law of the quantity in (1) with $B_n = n\mathbf{E}(X_1\mathbf{1}_{|X_1| \leq t_n})$ and $A_n = \sqrt{nH(t_n)}$, where the truncation sequence (t_n) is defined by

(3)
$$t_n = \sup \left\{ x > 0, \ \frac{H(x)}{x^2} \ge \frac{1}{n} \right\}$$
 i.e. $\frac{nH(t_n)}{t_n^2} \to 1$ as $n \to +\infty$.

Now the following two conditions:

(4) $H: x \to \mathbf{E}(X_1^2 \mathbf{1}_{|X_1| \le x})$ is regularly varying of order $2 - \alpha$,

for some $\alpha \in]0,2[$ and

(5)
$$\frac{\mathbf{P}(X_1 > x)}{\mathbf{P}(|X_1| > x)} \to \frac{c_1}{c_1 + c_2}, \quad \frac{\mathbf{P}(X_1 \leq -x)}{\mathbf{P}(|X_1| > x)} \to \frac{c_2}{c_1 + c_2}, \quad \text{as} \quad x \to +\infty$$

where $c_1 \ge 0$, $c_2 \ge 0$, $c_1 + c_2 > 0$, are necessary and sufficient for the convergence in distribution to the stable law $c \operatorname{Pois} (\mu(c_1, c_2, \alpha))$. In that case, the normalizing sequence (A_n) is such that

(6)
$$n\frac{H(A_n)}{A_n^2} \to 1 \quad \text{as} \quad n \to +\infty,$$

while the centering sequence is given by $B_n = n\mathbf{E}(X_1\mathbf{1}_{|X_1| \leq \tau A_n})$, for some $\tau > 0$.

Dependent observations. For strong mixing sequences with finite variance, convergence to the normal law may hold with the normalization $A_n = \sqrt{\frac{\pi}{2}} \mathbf{E} |S_n|$ rather than $\sqrt{\operatorname{Var} S_n}$ (Merlevède and Peligrad [20], Dehling et al. [10]). We refer also to Peligrad [24], Berkes and Philipp [4] for analogous problems under ϕ -mixing condition. Bradley [6] proved a central limit theorem for ρ -mixing sequences with infinite variance. Lin [17] proved it under m-dependence.

Associated observations. Stationary associated sequences $(X_n)_{n \in \mathbb{N}}$ with finite variance and fulfilling

(7)
$$L_1(n) := \mathbf{E}(X_1^2) + 2\sum_{r=2}^n \text{Cov}(X_1, X_r) \to \sigma^2 < +\infty \text{ as } n \to +\infty,$$

satisfy

(8)
$$\frac{S_n - B_n}{A_n} \Rightarrow \mathcal{N}(0, 1),$$

where \Rightarrow denotes convergence in distribution, $\mathcal{N}(0,1)$ is the standard Gaussian distribution, $B_n = n\mathbf{E}(X_1)$ and $A_n = \sqrt{n\sigma^2}$ (Newman and Wright [22]). Herrndorf [13] provides a sequence of centered stationary associated random variables with finite variance, such that $L_1(n) \sim \log n$ but (8) does not hold for the standardization $A_n = \sqrt{nL_1(n)}$. At the end of his paper, he conjectures that possibly there exists a different standardization which yields asymptotic normality. Recently, Lewis [16] gives a necessary and sufficient condition ensuring (8) with the normalization $A_n = \sqrt{nL_1(n)}$ when $L_1(n)$ is a slowly varying function. As far as we know, in the infinite variance setting, there is only one result concerning the convergence of (1) to the Gaussian law (see Matula [19]): the convergence (8) holds with $B_n = 0$ and for some sequence (A_n) if the centered associated sequence (X_n) fulfills $\mathcal{L}(X_1) \in \mathcal{D}(A_n)$ and

(9)
$$\lim_{n \to +\infty} \frac{1}{A_n^2} \sum_{1 \leq k < m \leq n} \operatorname{Cov}(X_k, X_m) = 0,$$

as soon as $\mathbf{E}|X_kX_m| < +\infty$, for $k \neq m$. Here $\mathcal{D}(A_n)$ denotes the domain of attraction of the standard normal law.

Dabrowski and Jakubowski [8] were the first to study the problem of convergence to a non-Gaussian stable limit under association. Let us recall briefly their result: if the stationary associated sequence (X_i) belongs to the domain of strict normal attraction of a jointly strictly α -stable process (Y_i) , $\alpha \in]0,2[$ (see the definition in Dabrowski and Jakubowski [8], pp. 4–5; this notion depends not only on α , but also on a stable process (Y_i) , this is a terminology differing from the usage in the i.i.d. case) and if for some A > 0

(10)
$$\sum_{k=2}^{\infty} I_{\alpha}^{A}(X_{1}, X_{k}) < +\infty,$$

where

$$I_{\alpha}^{A}(X_{i}, X_{j}) = \sup_{a \geq A} a^{\alpha - 2} \int_{-a}^{a} \int_{-a}^{a} \operatorname{Cov}\left(\mathbf{1}_{X_{i} \leq x}, \mathbf{1}_{X_{j} \leq y}\right) dx dy,$$

then $S_n/n^{1/\alpha}$ converges in distribution to a strictly α -stable law. The more general situation i.e. when the limit law is $c \operatorname{Pois}(\mu(c_1, c_2, \alpha))$ was studied by Jakubowski [15].

In this paper, we intend to discuss the convergence in distribution of a suitably normalized sum of associated r.v.'s under one of the conditions

$$\mathbf{E}(X_1^2) \left\{ \begin{array}{ll} <+\infty & \text{and} & \displaystyle\sum_{n=2}^{+\infty} \operatorname{Cov}\left(X_1,X_n\right) = +\infty, \\ \\ =+\infty & \text{and convergence to the normal law,} \\ \\ =+\infty & \text{and} & \displaystyle\sum_{k=2}^{\infty} I_{\alpha}^A(X_1,X_k) = +\infty. \end{array} \right.$$

The rest of the paper is organized as follows. In Section 2, we make several extensions to the above results. Theorems 1 and 2 below unify the Gaussian and the non-Gaussian cases: the limit distribution depends on the behavior of the marginal law, more generally on the law of a partial sum S_p i.e. if it belongs to the domain of attraction of a Gaussian or a non-Gaussian stable law. In Section 3, we prove the results. With additional technical details, the proofs involve essentially Newman's lemma [cf. Lemma 1]. An appendix is dedicated to the proofs of some intermediate results.

2. Main results

Define, for $x > 0, y \in \mathbf{R}$,

$$f_x(y) = (x \wedge y) \vee (-x).$$

The function f_x is non-decreasing and will play an important role in the sequel, since its monotonicity preserves association (cf. (\mathcal{P}_4) of Esary et al. [11]). The dependence structure of an associated sequence (X_n) is conveniently described by the truncated covariance function, defined for x > 0 by

$$G_i(x) = \operatorname{Cov}\left(f_x(X_1), f_x(X_i)\right).$$

The association of the sequence (X_n) implies that the function $x \to G_i(x)$ is positive and non-decreasing with respect to x for every fixed i. Moreover, in the finite variance case

$$G_i(x) \leq G_i(+\infty) = \text{Cov}(X_1, X_i).$$

Instead of the truncated moment H defined in (2), we consider

$$h(x) := \mathbf{E}(f_x^2(X_1)) = \mathbf{E}(x \wedge |X_1|)^2 = 2 \int_0^x t \mathbf{P}(|X_1| > t) dt.$$

Clearly

$$h(x) = H(x) + x^2 \mathbf{P}(|X_1| > x).$$

The slowly varying property of H is equivalent to that of h and in such a case $h \sim H$ (cf. Lemma 3 in Rosalsky [25]). But from a technical point of view, working with the function h is much easier than with H. We can now state our main results.

