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THE CENTRAL LIMIT THEOREM FOR
STATIONARY ASSOCIATED SEQUENCES

S. LOUHICHI (Paris) and Ph. SOULIER (Evry)

Abstract. We study the problem of convergence in distribution of a suit-
ably normalized sum of stationary associated random variables. We focus on the
infinite variance case. New results are announced.

1. Introduction

Let (Xp),cn be a stationary sequence of associated random variables i.e.

Cov (f(Xla 7Xn)7g(X17"' 7Xn))

v

0,

for all coordinatewise non-decreasing functions f, g and all n € N. We refer
to Esary et al. [11] for this notion as well as for its main properties. Associa-
tion describes the positive dependence structure of several models from reli-
ability theory (cf. Barlow and Proschan [2]), statistical physics (cf. Newman
[21]) and percolation theory (cf. Cox and Grimmett [7]). Let S, = X1 + ...
+ X,,. The purpose of this paper is to give sufficient conditions ensuring the
existence of numerical sequences A,, B, for which the quantity

Sp — By
1 - -
1) T

converges in distribution. We first review the existing results.

Independent observations. For i.i.d. sequences, which are also associ-
ated (cf. (P5) of Esary et al. [11]), the above mentioned problem is completely
solved and the limit distribution of (1) is Gaussian or a non-Gaussian stable
law (cf. Feller [12] or Araujo and Giné [1], Ch. 2). The condition

(2) H:z— E(X121|X1|Sm) is a slowly varying function,
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16 S. LOUHICHI and Ph. SOULIER

is necessary and sufficient for the convergence in distribution to a non-
degenerate normal law of the quantity in (1) with B, =nE (Xll‘ Xl\étn)

and A, = \/nH (t,), where the truncation sequence (t,) is defined by

H 1 H
(3) tn:sup{m>0, (j) g—} ie. Lgtn)%l
T n 74

as n — +oo.

Now the following two conditions:
4 H:z— E(XIZ1|X1|SI) is regularly varying of order 2 — «,
for some a € ]0,2[ and

P(X; > z) c1 P(X; £ —x) Cco

P(|X1|>x) _>C1+02’ P(|X1|>x) _>Cl+62’ as T — +oo

(5)

where ¢; 2 0, ca 2 0, ¢1 + ¢o > 0, are necessary and sufficient for the conver-
gence in distribution to the stable law ¢ Pois (u(cl, c2, a)) . In that case, the
normalizing sequence (4,) is such that

H(An)
LH

(6) n —1 as n — 4oo,

while the centering sequence is given by B, = nE (Xll‘ X1|<r An) , for some
7> 0. B

Dependent observations. For strong mixing sequences with finite
variance, convergence to the normal law may hold with the normalization
A, = /FE|S,]| rather than /Var S,, (Merlevede and Peligrad [20], Dehling
et al. [10]). We refer also to Peligrad [24], Berkes and Philipp [4] for analo-
gous problems under ¢-mixing condition. Bradley [6] proved a central limit
theorem for p-mixing sequences with infinite variance. Lin [17] proved it
under m-dependence.

Associated observations. Stationary associated sequences (X),cn
with finite variance and fulfilling

n

(7)  Li(n) = E(X12)+2ZCOV (X1,X,) = 02 <400 as n — +oo,
r=2

satisfy

Sn — By,
(8) A = N(0,1),
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STATIONARY ASSOCIATED SEQUENCES 17

where = denotes convergence in distribution, A'(0,1) is the standard Gaus-
sian distribution, B,, = nE(X;) and A, = vVno? (Newman and Wright [22]).
Herrndorf [13] provides a sequence of centered stationary associated ran-
dom variables with finite variance, such that L;(n) ~ log n but (8) does not

hold for the standardization A, = \/nLi(n). At the end of his paper, he
conjectures that possibly there exists a different standardization which yields
asymptotic normality. Recently, Lewis [16] gives a necessary and sufficient
condition ensuring (8) with the normalization A, = \/nLi(n) when L;(n) is
a slowly varying function. As far as we know, in the infinite variance setting,
there is only one result concerning the convergence of (1) to the Gaussian law
(see Matula [19]): the convergence (8) holds with B, = 0 and for some se-
quence (A;,) if the centered associated sequence (X,,) fulfills £L(X;) € D(A,,)
and

. 1
(9) nhrfm—% > Cov (X, Xm) =0,
1<k<m<n

as soon as E|X;X,,| < 400, for k # m. Here D(A,,) denotes the domain of
attraction of the standard normal law.

