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A Useful lemmata

Lemma 1 Assume that a forward β-profile hits the MVC at s = s1 and a backward
α-profile hits the MVC at s = s2, with s1 < s2, then there exists at least one
α→ β switch point on the MVC at some position s3 ∈ [s1, s2].
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Figure 1: Illustration for the Switch Point Lemma.

Proof: At (s1,MVC(s1)), the angle from the vector β to the tangent to the
MVC is negative (see Fig. 1). In addition, since we are on the MVC, we have α =
β, thus the angle from α to the tangent is negative too. Next, at (s2,MVC(s2)), the
angle of α to the tangent to the MVC is positive (see Fig. 1). Thus, by the continu-
ity of the vector field α, we have that, between s1 and s2, either there exists a point
where the angle between α and the tangent to the MVC is 0 (in which case we have
a tangent switch point), or there exists a point where the MVC is discontinuous (in
which case we have a discontinuous switch point) or is non differentiable (in which
case we have a zero-inertia switch point). For more details, the reader is referred
to [7, 6] 2

Lemma 2 Either one of the LCs reaches ṡ = 0, or the CLC is continuous
Proof Assume by contradiction that no LC reaches ṡ = 0 and that there exist

“holes” in the CLC. Consider the smallest “hole”. The left border s1 of the hole
must then be defined by the intersection of the MVC with a forward β-LC (coming
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from the previous α→ β switch point), and the right border s2 of the hole must be
defined by the intersection of the MVC with a backward α-LC (coming from the
next α → β switch point). By the Lemma 1, there must then exist a switch point
between s1 and s2, which contradicts the fact that the hole was chosen to be the
smallest 2

B Comparison of VIP-RRT with KNN-RRT on the dou-
ble pendulum example

B.1 KNN-RRT

B.1.1 Overall algorithm

Our implementation of RRT in the state-space [2] is detailed in Algorithms 1 and
2.

Box 1 KNN RRT(xinit,xgoal)

1: T .INITIALIZE(xinit)
2: for rep = 1 to Nmax rep do
3: xrand ← RANDOM STATE()
4: xnew ← EXTEND(T ,xrand)
5: T .ADD VERTEX(xnew)
6: xnew2 ← EXTEND(xnew,xgoal)
7: if d(xnew,xgoal) ≤ ε or d(xnew2,xgoal) ≤ ε then
8: return Success
9: end if

10: end for
11: return Failure

Steer-to-goal frequency: Note that every 5 extension attempts, the algorithm
tries to steer directly to xgoal (by setting xrand = xgoal on line 3 of Algorithm 1).
See also the discussion in [2], p. 387, about the use of unidirectional and bidi-
rectional RRTs. We have also noted that the frequency of steer-to-goal did not
significantly affect the performance of the algorithm, except when it is too large,
e.g., once every two extension attempts.

Metric: the metric for the neighbors search in EXTEND (Algorithm 2) and to
assess whether the goal has been reached (line 7 of Algorithm 1) is defined as:

d(xa,xb) = d ((qa,va), (qb,vb))

=

∑
j=1,2

√
1− cos(qaj − qbj)

4
+

∑
j=1,2 |vaj − vbj |

4Vmax
, (1)
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where Vmax denotes the maximum velocity bound set in the random sampler (func-
tion RANDOM STATE() in Algorithm 1). This simple metric is similar to an Eu-
clidean metric but takes into account the periodicity of the joint values.

Termination condition: we defined the goal area as a ball of radius ε = 10−2

for the metric (1) around the goal state xgoal. As an example, d(xa,xa) = ε
corresponds to a maximum angular difference of ∆q1 ≈ 0.057 rad≈ 3.24 degrees
in the first joint.

This choice is connected to that of the integration time step (used e.g., in For-
ward Dynamics computations in section B.1.2), which we set to δt = 0.01 s.
Indeed, the average angular velocities we observed in our benchmark was around
V̄ = 5 rad.s−1 for the first joint, which corresponds to an average instantaneous
displacement V̄ · δt ≈ 5.10−2 rad, which is of the same order as ∆q1 above.

