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1 Introduction

In this contribution we consider models for long memory in volatility. There are a variety of
ways to construct such models. Our primary fucus here will be on models in discrete time that
contain a latent process for volatility. The most well-known model of this type is the Long-
Memory Stochastic Volatility (LMSV) model, proposed independently by Breidt, Crato and de
Lima (1998) and Harvey (1998). It is a long-memory generalization of the Stochastic Volatility
(SV) model of Taylor (1986). The LMSV model is appropriate for describing series of financial
returns at equally-spaced intervals of time. The model implies that returns are a finite-variance
Martingale difference sequence, hence uncorrelated, while power transformations of the absolute
returns have slowly decaying autocorrelations, in keeping with the empirical findings of Ding,
Granger and Engle (1993). We will present the LMSV model, explain its basic properties, and
give a survey of existing theoretical results. A variety of generalizations of the model have been
considered, and some of these will be briefly discussed, but in order to enhance readability we
will focus on a basic form of the model.

An important distinction between ARCH-type models and SV-type models is that the former
are observation-driven, giving an expression for the one-step-ahead conditional variance in terms
of observables and model parameters, while the latter are driven by a latent (unobserved) process
with stands as a proxy for volatility but which does not represent the conditional variance.
Thus, for the LMSV model it is necessary to use and develop appropriate techniques in order to
carry out basic activities such as forecasting of squared returns, or aggregates of these (i.e., the
realized volatility; see, e.g., Andersen, Bollerslev, Diebold and Labys 2001), as well as estimation
of parameters.

For simplicity, we will assume that the latent long-memory process is stationary and Gaus-
sian, and is independent of the multiplying shock series (see Equation (2.1) below). We will
consider parameter estimation, forecasting, smoothing, as well as semiparametric estimation
and hypothesis testing for the long memory parameter. Besides presenting theoretical results,
we will also discuss questions of computational efficiency.
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There are several definitions of long memory, which are not equivalent in general (see Taqqu,
2003). For simplicity, we will say here that a weakly stationary process has long memory if its
autocovariances {c, } satisfy

cr ~ K 1T2d71

(K1 > 0) as r — oo, or if its spectral density f(w), w € [—m, 7| satisfies
F(w) ~ Kolw|™

(K9 > 0) as w — 0, where d € (0,1/2) is the memory parameter.

2 Basic Properties of the LMSV Model

The LMSV model for a stationary series of returns {r;} takes the form
re = exp(Y;/2)e; (2.1)

where {e;} is a series of i.i.d. shocks with zero mean, and {Y;} is a zero-mean stationary Gaussian
long-memory process, independent of {e;}, with memory parameter d € (0,1/2). Since {e;} is
a Martingale difference sequence, so is {r;}. It follows that {r;} is a white noise sequence with
zero mean. As is the case for most existing volatility models, the LMSV model is nonlinear, in
that it cannot be represented as a linear combination of an i.i.d. series.

To study persistence properties of volatility, Ding, Granger and Engle (1993) used power
transformations of absolute returns. Using the properties of the lognormal distribution, (see for
example Harvey 1998, equation (12.9); cf. Robinson and Zaffaroni 1997, 1998, Robinson 2001)
it is possible to derive an explicit expression for the autocorrelations of {|r°} for any positive
c such that k. = E(|e;|*) /{E(|e;|€)}? is finite. The expression implies that the {|r¢|} have long
memory with the same memory parameter d, for all such c. It follows that if k3 < oo and M is
a fixed positive integer, the realized volatility { RV} given by

kM

RVy= Y  r}

t=(k—1)M+1
has long memory with memory parameter d.

For estimation, it is convenient to work with the logarithms of the squared returns, {X;} =
{logr?}, which have the signal plus noise representation

Xy =p+Y +m, (2.2)

where ;1 = E[loge?] and {n;} = {loge? —E[loge?]} is an i.i.d. process independent of {Y;}. Thus,
the log squared returns {X,} are expressed as the sum of the long-memory process {Y;}, the
signal, and the i.i.d. process {7}, the noise, which is independent of the signal. It follows from
(2.2) that the autocovariances of {X;} are equal to those of {Y;} for all nonzero lags. Therefore,



the autocorrelations of { X;} are proportional to those of {Y;}. Furthermore, the spectral density
of {X,} is given by
fx(w) = fy(w) + a5/ (2m), (2.3)

2 — var(n;), assumed to be finite, and hence we have

where oy

Fx(w) ~ Kalw| 2

(K3 > 0) as w — 0. Thus, the log squared returns {X;} have long memory with memory
parameter d.