Dabrowski and Jakubowski [8] were the first to study the problem of
convergence to a non-Gaussian stable limit under association. Let us recall
briefly their result: if the stationary associated sequence (X;) belongs to the
domain of strict normal attraction of a jointly strictly a-stable process (V5),
a € ]0,2[ (see the definition in Dabrowski and Jakubowski [8], pp. 4-5; this
notion depends not only on «, but also on a stable process (Y;), this is a
terminology differing from the usage in the i.i.d. case) and if for some A > 0

(10) D INX, Xp) < 4o,
k=2

where

a a
e x) =swar? [ [ Covliy gty g dody,
azA —aJ—a - -

then S,/ n'/® converges in distribution to a strictly a-stable law. The more
general situation i.e. when the limit law is ¢Pois (u(ci,c2,@)) was studied
by Jakubowski [15].

Acta Mathematica Hungarica 97, 2002



18 S. LOUHICHI and Ph. SOULIER

In this paper, we intend to discuss the convergence in distribution of a
suitably normalized sum of associated r.v.’s under one of the conditions

( +00
< 400 and Z Cov (X1, X)) = 00,
n=2
E(X?){ = +oo and convergence to the normal law,

o0
=+oo and Y IJ(Xy,Xp) = +oo.
\ k=2

The rest of the paper is organized as follows. In Section 2, we make several
extensions to the above results. Theorems 1 and 2 below unify the Gaussian
and the non-Gaussian cases: the limit distribution depends on the behavior
of the marginal law, more generally on the law of a partial sum S, i.e. if it
belongs to the domain of attraction of a Gaussian or a non-Gaussian stable
law. In Section 3, we prove the results. With additional technical details,
the proofs involve essentially Newman’s lemma [cf. Lemma 1]. An appendix
is dedicated to the proofs of some intermediate results.

2. Main results
Define, for z > 0, y € R,
faly) = (@ Ay) V (—a).
The function f, is non-decreasing and will play an important role in the se-
quel, since its monotonicity preserves association (cf. (Py) of Esary et al.

[11]). The dependence structure of an associated sequence (X,,) is conve-
niently described by the truncated covariance function, defined for x > 0 by

Gi(z) = Cov (fu(X1), f2(Xi)) -
The association of the sequence (X,,) implies that the function z — G;(x) is

positive and non-decreasing with respect to x for every fixed i. Moreover, in
the finite variance case

Gi(z) £ Gi(+00) = Cov (X1, Xj).

Instead of the truncated moment H defined in (2), we consider
T
h(z) :==E(f2(X1)) =E(z A|X1)) ? = 2/ tP(|X1| > t) dt.
0
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STATIONARY ASSOCIATED SEQUENCES 19

Clearly
h(z) = H(z) + 2P (| X1| > z).

The slowly varying property of H is equivalent to that of h and in such a
case h ~ H (cf. Lemma 3 in Rosalsky [25]). But from a technical point of
view, working with the function h is much easier than with H. We can now
state our main results.

THEOREM 1. Let (X,), cn be a stationary sequence of associated r.v.’s.
Assume that there exist sequences Ty, Ay, pn < n, all tending to infinity with
n, and a characteristic function ¢ such that the conditions

i > =
(11) nBTOOnP(|X1| > eTy,) =0,
[n/pn]
. . Spn _an(faTn(Xl)) .
(12) nkrfoo {E exp (zt A = (1),
. 1 — n _
(13) ngrfoo Az Var S, — o Var S, | =0,

hold for some £ > 0, where Sy, =Y, [feTn (Xi) —E(fer, (XZ))] and square
bracket denotes integer part. Then the characteristic function of A! (Sn —
nE( for, (Xl))) converges to ¢.

REMARKS. 1. If all the assumptions of Theorem 1 hold except (12) and
(13) which are replaced by

[n/p]
lim limsup {E exp <it Sp — PB(fer, (X)) ) } —¢(t)| =0,

P—=+00 pstoco A,

1 ~ _
lim limsup el (Var Sp — [g] Var S'p) =0,

P—>+0 psioco

then the conclusion of Theorem 1 still holds and Newman’s, Dabrowski and
Jakubowski’s central limit theorems follow from Theorem 1.
2. Condition (13) is close to Condition B of Jakubowski [15].

If Condition (12) of Theorem 1 holds only for some constant sequence
pn =: p, then we obtain

THEOREM 2. Let (X,),cn be a stationary sequence of associated r.v.’s.
Suppose that there exist a positive integer p, two sequences T, and A, both
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20 S. LOUHICHI and Ph. SOULIER

tending to infinity with n, a characteristic function ¢, such that, for some
e > 0, the limits

[n/p]
(14) lim {Eexpit (Sp — PB(fer, (1) ) } = ¢p(1)

n—-+oo An
and
. 1 . N
(15 lim A—%Var(ngn(Xl)) =0, lim A—%ZGi(eTn) =0

=2

together with (11) hold. Then the characteristic function of

A,_Ll(Sn —nE(faTn(Xl)))

converges to ¢p.