Nearest-neighbor heuristic: instead of considering only extensions from the
nearest neighbor as in the standard algorithm, we considered the best extension
from the K nearest neighbors (line 5 in Algorithm 2). Here “best” is defined as the
closest to xrand in the metric d defined in Equation (1).

Box 2 EXTEND(T ,xrand)
1: for k = 1 to K do
2: xk

near ← KTH NEAREST NEIGHBOR(T ,xrand, k)
3: xk

new ← STEER(xk
near,xrand)

4: end for
5: return arg mink d(xk

new,xrand)

B.1.2 Local steering

Regarding the local steering scheme (STEER on line 3 of Algorithm 2), there are
two main approaches : “controller-based” steering of “sampling-based” steering
(cf. [2]).

“Controller-based” steering In the “controller-based” approach, one would try
to design a controller that would bring the system from a given state to another
given state. However, as remarked in [2], for a nonlinear system this is as a very
difficult problem. To allow meaningful comparisons with VIP-RRT, we considered
the following simple “controller-based” scheme, which finds a path in state-space
before checking its feasibility through inverse dynamics – in the same spirit as
VIP-RRT, which finds a path in configuration-space and then checks for a feasible
time-parametrization. Trying to design the best possible nonlinear controller for the
double pendulum would be out of the scope of this work, as it would imply either
problem-specific tunings or substantial modifications to the core RRT algorithm
(as done e.g. in [3]).
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To connect the states xa = (qa,va) and xb = (qb,vb), we interpolated, for
each joint i, a third-order polynomial Pi(t) between the xai and xbi. Since a third-
order polynomial has four parameters and there are four constraints for each joint
(Pi(0) = qai, P

′
i (0) = vai, Pi(T ) = qbi, Pi(T ) = qbi), the only free parameter

is the time duration T of the local trajectory. Our local planner tries 10 different
values of T between 0.01 s and 2 s.

For each value of T , we thus have a trajectory connecting xa and xb. By
inverse dynamics, we compute the torques necessary to execute this trajectory: if
they fall within the torque limits, then the trajectory is deemed feasible, and the
local steering returns xb as xnew. Otherwise, we cut the trajectory at the last state
before violation of the torque bounds. If no value of T allows reaching xb, we pick
the one whose last state is closest to xb and return it as xnew.

“Sampling-based” steering This is the standard method when no efficient “controller-
based” method exists [2, 1]. Our implementation closely follows [2, 1] and is de-
scribed in Algorithm 3 below.

Box 3 STEER(xnear,xrand)
1: for p = 1 to Nlocal trajs do
2: u← RANDOM CONTROL(τmax

1 , τmax
2 )

3: ∆t← RANDOM DURATION(∆tmax)
4: xp ← FORWARD DYNAMICS(xnear,u,∆t)
5: end for
6: return argminpd(xp,xrand)

The random control is a stationary (τ1, τ2) sampled as:

(τ1, τ2) ∼ U([−τmax
1 , τmax

1 ]× [−τmax
2 , τmax

2 ]).

The random time duration ∆t is sampled uniformly in [δt,∆tmax] where ∆tmax is
the maximum time duration of local trajectories (parameter to be tuned), and δt is
the time step for the forward dynamics integration, set to δt = 0.01 s as discussed
in Section B.1.1. The number of local trajectories to be tested, Nlocal trajs, is also
a parameter to be tuned.

Comparing the two steering methods The “controller-based” steering yielded
RRTs with much slower exploration speeds (and, as a consequence, much higher
search time) compared with the “sampling-based” steering, as illustrated in Fig-
ure 2.

