
Time-Optimal Path Parameterization for Critically
Dynamic Motions of Humanoid Robots

Quang-Cuong Pham and Yoshihiko Nakamura
Department of Mechano-Informatics

University of Tokyo, Japan

Abstract—Planning collision-free, dynamically-balanced
movements for humanoid robots is a challenging problem.
An effective approach consists of first planning a motion
satisfying geometric and kinematic constraints (such as
collision avoidance, joint angle limits, velocity limits, etc.) and,
in a second stage, modifying this motion so that it respects
dynamic balance criteria, such as those relative to the Zero
Moment Point (ZMP). However, this approach currently
suffers from the issue that the modified motion may give rise
to new collisions with respect to the original motion, which
can be very costly to deal with, especially for systems with
many degrees of freedom and cluttered environments. Here we
present an algorithm to modify the motions of humanoid robots
under ZMP constraints without changing the original motion
path, making thereby new collision checks unnecessary. We
do so by adapting the minimum-time path parameterization
under torque constraints algorithm of Bobrow et al. to the
case of ZMP constraints. In contrast with a previous approach
based on finite differences and iterative optimization to find
the optimal path parameterization under ZMP constraints, our
Bobrow-based algorithm finds this optimal parameterization in
a single pass. We demonstrate the efficiency of this algorithm
by simulations.

I. INTRODUCTION

Planning collision-free, dynamically-balanced movements
for humanoid robots is a challenging problem because of the
robots’ large numbers of degrees of freedom and the issue
of balance inherently associated with the erect posture.

An effective approach consists of first generate robot
motions that satisfy geometric and kinematic constraints,
such as collision avoidance, joint angle limits, velocity limits,
satisfaction of high-level tasks, etc. Many powerful and
versatile algorithms (which can also be combined with each
other) allow to do so, just to name a few: prioritized inverse
kinematics with equality and inequality constraints (see e.g.
[19, 5]), randomized motion planning (see e.g. [6, 20]),
motion retargeting from captured data (see e.g. [3, 7]), etc.

To take into account the standing/walking balance issues,
these approaches typically involve the further condition that
the projection of the Center of Mass (CoM) on the ground
stays within the convex hull of the ground contact points
– which can indeed be expressed as a purely geometric
constraint. However, this condition on the CoM effectively
guarantees robot balance only when the robot is assumed
to move quasi-statically, that is, with a close-to-zero speed.
If the motion speed is non-negligible, the CoM condition is
inoperative: there exist motions that satisfy the CoM con-
dition without being dynamically balanced and, conversely,

there exist motions that are dynamically balanced without
satisfying the CoM condition. A much appropriate condition
for dynamic balance is that the Zero Moment Point (ZMP)
should stay in the convex hull of the ground contact points
(cf. [17])

It is thus necessary, in a second step, to modify the motions
computed by the previously mentioned algorithms to make
them satisfy the condition for dynamic balance expressed
by the ZMP. There are basically two methods to do so:
the first method consists of scaling down the motion speed,
such that the motion is executed in a quasi-static manner
(cf. [6]). This method has the obvious drawback that it
may generate very slow movements. The second method
consists of “filtering” a non-dynamically-balanced motion
into a dynamically-balanced one considering the whole-body
dynamics (see e.g. the balance compensation algorithm [4]
or the “dynamics filter” algorithm [18]). However, these
algorithms suffer from a serious issue: they modify the
motion path, such that the “filtered” motion may give rise to
new collisions with respect to the original motion. Therefore,
these algorithms must check collisions again at each time
step, which can be very costly, especially when the robot
has many degrees of freedom or when the environment is
cluttered. In fact, it is well known that dealing with collisions
in such cases takes the biggest part of the computation time
during the kinematic planning step.

Here we modify the motion by time-reparameterizing it:
the original motion path remains thus unchanged, making
new collision checks unnecessary. In contrast with the “scal-
ing down” method previously discussed, the motions retimed
by this method are not necessarily quasi-static, and can
indeed be sometimes even faster than the original motions.
This method is based on an algorithm first developed by
Bobrow and other researchers in the 80’s and 90’s, which
allows efficiently finding a time-parameterization of a given
motion path that minimizes the execution time while respect-
ing actuator torque limits [1, 12, 13, 11] (from now on,
we shall refer to this algorithm as the “Bobrow algorithm”
for convenience, but in no way we are underestimating the
essential contributions of the other researchers). The key of
the present article is thus to express the ZMP constraints
in a form compatible with the Bobrow algorithm. Fig. 1
summarizes our approach.