3 Parametric Estimation

In both Harvey (1998) and Breidt, Crato and de Lima (1998) it is assumed that {Y;} is gen-
erated by a finite-parameter model. This model is taken to be the ARFIM A(0,d,0) model in
Harvey (1998) and the ARFIM A(p, d, q) model in Breidt, Crato and de Lima (1998). Given any
finite-parameter long-memory specification for {Y;} in the LMSV model, we face the problem of
estimating the model parameters based on observations 71, --- ,r,. Full maximum likelihood is
currently infeasible from a computational point of view since it would involve an n-dimensional
integral. Since long-memory models do not have a state-space representation, it is not possible
to directly use a variety of techniques that have been successfully implemented for estimation
of autoregressive stochastic volatility models (see, e.g., Harvey, Ruiz and Shephard 1994). We
consider here two variants of Gaussian quasi maximum likelihood (QML), in the time and fre-
quency domains. Both are based on the log squared returns, {X;}}. ;, and both are presumably
inefficient compared to the (infeasible) full Maximum Likelihood estimator.

The time domain Gaussian QML estimator is based on treating the {X;} as if they were
Gaussian, even though in general they will not be Gaussian. Then we can write —2 times the
log likelihood function as

L(0) = log [Sap] + (v — 1a)'E, p( — p1a) (3.1)

where x = (21, ,xy,)’, 0 denotes the parameter vector (consisting of the parameters in the
model for {Y;} together with 072]), and pu., Yg ¢ are, respectively, the expected value of z and
the covariance matrix for z under the model §. Deo (1995) has established the y/n consistency
and asymptotic normality of the time domain Gaussian QML estimator. Beyond this theoretical
result, there are few if any empirical results available on the performance of this estimator, largely
due to computational obstacles, i.e., the calculation of the entries of ¥, y, the determinant |2, g|
and the quadratic form (z — p)’ 2;7‘19(33 — pz). These obstacles can be surmounted, however.

In fact, L(A) may be calculated in O(nlog®?n) operations, in the case where {Y;} is as-

sumed to obey an ARFIM A(p,d,q) model. This is achieved by using the Fast Fourier Trans-
form (FFT), which is readily available in standard software such as Matlab and Splus. We
briefly sketch the approach, described in detail in Chen, Hurvich and Lu (2006). Since {X;} is



weakly stationary, the entries of ¥,y are constant along the diagonals, i.e., ¥, ¢ is a Toeplitz
matrix. The entire matrix is determined by the autocovariances of {X;} at lags 0,--- ,n — 1.
However, it is important here to avoid actually computing the full matrix X, ¢ since this would
require at least n? operations, resulting in extremely slow performance when n is large, say, in
the hundreds or thousands. Since the autocovariances of {X;} are identical to those of {Y;},
calculation of the entries of X, ¢ reduces essentially to the calculation of the autocovariances
of an ARFIM A(p,d, q) model. Analytical expressions for these autocovariances were obtained
by Sowell (1992). These expressions involve the hypergeometric function. Numerically, the
autocovariances can be computed to any desired degree of accuracy in O(nlogn) operations
using the algorithm of Bertelli and Caporin (2002). Chen, Hurvich and Lu (2006) present a
preconditioned conjugate gradient (PCG) algorithm for computing the quadratic form in (3.1)
in O(n log?’/ 2 n) operations. They also present an accurate approximation to the determinant
term in (3.1) due to Béttcher and Silbermann (1999) which can be computed in O(1) operations.
The PCG method for calculating the likelihood is faster than the O(n?) that would be required
based on the algorithm of Levinson (1946) as advocated by Sowell (1992).

Breidt, Crato and de Lima (1998) proposed to estimate the parameters of the LMSV model
from {X;} using the Whittle approximation to the likelihood function. Given data xy,- -, x,,
define the periodogram

n
I] = |Z$t eXp(—ijt)‘Q/(Qﬂ'n) .] = 17 yn—1 ’
t=1

where wj = 2mj/n are the Fourier frequencies. Mean correction in the definition above is not
necessary since it would not change the values of I; for 7 > 0. The Whittle approximation for
—2log likelihood is
[(n—1)/2]
Lw(0)= Y {logfxe(w))+IL/fxew)}
j=1

where fx g(w;) is the spectral density for X at frequency (w;) under the model 6. It is easy to
compute Ly (#) since {I;} can be computed in O(nlogn) operations using the FFT, and since
fx,6 is the sum of a constant and an ARFIM A spectral density, which has a simple analytical
form. Breidt, Crato and de Lima established the consistency of the Whittle estimator. Hosoya
(1997) presents results on the y/n-consistency and asymptotic normality of the Whittle estimator.
Perez and Ruiz (2001) have studied the empirical properties of the Whittle estimator for LMSV
models.