THEOREM 1. Let $(X_n)_{n\in\mathbb{N}}$ be a stationary sequence of associated r.v.'s. Assume that there exist sequences T_n , A_n , $p_n \leq n$, all tending to infinity with n, and a characteristic function ϕ such that the conditions

(11)
$$\lim_{n \to +\infty} n \mathbf{P}(|X_1| \ge \varepsilon T_n) = 0,$$

(12)
$$\lim_{n \to +\infty} \left\{ \mathbf{E} \exp \left(it \frac{S_{p_n} - p_n \mathbf{E} \left(f_{\varepsilon T_n} (X_1) \right)}{A_n} \right) \right\}^{[n/p_n]} = \phi(t),$$

(13)
$$\lim_{n \to +\infty} \frac{1}{A_n^2} \left(\operatorname{Var} \bar{S}_n - \left[\frac{n}{p_n} \right] \operatorname{Var} \bar{S}_{p_n} \right) = 0,$$

hold for some $\varepsilon > 0$, where $\bar{S}_m = \sum_{i=1}^m \left[f_{\varepsilon T_n}(X_i) - \mathbf{E} \left(f_{\varepsilon T_n}(X_i) \right) \right]$ and square bracket denotes integer part. Then the characteristic function of $A_n^{-1} \left(S_n - n \mathbf{E} \left(f_{\varepsilon T_n}(X_1) \right) \right)$ converges to ϕ .

REMARKS. 1. If all the assumptions of Theorem 1 hold except (12) and (13) which are replaced by

$$\lim_{p \to +\infty} \limsup_{n \to +\infty} \left| \left\{ \mathbf{E} \exp \left(it \frac{S_p - p \mathbf{E} \left(f_{\varepsilon T_n}(X_1) \right)}{A_n} \right) \right\}^{[n/p]} - \phi(t) \right| = 0,$$

$$\lim_{p \to +\infty} \limsup_{n \to +\infty} \frac{1}{A_n^2} \left(\operatorname{Var} \bar{S}_n - \left[\frac{n}{p} \right] \operatorname{Var} \bar{S}_p \right) = 0,$$

then the conclusion of Theorem 1 still holds and Newman's, Dabrowski and Jakubowski's central limit theorems follow from Theorem 1.

2. Condition (13) is close to Condition B of Jakubowski [15].

If Condition (12) of Theorem 1 holds only for some constant sequence $p_n =: p$, then we obtain

Theorem 2. Let $(X_n)_{n\in\mathbb{N}}$ be a stationary sequence of associated r.v.'s. Suppose that there exist a positive integer p, two sequences T_n and A_n both

tending to infinity with n, a characteristic function ϕ_p such that, for some $\varepsilon > 0$, the limits

(14)
$$\lim_{n \to +\infty} \left\{ \mathbf{E} \exp it \left(\frac{S_p - p \mathbf{E} (f_{\varepsilon T_n}(X_1))}{A_n} \right) \right\}^{[n/p]} = \phi_p(t)$$

and

(15)
$$\lim_{n \to \infty} \frac{1}{A_n^2} \operatorname{Var} \left(f_{\varepsilon T_n}(X_1) \right) = 0, \quad \lim_{n \to \infty} \frac{n}{A_n^2} \sum_{i=2}^n G_i(\varepsilon T_n) = 0$$

together with (11) hold. Then the characteristic function of

$$A_n^{-1} \left(S_n - n \mathbf{E} \left(f_{\varepsilon T_n} \left(X_1 \right) \right) \right)$$

converges to ϕ_p .

Remarks. 1. We suppose that the requirements of Theorem 2 hold, but instead of (11) and (14) we assume

(16)
$$\lim_{a \to +\infty} \limsup_{n \to +\infty} n \mathbf{P}(|X_1| \ge aT_n) = 0,$$

and

(17)
$$\lim_{a \to +\infty} \limsup_{n \to +\infty} \left| \left\{ \mathbf{E} \exp it \left(\frac{S_p - p \mathbf{E} \left(f_{aT_n} (X_1) \right)}{A_n} \right) \right\}^{[n/p]} - \phi_p(t) \right| = 0.$$

Then we deduce, arguing as in the proof of Theorem 2, that

$$\lim_{a \to +\infty} \limsup_{n \to +\infty} \left| \left\{ \mathbf{E} \exp it \left(\frac{S_n - n \mathbf{E} (f_{aT_n}(X_1))}{A_n} \right) \right\} - \phi_p(t) \right| = 0.$$

- 2. Let us note that, in the case when p = 1, it is not necessary to suppose the first limit in (15) (we refer the reader to the proof of Theorem 2).
- 3. As noticed by Jakubowski [15], there exists a 1-dependent associated sequence strictly stationary for which (14) holds with p=1 but not with p=2.
- 4. Rates of convergence in the weak law of large numbers. Suppose here that $\mathbf{E}X_1=0$ and that $\mathbf{E}|X_1|^q<+\infty$ for some $q\in[1,2[$. Then it is not hard to deduce that $\lim_{a\to+\infty}\lim_{n\to+\infty}n^{1-1/q}\mathbf{E}\left(f_{an^{1/q}}(X_1)\right)=0$, that Condition

(16) and the first limit in (15) hold with $T_n = A_n = n^{1/q}$. We conclude, using the Marcinkiewicz-Zygmund strong laws for independent sequences (cf. Baum and Katz [3]) and some standard estimations, that (17) holds with p = 1, $\phi_1(t) = 1$ and $A_n = n^{1/q}$. In that case, the second limit in Condition (15) can be written as

(18)
$$\lim_{n \to \infty} \frac{1}{n^{2/q-1}} \sum_{i=2}^{n} G_i(\varepsilon n^{1/q}) = 0,$$

and leads to rates of convergence in the weak law of large numbers for the stationary associated sequence (X_n) (recall that

$$\lim_{a \to +\infty} \lim_{n \to +\infty} n^{1-1/q} \mathbf{E} \left(f_{an^{1/q}}(X_1) \right) = 0.$$

5. Association and m-dependence. If the associated sequence is m-dependent, then the conditions of Theorem 2 (with p=1) are close to that of Lin [17].

In the sequel, we discuss special cases of Theorems 1 and 2.

2.1. $\mathbf{E}X_1^2 < +\infty$ and $\sum_{j=2}^{+\infty} \operatorname{Cov}(X_1, X_j) = +\infty$. In this situation the normalization A_n may or not be $\sqrt{\operatorname{Var}(S_n)}$.

PROPOSITION 1. Let $(X_n)_{n\in\mathbb{N}}$ be a stationary sequence of associated and centered r.v.'s fulfilling $\mathbf{E}(X_1^2)<\infty$ and $\operatorname{Var} S_n=nL(n)$ where L is a slowly varying function. Let (A_n) and (p_n) be two sequences tending to infinity with n such that

(19)
$$\liminf_{n \to +\infty} \frac{A_n^2}{\operatorname{Var}(S_n)} > 0,$$

(20)
$$\lim_{n \to +\infty} \frac{n}{p_n} = +\infty, \quad \lim_{n \to +\infty} \frac{L(p_n)}{L(n)} = 1,$$

(21)
$$\lim_{n \to +\infty} \left\{ \mathbf{E} \left(\exp it \frac{S_{p_n}}{A_n} \right) \right\}^{[n/p_n]} = \exp \left(-\frac{t^2}{2} \right), \quad \text{for any} \quad t \in \mathbf{R}.$$

Then (8) holds for this sequence (A_n) and for $B_n = 0$.