The idea of using path reparameterization to handle ZMP
constraints has been previously proposed by Suleiman et



Path

Trajectory

(same path+parameterization)

Kinematic planner

Bobrow algorithm with ZMP constraints

Dynamically-balanced execution

Objective

(e.g. lift a cup from a table)

Fig. 1. Sketch of the “two-steps” approach.

al. [15]. While aware of the Bobrow algorithm, the authors
thought it would be difficult to apply it to the case of
humanoid robots. Instead, they followed an iterative opti-
mization approach by considering a basis of the solution
space (the space of the path parameterization functions s,
cf. section II) and by optimizing the coefficients multiplying
the basis functions. This approach thus usually yields a
very large optimization problem: for instance, to obtain a
satisfactory result in a whole-body reaching tasks, the authors
needed to consider an optimization in 120 variables, which
took 27 iterations to converge (and it was unclear whether
the true optimum had been reached). Here we show that
it is possible to apply the Bobrow algorithm to the case
of humanoid robots and that, following this approach, the
true optimal, critical (because the ZMP is always on the
border of the authorized area, in contrast with [15] and in
accordance with the theory of time-optimal control [1, 13]),
path parameterization can be found in a single pass.

Note that, rather than following a “two-steps” approach
as discussed so far, some methods take into account the
ZMP constraint directly at the planning stage, by consid-
ering either a simplified inverted pendulum model of the
robot (see e.g. [14] and references therein) or the robot
whole-body dynamics (see e.g. [8] and references therein).
While inverted-pendulum-based methods are appropriate to
generate online walking motion, they are not suited for more
complex behaviors involving for instance hierarchies of tasks.
On the other hand, planning methods that take into account
whole-body dynamics still lack the robustness and versatility
of kinematics planning methods.

The rest of the article is organized as follows. In sec-
tion II we show how to express the ZMP constraints in a
form compatible with the Bobrow algorithm and discuss the
specificities of these constraints. In section III, we show some
simulation and experimental results on a humanoid robot.
Finally, in section IV, we briefly discuss the advantages and
limitations of the proposed approach, as well as its possible
future developments.

II. MINIMUM-TIME PATH PARAMETERIZATION
ALGORITHM

A. Reducing the ZMP equations to the “Bobrow form”

Consider a legged robot composed of interconnected rigid
links. A well-known condition for the robot dynamic balance

is that the ZMP stays within the convex hull of the ground
contact points at any time instant [17]. The X-coordinate of
the ZMP is given by

xZMP =

∑
i mi(z̈i + g)xi −

∑
i miẍizi −

∑
i(Mi)y∑

i mi(z̈i + g)
,

where xi, yi, zi are the coordinates of link i, ωi its angular
velocity, mi its mass, Ii its inertia matrix and Mi = Iiω̇i +
ωi × Iiωi. The Y-coordinate of the ZMP can be computed
by a similar formula [9].

Next, by forward kinematics, one can express pi =
(xi, yi, zi) as a nonlinear function of the generalized coordi-
nates q (typically, q may contain the translation and rotation
of the base-link together with the joint angles)

pi = rp(q)

Successively differentiating the above relation yields (drop-
ping the argument q for simplicity)

ṗi = rpqq̇ (1)

and
p̈i = rpqq̈+ q̇>rpqqq̇, (2)

where rpq and rpqq are respectively the Jacobian matrix (of
dimension 3 × n, where n is the dimension of q) and the
Hessian tensor (of dimension 3× n× n) of rp with respect
to q.