REMARKS. 1. We suppose that the requirements of Theorem 2 hold, but
instead of (11) and (14) we assume

(16) lim limsupnP (|Xi| 2 aT)) =0,

a—>+00 pytoo

and

[n/p]
(17)  lim limsup {E exp it (Sp — PB(for, (Y1) ) } — ¢p(t)| = 0.

a—+00 n4oo Ap

Then we deduce, arguing as in the proof of Theorem 2, that

{Eexp it (Sn — TLEI(L‘J:LaTn (Xl)) ) } — ¢dp(t)

2. Let us note that, in the case when p = 1, it is not necessary to suppose
the first limit in (15) (we refer the reader to the proof of Theorem 2).

3. As noticed by Jakubowski [15], there exists a 1-dependent associated
sequence strictly stationary for which (14) holds with p =1 but not with
p=2.

4. Rates of convergence in the weak law of large numbers. Suppose here
that EX; = 0 and that E|X;|? < +o0o for some g € [1,2[. Then it is not hard

to deduce that limg oo limy_ 4o ' "VIE( f,,1/4(X1)) = 0, that Condition

lim limsup =0.

a—>+00 p oo
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STATIONARY ASSOCIATED SEQUENCES 21

(16) and the first limit in (15) hold with T}, = A, = n'/?. We conclude, us-
ing the Marcinkiewicz—Zygmund strong laws for independent sequences (cf.
Baum and Katz [3]) and some standard estimations, that (17) holds with

p=1, ¢;1(t) =1 and A, = n'/% In that case, the second limit in Condition
(15) can be written as

1 n
(18) lim —— Y Gi(en/7) =0,
=2

n—00 n2/q—1 4

and leads to rates of convergence in the weak law of large numbers for the
stationary associated sequence (X,,) (recall that

lim  lim n' " YIE(f,,1.(X1)) = 0).

a—+00 n—+00

5. Association and m-dependence. If the associated sequence is m-depen-
dent, then the conditions of Theorem 2 (with p = 1) are close to that of
Lin [17].

In the sequel, we discuss special cases of Theorems 1 and 2.

2.1. EX? < +o00 and Ej:og Cov (X1, X;) = 4+00. In this situation the
normalization A, may or not be /Var (Sy).

PROPOSITION 1. Let (X,), N be a stationary sequence of associated and
centered r.v.’s fulfilling E(X?) < oo and Var S,, = nL(n) where L is a slowly
varying function. Let (Ay,) and (p,) be two sequences tending to infinity with
n such that

A2
1 liminf ——*~—
(19) o Sar (5
. no . L(pn) _
(20) nkr—l{loop_n = +oo, nll)r-ir-loo L(n) =1L

. ) Sp [n/pn] t2
(21) nETOO {E <exp it A, >} = exp <—5> , forany teR.

Then (8) holds for this sequence (Ay) and for By = 0.

REMARKS. 1. Let us explain how to deduce Proposition 1 from Theo-
rem 1. We deduce from E(X;) =0, E(X?) < 400 and the Chebyshev in-
equality that

n

EX2.
eT, Ay, !

(22) Ain‘E(faTn(Xﬂ)‘ =
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22 S. LOUHICHI and Ph. SOULIER

Choosing T), to grow very rapidly, Condition (11) together with

(23) lim Ain\E(ngn(Xl))\ =0

n—-+0o

will clearly hold and the order of magnitude of Var S,, and Var S, will be the
same as that of Var .S, and Var S, and thus (13) will follow from (19) and
(20). Condition (12) with ¢(t) = e **/2 follows from (23) and (21). Those
facts together with (23) prove Proposition 1 from Theorem 1.

2. The situation when A2 = Var (S,,) was studied by Lewis [16]: if the
conditions in the first sentence of Proposition 1 hold, then the following two
statements are equivalent:

s2 ) . .
U is uniformly integrable <
<Va’r (STL) n>1 y g

_ S = N(0,1).
Var (S,,)

The first part of the equivalence is also deduced from Proposition 1 via the
Lindeberg’s theorem which guarantees Condition (21) (cf. Theorem 7.2 of
Billingsley [5]).

3. Let us note that Proposition 1 remains true if Conditions (21) and
(19) are fulfilled for n belonging to an infinite set of integers (). In that case

the convergence in distribution of i—” holds when n € @ and n — +o0.