REMARKS. 1. Let us explain how to deduce Proposition 1 from Theorem 1. We deduce from $\mathbf{E}(X_1) = 0$, $\mathbf{E}(X_1^2) < +\infty$ and the Chebyshev inequality that

(22)
$$\frac{n}{A_n} \left| \mathbf{E} \left(f_{\varepsilon T_n}(X_1) \right) \right| \leq \frac{n}{\varepsilon T_n A_n} \mathbf{E} X_1^2.$$

Choosing T_n to grow very rapidly, Condition (11) together with

(23)
$$\lim_{n \to +\infty} \frac{n}{A_n} \left| \mathbf{E} \left(f_{\varepsilon T_n}(X_1) \right) \right| = 0$$

will clearly hold and the order of magnitude of $\operatorname{Var} \bar{S}_n$ and $\operatorname{Var} \bar{S}_{p_n}$ will be the same as that of $\operatorname{Var} S_n$ and $\operatorname{Var} S_{p_n}$ and thus (13) will follow from (19) and (20). Condition (12) with $\phi(t) = e^{-t^2/2}$ follows from (23) and (21). Those facts together with (23) prove Proposition 1 from Theorem 1.

2. The situation when $A_n^2 = \text{Var}(S_n)$ was studied by Lewis [16]: if the conditions in the first sentence of Proposition 1 hold, then the following two statements are equivalent:

$$\left(\frac{S_n^2}{\operatorname{Var}(S_n)}\right)_{n\geq 1}$$
 is uniformly integrable $\Leftrightarrow \frac{S_n}{\sqrt{\operatorname{Var}(S_n)}} \Rightarrow \mathcal{N}(0,1).$

The first part of the equivalence is also deduced from Proposition 1 via the Lindeberg's theorem which guarantees Condition (21) (cf. Theorem 7.2 of Billingsley [5]).

3. Let us note that Proposition 1 remains true if Conditions (21) and (19) are fulfilled for n belonging to an infinite set of integers Q. In that case the convergence in distribution of $\frac{S_n}{A_n}$ holds when $n \in Q$ and $n \to +\infty$.

We now give sufficient conditions for the normalizing sequence to be equal to $\sqrt{\frac{\pi}{2}}\mathbf{E}|S_n|$. Note that $\sqrt{\frac{2}{\pi}}=\mathbf{E}|Z|$, where Z is a r.v.'s distributed as the standard Gaussian law.

COROLLARY 1. Let $(X_n)_{n\in\mathbb{N}}$ be a stationary sequence of associated and centered r.v.'s. Suppose that $\mathbf{E}(X_1^2)<\infty$, that $\operatorname{Var} S_n=nL(n)$ where L is a slowly varying function and that (19) holds with $A_n=\sqrt{\frac{\pi}{2}}\mathbf{E}|S_n|$. If moreover

(24)
$$\mathbf{E}|S_n| = \sqrt{n}\tilde{L}(n),$$

where \tilde{L} is a slowly varying function, then (8) holds with $B_n = 0$ and $A_n = \sqrt{\frac{\pi}{2}} \mathbf{E} |S_n|$.

We prove Corollary 1 in Section 3. Let us note that it follows from Proposition 1 and its proof by adapting Dehling et al. [10] methods.

2.2. $\mathbf{E}X_1^2 = +\infty$ and convergence to the normal law. If Condition (2) holds, then Conditions (11), (14) and the first limit in (15) are fulfilled with $T_n = A_n = t_n$, p = 1, $\varepsilon = 1$, where t_n is defined by (3) (cf. Lemma 3.1 of Bradley [6] for some limits properties of this truncate sequence (t_n)). Theorem 2 yields then:

PROPOSITION 2. Let $(X_n)_{n\in\mathbb{N}}$ be a stationary sequence of associated r.v.'s. Suppose that $\mathbf{E}(X_1^2) = +\infty$ and that

(25)
$$h: x \to \mathbf{E}(x \wedge |X_1|)^2$$
 is a slowly varying function.

If moreover

(26)
$$\lim_{n \to \infty} \frac{1}{h(t_n)} \sum_{i=2}^n G_i(t_n) = 0,$$

then

$$\frac{S_n - n\mathbf{E}\left(X_1\mathbf{1}_{|X_1| \le t_n}\right)}{\sqrt{nh(t_n)}} \Rightarrow \mathcal{N}(0, 1),$$

where t_n is defined as in (3).

REMARKS. 1. Since $G_i(t_n) \leq \text{Cov}(X_1, X_i)$, Matula's result is then deduced from the previous proposition.

- 2. An analogue of Proposition 2 can also be deduced under Conditions (4), (5), (15) with $T_n = A_n$. The normalized and centered sequences are defined as in (6). The limit law is in that case c Pois $(\mu(c_1, c_2, \alpha))$.
- 3. Let $(Z_i)_{i\in\mathbb{N}}$ be a sequence of independent and identically distributed (i.i.d.) random variables, such that H_{Z_1} is a slowly varying function (for a random variable X_1 , H_{X_1} denotes the truncate moment defined by (2)). The requirements of Proposition 2 are fulfilled by the stationary 2-dependent sequence $(X_i) := (Z_i Z_{i+1})_i$. In fact it follows from Theorem 1 of Maller [18] that $H_{Z_1 Z_2}$ is a slowly varying function as soon as H_{Z_1} fulfills this property. Condition (25) is thus satisfied by $X_1 = Z_1 Z_2$. Since $G_i(x) = 0$, for $i \geq 3$, Condition (26) is thus reduced to

(27)
$$\lim_{n \to +\infty} \frac{n}{\beta_n^2} G_2(\beta_n) = 0,$$

where the normalizing coefficients β_n fulfill

(28)
$$\lim_{n \to +\infty} n\beta_n^{-2} \mathbf{E} \left(Z_1^2 Z_2^2 \mathbf{1}_{|Z_1 Z_2| \leq \beta_n} \right) = 1, \quad \lim_{n \to +\infty} n \mathbf{P} \left(|Z_1 Z_2| \geq \beta_n \right) = 0.$$

Now some standard estimations based on (28) prove that Condition (27) is equivalent to

(29)
$$\lim_{n \to \infty} \frac{n}{\beta_n^2} \mathbf{E} \left(Z_1 Z_2 \mathbf{1}_{|Z_1 Z_2| \leq \beta_n} Z_2 Z_3 \mathbf{1}_{|Z_2 Z_3| \leq \beta_n} \right) = 0.$$

The last limit is proved by Davis and Resnick [9] (cf. the proof of their Condition (2.5)).

Now, the association property of the sequence (X_n) can be deduced if one supposes that the i.i.d. sequence (Z_i) is of positive random variables. In fact in this situation X_i can be written as a non-decreasing function of the associated vector (Z_i, Z_{i+1}) and the conclusion follows from properties (\mathcal{P}_4) and (\mathcal{P}_5) of Esary et al. [11].