Assume that we are given a twice-differentiable motion
trajectory q(t)t∈[0,T ]. We say that s is a path parameter-
ization function if it is an increasing, twice-differentiable
function s : [0, T ′] → [0, T ]. Next, q can be expressed as a
function of the path parameter s as q = q(s), which in turn
yields

q̇ = qsṡ (3)

and
q̈ = qss̈+ qssṡ

2 (4)

Substituting (3) and (4) in (2) yields

p̈i = (rpqqs)s̈+ (rpqqss + q>
s r

p
qqqs)ṡ

2

The above equation implies that ẍi can be expressed as a
function of s, ṡ2, s̈ as follows

ẍi = axi(s)s̈+ bxi(s)ṡ
2,

and similarly, ÿi, z̈i can be expressed as functions of s, ṡ2, s̈.

Turning to the term in ωi in the expresion of xZMP,
remark that one can write

ωi = rω(q)q̇,

where rω is a 3 × n matrix. Thus, one has (dropping the
argument q for simplicity)

ω̇i = rωq̈+ q̇>rωq q̇,

where rωq is the Jacobian tensor (of dimension 3×n×n) of



rω with respect to q. One can next write

Mi = Ii(r
ωq̈+ q̇>rωq q̇) + (rωq̇)× Iir

ωq̇. (5)

Substituting (3) and (4) in (5) yields

Mi = (Iir
ωqs)s̈+[Ii(r

ωqss+q>
s r

ω
qqs)+(rωqs)×Ii(r

ωqs)]ṡ
2.

Thus (Mi)x and (Mi)y can also be expressed as functions
of s, ṡ2, s̈.

Recapitulating the previous calculations, one can express
xZMP (and similarly yZMP) as functions of s, ṡ2, s̈ as
follows

xZMP =
a(s)s̈+ b(s)ṡ2 + c(s)

d(s)s̈+ e(s)ṡ2 +mg
, (6)

where m =
∑

mi is the total mass of the robot.

Remark It is actually not necessary to compute the
full tensors rpqq and rωq : it suffices indeed to evaluate the
derivatives respectively of rpq and of rω along the direction
given by qs. Similarly, the Jacobian matrices rpq and rω need
only be evaluated in the directions of qs and qss.

In practice, the computation of the full rpq and qs can be
performed extremely efficiently by robotics software : each
evaluation took ∼0.2ms using OpenRAVE [2] on a personal
computer. Each evaluation of rpqq or rωq in the direction of
qs thus also costs around 0.2ms.

B. Determining the minimum and maximum velocity curves

Assume for now that the convex hull of the ground contact
points is a rectangle, such that the condition for balance is
given by {

xmin ≤ xZMP ≤ xmax

ymin ≤ yZMP ≤ ymax
(7)

Using the previous development, the above conditions can
be transformed into

xmin ≤ a(s)s̈+ b(s)ṡ2 + c(s)

d(s)s̈+ e(s)ṡ2 +mg
≤ xmax,

and similarly for the Y-coordinate.
Note that the denominator is the vertical component of

the ground reaction force, which is always strictly positive
as long as the robot is not flying (see section II-D2). Thus
the above equation is equivalent to

xmin[d(s)s̈+ e(s)ṡ2 +mg] ≤ a(s)s̈+ b(s)ṡ2 + c(s)

i.e.

xmin[e(s)ṡ
2 +mg]− b(s)ṡ2 − c(s) ≤ [a(s)− xmind(s)]s̈

If a(s)− xmind(s) > 0, one has

[xmine(s)− b(s)]ṡ2 + [xminmg − c(s)]

a(s)− xmind(s)
≤ s̈,

which can be rewritten

Aṡ2 +B ≤ s̈, (8)

with A = xmine(s)−b(s)
a(s)−xmind(s)

and B = xminmg−c(s)
a(s)−xmind(s)

.

If a(s)−xmind(s) < 0, inequality (8) is simply reversed.
The case a(s)−xmind(s) = 0 corresponds to the more tricky
“zero-inertia” case and should be dealt with specifically [11].

Similar inequalities involving xmax, ymin, ymax can be
obtained following the same algebraic manipulations.

We thus have a certain number of inequalities Aα
j ṡ

2 +

Bα
j ≤ s̈, j ∈ [1, nα] and Aβ

k ṡ
2 + Bβ

k ≥ s̈, k ∈ [1, nβ ], with
nα + nβ = 4.

