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Abstract. We study rate of convergence in the strong law of large numbers for finite and infinite
variance time series in both contexts of weak and strong dependence.

Key words: Marcinkiewicz–Zygmund strong laws, associated sequences, linear sequences, long-
range dependence.

1. Introduction

For a centered stationary time series(Xk)k∈Z with finite moment of orderq ∈
[1,2], a rate of convergence in the strong law of large numbers (SLLN) is given
by any integerp < q such thatn−1/pSn converges almost surely to 0, withSn =
X1 + · · · + Xn. Such a result is usually called a Marcinkiewicz–Zygmund strong
law. It is well known that if(Xn)n∈Z is an i.i.d. sequence of random variables
belonging to the domain of attraction of stable law of indexα, 1 < α6 2, then
n−1/αSn converges weakly to a stable law, whilen−1/pSn converges almost surely
to zero for allp < α. Related results for weakly dependent variables are known,
see for instance Rao (1995) and the references therein, but this problem has not
been studied in the context of long-range dependence.

The classical definition of long-range dependence of a time series is in terms
of the sum of the autocovariances. If the sum diverges then the series is said long-
range dependent. For infinite variance time series, this definition is inappropriate.
The problem of defining long-range dependence for infinite variance time series is
made even more ambiguous because of the fact that there is not a unique structure
that can describe such time series. Contrarily to the finite variance case, linear and
harmonizable processes form two disjoint classes of processes and their union does
not cover all infinite variance processes (see definitions in Section 2). As suggested
by Hall (1997), long-range dependence should be considered in view of a specific
convergence problem, and a time series should be declared long-range dependent
if the convergence rate in the problem of interest is strictly slowler than in the case
of independent data.

In view of this, we propose the following definition of long-range dependence
based on the rate of convergence in the SLLN. Let(Xk)k∈Z be a stationary sequence
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of centered random variables with finite moment of orderq ∈ [1,2]. The sequence
(Xk)k∈Z is

− weakly dependent ifn−1/pSn converges almost surely to 0 for all 0< p6 q
andp < 2;

− strongly or long-range dependent otherwise.

The interest of this definition is that it does not depend on a second order struc-
utre for the process(Xk)k∈Z and that it is coherent with known weak convergent
results as shown in Section 3.

The rest of the paper is organized as follows. Our results for almost sure con-
vergence are stated in Section 2. We give results for three classes of processes,
namely linear with symetricα-stable innovation, harmonizable and associated pro-
cesses. Our results are new in the case of linear and associated processes, while
in the case of harmonizable processes, they are a consequence of earlier results
of Houdre (1995). The optimality of the rates of convergence obtained is then
evaluated by comparison with known weak convergence results (Section 3). Proofs
are postponed in Section 4.

2. Marcinkiewicz–Zygmund Strong Laws

2.1. LINEAR PROCESSES

Let (ξj )j∈Z be a sequence of random variables which are either i.i.d. symmetric
α-stable (SαS) variables with 1< α < 2, or uncorrelated with finite variance.
The latter case will be refered to as the finite variance case or the caseα = 2 for
convenience. Recall that the characteristic function of anSαS random variableξ
is E(eitξ ) = e−σα |t |α for someσ > 0, and for allp < α, E(|ξ |p) < ∞. In the
sequel, we assume thatσ = 1. Let(bj )j∈Z be a sequence of real numbers such that∑

j∈Z |bj |α <∞. Then we can define a stationary process(Xk)k∈Z by

Xk =
∑
j∈Z

bk−j ξj .

THEOREM 1. Assume that there exists a reals ∈ [1, α[ such that
∑

j∈Z |bj |s <
∞. Then for allp such that1/p > 1−1/s+1/α, n−1/pSn converges almost surely
to zero.