2.3. $\mathbf{E}X_1^2 = +\infty$ and $\sum_{j=2}^{+\infty} I_{\alpha}^A(X_1, X_j) = +\infty$. In this section, we apply Theorem 2 (cf. also Remark 1 below Theorem 2) with p=1. In this situation, convergence in distribution to a non-degenerate stable law may hold:

COROLLARY 2. Let $(X_n)_{n\in\mathbb{N}}$ be a stationary sequence of centered associated r.v.'s. Suppose that $\mathcal{L}(X_1)\in\tilde{\mathcal{D}}(n^{1/\alpha})$, where $\tilde{\mathcal{D}}(n^{1/\alpha})$ denotes the domain of attraction of a non-degenerate α -stable law μ_{α} ($\alpha\in]1,2[$). If, for some $\varepsilon>0$

$$\lim_{n \to +\infty} n^{1-2/\alpha} \sum_{i=1}^{n} G_i(\varepsilon n^{1/\alpha}) = 0,$$

then

$$\frac{S_n}{n^{1/\alpha}} \Longrightarrow \mu_{\alpha}.$$

REMARKS. 1. Let us give more details about the proof of Corollary 2. We apply Theorem 2 (cf. also Remark 1 below Theorem 2) with p=1, $A_n=T_n=n^{1/\alpha}$. Since $\mathcal{L}(X_1)$ is in the domain of attraction of a non-degenerate α -stable law, there is a constant C such that $\mathbf{P}\left(|X_1|>x\right) \leq Cx^{-\alpha}$. Hence Condition (16) and the first limit in (15) are satisfied with $T_n=A_n=n^{1/\alpha}$. It is not hard to check that the requirements of Theorem 2 are satisfied from the assumptions of Corollary 2. Let us just precise the limiting behavior of $B_n/A_n=n^{1-1/\alpha}\mathbf{E}f_{aT_n}(X_1)$. Some standard estimations based on $\mathbf{E}(X_1)=0$ and $\mathbf{P}\left(|X_1|>x\right) \leq Cx^{-\alpha}$ prove that $\lim_{a\to +\infty}\lim_{n\to +\infty}B_n/A_n=0$.

2. Suppose that there exists a positive function $L: \lim_{x\to +\infty} L(x) = 0$ and a sequence $(\psi_i)_i$ for which $G_i(x) \leq \psi_i x^{2-\alpha} L(x)$. If

$$\lim_{n \to +\infty} L(n^{1/\alpha}) \sum_{i=1}^{n} \psi_i = 0,$$

then a stable limit theorem holds, while it is possible to have

$$\sum_{j=2}^{+\infty} I_{\alpha}^{A}(X_1, X_j) = +\infty.$$

This situation can occur if one supposes that $\mathbf{P}(|X_1| \geq x) \sim x^{-\alpha}L(x)$ where L is a slowly varying function, non-increasing, locally bounded in $[0, +\infty[$, fulfilling $\lim_{x\to +\infty} L(x) = 0$. In such a case there exists a positive constant c_{α} depending only on α such that

$$G_i(v) \leq c_{\alpha} L(v) v^{2-\alpha}$$
.

Let us justify the last bound. Clearly $G_i(v) \leq \operatorname{Var}(f_v(X_1)) = G_1(v)$. Now write as in Proposition 2.10 of Dabrowski and Jakubowski [8]:

$$G_{1}(v) = \int_{-v}^{v} \int_{-v}^{v} \mathbf{P}(X_{1} \ge x \lor y) \mathbf{P}(X_{1} < x \land y) \, dx \, dy$$

$$\le c \int_{-v}^{v} \int_{-v}^{v} \min \left(L(|x \land y|) |x \land y|^{-\alpha}, L(|x \lor y|) |x \lor y|^{-\alpha} \right) \, dx \, dy$$

$$\le c \int_{0}^{v} \int_{0}^{v} L^{1/2}(x) |x|^{-\alpha/2} L^{1/2}(y) |y|^{-\alpha/2} \, dx \, dy \le c_{\alpha} L(v) v^{2-\alpha}.$$

Let $\psi_i = \sup_{v>0} \frac{v^{\alpha-2}}{L(v)} G_i(v)$. Clearly $I_{\alpha}^A(X_1, X_i) \leq \text{const.} \times \psi_i$ and under a suitable rate of divergence of $\sum_{i=1}^n \psi_i$, convergence in distribution of $\frac{S_n}{n^{1/\alpha}}$ holds while $\sum_{i=1}^n I_{\alpha}^A(X_1, X_i)$ can diverge.

3. Proofs

We first recall Newman's Lemma which is the fundamental tool in all the subsequent derivations.

LEMMA 1 (Newman [21]). If (X_n) is a sequence of associated r.v.'s with finite variance, then for any $t \in \mathbf{R}$ there holds:

$$\left| \mathbf{E} \left(\exp \left(itS_n \right) \right) - \prod_{j=1}^n \mathbf{E} \left(\exp \left(itX_j \right) \right) \right| \le \frac{t^2}{2} \left[\operatorname{Var} S_n - \sum_{i=1}^n \mathbf{E} X_i^2 \right].$$

The proofs of our results will follow from the following lemma.

LEMMA 2. Let $(X_n)_{n\in\mathbb{N}}$ be a stationary sequence of associated random variables. Let $S_n=X_1+\ldots+X_n$. Suppose that n=rp, with $r,p\in\mathbb{N}$. Let $M\in\bar{\mathbf{R}}_+$ be fixed. Finally let $\bar{S}_n=\sum_{i=1}^n\left[f_M(X_i)-\mathbf{E}\left(f_M(X_i)\right)\right]$ with $f_M(x)=(x\wedge M)\vee(-M)$. Then the following estimations hold, for any $t\in\mathbf{R}$, $\tau>0,\ b\in\mathbf{R}$:

(30)
$$\left| \mathbf{E} \left(\exp it \left(\frac{S_n - rb}{\tau} \right) \right) - \phi(t) \right| \le 4n \mathbf{P} (|X_1| \ge M)$$

$$+\frac{t^2}{\tau^2}\left(\operatorname{Var}\left(\bar{S}_n\right)-r\operatorname{Var}\left(\bar{S}_p\right)\right)+\left|\left\{\mathbf{E}\left(\exp{it}\left(\frac{S_p-b}{\tau}\right)\right)\right\}^r-\phi(t)\right|.$$

If we suppose moreover that the stationary sequence (X_n) is of centered random variables, then for any $t \in \mathbf{R}$, x > 0, $\tau > 0$,

(31)
$$\left| \left\{ \mathbf{E} \left(\exp it \left(\frac{S_p}{\tau} \right) \right) \right\}^r - \exp \left(-\frac{t^2}{2} \right) \right| \leq 2 \frac{t^2 \vee t^4}{r} + 2r \mathbf{P} \left(|S_p| \geq x \right)$$
$$+ \frac{rt}{\tau} \left| \mathbf{E} \left(S_p \mathbf{1}_{|S_p| \geq x} \right) \right| + \frac{t^2}{2} \left| 1 - \frac{r}{\tau^2} \mathbf{E} \left(S_p^2 \mathbf{1}_{|S_p| < x} \right) \right|$$
$$+ \left(t^2 \vee |t|^3 \right) r \mathbf{E} \left(\left[\frac{S_p^2}{\tau^2} \wedge \frac{|S_p|^3}{\tau^3} \right] \mathbf{1}_{|S_p| < x} \right).$$