For a given (s, ṡ), one can next compute the minimum
and maximum admissible accelerations{

s̈α = maxj A
α
j ṡ

2 +Bα
j

s̈β = mink A
β
k ṡ

2 +Bβ
k .

(9)

We now detail the computation of the minimum and max-
imum velocity curves. Consider j ∈ [1, nα] and k ∈ [1, nβ ].
There are three cases

• Case 1: Aα
j = Aβ

k . There are two subcases

– if Bα
j ≤ Bβ

k , then the couple (j, k) does not
contribute to the maximum velocity or minimum
velocity curve;

– if Bα
j > Bβ

k , then there is no possible acceleration
at any speed. The path is not dynamically feasible.

• Case 2: Aα
j < Aβ

k . Here the couple (j, k) may define

a possible lower bound on ṡ. Let r =
Bβ

k−Bα
j

Aα
k−Aβ

j

. Again,
there are two subcases

– if r < 0, the couple (j, k) does not contribute to
the maximum velocity or minimum velocity curve;

– if r ≥ 0, then γ−
jk =

√
r effectively defines a lower

bound on ṡ.
• Case 3: Aα

j > Aβ
k . Here the couple (j, k) may define

a possible upper bound on ṡ. Let r =
Bβ

k−Bα
j

Aα
k−Aβ

j

. Again,
there are two subcases

– if r < 0, then there is no possible acceleration at
any speed. The path is not dynamically feasible;

– if r ≥ 0, then γ+
jk =

√
r effectively defines an

upper bound on ṡ.
If one has not encountered a “non-dynamically feasi-

ble” case throughout the above calculations for all cou-
ples (j, k), one can then compute γ− = maxj,k γ

−
jk and

γ+ = minj,k γ
+
jk, which define respectively the minimum

and maximum velocity curves at s. Note that if, for some s,
γ− > γ+, then the path is not dynamically feasible.

C. Integrating the optimal path parameterization in the (s, ṡ)
plane

Equipped with the minimum and maximum admissible
accelerations [s̈α(s, ṡ), s̈β(s, ṡ)] and the minimum and max-
imum velocity curves (γ−, γ+), we are now ready to apply
the Bobrow algorithm to find the minimum-time parameter-
ization, which can be summarized as follows.

1) In the (s, ṡ) plane, start from (s = 0, ṡ = ṡinit)
and follow the vector field defined by the maximum
admissible acceleration s̈β(s, ṡ) until it hits either (a)



the maximum velocity curve, (b) the line ṡ = 0, (c) the
minimum-velocity curve γ− or (d) the line s = send.
In cases (b) and (c) the movement is not dynamically
feasible. In case (a), go to step 2. In case (d), go to
step 3.

2) Search forward for the next switch point along the
maximum velocity curve. A switch point is either a
tangent point, a “zero-inertia” point or a discontinuity
points. For more detail about how to find these points,
cf. [13, 11]. From the switch point, go backward by
following the vector field defined by the minimum
admissible acceleration s̈α(s, ṡ) until it intersects the
forward trajectory of step 1, and go forward following
s̈β(s, ṡ) – then continue as in step 1. The resulting
forward trajectory will be the concatenation of the
forward trajectory of step 1 until the intersection point,
the backward trajectory from the intersection point to
the switch point, and the forward trajectory from the
switch point.

3) Start from (s = send, ṡ = ṡend) and go backward by
following the vector field of s̈α(s, ṡ) until it intersects
the forward trajectory of step 1 or 2. Then the resulting
phase space trajectory will be the concatenation of the
forward trajectory of step 1 or 2 until the intersection
point and the backward trajectory of this step from the
intersection point to send.

Finally, the so-obtained (s, ṡ) trajectory allows to compute
s(t)t∈[0,T ′] by integration. For more implementation details
about each step of the algorithm, the reader is referred to [1,
12, 13, 11]. An execution of the algorithm is illustrated in
Fig. 3, bottom plot.

In practice, discretization is needed in the search for the
switch points and the vector fields integration. Let N be the
number of time samples in the discretization (in practice,
it is sufficient to set N = 100 for a 1s motion). Then the
construction of the maximum velocity curve and the switch
point search is O(nN) and the numerical integration is also
O(nN). Note that the discretization here is not of the same
nature as the discretization for optimization in [15], which is
associated with an exponential cost in the number of discrete
optimization variables.