4 Semiparametric Estimation

In a preliminary econometric analysis, it is often of interest to try to gauge the existence and
strength of long memory without imposing a fully parametric model. An easily implemented
semiparametric estimator of d is the log-periodogram regression estimator dgppy of Geweke



and Porter Hudak (1993), obtained as —1/2 times the least-squares slope estimate in a linear
regression of {log I;}7" | on {log |1l —e™7[}7",, where m tends to co more slowly than n. The

\/m-consistency and asymptotic normality of depu assuming Gaussianity were obtained by
Robinson (1995a) with trimming of low frequencies, and by Hurvich, Deo and Brodsky (1998)
without trimming. The latter paper also showed that under suitable regularity conditions the
optimal choice of m, minimizing the asymptotic mean squared error, is of order n*®. The
regularity conditions were imposed on the short-memory component of the spectral density.
For any weakly stationary process with memory parameter d and spectral density f, the short-
memory component is defined by f*(A) = f(A)/[1 - exp(—iA)| 2%, The results described above

do not apply directly to the estimator dgpy based on the log squared returns { X;} in the LMSV
model, since in general {X;} will be non-Gaussian (and nonlinear).

For the LMSV model, Deo and Hurvich (2001) established the y/m-consistency and asymp-
totic normality of JGPH based on {X;} under suitable smoothness conditions on the short-
memory part of the spectral density of the signal {Y;}. Under these conditions the short-memory
part of the spectral density of the log squared returns { X;} behaves like C +w” as w — 0T where
C > 0and 3= 2d € (0,1). The resulting M SE-optimal choice for m is of order n?3/(26+1) and
the corresponding mean squared error of cfgp 1 is of order n=20/(26+1)  Thys, in the LMSV case
the optimal rate of convergence of the mean squared error of depu depends on d and becomes
slower as d decreases. This is due to the presence of the noise term in (2.3) which induces a
negative bias in (fg pH. For a given value of d, the bias becomes more severe as larger values of m
are used. Even for d close to 0.5, this bias is still problematic as the optimal rate of convergence
becomes of order n~2/3, much slower than the O(n~%%) rate attained in the Gaussian case,
under suitable smoothness conditions.

Hurvich and Ray (2003) introduced a local Whittle estimator of d based on log squared
returns in the LMSV model. Hurvich, Moulines and Soulier (2005) established theoretical prop-
erties of this semiparametric estimator d w, which is a generalization of the Gaussian Semipara-
metric estimator dggp (Kiinsch 1987; Robinson 1995b). The results of Arteche (2004) imply
that in the LMSV context the GSE estimator suffers from a similar limitation as the GPH esti-
mator: in order to attain y/m-consistency and asymptotic normality the bandwidth m in dask
cannot approach oo faster than n?%/(28+1) where 8 = 2d. The local Whittle estimator avoids
this problem by directly accounting for the noise term in (2.3). From (2.3), it follows that as
w — 0T the spectral density of the log squared returns behaves as

fx(w) ~ Gu™24(1 + h(d,0,w))

where G = f3(0), f3(w) = fy(w)/|w|72%, and h(d,0,w) = Ow?® where 0 = #5(0)' We assume

here (as did Deo and Hurvich 2001 as well as Hurvich, Deo and Brodsky 1998) that f;- satisfies
a local Lipschitz condition of order 2, as would be the case if {Y;} is a stationary invertible
ARFIM A or fractional Gaussian noise process.



The local Whittle contrast function, based on the observations 1, ..., Z,, is defined as

I;
Guw; (1 + h(d, 0,w;))

Win(d, G,0) = 3° 4 log (G (1 + h(d,0,;)) +
j=1

Concentrating G out of Wi yields the profile likelihood
- W? 1 -
Im(d,0) =log | — — | 4+m log{w; 1+hd,0,w- .
(d, ) = log mZHh( ) Z gf (d,0,w5))}

The local Whittle estimator is any minimand of the empirical contrast function Jy, over the
admissible set D,, X ©,, (which may depend on the sample size n):