PROOF. The proof of Lemma 2 is very classical. An analogue approximation lemma under mixing assumptions can be found in Dehling et al. [10] or in Berkes et al. [4]. For the sake of clarity, we give its proof in detail. Clearly

$$\frac{S_n - rb}{\tau} = \frac{1}{\tau} \left(\sum_{i=1}^n f_M(X_i) - rb \right) + \frac{1}{\tau} \sum_{i=1}^n \left(X_i - f_M(X_i) \right) =: \frac{S_{1,n} - rb}{\tau} + S_{2,n}.$$

We deduce, from $\mathbf{P}(S_{2,n} \neq 0) \leq n\mathbf{P}(|X_1| \geq M)$, that

(32)
$$\left| \mathbf{E} \left(e^{it \frac{S_n - rb}{\tau}} \right) - \mathbf{E} \left(e^{it \frac{S_{1,n} - rb}{\tau}} \right) \right| \leq 2n \mathbf{P} \left(|X_1| \geq M \right).$$

We also obtain using the trivial fact

(33)
$$|x_1 \dots x_m - y_1 \dots y_m| \le \sum_{i=1}^m |x_i - y_i|$$
, for $x_i, y_i \in \mathbf{C}$, $|x_i|, |y_i| \le 1$,

(34)
$$\left| \left\{ \mathbf{E} \left(e^{it \frac{S_{1,p}-b}{\tau}} \right) \right\}^r - \left\{ \mathbf{E} \left(e^{it \frac{S_{p}-b}{\tau}} \right) \right\}^r \right| \leq 2n \mathbf{P} \left(|X_1| \geq M \right).$$

The random variable $S_{1,n}$ is the sum of r associated r.v.'s distributed as $S_{1,p}$ (recall that n = rp), thus Newman's inequality yields:

(35)
$$\left| \mathbf{E} \left(e^{it \frac{S_{1,n} - rb}{\tau}} \right) - \left\{ \mathbf{E} \left(e^{it \frac{S_{1,p} - b}{\tau}} \right) \right\}^r \right| \leq \frac{t^2}{\tau^2} \left(\operatorname{Var} \left(\bar{S}_n \right) - r \operatorname{Var} \left(\bar{S}_p \right) \right).$$

The first part of Lemma 2 is proved collecting inequalities (32), (34) and (35). We now prove the second part. We suppose that $t^2 \leq r$, otherwise (31) is trivial. Again (33) yields

$$(36) \qquad \left| \left\{ \mathbf{E}(e^{it\frac{S_{p}}{\tau}}) \right\}^{r} - \left\{ 1 - \frac{t^{2}}{2r} \right\}^{r} \right| \leq r \left| \mathbf{E}\left(e^{it\frac{S_{p}}{\tau}}\right) - \left(1 - \frac{t^{2}}{2r}\right) \right|$$

$$\leq r \left| \mathbf{E}\left(e^{it\frac{S_{p}}{\tau}} \mathbf{1}_{|S_{p}| \geq x}\right) \right| + r \left| \mathbf{E}\left(e^{it\frac{S_{p}}{\tau}} \mathbf{1}_{|S_{p}| < x}\right) - \left(1 - \frac{t^{2}}{2r}\right) \right|$$

$$\leq 2r \mathbf{P}\left(|S_{p}| \geq x\right) + \frac{rt}{\tau} \left| \mathbf{E}\left(S_{p} \mathbf{1}_{|S_{p}| \geq x}\right) \right| + \frac{t^{2}}{2} \left| 1 - \frac{r}{\tau^{2}} \mathbf{E}\left(S_{p}^{2} \mathbf{1}_{|S_{p}| < x}\right) \right|$$

$$+ r \left| \mathbf{E}\left[\left(e^{it\frac{S_{p}}{\tau}} - 1 - i\frac{t}{\tau}S_{p} + \frac{t^{2}}{2\tau^{2}}S_{p}^{2}\right) \mathbf{1}_{|S_{p}| < x}\right] \right|$$

Now we use the inequalities

$$\left| e^{iy} - 1 - iy + \frac{y^2}{2} \right| \le y^2 \wedge |y|^3$$
, for any $y \in \mathbf{R}$

and

$$|e^x - 1 - x| \le x^2$$
, for any $x : |x| \le \frac{1}{2}$

to deduce that

(37)
$$r \left| \mathbf{E} \left[\left(e^{it\frac{S_p}{\tau}} - 1 - i\frac{t}{\tau} S_p + \frac{t^2}{2\tau^2} S_p^2 \right) \mathbf{1}_{|S_p| < x} \right] \right|$$

$$\leq (t^2 \vee |t|^3) r \mathbf{E} \left(\left[\frac{S_p^2}{\tau^2} \wedge \frac{|S_p|^3}{\tau^3} \right] \mathbf{1}_{|S_p| < x} \right),$$

and

(38)
$$\left| e^{\frac{-t^2}{2}} - \left\{ 1 - \frac{t^2}{2r} \right\}^r \right| \le \frac{t^4}{4r}.$$

The second part of Lemma 2 is proved by collecting inequalities (36), (37) and (38).

PROOF OF THEOREM 1. We obtain, taking $M = \varepsilon T_n$, $p = p_n$, $r = [n/p_n]$, $b = p_n \mathbf{E}(f_{\varepsilon T_n}(X_1))$ and $\tau = A_n$ in (30) and using (11), (12) and (13) (to-

gether with the inequality $\operatorname{Var} \bar{S}_{p_n[n/p_n]} \leq \operatorname{Var} \bar{S}_n$ which follows from association)

(39)
$$\lim_{n \to +\infty} \mathbf{E} \left(\exp \left(it \frac{S_{p_n[n/p_n]} - p_n[n/p_n] \mathbf{E} \left(f_{\varepsilon T_n}(X_1) \right)}{A_n} \right) \right) = \phi(t).$$

We deduce from (39) and (11) (using estimations as in (32))

(40)
$$\lim_{n \to +\infty} \mathbf{E} \left(\exp \left(it \frac{\bar{S}_{p_n[n/p_n]}}{A_n} \right) \right) = \phi(t).$$

Recall that, for a positive integer m, $\bar{S}_m = \sum_{i=1}^m \left[f_M(X_i) - \mathbf{E} \left(f_M(X_i) \right) \right]$ and $M = \varepsilon T_n$. Now the association property leads to

$$\frac{1}{A_n^2} \operatorname{Var} \left(\bar{S}_n - \bar{S}_{p_n[n/p_n]} \right) \leq \frac{1}{A_n^2} \left(\operatorname{Var} \bar{S}_n - \operatorname{Var} \bar{S}_{p_n[n/p_n]} \right) \\
\leq \frac{1}{A_n^2} \left(\operatorname{Var} \bar{S}_n - \left[\frac{n}{p_n} \right] \operatorname{Var} \bar{S}_{p_n} \right)$$

The last bound together with (13) yields

(41)
$$\lim_{n \to +\infty} \frac{1}{A_n^2} \operatorname{Var} \left(\bar{S}_n - \bar{S}_{p_n[n/p_n]} \right) = 0.$$

The limit in (41) together with (40) and some standard estimations yields

(42)
$$\lim_{n \to +\infty} \mathbf{E} \left(\exp \left(it \frac{\bar{S}_n}{A_n} \right) \right) = \phi(t).$$

We deduce from (11) (arguing as in (32))

(43)
$$\lim_{n \to +\infty} \left| \mathbf{E} \left(\exp \left(it \frac{S_n - n \mathbf{E} \left(f_{\varepsilon T_n} (X_1) \right)}{A_n} \right) \right) - \mathbf{E} \left(\exp \left(it \frac{\bar{S}_n}{A_n} \right) \right) \right| = 0.$$

The proof of Theorem 1 is complete, by (43) and (42).

