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1. Introduction

For a centered stationary time seri@é,);cz with finite moment of ordey <

[1, 2], a rate of convergence in the strong law of large numbers (SLLN) is given
by any integerp < ¢ such that:~Y/7S, converges almost surely to 0, wify =

X, + -+ 4+ X,. Such a result is usually called a Marcinkiewicz—Zygmund strong
law. It is well known that if(X,),cz is an i.i.d. sequence of random variables
belonging to the domain of attraction of stable law of indexlL < « <2, then
n~Yes, converges weakly to a stable law, while'/”S, converges almost surely

to zero for allp < «. Related results for weakly dependent variables are known,
see for instance Rao (1995) and the references therein, but this problem has not
been studied in the context of long-range dependence.

The classical definition of long-range dependence of a time series is in terms
of the sum of the autocovariances. If the sum diverges then the series is said long-
range dependent. For infinite variance time series, this definition is inappropriate.
The problem of defining long-range dependence for infinite variance time series is
made even more ambiguous because of the fact that there is not a unique structure
that can describe such time series. Contrarily to the finite variance case, linear and
harmonizable processes form two disjoint classes of processes and their union does
not cover all infinite variance processes (see definitions in Section 2). As suggested
by Hall (1997), long-range dependence should be considered in view of a specific
convergence problem, and a time series should be declared long-range dependent
if the convergence rate in the problem of interest is strictly slowler than in the case
of independent data.

In view of this, we propose the following definition of long-range dependence
based on the rate of convergence in the SLLN.(B&Y), 7 be a stationary sequence
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of centered random variables with finite moment of orger [1, 2]. The sequence
(Xikez is

— weakly dependent it ~Y/7S, converges almost surely to 0 for all® p <gq
andp < 2;
— strongly or long-range dependent otherwise.

The interest of this definition is that it does not depend on a second order struc-
utre for the proces$X; )<z and that it is coherent with known weak convergent
results as shown in Section 3.

The rest of the paper is organized as follows. Our results for almost sure con-
vergence are stated in Section 2. We give results for three classes of processes,
namely linear with symetria-stable innovation, harmonizable and associated pro-
cesses. Our results are new in the case of linear and associated processes, while
in the case of harmonizable processes, they are a consequence of earlier results
of Houdre (1995). The optimality of the rates of convergence obtained is then
evaluated by comparison with known weak convergence results (Section 3). Proofs
are postponed in Section 4.

2. Marcinkiewicz—Zygmund Strong Laws
2.1. LINEAR PROCESSES

Let (£;);cz be a sequence of random variables which are either i.i.d. symmetric
a-stable SaS) variables with 1< a < 2, or uncorrelated with finite variance.
The latter case will be refered to as the finite variance case or thexcasg for
convenience. Recall that the characteristic function of@8 random variable

is E(el®) = e"I'l" for somes > 0, and for allp < «, E(|€]?) < oo. In the
sequel, we assume that= 1. Let(b;) jcz be a sequence of real numbers such that
Z,‘ez |b;]* < oo. Then we can define a stationary procesg)icz by

X, = Zbk_jg,-.

JEZ

THEOREM 1. Assume that there exists a reak [1, o such thaty ;_, |b;° <

oo. Then for allp suchthatl/p > 1—1/s+1/a, n~Y?S, converges almost surely
to zero.

2.2. HARMONIZABLE PROCESSES

ForSa S processes withh < 2, the class of harmonizable processes and the class of
processes having a moving average representation studied in the previous section
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are disjoint. Let(X; )<z be an harmonizable process defined as follows

X; = / c(x)e'* M (dx), (1)
-7

wherec is a function such thaffn lc()|*dx < 00.If1l <« < 2, we assume that

M is ana-stable independently scattered random measure with Lebesgue control

measure, i.e. for all functiog such thatffn lg(x)|* dx < o0,

E(exp(it/ g(X)M(dX))> =eXP(—|tI°‘/ g ()[* dX),

andM(A) and M (B) are independent whenevdrand B are disjoint Borel sets.
The function f(x) = |c(x)|* is usually called the spectrum of the sequence
(Xrez- In the finite variance case, we only assume thais an orthogonally
scattered random measure with Lebesgue control measure, i.e. for all fugction
such that/™ [g(x)|?dx < oo,

T 2 T
E[(/ g(x)M(dx))}/ g2 dx,

and M (A) and M (B) are uncorrelated whenevdrand B are disjoint Borel sets.
Note that in that case the proceXsis weakly stationnary with spectral density
f(x) = |c(x)|. The following theorem is a particular case of Corollary 3.7 of
Houdre (1995).