We now give sufficient conditions for the normalizing sequence to be equal

to /5E|Sy|. Note that \/g = E|Z|, where Z is a r.v.’s distributed as the
standard Gaussian law.

COROLLARY 1. Let (X,),cn be a stationary sequence of associated and
centered r.v.’s. Suppose that E(X?) < oo, that Var S, = nL(n) where L is a
slowly varying function and that (19) holds with A, = \/TE|Sy|. If moreover

(24) E|S,| = vnL(n),

where L is a slowly varying function, then (8) holds with B, =0 and A, =
VSE|Sy].
2 n

We prove Corollary 1 in Section 3. Let us note that it follows from
Proposition 1 and its proof by adapting Dehling et al. [10] methods.

2.2. EX? = 400 and convergence to the normal law. If Condition
(2) holds, then Conditions (11), (14) and the first limit in (15) are fulfilled
with T}, = A, = t,, p =1, € = 1, where t,, is defined by (3) (cf. Lemma 3.1 of
Bradley [6] for some limits properties of this truncate sequence (,)). Theo-
rem 2 yields then:
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STATIONARY ASSOCIATED SEQUENCES 23

PROPOSITION 2. Let (X,),cn be a stationary sequence of associated
r.v.’s. Suppose that E(X?) = +oo and that

(25) h:z— E(zA|Xy|) ? isa slowly varying function.

If moreover

(26) lim

then
Sn — nE(Xll\X1|§tn)

) = N(0,1),

where ty, is defined as in (3).

REMARKS. 1. Since G;(t,) £ Cov (X1, X;), Matula’s result is then de-
duced from the previous proposition.

2. An analogue of Proposition 2 can also be deduced under Conditions
(4), (5), (15) with T,, = A,. The normalized and centered sequences are
defined as in (6). The limit law is in that case cPois (u(c1, co, ).

3. Let (Z;);en be a sequence of independent and identically distributed
(i.i.d.) random variables, such that Hz, is a slowly varying function (for
a random variable Xy, Hy, denotes the truncate moment defined by (2)).
The requirements of Proposition 2 are fulfilled by the stationary 2-dependent
sequence (X;) := (Z;Z;;1),. In fact it follows from Theorem 1 of Maller [18]
that Hz, z, is a slowly varying function as soon as Hyz, fulfills this property.
Condition (25) is thus satisfied by X; = Z;Z5. Since G;(z) =0, for i =2 3,
Condition (26) is thus reduced to

(27) lim %GQ(ﬁn) -0,

n—+00
where the normalizing coefficients 3, fulfill

(28)  lim nB,*E(Z7 7317, 2,<5,) = 1, nggloonp(|zlzg| > B,) = 0.

n—-+00

Now some standard estimations based on (28) prove that Condition (27) is
equivalent to

. n
(29) lim —E(Z12217,2,<8, %2731 2,2, <p,) = O-

n—00 IBn

Acta Mathematica Hungarica 97, 2002



24 S. LOUHICHI and Ph. SOULIER

The last limit is proved by Davis and Resnick [9] (cf. the proof of their Con-
dition (2.5)).

Now, the association property of the sequence (X,) can be deduced if
one supposes that the i.i.d. sequence (Z;) is of positive random variables. In
fact in this situation X; can be written as a non-decreasing function of the

associated vector (Z;, Z;+1) and the conclusion follows from properties (Py)
and (Ps) of Esary et al. [11].

2.3. EX? = +co and Z;“:O; I2X(X1,X;) = +oo. In this section, we ap-

ply Theorem 2 (cf. also Remark 1 below Theorem 2) with p =1. In this
situation, convergence in distribution to a non-degenerate stable law may

hold:

COROLLARY 2. Let (X,),cn be a stationary sequence of centered as-

sociated r.v.’s. Suppose that L(X1) € D(n'/®), where D(n'/®) denotes the
domain of attraction of a non-degenerate a-stable law po (o € ]1,2[). If, for
some € > 0

lim n'~?/® Z Gi(en'/®) =0,

n—-+o0o 2
=1

then
Sn
nifa Ko

REMARKS. 1. Let us give more details about the proof of Corollary 2.
We apply Theorem 2 (cf. also Remark 1 below Theorem 2) with p =1, A, =

T, = n*/®. Since £(X1) is in the domain of attraction of a non-degenerate
a-stable law, there is a constant C' such that P(|X;| > z) < Cz~ . Hence

Condition (16) and the first limit in (15) are satisfied with T}, = A, = n'/®.
It is not hard to check that the requirements of Theorem 2 are satisfied from
the assumptions of Corollary 2. Let us just precise the limiting behavior of
B, /A, = n'~"*Ef,, (X;). Some standard estimations based on E(X{) =0
and P(|X1| > x) < Cxz~® prove that limg o0 limy,— o0 By /A4, = 0.