PROOF OF THEOREM 2. In order to prove this theorem, it suffices to take $M = \varepsilon T_n$, $r = \left[\frac{n}{p}\right]$, $b = p\mathbf{E}\left(f_{\varepsilon T_n}(X_1)\right)$ and $\tau = A_n$ in (30), to note that

(44)
$$\frac{1}{A_n^2} \left(\operatorname{Var} \left(\bar{S}_n \right) - \left[\frac{n}{p} \right] \operatorname{Var} (\bar{S}_p) \right)$$

$$\leq \frac{2n}{A_n^2} \sum_{i=2}^n G_i(M) + \frac{p}{A_n^2} \operatorname{Var} \left(f_M(X_1) \right),$$

and to argue exactly as in the proof of Theorem 1. Let us note that for p = 1, the left hand side of (44) is bounded only by the first term on the right hand side.

PROOF OF COROLLARY 1. We shall check the assumptions of Proposition 1 for n belonging to a set of infinite integers $Q \subset \mathbf{N}$ (according to Remark 3, following Proposition 1). To this end, fix $p \in \mathbf{N}$. According to (31) and the Chebyshev inequality, the requirements of Proposition 1 for $n \in Q$ (to be defined later) are satisfied if there exist two sequences $r = r_p \to +\infty$, $x = x_p \to +\infty$ as $p \to +\infty$ such that

$$(C_1) \lim_{p\to+\infty} x^{-2} r \operatorname{Var} S_p = 0,$$

$$(\mathcal{C}_2) \lim_{p \to +\infty} \frac{L(rp)}{L(p)} = 1.$$

$$(\mathcal{C}_3) \lim \sup_{p \to +\infty} \frac{r \operatorname{Var} S_p}{\tau^2} \leq \operatorname{const.}, \text{ with } \tau^2 = r \mathbf{E} \left(S_p^2 \mathbf{1}_{|S_p| < x} \right),$$

$$(\mathcal{C}_4) \lim_{p \to +\infty} r \mathbf{E} \left(\frac{|S_p|^3}{\tau^3} \mathbf{1}_{|S_p| < x} \right) = 0, \lim_{p \to +\infty} \frac{r \operatorname{Var} S_p}{x\tau} = 0.$$

The existence of such sequences x and r is guaranteed by the following lemma that we discuss in the appendix (let us note that this lemma does not require any dependence assumptions).

LEMMA 3. Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of stationary and centered r.v.'s having finite variance. Suppose that $\operatorname{Var} S_n = nL(n)$ with L a slowly varying function and that (19) holds with $A_n = \sqrt{\frac{\pi}{2}} \mathbf{E} |S_n|$. Then there exist two sequences $r = r_p \to +\infty$, $x = x_p \to +\infty$ as $p \to +\infty$ fulfilling conditions (\mathcal{C}_1) , (\mathcal{C}_2) , (\mathcal{C}_3) and (\mathcal{C}_4) .

We define for the sequences (r_p) and (x_p) (i.e. those for which (C_1) , (C_2) , (C_3) and (C_4) are satisfied)

(45)
$$Q := \{ n_p := pr_p, \ p \in \mathbf{N} \} \text{ and } \tau_{n_p}^2 := r_p \mathbf{E} \left(S_p^2 \mathbf{1}_{|S_p| < x_p} \right).$$

Lemma 2, together with Lemma 3, yields then

$$\lim_{n \to +\infty, \ n \in Q} \left\{ \mathbf{E} \exp it \left(\frac{S_p}{\tau_n} \right) \right\}^{n/p} = \exp \left(-\frac{t^2}{2} \right).$$

We deduce, from (C_2) , (C_3) and $\operatorname{Var} S_n = nL(n)$, that

(46)
$$\limsup_{p \to +\infty} \mathbf{E} \left(\frac{S_{n_p}}{\tau_{n_p}} \right)^2 \leq \text{const.}$$

Condition (19) of Proposition 1 is thus satisfied for $A_n = \tau_n$ and for $n \in Q$, $n \to +\infty$. We then deduce from Proposition 1 (for more clarity combine Inequalities (30), (31) with $M = +\infty$, b = 0, $\phi(t) = \exp\left(-\frac{t^2}{2}\right)$, $n := pr_p$, $r := r_p$, $x := x_p$ and $\tau := \tau_{n_p}$ (r_p , x_p are as above) and apply (\mathcal{C}_1), (\mathcal{C}_2), (\mathcal{C}_3) and (\mathcal{C}_4).)

(47)
$$\lim_{n \to +\infty, \ n \in Q} \mathbf{E} \exp it \left(\frac{S_n}{\tau_n} \right) = \exp \left(-\frac{t^2}{2} \right).$$

Let us now identify the normalizing sequence $(\tau_n)_{n\in Q}$. We deduce from (46) that the sequence $\left(\frac{S_n}{\tau_n}\right)_{n\in Q}$ is uniformly integrable. Thus by (47) and using Theorem 5.4 in Billingsley [5]

(48)
$$\lim_{n \to +\infty, \ n \in Q} \frac{\mathbf{E} |S_n|}{\tau_n} = (2\pi)^{-1/2} \int_{-\infty}^{+\infty} |x| \exp\left(-\frac{1}{2}x^2\right) dx = \sqrt{\frac{2}{\pi}}.$$

In order to finish the proof of Corollary 1, we need the following lemma that we discuss in the Appendix. In the sequel, we denote $\sigma_n^2 = \text{Var } S_n$ and $\rho_n = \sqrt{\frac{\pi}{2}} \mathbf{E} |S_n|$.

LEMMA 4. Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of stationary and centered r.v.'s. Suppose that Condition (24) holds, with a slowly varying function \tilde{L} . Let r_p be such that

(49)
$$\lim_{p \to +\infty} \frac{\tilde{L}(pr_p)}{\tilde{L}(p)} = 1.$$

Suppose that there exists a sequence (g_p) tending to infinity with p for which

(50)
$$\lim_{p \to +\infty} \frac{r_p \mathbf{E} \left(S_p^2 \mathbf{1}_{|S_p| \leq g_p \sigma_p} \right)}{\rho_{pr_p}^2} = 1$$

then

(51)
$$\lim_{p \to +\infty} \frac{1}{\rho_p^2} \mathbf{E} \left(S_p^2 \mathbf{1}_{|S_p| \leq g_p \sigma_p} \right) = 1.$$

END OF THE PROOF OF COROLLARY 1. We follow exactly the lines of the proofs of Theorems 2 and 3 of [10]. An outline is the following. Without loss of generality the sequence $r=r_p$ (whose existence is guaranteed by

Lemma 3) can moreover satisfy Condition (49) (we refer the reader to the proof of Lemma 4 for a justification). We obtain combining (45) and (48)

(52)
$$\lim_{p \to +\infty} \frac{r_p \mathbf{E} \left(S_p^2 \mathbf{1}_{|S_p| \leq x_p} \right)}{\rho_{pr_p}^2} = 1$$

(recall that $\rho_n = \sqrt{\frac{\pi}{2}} \mathbf{E}|S_n|$). Now we note that $x_p = g_p \sigma_p$ and that the sequence (g_p) tends to infinity with p (for this cf. (62) and (63) below). This fact together with (52) proves that Condition (50) is satisfied. Since the sequence (r_p) satisfies Condition (49), we deduce then according to Lemma 4, that (51) holds.