The slow exploration of the “controller-based” steering method may be ex-
plained by the fact that, since the velocities are sampled uniformly in a wide range
[−Vmax,+Vmax], most attempted interpolations are rejected because of insufficient
torques.
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Forward v. Inverse steering after 1000 seconds with k=10
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Forward v. Inverse steering after 1000 seconds with k=40
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Forward v. Inverse steering after 1000 seconds with k=100

Figure 2: Comparison of “controller-based” and “sampling-based” steering meth-
ods for K ∈ {1, 10, 40, 100}. The X-axis represents the angle of the first joint and
the Y-axis its velocity. The trees grown by the “controller-based” and “sampling-
based” methods are in red and blue, respectively. The goal area is depicted by the
red ellipse on the left side.
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Let us remark here that, although VIP-RRT follows the “controller-based”
paradigm (it indeed interpolates paths in configuration space and then computes
feasible velocities along the path using Bobrow-like approach, which includes in-
verse dynamics computations), it is much more successful. The main reason is that
the Velocity Interval Propagation calculates the whole interval of all reachable ve-
locities, and then iteratively propagates it – instead of being bound to exploring just
one velocity (as in the case of state-space RRTs) which often may not be reachable,
and when it is, may not allow reaching a wide range of velocities in a subsequent
step.

Note however that VIP-RRT only saves and propagates the norm of the veloc-
ity vectors, not their directions, which may make the algorithm probabilistically
incomplete (cf. discussion in the main paper).

B.1.3 Fine-tuning the parameters ofKNN-RRT with “sampling-based” steer-
ing

Based on the above results, we shall focus on KNN-RRTs with “sampling-based”
steering in the remainder of this section B.

The parameters to be tuned are thus :

• Nlocal trajs: number of local trajectories tested in each call to STEER;

• ∆tmax: maximum duration of each local trajectory.

The values tested for these two parameters are summed up in table 1.

Number of trials Nlocal trajs ∆tmax

10 1 0.2
10 30 0.2
10 80 0.2
20 20 0.5
20 20 1.0
20 20 2.0

Table 1: Parameter sets for each test.

The parameters we do not tune are :

• Maximum velocity Vmax for sampling velocities. We set Vmax = 50 rad.s−1,
which is about twice the maximum velocity observed in the successful trials
of VIP-RRT in [5];

• Number of neighbors K. In this tuning phase, we set K = 10. Other values
of K will be tested in the final comparison with VIP in section B.2;
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• Space-time precision (ε, δt): as discussed in Section B.1.1, we chose ε =
0.01 and δt = 0.01 s.

Finally, in this tuning phase, we set the torque limit as (τmax
1 , τmax

2 ) = (13, 7)
N.m, which are relatively “easy” values, in order to obtain faster termination times
for RRT. More difficult values such as (τmax

1 , τmax
2 ) = (11, 5) N.m will be tested

in our final comparison with VIP-RRT in section B.2.
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Figure 3: Minimum distance to the goal as a function of time for different values
of Nlocal trajs and ∆tmax. At each instant, the minimum distance of the tree to the
goal is computed. The average of this value across the 10 trials of each set is drawn
in bold, while shaded areas indicate standard deviations. A: tuning of Nlocal trajs.
B: tuning of ∆tmax.

Fig. 3A shows the result of simulations for different values of Nlocal trajs. One
can note that the performance of RRT is similar for values 10 and 30, but gets
worse for 80. Based on this observation, we chose Nlocal trajs = 20 for the final
comparison in section B.2;.

Fig. 3B shows the simulation results for various values of ∆tmax. One can
note that the performance of RRT is similar for the three tested values, with smaller
values (e.g., 0.5 s) performing better earlier in the trial and larger values (e.g., 2.0 s)
performing better later on. We also noted that smaller values of ∆tmax such as 0.1 s
or 0.2 s tended to yield poorer results (not shown here). Our choice for the final
comparison was thus ∆tmax = 1.0 s.

B.2 Comparing KNN-RRT and VIP-RRT

In this section, we compare the performance ofKNN-RRT (forK ∈ {1, 10, 40, 100},
the other parameters being set to the values discussed in the previous section)
against VIP-RRT with 10 neighbors (the one presented in [5]). For practical rea-
sons, we further limited the execution time of every trial to 104 s, which had no
impact in most cases or otherwise induced a slight bias in favor of RRT (since
we took 104 s as our estimate of the “search time” when RRT does not terminate
within this time limit).
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We ran the simulations for two instances of the problem, namely

• (τmax
1 , τmax

2 ) = (11, 7) N.m and

• (τmax
1 , τmax

2 ) = (11, 5) N.m, the one presented in in [5].