2. Suppose that there exists a positive function L : limg,_, o L(z) =0
and a sequence (1;); for which G;(z) < ¢z?>~*L(z). If

n
: 1/ -
i E6 3 =0
iz
then a stable limit theorem holds, while it is possible to have
—+00
> IHXy, X;) = +oo.
i=2
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This situation can occur if one supposes that P (|X;| 2 z) ~ 2~ *L(z) where
L is a slowly varying function, non-increasing, locally bounded in [0, +o0],
fulfilling lim,_, 1 oo L(xz) = 0. In such a case there exists a positive constant
¢ depending only on « such that

Gi(v) £ caL(v)v* ™,

Let us justify the last bound. Clearly G;(v) < Var (f,(X1)) = G1(v). Now
write as in Proposition 2.10 of Dabrowski and Jakubowski [8]:

G1(v) :/ / P(Xy 2zVyP(X1 <z Ay)dxdy
gc/ / min (L(|z Ayl) lz Ayl |z Vyl) |z Vy|™) dody

<o / / LV2(a)|a |~ LY () ly |2 de dy < cal(v)0? 0
0 0

a—2

Let t; = sup, “L(—U)GZ-(U). Clearly I2(Xy,X;) < const. x 1f; and under a
suitable rate of divergence of " | 1;, convergence in distribution of n“f%

holds while 37 T2/ X, X;) can diverge.

i—=1 T«

3. Proofs
We first recall Newman’s Lemma which is the fundamental tool in all the
subsequent derivations.

LEMMA 1 (Newman [21]). If (X,,) is a sequence of associated r.v.’s with
finite variance, then for any t € R there holds:

£ -
< g[VarSn —ZIEXZQ]

E( exp (itSy)) — [[ B(exp (itX;)) ‘
j=1

The proofs of our results will follow from the following lemma.

LEMMA 2. Let (Xy),cn be a stationary sequence of associated random
variables. Let S, = X1 + ...+ X,. Suppose that n = rp, with r,p € N. Let
M € R be fivzed. Finally let S, =Y 1", [fM(XZ) —E(fM(Xi))] with fur(z)
=(xAM)V (=M). Then the following estimations hold, for any t € R,
T7>0,b€eR:

(30) ‘E <expit <S” - Tb)) - ¢(t)‘ < 4nP(|X;| 2 M)
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26 S. LOUHICHI and Ph. SOULIER
12

+ —5 (Var (Sp) —rVar (S5)) + HE (expit (S”T_ b)) } - ¢(t)‘ :

If we suppose moreover that the stationary sequence (X,,) is of centered ran-
dom wvariables, then for anyt € R, £ >0, 7 >0,

(31) HE <expit (%)) } _exp (-%)‘ <ol :ft4 1+ 2P(|5,] = 2)

rt

+ (S5, 120) | + 5 ‘1 7B (5315, <o)
S2 S 3
+ (t2v|t|3)rE< = A 15| Lis, <z | -

PrOOF. The proof of Lemma 2 is very classical. An analogue approxi-
mation lemma under mixing assumptions can be found in Dehling et al. [10]
or in Berkes et al. [4]. For the sake of clarity, we give its proof in detail.
Clearly

n

On—rh 1<ZfM —Tb>+%Z(Xi_fM(Xi)) ZZMJFSM-

=1

We deduce, from P(S3, # 0) < nP(|X1| > M), that

-, Sp—rb . Sin—rb
(32) EB(e" 7)) —B( )| S 20P (130 2 M),

We also obtain using the trivial fact

m
(33) |m1xm_y1ym|§2|xl_yl|a for xiayieca |xl|?|yl| éla

(34) ‘{E(eitsl’f_b)}r _ {E(eitsz’fb)}r‘ <2nP(|X1| 2 M).