(Csz,éLw) = arg ~~Hlin jm((j, é)
(d,0)€EDR xOp

Under suitable regularity conditions, Hurvich Moulines and Soulier (2005) show that if m —
oo faster than n3®/(4d+D+0 for some arbitrarily small § > 0 and if m® /n*log?m — 0, then
m'/2(dpw — d) is asymptotically Gaussian with zero mean and variance (1 + d)?/(16 d2). The
first condition on m above is a lower bound, implying that the m for drw must increase faster
than the upper bound on m needed for \/M(JGPH —d) to be asymptotically Gaussian with zero
mean. Nevertheless, if we allow m to increase sufficiently quickly, the estimator drw attains
the rate (to within a logarithmic term) of O,(Vn=%/5), essentially the same rate as attained by
dG pg in the Gaussian case and much faster than the rate attained by either dG PH Or dGS E in
the LMSV case.

Accurate finite-sample approximations to the variance of drw are given in Hurvich and Ray
(2003).

Sun and Phillips (2003) proposed a nonlinear log-periodogram regression estimator dnp of
d, using Fourier frequencies 1,...,m. They assumed a model of form (2.3) in which the signal
is a Gaussian long memory process and the noise is a Gaussian white noise. This rules out most
LMSV models, since loge? is typically non-Gaussian. They partially account for the noise term
{m¢} in (2.3), through a first-order Taylor expansion about zero of the spectral density of the
observations. They establish the asymptotic normality of m!/ 2((iNLp — d) under assumptions
including n~4dmAd+1/2 _, Const. Thus, dNLp, with a variance of order n~4d/(4d+1/ 2), converges
faster than the GPH estimator, but unfortunately still arbitrarily slowly if d is sufficiently close
to zero.

Beyond estimation of d, a related problem of interest is semiparametric testing of the null
hypothesis d = 0 in the LMSV model, i.e., testing for long memory in volatility. Most existing
papers on LMSV models make use of the assumption that d > 0 so the Justlﬁcatlon of the
hypothesis test requires additional work. The ordinary t-test based on either dapp or dasp was
justified in Hurvich and Soulier (2002) and Hurvich, Moulines and Soulier (2005), respectively,
without strong restrictions on the bandwidth.



5 Generalizations of the LMSV Model

It is possible to relax the assumption that {Y;} and {e;} are independent in (2.1). A contempora-
neous correlation between {e;} and the shocks in the model for {Y;} was allowed for in Hurvich,
Moulines and Soulier (2005), as well as Hurvich and Ray (2003), Surgailis and Viano (2002).
See Hurvich and Ray (2003) for more details on estimating the leverage effect, known in the
(exponential) GARCH models, where the sign of the return in period ¢ affects the conditional
variance for period ¢ + 1.

It is possible to replace the Gaussianity assumption for {Y;} in the LMSV model by a
linearity assumption. This was done in Hurvich, Moulines and Soulier (2005) and Arteche
(2004), among others. Surgailis and Viano (2002) showed that under linearity for {Y;} and other
weak assumptions, powers of the absolute returns have long memory, with the same memory
parameter as {Y;}. This result does not require any assumption about the dependence between

{Y:} and {e;}.

It is also possible to relax the assumption that d < 1/2 in the LMSV model. If d € (1/2,1) we
can say that the volatility is mean reverting but not stationary. Hurvich, Moulines and Soulier
(2005) proved consistency of drw for d € (0,1) and proved the y/m-consistency and asymptotic
normality of dry for d € (0,3/4).

6 Applications of the LMSV Model

We briefly mention some applications of the LMSV and related models. Deo, Hurvich and Lu
(2006) consider using the (parametric) LMSV model to construct forecasts of realized volatility.
This requires a numerical calculation of the spectral density of the squared returns, and uses
the PCG algorithm to determine the coefficients used to construct the forecasts as a linear
combination of present and past squared returns.

A long memory stochastic duration (LMSD) model was introduced in Deo, Hsieh and Hurvich
(2005) to describe the waiting times (durations) between trades of a financial asset. The LMSD
model has the same mathematical form as the LMSV model, except that the multiplying shocks
have a distribution with positive support.

Smoothing of the volatility in LMSV models was considered by Harvey (1998), who gave a
formula for the minimum mean squared error linear estimator (MMSLE) of {Y;}}; based on
the observations {X;}} ;. Computation of the coefficients in the linear combination involves
the solution of a Toeplitz system, and the MMSLE can be efficiently computed using the PCG
algorithm. Nevertheless, the MMSLE methodology suffers from some drawbacks, as described
(in the LMSD context) in Deo, Hsieh and Hurvich (2005).
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