For each problem instance, we ran 40 trials for each planner VIP-RRT, state-
space RRT with 1 nearest neighor (RRT-1), RRT-10, RRT-40 and RRT-100. Note
that for each trial i, all the planners received the same sequence of random states

Xi =
{
x
(i)
rand(t) ∈ R4

∣∣∣ t ∈ N
}
∼ U

(
(]− π, π]2 × [−Vmax,+Vmax]2)N

)
,

although VIP-RRT only used the first two coordinates of each sample since it plans
in the configuration space.

Table 2 and Fig. 4 present the results for the problem instance (τmax
1 , τmax

2 ) =
(11, 7) N.m. All trials of VIP successfully terminated within the time limit. The
average search time was 3.3 min. Among the KNN-RRT, RRT-40 performed best
with a success rate of 92.5% and an average computation time ca. 45 min, which
is however 13.4 times slower than VIP-RRT.

Planner Success rate Search time (min)
VIP-RRT 100% 3.3±2.6

RRT-1 40% 70.0±34.1
RRT-10 82.5% 53.1±59.5
RRT-40 92.5% 44.6±42.6
RRT-100 82.5% 88.4±54.0

Table 2: Comparison of VIP-RRT and KNN-RRT for torque limits
(τmax

1 , τmax
2 ) = (11, 7). Note that in the calculation of average search times, we

set the search times of unsuccessful trials to the time-out limit 104 s.

Table 3 and Fig. 5 present the results for the second instance (τmax
1 , τmax

2 ) =
(11, 5) N.m. All trials of VIP successfully terminated within this time limit, with an
average search time ca. 9.8 min. Among the KNN-RRT, again RRT-40 performed
best in terms of search time (54.6 min on average, which was 5.6 times slower than
VIP-RRT), but RRT-100 performed best in terms of success rate within the 104s
time limit (92.5%).

We noted that the search time of VIP increased significantly from instance
(τmax

1 , τmax
2 ) = (11, 5) to instance (τmax

1 , τmax
2 ) = (11, 7), while that of RRT

only marginally increased. This may be related to the remark of reviewer 1 about
the “superposition” of states: as torque constraints become tighter, more “pump-
ing” swings are necessary to reach upright configurations. However, since we plan
in configuration space, configurations with different speeds (corresponding to dif-
ferent pumping cycles) can become indistinguishable. While this problem could
easily be addressed by including in the distance computation the reachable veloc-
ity interval associated with each vertex, we chose not to do so here to preserve
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Figure 4: Results for torque limits (11,7). A: Percentage of trials that have reached
the goal area at given time instants. B: Individual plots for each trial. Each curve
shows the distance to the goal as a function of time for a given instance (red: VIP-
RRT, blue: RRT-40). Dots indicate the time instants when a trial successfully
terminated. Stars show the mean values of termination times.
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Figure 5: Results for torque limits (11,5). Same legends as in Fig. 4.
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Planner Success rate Search time (min)
VIP-RRT 100% 9.8±12.1

RRT-1 47.5% 63.8±36.6
RRT-10 85% 56.3±60.1
RRT-40 87.5% 54.6±52.2
RRT-100 92.5% 81.2±46.7

Table 3: Comparison of VIP-RRT and KNN-RRT for torque limits
(τmax

1 , τmax
2 ) = (11, 5).

generality. But even without this enhancement, VIP-RRT still significantly over-
performed KNN-RRT.

More generally, for asymptotically small torque limits, VIP-RRT might be
eventually overtaken by a state space KNN-RRT. Yet, for reasonably tight torque
limits as tested here (which still require several pumping cycles), VIP-RRT still
provides a significant improvement in search time and success rate over KNN-
RRT. In terms of the number of free parameters to be tuned, VIP-RRT is also more
parsimonious thanKNN-RRT (for instance VIP-RRT does not require tuning such
parameters as Nlocal trajs, ∆tmax, Vmax).