2.2. HARMONIZABLE PROCESSES

ForSαS processes withα < 2, the class of harmonizable processes and the class of
processes having a moving average representation studied in the previous section
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are disjoint. Let(Xk)k∈Z be an harmonizable process defined as follows

Xk =
∫ π

−π
c(x)eikxM(dx), (1)

wherec is a function such that
∫ π
−π |c(x)|α dx <∞. If 1 < α < 2, we assume that

M is anα-stable independently scattered random measure with Lebesgue control
measure, i.e. for all functiong such that

∫ π
−π |g(x)|α dx <∞,

E
(

exp

(
it
∫ π

−π
g(x)M(dx)

))
= exp

(
−|t|α

∫ π

−π
|g(x)|α dx

)
,

andM(A) andM(B) are independent wheneverA andB are disjoint Borel sets.
The functionf (x) = |c(x)|α is usually called the spectrum of the sequence
(Xk)k∈Z. In the finite variance case, we only assume thatM is an orthogonally
scattered random measure with Lebesgue control measure, i.e. for all functiong

such that
∫ π
−π |g(x)|2 dx <∞,

E

[(∫ π

−π
g(x)M(dx)

)2
]
=
∫ π

−π
|g(x)|2 dx,

andM(A) andM(B) are uncorrelated wheneverA andB are disjoint Borel sets.
Note that in that case the processX is weakly stationnary with spectral density
f (x) = |c(x)|2. The following theorem is a particular case of Corollary 3.7 of
Houdre (1995).

THEOREM 2. Assume that there exists a realr > 1 such thatf ∈ Lr([−π, π ],
dx). Then for allp such that1/p > 1− (1− 1/r)/α, n−1/pSn converges almost
surely to zero.

2.3. ASSOCIATED SEQUENCES

A finite collectionX1, . . . , Xn of random variables is associated if for any coordin-
atewise nondecreasing functionsf, g : Rn→ R

cov(f (X1, . . . , Xn), g(X1, . . . , Xn))> 0,

whenever the above covariance exists. An infinite collection is associated if every
finite sub-collection is associated (Esary et al., 1967). Such an infinite collection
will be called an associated process. For associated sequence(Xi)i∈Z, define

Hi,j (x, y) := P(Xi > x,Xj > y)− P(Xi > x)P (Xj > y). (2)

It follows from the association property thatHi,j (x, y)> 0 for all x, y in R. For
v > 0, definegv(u) := (u ∧ v) ∨ (−v) and

Gr(v) := cov(gv(X1), gv(Xr)) =
∫
|x|6 v

∫
|y|6 v

H1,r(x, y)dx dy. (3)
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The latter equality is a consequence of Remark 4 after Theorem 2.3 in
Yu (1993).

THEOREM 3. Let (Xn)n∈Z be a centered stationary associated process. Assume
that for somep ∈ [1,2[,

∞∑
r=2

∫ +∞
r1/p

vp−3Gr(v)dv <∞. (4)

Then the following statements are equivalent:

(i) E|X1|p <∞;
(ii) for all ε > 0,

∑∞
n=1 n

−1P(max16 j 6 n |Sj | > εn1/p) <∞.

Under (4) and either (i) or (ii), it thus holds thatlimn→∞ n−1/pSn = 0, almost
surely.

Note that this theorem is an extension of the result of Baum and Katz (1965)
written for i.i.d. sequences (which are also associated by (P4) of Esary et al. (1967)).
We now consider some particular cases of Theorem 3. If the associated sequence
(Xk)k∈Z has a finite moment of order 2, lettingv tend to infinity in the RHS of (3)
implies thatGr(v)6 cov(X1, Xr), for all v > 0, and Theorem 3 yields the rate of
convergence in the strong law of Birkel (1989):

COROLLARY 1. Letp be a fixed real number in[1,2[. Let(Xn)n∈N be a station-
ary associated process such thatE[X2

1] <∞ andE[X1] = 0. If

∞∑
r=2

r1−2/pcov(X1, Xr) <∞, (5)

thenlimn→∞ n−1/pSn = 0 almost surely.

Consider now a strongly uniformly integrable i.i.d. sequence(Xn)n∈Z (see
Billingsley, 1968, page 32), i.e. assume that there exists a realα ∈]1,2[ and a
constantK > 0 such that

P(|X1|> x)6Kx−α. (6)

We can then define, following in Dabrowski and Jakubowski (1994), Remark 2.9
and Proposition 2.10, for allA > 0 the following dependence coefficient

IAα (Xi,Xj) = sup
a> A

aα−2
∫ a

−a

∫ a

−a
Hi,j (x, y)dx dy.