THEOREM 2. Assume that there exists a reab- 1 such thatf € L"([—x, 7],
dx). Then for allp such thatl/p > 1 — (1 — 1/r)/a, n~Y/?S, converges almost
surely to zero.

2.3. ASSOCIATED SEQUENCES

A finite collectionX,, ... , X, of random variables is associated if for any coordin-
atewise nondecreasing functiofisg: R* — R

COV(f(Xl, e Xn)v g(Xl’ cet Xn)) 207

whenever the above covariance exists. An infinite collection is associated if every
finite sub-collection is associated (Esary et al., 1967). Such an infinite collection
will be called an associated process. For associated seqUEDege;, define

Hijx,y)=PX;Z2x,X;2y)— PX;Z2x)P(X; > y). (2)
It follows from the association property thak ;(x, y) >0 for all x, y in R. For
v > 0, defineg, (1) := (u Av) v (—v) and

Gr(v) = COV(gv(Xl), gv(Xr)) = /< Hl,r(x’ y) dx dy~ (3)
yI<v

[x[<wv
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The latter equality is a consequence of Remark 4 after Theorem 2.3 in
Yu (1993).

THEOREM 3. Let (X,).cz be a centered stationary associated process. Assume
that for somep € [1, 2|,

(e9]

+00
/ v"73G, (v) dv < 0. 4)

1,
=

Then the following statements are equivalent:
(i) E|X1]P < oo;
(i) foralle > 0,Y .72 n~tP(Maxi < ;<. |S;| > en'/P) < c0.

Under (4) and either (i) or (i), it thus holds thdim,_, ., n~*?S, = 0, almost
surely.

Note that this theorem is an extension of the result of Baum and Katz (1965)
written for i.i.d. sequences (which are also associated®pydf Esary et al. (1967)).
We now consider some particular cases of Theorem 3. If the associated sequence
(Xv)rez has a finite moment of order 2, lettingtend to infinity in the RHS of (3)
implies thatG, (v) < cov(X1, X,), for all v > 0, and Theorem 3 yields the rate of
convergence in the strong law of Birkel (1989):

COROLLARY 1. Let p be afixed real number if1, 2[. Let(X,),cn be a station-
ary associated process such tigftx?] < co andE[X;] = O. If

o0
Zrlfz/pCOV(Xl, X,) < oo, ®)
r=2

thenlim,,_, . n~Y?S, = 0 almost surely.

Consider now a strongly uniformly integrable i.i.d. sequencg,),z (see
Billingsley, 1968, page 32), i.e. assume that there exists aared]l, 2[ and a
constantk > 0 such that

P(IX1|Zx) < Kx™%. (6)

We can then define, following in Dabrowski and Jakubowski (1994), Remark 2.9
and Proposition 2.10, for alk > 0 the following dependence coefficient

IMNX:, X)) = supa"‘Z/ H; ;(x,y)dx dy.

az A —a J—a

Since for allv > 1, G, (v) < vzf"‘IO}(Xl, X,), Theorem 3 yields:
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COROLLARY 2. Let (X,),cz be a centered sequence of stationary associated
random variables fulfilling Condition (6) for some fixed €]1, 2[. If, for some

pell, o,

oo
D P IN(X, X,) < oo, 7
r=2

thenlim,,_, ., n~Y?S, = 0, almost surely.

3. Weak Convergence

In order to assess the optimality of the previous results, we compare them with
related results on weak convergence. If for a centered sequ&pgeve know that
n~Yay"_ | X, converges weakly, we will say that our almost sure convergence
results are optimal if we prove that for il < ¢, n=7 > _, X, converges almost
surely to zero.

3.1. LINEAR SEQUENCES

Let (§;)jez be an i.i.d. sequence ¢fxS (1 < o < 2) random variables. Define
cj =1jI7" (j # 0)andco € R, andXy = >, 7 cx—;&;. The sequencg, is well
defined ify > 1/«. If moreovery < 1, Theorem 5.1 in Kasahara and Maejima
(1988) yieldsn? 1Y« 3™ X, converges weakly to 8 S distribution. Since in
that case) ;. Ic;|' < oo for anys > 1/y, Theorem 1 shows that /7 37/ _; X;
converges almost surely to zero for apysuch that Ip > 1 — y + 1/a. Hence
Theorem 1 is optimal.