In some applications, a quasi-static motion is not dynam-
ically balanced (consider e.g. a dynamic walking motion),
yet it may be interesting to track the motion path as slowly
as possible. In this case, one can run the same algorithm as
presented above but by exchanging the role of s̈α with that
of s̈β , and the role of γ− with that of γ+.

D. Some extensions

The previous development can be extended in the follow-
ing directions.

1) Dealing with polygonal support areas: If the convex
hull of the ground contact point is a polygon, then the system
of inequalities (7) has a more general form

u1kxZMP + u2kyZMP + u3k ≤ 0, k ∈ [1,K],

where K is the number of edges of the polygon. Such a sys-
tem of inequalities can then be transformed into constraints
upon s, ṡ2, s̈ as in (8) following the same reasoning as earlier.

Theoretically, nonlinear support shapes can also be treated
by the method but the calculations are more involved.

2) Other contact conditions: In addition to the ZMP
constraints discussed so far, there are two other contact
conditions that need to be checked in general. One condition
is that the reaction force must be strictly positive – which we
assumed without checking in section II-B. From equation (6),
this can be expressed by

d(s)s̈+ e(s)ṡ2 +mg > 0,

which can be put in the form of equation (8) with A =
−e(s)/d(s) and B = −mg/d(s).

Next, the condition of non-sliding around the Z-axis is
given by

−µ[d(s)s̈+ e(s)ṡ2 +mg] ≤ Tz ≤ µ[d(s)s̈+ e(s)ṡ2 +mg],
(10)

where µ is the coefficient of static friction and Tz =∑
i mi(yiẍi − xiÿi) − (Mi)z is the torque around the Z-

axis. From the above expression of Tz and the development
of section II-A, it is clear that Tz can also be expressed in
terms of s, ṡ2, s̈. Thus the inequalities (10) can also be put
in the form of (8).

Note however that the conditions just mentioned are in
practice more easily fulfilled than the ZMP conditions. We
thus chose to leave them out in the simulations for the sake
of clarity.

3) Taking into account velocity, acceleration and actuator
torque limits: The ZMP constraints under the form of (8)
can be combined with the existing velocity, acceleration and
torque constraints (see also [10]). The complete algorithm
thus allows to produce, in a single run, the minimum-
time path parameterization respecting velocity, acceleration,
torque limits and ZMP constraints.

4) Optimizing other criteria: It is also possible to con-
sider other optimization criteria than the path traversal time.
For instance, Verscheure et al. [16] reformulated the path-
parameterization problem as a convex optimization problem
(i.e. minimization of convex costs under linear equality and
inequality constraints) and showed how to incorporate costs
such as the thermal energy.

Since the ZMP constraints can be expressed as linear
inequalities in ṡ2 and s̈ [cf equation (8)], it should be
straightforward to include these constraints into the frame-
work of [16] (however note that doing so would make the
approach similar to [15] in the sense that it woud rely on
iterative optimization instead of a one-pass method). Within
this framework, we could then consider costs related to the
distance of the ZMP to the center of the support area, so as
to maximize the balance. However, whether such costs can
be expressed as convex functions of ṡ2 and s̈ remains to be
investigated.



III. SIMULATIONS

We tested this algorithm using a model of the HRP4
humanoid robot and the OpenRAVE simulation platform [2].
We considered a simple motion consisting of lifting a cup
from a low table (see Fig. 2). The original and final postures
were synthesized by inverse kinematics. Then the whole mo-
tion was computed by interpolating each degree of freedom
of the robot by a third degree polynomial. Finally, the feet
contact on the ground and collision avoidance were enforced
by a simple kinematic filter.

This movement would be balanced if executed in a quasi-
static manner: at each time instant, the projection of the CoM
is contained within the area of the support area (cf. Fig. 3,
green line). However, if the movement is executed at the
planned speed (1.40s), the robot would fall because the ZMP
trajectory would be outside the convex hull of the feet (Fig. 3,
red line). We thus apply the algorithm described previously
to find the minimum-time parameterization of the trajectory
(1.39s) while respecting the ZMP constraints (see Fig. 2,
bottom row and Fig. 3, blue line).