Since for allv > 1,Gr(v)6 v2−αI 1
α(X1, Xr), Theorem 3 yields:
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COROLLARY 2. Let (Xn)n∈Z be a centered sequence of stationary associated
random variables fulfilling Condition (6) for some fixedα ∈]1,2[. If, for some
p ∈ [1, α[,

∞∑
r=2

r1−α/pI 1
α(X1, Xr) <∞, (7)

thenlimn→∞ n−1/pSn = 0, almost surely.

3. Weak Convergence

In order to assess the optimality of the previous results, we compare them with
related results on weak convergence. If for a centered sequence(Xn) we know that
n−1/q∑n

k=1Xk converges weakly, we will say that our almost sure convergence
results are optimal if we prove that for allp < q, n−1/p∑n

k=1Xk converges almost
surely to zero.

3.1. LINEAR SEQUENCES

Let (ξj )j∈Z be an i.i.d. sequence ofSαS (1 < α < 2) random variables. Define
cj = |j |−γ (j 6= 0) andc0 ∈ R, andXk =∑j∈Z ck−j ξj . The sequenceXn is well
defined ifγ > 1/α. If moreoverγ < 1, Theorem 5.1 in Kasahara and Maejima
(1988) yieldsnγ−1−1/α∑n

k=1Xk converges weakly to aSαS distribution. Since in
that case

∑
j∈Z |cj |s <∞ for anys > 1/γ , Theorem 1 shows thatn−1/p∑n

k=1Xk
converges almost surely to zero for anyp such that 1/p > 1− γ + 1/α. Hence
Theorem 1 is optimal.

3.2. HARMONIZABLE PROCESSES

Let the functionc of Section 2.2 be defined asc(x) =∑j∈Z cj e
ijx wherecj is the

sequence defined above and let(Zk) be the harmonizable process of Section 2.2.
Then Theorem 6.1 of Cambanis and Maejima (1989) yields thatnγ+1/α−2∑n

k=1Zk
converges weakly to aSαS distribution. The functionc is regularly varying at
zero and|c(x)| ≈ cγ |x|γ−1 in a neighborhood of zero (cf. Zygmund) and thus
f = |c|α ∈ Lr if r < 1/α(1− γ ). Theorem 2 yields thatn−1/p∑n

k=1Zk converges
almost surely to 0 if 1/p > 2− γ − 1/α. Hence Theorem 2 is also optimal.

3.3. ASSOCIATED SEQUENCES

In the finite variance case, our condition for almost sure convergence is (5):∑
k> 2 k

1−2/pcov(X1, Xk) < ∞. If Xn = ∑
j > 0 cj ξn−j is a linear process with

cj = j−γ , j > 1 andγ > 1/2, then Condition (5) holds if 1/p > 3/2 − γ
whereas weak convergence holds forn−3/2+γ ∑n

k=1Xk (Davydov, 1970). Ifσ 2 =
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E(X2
1) + 2

∑∞
r=2 cov(X1, Xr) < ∞, then (5) holds for anyp < 2 and weak

convergence to a Gaussian distribution with varianceσ 2 holds (Newman, 1980).
Thus in the finite variance case, our results are optimal. Note that these results are
also a consequence of Theorem 1.

In the infinite variance case, the optimality of our result is more difficult to
assess. Theorem 2.8 in Dabrowski and Jakubowski (1994) states that if the sta-
tionary associated centered sequence(Xn)n∈N∗ belongs to the domain of strict
normal attraction of a jointlyα-stable stationary sequence (cf. definition in Dab-
rowski and Jakubowski, 1994, p. 4–5),(Yn)n∈N∗ , then Condition (6) holds and
n−1/αSn converges weakly to a nondegenerate strictlyα stable distribution as soon
as
∑∞

r=2 I
1
α(X1, Xr) < ∞. In that case, Corollary 2 yields thatn−1/pSn converges

almost surely to zero for allp < α. If the series
∑∞

r=2 I
1
α(X1, Xr) is divergent,

we do not know when weak convergence ofSn, properly renormalized, holds. If
we compare with results for linear processes with regularly varying coefficients,
then Condition (4) or (7) do not yield the exact rate of convergence in the strong
law of large numbers. In view of the finite variance case and of the case when
the series

∑∞
r=2 I

1
α(X1, Xr) is convergent, we nevertheless conjecture that Condi-

tion (4) cannot be improved and give the exact rate of convergence for associated
sequences.