3.2. HARMONIZABLE PROCESSES

Let the functione of Section 2.2 be defined agx) = 3, c;e”* wherec; is the
sequence defined above and (&) be the harmonizable process of Section 2.2.
Then Theorem 6.1 of Cambanis and Maejima (1989) yields#tay*—2>"_, Z;
converges weakly to &« S distribution. The functiore is regularly varying at
zero and|c(x)| ~ ¢,|x|”~! in a neighborhood of zero (cf. Zygmund) and thus
f=lc|* € L"if r < 1/a(1—y). Theorem 2 yields that~*/7 Y} _, Z; converges
almost surelyto O if Ip > 2 — y — 1/a. Hence Theorem 2 is also optimal.

3.3. ASSOCIATED SEQUENCES

In the finite variance case, our condition for almost sure convergence is (5):
Yk kHPcov(X 1, Xi) < oo. If X, = Y. ocj&; is a linear process with

¢j = j7, j=1andy > 1/2, then Condition (5) holds if ip > 3/2 — y
whereas weak convergence holds#of/2t” 3! _, X, (Davydov, 1970). lfo? =
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IE(X%) +2) 77, cov(Xy, X,) < oo, then (5) holds for anyp < 2 and weak
convergence to a Gaussian distribution with variasééholds (Newman, 1980).
Thus in the finite variance case, our results are optimal. Note that these results are
also a consequence of Theorem 1.

In the infinite variance case, the optimality of our result is more difficult to
assess. Theorem 2.8 in Dabrowski and Jakubowski (1994) states that if the sta-
tionary associated centered sequese),.n+ belongs to the domain of strict
normal attraction of a jointly-stable stationary sequence (cf. definition in Dab-
rowski and Jakubowski, 1994, p. 4-%),),en+, then Condition (6) holds and

n—Yes, converges weakly to a nondegenerate strigtitable distribution as soon
as) 2, I}(X1, X,) < oo. Inthat case, Corollary2ylelds that/7 S, converges
almost surely to zero for alp < «. If the series) >, I1(Xy, X,) is divergent,
we do not know when weak convergenceSyf properly renormalized, holds. If
we compare with results for linear processes with regularly varying coefficients,
then Condition (4) or (7) do not yield the exact rate of convergence in the strong
law of large numbers. In view of the finite variance case and of the case when
the seriesy >>, I1(X1, X,) is convergent, we nevertheless conjecture that Condi-
tion (4) cannot be improved and give the exact rate of convergence for associated
sequences.

4. Proofs

Proof of Theorem 1The proof of this theorem is based on a maximal inequality
which is an extension of the Rademacher—btaninequality.

PROPOSITION 1.Let (a;);c7z be a sequence of real numbers. If the assumptions
of Theorem 1 hold, then for any real€]s, «f,

p/s

p n
j ) Cpa | D151 | 10gy(20)n” Y9N " gy (8)

JEL i=1

Sax

max
1<k<n

Proof. Recall that)_;_, 1b;° < coand let ¥+ = 1 — 1/s, with the convention
thatr = oo and ¥/t = 0 if s = 1. In the casex < 2, the random variables;
are assumed to be i.i.daS, thus there exists a constafi}, , (cf. for instance
Samorodnitsky and Taqqu, 1994, Property 1.2.17) such that

o\ Pl

n p
E akbk,j

k=1

p
_Paz

JEZ

Z akbk j

k=1

<Cha
JEZ
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In the finite variance case, singe/2 < 1, applying Jensen inequality and the
uncorrelatedness of tife’s, we get
p

n n
Zakxk < Z Zakbkfj
k=1

jez k=1
Applying first Holder and then Jensen inequalities yields

n P n p/s
Zakbkfj < nPlt (Z |akls|bkj|s>
k=1

2\ P/2 2

E Z Clkbk,j

k=1

3

JEZ

k=1
p/s—1
n
< P b Pl [ D 1b 1
k=1 jez
Thus, setting”, » = 1, we obtain
n p pls n
E\D aiXi| <Cpo|D 61" 0?9 a7 ©)
i=1 jez i=1

The maximal inequality (8) is a consequence of (9), see for instarmre/ét al.
(1982).

To conclude the proof of Theorem 1, note that the maximal inequality (8)
implies the almost sure convergence of the sefes. ,aX; as soon as

> s lanl?n?t log (2n) < oo for somep’ < « (cf. for instance Leve, 1978,
Section 36.1). Finally, applying Kroneker's Lemma concludes the proof of
Theorem 1. O

Proof of Theorem 3We only prove (ii)— (i). For a proof of (i)— (ii), we refer
to Proposition 1 in Louhichi (1998). Obviously (ii) yields

o
anlF’( max |X;| > en””) < o0, forall e >0,
n=1

1<j<n

which is equivalent to

1<j<2*

ZP( max |Xj|>62k/”) < oo forall € > 0. (10)
k=1

We must prove tha} ™~ , P(|1X;| > n%/?) < oo, or, equivalently,
o0
szp(|xl| > 267y < o0,
k=0