B.3 Conclusion

In this section, we have conducted a comparison of the VIP-RRT algorithm (with
10 neighbors), proposed in [5], with fine-tuned KNN-RRTs, on the example of a
double pendulum with torque limits. In the two problem instances, VIP-RRT was
respectively 13.4 and 5.6 times faster than the best KNN-RRT in terms of search
time.

As the potential gain from planning in configuration space versus planning in
state space is expected to increase with the dimension of the considered system,
we believe that the improvements shown on the current simple example will scale
up and make possible the resolution of systems of higher dimensions (e.g., triple,
quadruple pendulums, etc., or humanoid robots – which are inaccessible to today’s
kinodynamic planners). Another advantage of planning in configuration space lies
in the space/time decoupling effect, which is more relevant in the bottle manipula-
tion example where configuration-space obstacles play a significant role, but which
we could not explore here because of time constraints.

The two above directions are the subject of our current research efforts.

C Reduction of the bottle + tray system to Bobrow form

Let p = (x, z) denote the coordinates of the center of gravity of the bottle in the
laboratory reference frame, mg the gravity force, fN the normal reaction force that
the tray exerts on the bottle and fF the friction force that the tray exerts on the
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bottle (Fig. 6). Newton’s second law then gives

mp̈ = mg + fN + fF .

Figure 6: A bottle on a tray. The vectors fN and fF represent respectively the
normal reaction force and the friction force. For the bottle not to move with respect
to the tray, one must ensure that ‖fF ‖ ≤ µ‖fN‖, where µ is the coefficient of static
friction.

Projecting the above equation on the x- and z- axis gives

mẍ = −N sin θ + F cos θ,

mz̈ = −mg +N cos θ + F sin θ,

where N = ‖fN‖ and F = ‖fF ‖.
This leads to, after some simple algebraic manipulations,

N = m cos2 θ(g + z̈ − ẍ tan θ), (2)

F =
mẍ+m cos2 θ(g + z̈ − ẍ tan θ) sin θ

cos θ
. (3)

To ensure that the bottle does not move with respect to the tray, the following two
constraints must be satisfied1:

• the normal reaction force is non-negative, i.e. N ≥ 0;

• the friction force is limited by −µN ≤ F ≤ µN , where µ is the coefficient
of static friction (Coulomb’s law for static friction).

Using the expressions obtained in (2) and (3), these conditions can expressed
as

g + z̈ − ẍ tan θ ≥ 0, (4)

ẍ+ cos2 θ(g + z̈ − ẍ tan θ)(sin θ + µ cos θ) ≥ 0, (5)

ẍ+ cos2 θ(g + z̈ − ẍ tan θ)(sin θ − µ cos θ) ≤ 0. (6)

1Actually, there exists a third contact condition, related to the ZMP. However, we chose here to
neglect this condition for the sake of exposition clarity. This is equivalent to assuming that the mass
of the bottle is concentrated at its bottom. Note that the ZMP condition can also be reduced to the
Bobrow form, cf. [4].
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Assume that we are given a D2 trajectory (x(u), z(u), θ(u))u∈[0,T ]. Following
Bobrow’s method, we differentiate x(s(t)) and z(s(t)) twice with respect to t to
obtain

ẍ = s̈xs + ṡ2xss,

z̈ = s̈zs + ṡ2zss.

Substituting the above equations into (4) yields

s̈(zs − xs tan θ) ≥ −(zss − xss tan θ)ṡ2 − g. (7)

There are three cases:

• if zs − xs tan θ = 0, then we have a zero-inertia point, which must be dealt
with specifically;

• if zs − xs tan θ > 0, then we have a lower bound on the acceleration

s̈ ≥ α(ṡ, s) =
−(zss − xss tan θ)ṡ2 − g

zs − xs tan θ
;

• if zs − xs tan θ < 0, then we have an upper bound on the acceleration

s̈ ≤ β(ṡ, s) =
−(zss − xss tan θ)ṡ2 − g

zs − xs tan θ
.

The same manipulations can be applied to inequalities (5) and (6), which pro-
vide further bounds on the accelerations. Note that this may also give rise to other
zero-inertia points.
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