4. Proofs

Proof of Theorem 1.The proof of this theorem is based on a maximal inequality
which is an extension of the Rademacher–Menˇcov inequality.

PROPOSITION 1.Let (ai)i∈Z be a sequence of real numbers. If the assumptions
of Theorem 1 hold, then for any realp ∈]s, α[,

E

(
max

16 k6 n

∣∣∣∣∣
k∑
i=1

aiXi

∣∣∣∣∣
p)
6Cp,α

∑
j∈Z
|bj |s

p/s

log2(2n)n
p(1−1/s)

n∑
i=1

|ai|p. (8)

Proof.Recall that
∑

j∈Z |bj |s <∞ and let 1/t = 1− 1/s, with the convention
that t = ∞ and 1/t = 0 if s = 1. In the caseα < 2, the random variablesξj
are assumed to be i.i.d.SαS, thus there exists a constantCp,α (cf. for instance
Samorodnitsky and Taqqu, 1994, Property 1.2.17) such that

E

∣∣∣∣∣
n∑
k=1

akXk

∣∣∣∣∣
p

= Cp,α
∑
j∈Z

∣∣∣∣∣
n∑
k=1

akbk−j

∣∣∣∣∣
α
p/α

6Cp,α
∑
j∈Z

∣∣∣∣∣
n∑
k=1

akbk−j

∣∣∣∣∣
p

.
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In the finite variance case, sincep/2 < 1, applying Jensen inequality and the
uncorrelatedness of theξj ’s, we get

E

∣∣∣∣∣
n∑
k=1

akXk

∣∣∣∣∣
p

6

∑
j∈Z

∣∣∣∣∣
n∑
k=1

akbk−j

∣∣∣∣∣
2
p/2

6
∑
j∈Z

∣∣∣∣∣
n∑
k=1

akbk−j

∣∣∣∣∣
2

.

Applying first Hölder and then Jensen inequalities yields∣∣∣∣∣
n∑
k=1

akbk−j

∣∣∣∣∣
p

6 np/t

(
n∑
k=1

|ak|s |bk−j |s
)p/s

6 np/t
n∑
k=1

|bk−j |s |ak|p
∑
j∈Z
|bj |s

p/s−1

.

Thus, settingCp,2 = 1, we obtain

E

∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣
p

6Cp,α

∑
j∈Z
|bj |s

p/s

np(1−1/s)
n∑
i=1

|ai |p. (9)

The maximal inequality (8) is a consequence of (9), see for instance M´oricz et al.
(1982).

To conclude the proof of Theorem 1, note that the maximal inequality (8)
implies the almost sure convergence of the series

∑
k> 1 akXk as soon as∑

n> 1 |an|p′np′/t logp
′

2 (2n) < ∞ for somep′ < α (cf. for instance Lo`eve, 1978,
Section 36.1). Finally, applying Kroneker’s Lemma concludes the proof of
Theorem 1.

Proof of Theorem 3.We only prove (ii)→ (i). For a proof of (i)→ (ii), we refer
to Proposition 1 in Louhichi (1998). Obviously (ii) yields

∞∑
n=1

n−1P
(

max
16 j 6 n

|Xj | > εn1/p

)
<∞, for all ε > 0,

which is equivalent to
∞∑
k=1

P
(

max
16 j 6 2k

|Xj | > ε2k/p
)
<∞ for all ε > 0. (10)

We must prove that
∑∞

n=1P(|X1| > n1/p) <∞, or, equivalently,

∞∑
k=0

2kP(|X1| > 2k/p) <∞.

The following lemmas are very useful in the sequel.
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LEMMA 1. Let (Xn)n∈Z be a sequence of identically distributed random vari-
ables. Then for anyx > 0 andm ∈ Z it holds:

P(X1 > x) = 1

m
P
(

max
16 i6m

Xi > x

)
+ 1

m

m∑
j=2

P
(
Xj > x, max

16 i<j
Xi > x

)
.

(11)

The proof of this lemma is very classical and is omitted, cf. for example Equation
(2.4) in Peligrad and Gut (1999). The next lemma gives a bound for the last term
in Equation (11) under association.