Now we argue as in the proof of (4.10) in [10]: we construct, using the limit in (51), two sequences $h(n_p)$ and $j(n_p)$ tending to infinity with p, fulfilling $h(n_p) \leq j(n_p) \leq g_{n_p}$ and

$$w^{2}(n_{p}) := \frac{1}{\sigma_{n_{p}}^{2}} \mathbf{E} \left(S_{n_{p}}^{2} \mathbf{1}_{\sqrt{h(n_{p})}\sigma_{n_{p}} \leq |S_{n_{p}}| \leq j(n_{p})\sigma_{n_{p}}} \right) \to 0.$$

Define the sequence $(d(n))_{n \in Q}$ by (4.11) of [10]:

(53)
$$\lim_{n \in Q, \ n \to +\infty} d(n) = 0, \quad d(n) \ge \max \left(2h^{-1/2}(n), w^2(n) \right), \quad n \in Q.$$

Now suppose that the elements of Q are arranged in an increasing order, say $Q = \{n_k, k \ge 1\}$ (the sequence (n_k) is increasing) and let

$$J_k = [n_k h^2(n_k) d(n_k), n_k j^2(n_k) d(n_k)].$$

The sequences $h(n_k)$ and $j(n_k)$ are chosen in such a way that for k sufficiently large, say $k \ge k_0$, one has

$$(54) J_k \cap J_{k+1} \neq \emptyset$$

(we refer the reader to (4.12) of [10] for more details).

We deduce from (53) and the choice of the sequences $h(n_k)$ and $j(n_k)$ that the left endpoint of J_k tends to infinity with k. This remark together with (54) yields, for m sufficiently large, the existence of a positive integer $k \geq k_0$ such that $m \in J_k$. Thus, we have for some $g \in [h(n_k), j(n_k)]$ and some $\theta \in [0, 1]$ (cf. (4.13) of [10])

(55)
$$m = n_k g^2 d(n_k) = n_k [g^2 d(n_k)] + \theta n_k =: M_k + \theta n_k.$$

Let us first prove that the sequence (S_{M_k}) suitably normalized converges in distribution to the standard Gaussian law. For this we note that M_k belongs to the set Q defined by (45). In fact let

(56)
$$p := n_k, \quad r := r(n_k) := [g^2 d(n_k)], \quad x = x(n_k) = g\sigma_{n_k}.$$

We have to check that those sequences fulfill conditions (C_1) , (C_2) , (C_3) and (C_4) (we shall check this property in the Appendix). If so, $M_k = n_k [g^2 d(n_k)]$ = pr (with p and r are as defined by (56)) is an element of the set Q. Hence we conclude using (46) and (47)

(57)
$$\limsup_{k \to +\infty} \mathbf{E} \left(\frac{S_{M_k}}{\tau_{M_k}} \right)^2 \leq \text{const.}, \quad \lim_{k \to +\infty} \mathbf{E} \exp it \left(\frac{S_{M_k}}{\tau_{M_k}} \right) = \exp \left(-\frac{t^2}{2} \right).$$

Next we prove (cf. Appendix) that, for m and M_k as in (55)

(58)
$$\lim_{k \to +\infty} \tau_{M_k}^{-2} \mathbf{E} (S_m - S_{M_k})^2 = 0.$$

We set $\tau_m := \tau_{M_k}$ for m and M_k as in (55). Then by (57), (58) and (55)

(59)
$$\lim_{m \to +\infty} \mathbf{E} \exp it \left(\frac{S_m}{\tau_m} \right) = \exp \left(-\frac{t^2}{2} \right).$$

Our task now is to identify the normalizing constants τ_m . We deduce from the first bound in (57) and from (58) that the sequence $\left(\frac{S_m}{\tau_m}\right)_{m\in\mathbb{N}}$ is uniformly integrable and we conclude using (59) (as for (48)) that

(60)
$$\lim_{m \to +\infty} \frac{\mathbf{E}|S_m|}{\tau_m} = \sqrt{\frac{2}{\pi}}.$$

The proof of Corollary 1 is now complete by (59) and (60).

4. Appendix

PROOF OF LEMMA 3. The proof of this lemma follows along the lines of the proof of Theorem 1 of Dehling et al. [10]. In the sequel we give an outline of this proof in order to emphasize its validity without any mixing conditions.

As it is noticed by (3.14) of [10], the slowly varying property of L yields the existence of a sequence (\mathcal{X}_p) such that

(61)
$$\lim_{p \to +\infty} \mathcal{X}_p = +\infty \quad \text{and} \quad \lim_{p \to +\infty} \sup_{1 \le t \le \mathcal{X}_p} \left| \frac{L(pt)}{L(p)} - 1 \right| = 0.$$

Let $(z_p)_p$ be a sequence of real numbers fulfilling $z_p \to +\infty$ as $p \to +\infty$ and $z_p \leq \sqrt{\overline{\mathcal{X}_p}}$. Define the sequence $(i_p)_p$ as (3.8) of [10]:

$$\lim_{p \to +\infty} i_p = +\infty, \quad \lim_{p \to +\infty} 2^{-i_p} \log z_p = +\infty.$$

Let $k = k_p$ be a positive integer less than i_p and fulfilling (3.9) of [10]:

$$\frac{1}{\operatorname{Var} S_p} \mathbf{E} \left(S_p^2 \mathbf{1}_{\frac{|S_p|}{\sqrt{\operatorname{Var}(S_p)}} \in I_{k_p}} \right) \leqq \frac{1}{i_p}, \quad \text{with} \quad I_i(p) := \left] z_p^{2^{-i-1}}, z_p^{2^{-i}} \right].$$

Define the sequence (g_p) and (v_p) as in (3.10) and (3.5) of [10]:

$$g_p := z_p^{2^{-k_p}}, \quad v_p^2 := rac{1}{\operatorname{Var} S_p} \mathbf{E} \left(S_p^2 \mathbf{1}_{\sqrt{g_p} < rac{|S_p|}{\sqrt{\operatorname{Var} S_p}}} \le g_p}
ight).$$

Finally let

(62)
$$x := x_p = g_p \sqrt{\operatorname{Var} S_p}, \quad r = r_p = g_p^2 c_p \quad \text{where} \quad c_p := \max(2g_p^{-1/2}, v_p^2).$$

Note that

(63)
$$\lim_{p \to +\infty} g_p = +\infty$$
, $\lim_{p \to +\infty} c_p = 0$, $\lim_{p \to +\infty} x_p = +\infty$, $\lim_{p \to +\infty} r_p = +\infty$.

Let us now check conditions (C_1) , (C_2) , (C_3) and (C_4) for those sequences (x_p) and (r_p) .

- 1. The expressions of x_p and r_p yield (C_1) .
- 2. The choices of g_p and r_p yield $r_p \leq \mathcal{X}_p$. The definition of \mathcal{X}_p (cf. (61)) implies (\mathcal{C}_2) .
 - 3. Condition (19) with $A_n = \sqrt{\frac{\pi}{2}} \mathbf{E} |S_n|$, yields (C_3) (cf. (3.11) of [10]).
- 4. Condition (C_3) , together with the expressions of the sequences r_p , g_p , v_p yields (C_4) (argue as (2.16) and (2.17) of [10]).