The following lemmas are very useful in the sequel.
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LEMMA 1. Let (X,).ez be a sequence of identically distributed random vari-
ables. Then for any > O andm € Z it holds:

1 1 m
P(X; >x)=—P max X; > x —{——Z]P’ X;>x, max X; > x |.
m 1<i<m m < > 1<i<y
=
(11)

The proof of this lemma is very classical and is omitted, cf. for example Equation
(2.4) in Peligrad and Gut (1999). The next lemma gives a bound for the last term
in Equation (11) under association.

LEMMA 2. Let(X,),cz be a sequence of stationary and associated sequence. For

x > Orecall that we defined,(z) = (x A z) vV (—x). Then for anya €]0, 1], it
holds that

2 J
P(X] > x, max X; > X> < m;COV(gX(Xl),gx(Xr)) +

1<i<j

+P(X;1 > ax)IP’( max X; > x/2) .

1<i<j

Proof of Lemma 2We generalize a result of Vronski (1999). Since the function
(x1,...,xj) = (xj, max <, X;) is coordinatewise nondecreasing, the vector
(Xj, max <, X;) is associated. Hence for allz,

P(X,>t, max X,~>s>—IF’(X,>t)IP><max X,~>s> >0. (12)
’ 1<i<j ’ 1<i<j

Applying (3) and (12), we now get

COV(gx(Xj), gx ( max X,’))
1<i<y
X X
:/ / <]P’<Xj >, max X; >s) -P(X; > I)P( max X; >s)> dr ds
—xJ—x 1<i<j 1<i<j
X X
> / / <P(Xj >t, max X; >s> - P(X; >t)IP< max X; >s)) dr ds
ax Jx/2 1<i<j 1<i<j

x2(1—a)
2# PlX; >x, max X; >x | —P(X; >ax)P| max X; > x/2])]|.

1<i<j 1<i<y
(13)
Since the functioth (x4, ... , xj_1) = gc(x1)+- - -+g (xj_1) —gx(MaA << j—1 X;)
is coordinatewise nondecreasing, association yields
j-1
COV(g (X)), h(X1, ..., Xj 1) = Y COUg (X)), gc(X,)). (14)

r=1
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By stationarity, the right hand side of (14) also writes

J
C0V<gx(X,~), 8« <1maX, Xi)) < ) cov(g(X1), g (X,)). (15)

<i<
X .1 r:2

Finally, we combine inequalities (13) and (15) to get the desired result. We now
proceed with the proof of Theorem 3. Lgt := 2*P(X; > 2¢/7) and letc, denotes

a positive constant that depends onlyoand may be different from line to line.
Lemmas 1 and 2 applied with= 2¢/?, m = 2* anda = 277 yield:

e < 2]P’< max X; >2"/”‘1> pk1+]P>< max X; >2"/”>+
1<ig<2 1<i<2

2k
+c,2K1=2/p) Z COV(gat/p (X1), gok/v (X))
r=2

=: 2P <1£n<’ix2k X; > 2"/”_1> Pi—1+ ai + cpby. (16)

It follows from the summability condition (10) applied with= 1/2 that there
exists an integeky such that for alk > ko,

P( max X; > 2k/P1) <1/4.
1<ig2k

The last inequality and (16) yield for &l> ko, pi < px-1/2 + ax + c¢,br, which
implies, for all K > ko,

1 K-1 D K K
ko—1
EZP"< ; +Zak+0p2bk- (17)
k=ko k=ko k=ko

(10) implies that)_";2, ax < oo and we now prove tha} 2, b, < oco. Fubini's
theorem and the integral representation (3) yield

ok

o o0
Zbk = Z 2k(1_2/p)ZCOV(gzk/p(X1), ga/r(X}))
k=1 k=1 r=2
0 400 +00
< CPZ/ / (r V 1x|? Vv [y") 2P Hy , (x, y) dx dy
r=2 Y00 J-00
0 00
= CPZ/l/ P3G, (v) dv < 0o
r=2"" ’

under Condition (4) (for the proof of the last equality we refer to Lemma 4 in
Louhichi (1998)). Altogether, letting tend to infinity in (17), we obtain that

szP(Xl > 2"/”) = Zpk < OQ.
k=0 k=0
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Since association of the sequeri&e); implies association for the sequeneeX;);,
we can obtain in the same way that

ZZkP(—Xl > 2K/Py < 0.
k=0

This concludes the proof of Theorem 3.
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