LEMMA 2. Let(Xn)n∈Z be a sequence of stationary and associated sequence. For
x > 0 recall that we definedgx(z) = (x ∧ z) ∨ (−x). Then for anya ∈]0,1[, it
holds that

P
(
Xj > x, max

16 i<j
Xi > x

)
6 2

(1− a)x2

j∑
r=2

cov(gx(X1), gx(Xr))+

+P(X1 > ax)P
(

max
16 i<j

Xi > x/2

)
.

Proof of Lemma 2.We generalize a result of Vronski (1999). Since the function
(x1, . . . , xj ) → (xj ,max16 i<j Xi) is coordinatewise nondecreasing, the vector
(Xj ,max16 i<j Xi) is associated. Hence for alls, t ,

P
(
Xj > t, max

16 i<j
Xi > s

)
− P(Xj > t)P

(
max

16 i<j
Xi > s

)
> 0. (12)

Applying (3) and (12), we now get

cov

(
gx(Xj ), gx

(
max

16 i<j
Xi

))
=
∫ x

−x

∫ x

−x

(
P
(
Xj > t, max

16 i<j
Xi > s

)
− P(Xj > t)P

(
max

16 i<j
Xi > s

))
dt ds

>
∫ x

ax

∫ x

x/2

(
P
(
Xj > t, max

16 i<j
Xi > s

)
− P(Xj > t)P

(
max

16 i<j
Xi > s

))
dt ds

> x
2(1− a)

2

[
P
(
Xj > x, max

16 i<j
Xi > x

)
− P(Xj > ax)P

(
max

16 i<j
Xi > x/2

)]
.

(13)

Since the functionh(x1, . . . , xj−1) := gx(x1)+· · ·+gx(xj−1)−gx(max16 i<j−1 xi)

is coordinatewise nondecreasing, association yields

cov(gx(Xj), h(X1, . . . , Xj−1)) =
j−1∑
r=1

cov(gx(Xj), gx(Xr)). (14)
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By stationarity, the right hand side of (14) also writes

cov

(
gx(Xj), gx

(
max

16 i<j
Xi

))
6

j∑
r=2

cov(gx(X1), gx(Xr)). (15)

Finally, we combine inequalities (13) and (15) to get the desired result. We now
proceed with the proof of Theorem 3. Letpk := 2kP(X1 > 2k/p) and letcp denotes
a positive constant that depends only onp and may be different from line to line.
Lemmas 1 and 2 applied withx = 2k/p,m = 2k anda = 2−1/p yield:

pk 6 2P
(

max
16 i6 2k

Xi > 2k/p−1

)
pk−1+ P

(
max

16 i6 2k
Xi > 2k/p

)
+

+cp2k(1−2/p)
2k∑
r=2

cov(g2k/p (X1), g2k/p (Xr))

=: 2P
(

max
16 i6 2k

Xi > 2k/p−1

)
pk−1+ ak + cpbk. (16)

It follows from the summability condition (10) applied withε = 1/2 that there
exists an integerk0 such that for allk> k0,

P
(

max
16 i6 2k

Xi > 2k/p−1

)
6 1/4.

The last inequality and (16) yield for allk> k0, pk 6pk−1/2+ ak + cpbk , which
implies, for allK > k0,

1

2

K−1∑
k=k0

pk 6
pk0−1

2
+

K∑
k=k0

ak + cp
K∑
k=k0

bk. (17)

(10) implies that
∑∞

k=1 ak < ∞ and we now prove that
∑∞

k=1 bk < ∞. Fubini’s
theorem and the integral representation (3) yield

∞∑
k=1

bk =
∞∑
k=1

2k(1−2/p)
2k∑
r=2

cov(g2k/p (X1), g2k/p (Xr))


6 cp

∞∑
r=2

∫ +∞
−∞

∫ +∞
−∞

(r ∨ |x|p ∨ |y|p)1−2/pH1,r(x, y)dx dy

= cp

∞∑
r=2

∫ ∞
r1/p

vp−3Gr(v)dv <∞

under Condition (4) (for the proof of the last equality we refer to Lemma 4 in
Louhichi (1998)). Altogether, lettingK tend to infinity in (17), we obtain that

∞∑
k=0

2kP(X1 > 2k/p) =
∞∑
k=0

pk <∞.
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Since association of the sequence(Xi)i implies association for the sequence(−Xi)i,
we can obtain in the same way that

∞∑
k=0

2kP(−X1 > 2k/p) <∞.

This concludes the proof of Theorem 3.
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