PROOF OF LEMMA 4. Since \tilde{L} is a slowly varying function, then as in (61) (cf. (3.14) of [10] for a proof) there exists a sequence $(\mathcal{X}_p')_p$ with

(64)
$$\lim_{p \to +\infty} \mathcal{X}_p' = +\infty \quad \text{and} \quad \lim_{p \to +\infty} \sup_{1 \le t \le \mathcal{X}_p'} \left| \frac{\tilde{L}(pt)}{\tilde{L}(p)} - 1 \right| = 0.$$

Hence there exists a sequence (r_p) fulfilling (49). The proof of Lemma 4 is complete, noting that Condition (24) together with the choice of r_p leads to $\rho_{pr_p}^2 \sim r_p \rho_p^2$, as p tends to infinity.

Let us note that without loss of generality, we can assume that (64) is satisfied by the sequence $(\mathcal{X}_p)_p$ of (61) (instead of $(\mathcal{X}'_p)_p$). If so, we can choose a sequence (r_p) tending to infinity with p fulfilling both (\mathcal{C}_2) and (49).

More details. Let us check that the sequences defined by (56) fulfill conditions (C_1) , (C_2) , (C_3) and (C_4) . Noting that $x^{-2}r \operatorname{Var} S_p \leq d(n_k)$ and using (53), we deduce that (C_1) is satisfied. Choosing the sequence $j(n_p)$ to satisfy moreover $j(n_p) \leq \frac{1}{2}\sqrt{\mathcal{X}_p}$, we deduce that $r = [g^2d(n_k)] \leq j^2(n_k)d(n_k) < \frac{1}{2}\mathcal{X}(n_k)$, we conclude using (61) that (C_2) is satisfied. Condition (19) with $A_n = \rho_n = \sqrt{\frac{\pi}{2}}\mathbf{E}|S_n|$ leads (C_3) (arguing as (3.11) of [10]). The first limit in (C_4) is satisfied by (2.16) and (2.17) of [10]. Finally the second limit in (C_4) is also satisfied, in fact, we obtain using (C_3) and standard estimations, that there exists a constant C such that, $x^{-1}\tau^{-1}r \operatorname{Var} S_p \leq C\sqrt{d(n_k)}$. Since $d(n_k)$ goes to 0 as n_k tends to infinity, we deduce that the last bound of (C_4) is satisfied.

We now check (58) for m and M_k as in (55). We deduce from (55) and the association property (i.e. the sequence $(\sigma_p^2)_p$ is non-decreasing) that

(65)
$$\mathbf{E}(S_m - S_{M_k})^2 = \mathbf{E}S_{\theta n_k}^2 \le \sigma_{n_k}^2.$$

We deduce from $r = [g^2 d(n_k)] < \mathcal{X}(n_k)$, the limit in (61) and the expressions of M_k and r (cf. (55) and (56)), that for k sufficiently large (cf. also [10], p. 1368)

$$\frac{\operatorname{Var} S_{M_k}}{r \operatorname{Var} S_{n_k}} \ge \frac{1}{2}.$$

Since $r = r(n_k)$ tends to infinity with k, we deduce then combining (65) and (66) that

$$\lim_{k \to +\infty} \sigma_{M_k}^{-2} \mathbf{E} (S_m - S_{M_k})^2 = 0.$$

The last limit together with the first bound in (57) proves (58).

Acknowledgments. The authors wish to thank the anonymous referee for important comments on this paper.

References

- [1] A. Araujo and E. Giné, The Central Limit Theorem for Real and Banach Valued Random Variables, Wiley (New York, 1980).
- [2] R. E. Barlow and F. Proschan, Statistical Theory of Reliability and Life: Probability Models (Silver Spring, MD, 1981).
- [3] L. E. Baum and M. Katz, Convergence rates in the law of large numbers, *Trans. Amer. Math. Soc.*, **120** (1965), 108–123.
- [4] I. Berkes and W. Philipp, Limit theorems for mixing sequences without rate assumptions, Ann. Probab., 26 (1998), 805-831.
- [5] P. Billingsley, Probability and Measure, Wiley (1968).
- [6] R. C. Bradley, A central limit theorem for stationary ρ -mixing sequences with infinite variance, Ann. Probab., 16 (1988), 313–332.
- [7] J. T. Cox and G. Grimmett, Central limit theorems for associated random variables and the percolation models, Ann. Probab., 12 (1984), 514–528.
- [8] A. R. Dabrowski and A. Jakubowski, Stable limits for associated random variables, Ann. Probab., 22 (1994), 1–16.
- [9] R. Davis and S. Resnick, More limit theory for the sample correlation function of moving averages, *Stochas. Processes Appl.*, **20** (1985), 257–279.
- [10] H. Dehling, M. Denker and W. Philipp, Central limit theorems for mixing sequences of random variables under minimal conditions, Ann. Probab., 14 (1986), 1359– 1370.
- [11] J. Esary, F. Proschan and D. Walkup, Association of random variables with applications, *Ann. Math. Statist.*, **38** (1967), 1466–1476.
- [12] W. Feller, An Introduction to Probability Theory and its Applications, 2, Wiley (New York, 1971).
- [13] N. Herrndorf, An example on the central limit theorem for associated sequences, Ann. Probab., 12 (1984), 912–917.
- [14] A. Jakubowski, On multidimensional domains of attraction for stationary sequences, Stat. Probab. Letters, 19 (1994), 321–326.
- [15] A. Jakubowski, Minimal conditions in p-stable limit theorems II, Stochas. Processes Appl., 68 (1997), 1–20.
- [16] T. M. Lewis, Limit theorems for partial sums of quasi-associated random variables, Asym. Methods in Probab. and Stat. (B. Szyszkowicz (editor)) (1998), 31–48.
- [17] Z. Y. Lin, Limit theorem for a class of sequences of weakly dependent random variables, *Chinese Ann. Math.*, 2 (1981), 181–185.
- [18] R. Maller, A theorem on products of random variables with application to regression, Austral. J. Statist., 23 (1981), 177-185.
- [19] P. Matula, A remark on the weak convergence of sums of associated random variables, Ann. Univ. Marie Curie-Sklodo. Lublin, 13(A) (1996), 115–123.
- [20] F. Merlevède and M. Peligrad, The functional central limit theorem under the strong mixing condition, Ann. Probab., 28 (2000), 1336-1352.
- [21] C. M. Newman, Normal fluctuations and the FKG inequalities, Comm. Math. Phys., 74 (1980), 119–128.
- [22] C. M. Newman and A. L. Wright, An invariance principle for certain dependent sequences, Ann. Probab., 9 (1981), 671–675.
- [23] C. M. Newman, Asymptotic independence and limit theorems for positively and negatively dependent random variables, in: *Inequalities in Statistics and Probability* (Y. L. Tong, editor), IMS Lecture Notes, Monograph Series 5 (1984), 127–140.
- [24] M. Peligrad, On the central limit theorem for triangular arrays of ϕ -mixing sequences, Asym. Methods in Probab. and Stat. (B. Szyszkowicz (editor)) (1998), 49–55.

[25] A. Rosalsky, A generalization of the iterated logarithm law for weighted sums with infinite variance, Z. Wahrsche. verw. Gebiete, 58 (1981), 351–372.

(Received July 31, 2000; revised March 19, 2001)

LABORATOIRE DE PROBABILITÉS STATISTIQUE ET MODÉLISATION UNIVERSITÉ DE PARIS-SUD BÂTIMENT 425, F-91405 ORSAY CEDEX FRANCE E-MAIL: SANA.LOUHICHI@MATH.U-PSUD.FR

DÉPARTEMENT DE MATHÉMATIQUES UNIVERSITÉ D'EVRY VAL D'ESSONNE F-91025 EVRY CEDEX FRANCE E-MAIL: SOULIER@MATHS.UNIV-EVRY.FR