Note that at each time instant, at least one ZMP constraint
is saturated (see Fig. 3, bottom plot). This critical behavior
is indeed a necessary condition for time optimality [1, 13].
By contrast, the ZMP trajectories obtained in [15] almost
never saturated their limits, indicating a possible sub-optimal
behavior.

The computation time for the retiming algorithm was 4.7s
on a 2GHz Intel Core Duo computer with 2GB RAM. To
compare with the performance of other methods, note that

• Contrary to online motion planners (such as e.g. [5, 8]),
which are concerned with the state and control input for
the next time step, our algorithm computes the state and
control input for the whole trajectory (here of duration
1.4s)

• Contrary to inverted-pendulum-based approaches (such
as e.g. [14]), the optimization takes into account the
dynamics of all body segments, and not only that of
a low-dimensional model. Our approach can however
be easily adapted to such models, which would yield a
much lower computation time.

• The algorithm is currently prototyped in Python: we
thus expect a significant gain in performance after
transcription into C++.

IV. DISCUSSION

We have presented an adaptation of the Bobrow algorithm
to handle ZMP and other contact constraints. This allows
finding very efficiently the minimum-time parameterization
of a given motion path that respects such constraints associ-
ated with the standing/walking balance of humanoid robots.
Combined with an upstream kinematic planner, our algorithm
may therefore constitute a fast and versatile method to
plan optimized, dynamically-balanced motions for humanoid
robots (see Fig. 1).

Fig. 3. Top: Trajectories of the ZMP and of the CoM projected on the
ground. The black solid box shows the support area (the robot’s left foot)
and the black dashed box shows the conservative limits for balance. The
trajectory of the projected CoM is in green. The beginnings and endings of
the trajectory were marked respectively by squares and disks. The trajectory
of the ZMP in the original motion (1.40s) is in red. Note that this trajectory
is not contained within the support area: a robot executing this trajectory
would thus stumble. The trajectory of the ZMP in the retimed motion (1.39s)
is in blue. Note that the ZMP trajectory of the retimed motion (blue) is
contained within the conservative limits ensuring thereby the balance. To
achieve the same result, a “scaling down” method – where the velocity
is uniformly reduced – would yield a much slower trajectory, of duration
2.90s (yellow). Middle: X- (magenta) and Y- (cyan) coordinates of the ZMP
trajectories in time. Initial motion in dashed-dotted lines, retimed motion in
plain lines, conservative limits in dashed lines. Note that at any time instant,
at least one of the limits is saturated, which is a necessary condition for
time optimality. Bottom: maximum velocity curve (blue) in the (s, ṡ) plane.
The possible tangent points and “zero-inertia” points are marked in red
and green respectively. The limiting curves are plotted in red and the final
velocity curve is black dashed. For the definition of the terms just used and
not defined here, cf. [13].

In addition to the extensions already discussed in sec-
tion II-D, we are now considering the following theoretical
and practical directions of development.

• Reactive, online motion planning;
• Discrete changes of the support areas as e.g. in walking;
• Integration of the algorithm with a complete kinematics

planner and test on an actual humanoid robot.

Acknowledgments

We would like to thank Dr. R. Diankov for stimulating
discussions and help with OpenRAVE. This work was sup-
ported by “Grants-in-Aid for Scientific Research” for JSPS
fellows and by a JSPS postdoctoral fellowship.



0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fig. 2. Snapshots of the whole-body trajectories. Top row: original motion (1.40s). Bottom row: retimed motion (1.39s). Note that the differences
between the two motions are very subtle, yet their balance properties are completely different.

REFERENCES

[1] J.E. Bobrow, S. Dubowsky, and JS Gibson. Time-
optimal control of robotic manipulators along specified
paths. The International Journal of Robotics Research,
4(3):3–17, 1985.

[2] R. Diankov. Automated Construction of Robotic Manip-
ulation Programs. PhD thesis, Carnegie Mellon Univer-
sity, Robotics Institute, August 2010. URL http://www.
programmingvision.com/rosen diankov thesis.pdf.

[3] M. Gleicher. Retargetting motion to new characters. In
ACM SIGGRAPH, pages 33–42. ACM, 1998.