The random variable Sy ;, is the sum of r associated r.v.’s distributed as S,
(recall that n = rp), thus Newman’s inequality yields:

(35) ‘E(eitsl”i_rb) - {E(eitsl’f_b)}r <

Acta Mathematica Hungarica 97, 2002
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The first part of Lemma 2 is proved collecting inequalities (32), (34) and
(35). We now prove the second part. We suppose that > < r, otherwise (31)

is trivial. Again (33) yields
2
<r E(eit57p> — (1 — t—)‘
2r

o ey )
B¢ 1s,c0) - <1 = ;)‘

t
< 2P (IS,] 2 o) + = [E(SyLjs,0)

<rE e“s_pl
= " lisyza )| T

t? r 9
t3 ‘1 — SE(S1s,<0)

+r

its—p 1 S t2 SZ
E e’ r —I—Z; p+—27_2 D 1|Sp\<:1:
Now we use the inequalities

2

eiy—l—iy+y—

<P AP, forany yeR

and

le? =1 —xz| < 2% forany z: |z|<

N —

to deduce that

(37) r

itse -t t* o
E e 7 —I—Z;Sp+2—7_25p 1‘5p|<1‘

2 3
72 -3 |Spl<z | »

< (VI[P rE (

and

(38)

42 Zau
et {1 - g}
The second part of Lemma 2 is proved by collecting inequalities (36), (37)

and (38).

PROOF OF THEOREM 1. We obtain, taking M = eT),, p = pp, r = [n/pn],
b=pnE(for,(X1)) and 7= A, in (30) and using (11), (12) and (13) (to-

Acta Mathematica Hungarica 97, 2002



28 S. LOUHICHI and Ph. SOULIER

gether with the inequality Var S’pn[n /Pn] < Var S,, which follows from associ-
ation)

(39)  lim B (exp (z‘tS””[”/””} ~ puln/pa]B{ fer, (1) )) = (t).

n—-+0o An

We deduce from (39) and (11) (using estimations as in (32))

Spaln
(40) ngr—lr—looE (exp (Zt%)) = ¢(t).

Recall that, for a positive integer m, Sp, =Y., [fM(Xi) — E(fM(XZ))]
and M = €T,,. Now the association property leads to

1 _ _ 1 _ _
A_% Var (Sn — Spn[n/pn}) < A_% (Var S, — Var Spn[n/pn])
1 _ n _
< - <Var Sp — [—] Var Spn>
n Pn

The last bound together with (13) yields

. 1 -
(41) lim A_n Var (S’n — Spn[n/pn}) = 0.

The limit in (41) together with (40) and some standard estimations yields

) i m (o (052)) <000

n

We deduce from (11) (arguing as in (32))

E <exp (itS" _ ”EZET" (X)) )) _E (exp <zti—:>> ‘ —0.

The proof of Theorem 1 is complete, by (43) and (42).
PROOF OF THEOREM 2. In order to prove this theorem, it suffices to

take M = eT),, r = [%] , b=pE(f.r,(X1)) and 7 = A, in (30), to note that

W ()
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STATIONARY ASSOCIATED SEQUENCES 29
p p
< Az ; Gi(M) + a2 Var ( far(X1)),

and to argue exactly as in the proof of Theorem 1. Let us note that for p =1,
the left hand side of (44) is bounded only by the first term on the right hand
side.

PrROOF OF COROLLARY 1. We shall check the assumptions of Proposi-
tion 1 for n belonging to a set of infinite integers @ C N (according to Re-
mark 3, following Proposition 1). To this end, fix p € N. According to (31)
and the Chebyshev inequality, the requirements of Proposition 1 for n € Q
(to be defined later) are satisfied if there exist two sequences r = r, — 400,
T = xp — +00 as p — +o0 such that

(C1) limy 4 o0 z~%r Var S, =0,

(Co) limy, oo 7B = 1.

. Var S. :
(C3) limsup,,_, | o, a j; 2 < const., with 72 = rE(Sgl‘spr) ;

' Sp[® : Var S
(Cq) limy s 400 TE(‘ Tp3| 1|5p‘<m> =0, limp_, 40 - ;; L o— ),

The existence of such sequences x and r is guaranteed by the following
lemma that we discuss in the appendix (let us note that this lemma does not
require any dependence assumptions).

LEMMA 3. Let (Xp),cn be a sequence of stationary and centered r.v.’s
having finite variance. Suppose that Var S,, = nL(n) with L a slowly varying
function and that (19) holds with A, = \/TE|S,|. Then there exist two se-
quences T =1, — +00, T = L, — +00 as p — +0o fulfilling conditions (Cy),
(C2), (C3) and (C4).

We define for the sequences (r},) and (z,) (i.e. those for which (C), (C2),
(C3) and (C4) are satisfied)

(45) Q = {np :=prp, p € N} and r}jp = rpE(S'leprp) .

Lemma 2, together with Lemma 3, yields then

S n/p t2
lim {E exp it (—p>} = exp <——> .
n—+400, n€Q Tn 2

We deduce, from (Cs), (C3) and Var S,, = nL(n), that

S 2
(46) limsup E < n”) < const.

p—+00 Tnyp
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Condition (19) of Proposition 1 is thus satisfied for A, = 7, and for n € @,
n — 4+o0o. We then deduce from Proposition 1 (for more clarity combine
Inequalities (30), (31) with M = +o0, b=0, ¢(t) = exp (— %) , M= Prp,
r:=r1p, T :=1zp and 7 := 7, (rp, T, are as above) and apply (C1), (C2), (C3)
and (Cy4).)