[4] Q. Huang, K. Tanie, and S. Sugano. Stability compen-
sation of a mobile manipulator by manipulator motion:
Feasibility and planning. Advanced Robotics, 13, 6(8):
25–40, 1999.

[5] O. Kanoun, F. Lamiraux, and P.-B. Wieber. Kine-
matic control of redundant manipulators: Generalizing
the task-priority framework to inequality tasks. IEEE
Transactions on Robotics, 27(4):785–792, 2011. doi:
10.1109/TRO.2011.2142450.

[6] J.J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and
H. Inoue. Dynamically-stable motion planning for
humanoid robots. Autonomous Robots, 12(1):105–118,
2002.

[7] J. Lee and S.Y. Shin. A hierarchical approach to
interactive motion editing for human-like figures. In
ACM SIGGRAPH, pages 39–48. ACM, 1999.

[8] N. Mansard. A dedicated solver for fast operational-
space inverse dynamics. In IEEE International Confer-
ence on Robotics and Automation, 2012.

[9] P. Sardain and G. Bessonnet. Forces acting on a biped
robot. center of pressure-zero moment point. Systems,
Man and Cybernetics, Part A: Systems and Humans,
IEEE Transactions on, 34(5):630–637, 2004.

[10] Z. Shiller and S. Dubowsky. On the optimal control
of robotic manipulators with actuator and end-effector
constraints. In IEEE International Conference on
Robotics and Automation, volume 2, pages 614–620,
1985.

[11] Z. Shiller and H.H. Lu. Computation of path con-

strained time optimal motions with dynamic singular-
ities. Journal of dynamic systems, measurement, and
control, 114:34, 1992.

[12] K. Shin and N. McKay. Minimum-time control of
robotic manipulators with geometric path constraints.
IEEE Transactions on Automatic Control, 30(6):531–
541, 1985.

[13] J.J.E. Slotine and H.S. Yang. Improving the efficiency
of time-optimal path-following algorithms. IEEE Trans-
actions on Robotics and Automation, 5(1):118–124,
1989.

[14] T. Sugihara, Y. Nakamura, and H. Inoue. Real-time
humanoid motion generation through zmp manipulation
based on inverted pendulum control. In IEEE Interna-
tional Conference on Robotics and Automation, pages
1404–1409, 2002.

[15] W. Suleiman, F. Kanehiro, E. Yoshida, J.P. Laumond,
and A. Monin. Time parameterization of humanoid-
robot paths. IEEE Transactions on Robotics, 26(3):458–
468, 2010.

[16] D. Verscheure, B. Demeulenaere, J. Swevers,
J. De Schutter, and M. Diehl. Time-optimal path
tracking for robots: A convex optimization approach.
IEEE Transactions on Automatic Control, 54(10):
2318–2327, 2009.

[17] M. Vukobratovic, B. Borovac, and D. Surdilovic. Zero-
moment point–proper interpretation and new applica-
tions. In Proceedings of the IEEE/RAS International
Conference on Humanoid Robots, volume 244, 2001.

[18] K. Yamane and Y. Nakamura. Dynamics filter – concept
and implementation of online motion generator for
human figures. IEEE Transactions on Robotics and
Automation, 19(3):421–432, 2003.

[19] K. Yamane and Y. Nakamura. Natural motion animation
through constraining and deconstraining at will. IEEE
Transactions on visualization and computer graphics,
pages 352–360, 2003.

[20] K. Yamane, J.J. Kuffner, and J.K. Hodgins. Synthesiz-
ing animations of human manipulation tasks. In ACM
Transactions on Graphics (TOG), volume 23, pages
532–539. ACM, 2004.

http://www.programmingvision.com/rosen_diankov_thesis.pdf
http://www.programmingvision.com/rosen_diankov_thesis.pdf

	Introduction
	Minimum-time path parameterization algorithm
	Reducing the ZMP equations to the ``Bobrow form''
	Determining the minimum and maximum velocity curves
	Integrating the optimal path parameterization in the (s,) plane
	Some extensions
	Dealing with polygonal support areas
	Other contact conditions
	Taking into account velocity, acceleration and actuator torque limits
	Optimizing other criteria


	Simulations
	Discussion