(47) . E oxb it Sn t?
im expit | — | =exp | —— ).
n—+4o00, n€Q P Tn p 2
Let us now identify the normalizing sequence (73),,co- We deduce from (46)
that the sequence (f—:) neQ is uniformly integrable. Thus by (47) and using
Theorem 5.4 in Billingsley [5]
E|S +eo 1 2
(48) lim [Sul = (2%)1/2/ |z| exp <——x2> dr =/ —.
n—+oo, n€Q Tp o 2 ™

In order to finish the proof of Corollary 1, we need the following lemma
that we discuss in the Appendix. In the sequel, we denote 02 = Var S,, and

pn = /SE[Sy|.
LEMMA 4. Let (X,), N be a sequence of stationary and centered r.v.’s.

Suppose that Condition (24) holds, with a slowly varying function L. Let Tp
be such that

(49) i L) _
pteo Lip)

Suppose that there exists a sequence (g,) tending to infinity with p for which

’f‘pE (SZ]_'SP‘é.gPUP)

50 li =1

(50) 2

then

(51) li iE(s21 ) =1
pﬁlrfoo ,012) pISplSgpop) T

END OF THE PROOF OF COROLLARY 1. We follow exactly the lines of
the proofs of Theorems 2 and 3 of [10]. An outline is the following. With-
out loss of generality the sequence r = r, (whose existence is guaranteed by
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Lemma 3) can moreover satisfy Condition (49) (we refer the reader to the
proof of Lemma 4 for a justification). We obtain combining (45) and (48)

2
prto0 Por,

(recall that p, = \/TE|Sy|). Now we note that z, = g,0, and that the se-
quence (gp) tends to infinity with p (for this cf. (62) and (63) below). This
fact together with (52) proves that Condition (50) is satisfied. Since the se-
quence () satisfies Condition (49), we deduce then according to Lemma 4,
that (51) holds.

Now we argue as in the proof of (4.10) in [10]: we construct, using the
limit in (51), two sequences h(np) and j(n,) tending to infinity with p, ful-
filling h(np) < j(np) < gn, and

1
2 o 2
w(np) := UTE(S"p1\/h<np)onpg\snp|§j<np>crn,,) —0.

p

Define the sequence (d(n)) by (4.11) of [10]:

neq

(53) lim  d(n) =0, d(n)=max (2h"2(n),w’(n)), neQ.

neQR, n——+o0o

Now suppose that the elements of () are arranged in an increasing order, say
Q = {ng, k = 1} (the sequence (ny) is increasing) and let

Ty = [ngh®(ng)d(ng), rug® (ng)d(ng)] -

The sequences h(ng) and j(ny) are chosen in such a way that for k sufficiently
large, say k = kg, one has

(54) Ji N Jk+1 75 0

(we refer the reader to (4.12) of [10] for more details).

We deduce from (53) and the choice of the sequences h(ny) and j(ng)
that the left endpoint of Ji tends to infinity with k. This remark together
with (54) yields, for m sufficiently large, the existence of a positive integer
k 2 ko such that m € Ji. Thus, we have for some g € [h(nk),](nk)] and
some 6 € [0,1] (cf. (4.13) of [10])

(55) m = npgd(ng) = ny, [gZd(nk)] + Ony, =: My, + Ony,.
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Let us first prove that the sequence (S, ) suitably normalized converges in
distribution to the standard Gaussian law. For this we note that M} belongs
to the set @@ defined by (45). In fact let

(56) pi=mng,  ri=r(ng) = [gPd(ng)], @ = x(ng) = gog,.

We have to check that those sequences fulfill conditions (Cy), (C2), (C3) and
(C4) (we shall check this property in the Appendix). If so, My = ny [g2d(nk)]
= pr (with p and r are as defined by (56)) is an element of the set (). Hence
we conclude using (46) and (47)

SM 2 SM t2
(57) limsupE < '“) < const., lim Eexpit (—’“) = exp <__> )
k—4o00 TM;, k—+00 TM;, 2

Next we prove (cf. Appendix) that, for m and M}, as in (55)

l. 72E m 2 — V.

(58) Jm 7y (Sm — Sa,)? =0

We set 7, := Ty, for m and My, as in (55). Then by (57), (58) and (55)
) - (Sm 2

(59) mngEexp 1t (a> = exp <_5> i

Our task now is to identify the normalizing constants 7,,,. We deduce from
the first bound in (57) and from (58) that the sequence (S—m)meN is uni-

T

formly integrable and we conclude using (59) (as for (48)) that

E|S,, 2
(60) lim ESml _ \ﬁ
m—+00 Ty ™

The proof of Corollary 1 is now complete by (59) and (60).

4. Appendix

PrOOF OF LEMMA 3. The proof of this lemma follows along the lines
of the proof of Theorem 1 of Dehling et al. [10]. In the sequel we give an
outline of this proof in order to emphasize its validity without any mixing
conditions.

As it is noticed by (3.14) of [10], the slowly varying property of L yields
the existence of a sequence (X)) such that

@—1‘20.

61 lim X, =+o00 and lim sup
( ) P L(p)

p—+o0 P=H00 <<y,
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Let (z), be a sequence of real numbers fulfilling z, — 400 as p — 400 and

% = VA,

Define the sequence (i), as (3.8) of [10]:

lim 4, =400, lim 27" logz, = +o00.
p——+00 p——+00

Let k = kj be a positive integer less than i, and fulfilling (3.9) of [10]:

1 1 —im1  o—i
E(321 )g—, ith I, ::] 2mit 2 }
Var S, P \/_vlip(lsp)gkp ~p b ®) » »

Define the sequence (g,) and (v,) as in (3.10) and (3.5) of [10]:

2~ kp 2 1 2
= = E S 1 .
= Ty Sy ( P \/gp<\/l,sa€—sq)§gp)
Finally let

(62)
T =Ty =gp\/VarsS,, r=rp,= gch where ¢, := max (29;1/2,1)2).

Note that

m 7, = +00.

63) Jposp=rroo Mpoe=0 Ip m=teo I,

p—+00

Let us now check conditions (C;), (C2), (C3) and (C4) for those sequences (z,)
and (rp).

1. The expressions of z, and r, yield (Cy).

2. The choices of g, and 7, yield r, £ &,,. The definition of &}, (cf. (61))
implies (Ca).

3. Condition (19) with A4, = /FE|S,|, yields (Cs) (cf. (3.11) of [10]).

4. Condition (C3), together with the expressions of the sequences ,, g,
vp yields (C4) (argue as (2.16) and (2.17) of [10]).

PROOF OF LEMMA 4. Since L is a slowly varying function, then as in

(61) (cf. (3.14) of [10] for a proof) there exists a sequence (ng)p with

(pt)

W
L(p)

=0.

(64) lim X =400 and lim  sup
p—+00 p—+00 1§t§ng
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Hence there exists a sequence (ry) fulfilling (49). The proof of Lemma 4 is
complete, noting that Condition (24) together with the choice of r, leads to
p?wp ~ rpp;, as p tends to infinity.

Let us note that without loss of generality, we can assume that (64) is
satisfied by the sequence (Ap) , of (61) (instead of (Xlﬁ)p). If so, we can choose
a sequence (rp) tending to infinity with p fulfilling both (C3) and (49).

More details. Let us check that the sequences defined by (56) fulfill con-
ditions (Cy), (C2), (C3) and (C4). Noting that z~2r Var S, < d(ny) and using
(53), we deduce that (C;) is satisfied. Choosing the sequence j(n,) to sat-
isfy moreover j(n,) < ./, we deduce that r = [g2d(ny)] < j?(ng)d(nk)
< $X(ny), we conclude using (61) that (C) is satisfied. Condition (19) with
Ay = pn = \/SE|S,| leads (C3) (arguing as (3.11) of [10]). The first limit
in (C4) is satisfied by (2.16) and (2.17) of [10]. Finally the second limit in
(C4) is also satisfied, in fact, we obtain using (C3) and standard estimations,
that there exists a constant C' such that, z='7~1r Var S, < C'\/d(n). Since
d(ng) goes to 0 as ny tends to infinity, we deduce that the last bound of (C4)
is satisfied.

We now check (58) for m and My as in (52')5) We deduce from (55) and

the association property (i.e. the sequence (ap)p is non-decreasing) that

(65) E(Sp — Sm,)” = ES;, < o2 .
We deduce from r = [¢g2d(ng)] < X(ng), the limit in (61) and the expres-
sions of M}, and r (cf. (55) and (56)), that for k sufficiently large (cf. also
[10], p. 1368)

Var Sy,

1
66 —F >
(66) r Var S, 2

1\

Since r = r(ny) tends to infinity with k&, we deduce then combining (65) and
(66) that

lim o3 E(Sy — S, )? =0.
k—ir-iloo UM’“ ( m Mk)

The last limit together with the first bound in (57) proves (58).
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