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Abstract—We investigate the stability properties of discrete
and hybrid stochastic nonlinear dynamical systems. More pre-
cisely, we extend the stochastic contraction theorems (which wer
formulated for continuous systems) to the case of discrete and
hybrid resetting systems. In particular, we show that the mean
square distance between any two trajectories of a discrete (or
hybrid resetting) contracting stochastic system is upper-bouned
by a constant after exponential transients. Using these resultsve
study the synchronization of noisy nonlinear oscillators coupled
by discrete noisy interactions.

Index Terms—Discrete systems, hybrid resetting, stochastic
systems, nonlinear contraction theory, incremental stability, os
cillator synchronization

I. INTRODUCTION

sients. This bound can be expressed as function of the noise
intensities and the contraction rates of the noise-fretesys
In section IV, we briefly discuss a number of theoretical
issues regarding our analysis. Finally, in section V, welgtu
using the previously developped tools, the synchroninatib
noisy nonlinear oscillators which interact by discrete sgoi
couplings.

Notations The symmetric part of a matriA is defined
asA, = (A+ AT). For a symmetric matridA, Apin(A)
and \,.x(A) denote respectively the smallest and the largest
eigenvalue ofA. A set of symmetric matricegA;);.; is
uniformly positive definite iBa > 0, Vi € I, Anin(A;) > a.
Finally, for a stochastic process(t), we note Ex(:) the

Contraction theory is a set of relatively recent tools thatconditional expectior(- |s(0) = x).

provide a systematic approach to the stability analysis of a

large class of nonlinear dynamical systems [1], [2], [3], &
nonlinear nonautonomous system= f(x,t) is contractingif
the symmetric part of the Jacobian matrix His uniformly

Il. DISCRETE SYSTEMS

We first prove a lemma that makes explicit the initial
“discrete contraction” proof (see section 5 of [1]). Notattla

negative definite in some metric. Using elementary fluid dy-similar proof for continuous systems can be found in [9].
namics techniques, it can be shown that contracting systems Lemma 1 (and definition)Consider two metricsM; =

are incrementally stablethat is, any two system trajectories ®7®, defined overR™ (i =

exponentially converge to each other [1].

1,2) and a smooth function
f: R™ — R"2, The generalized Jacobiaof f in the metrics

From a practical viewpoint, contraction theory has beenM;, M,) is defined by

successfully applied to a number of important problemshsuc
as mechanical observers and controllers design [5], claémic
processes control [6], synchronization analysis [2], [T] o

biological systems modelling [8].

of
F=0,70)

Assume now thaf is contractingin the metrics(M;, M5)

Recently, contraction analysis has been extended to tlee ca¥ith rate 3 (0 < g < 1), i.e.

of stochasticdynamical systems governed by Itifferential
equations [4]. In parallel, hybrid versions of contracttbrory

Vx € R™ A\uax(F(x)TF(x)) < 8

have also been developped [3]. A hybrid system is charac- Then for allu,v € R", one has

terized by acontinuousevolution of the system'’s state, and
intermittent discrete transitions. Such systems are pervasive

dna, (£(1), £(v))? < Belng, (u,v)?

in both artificial (e.g. analog physical processes cordtbll wheredy; denotes the distance associated with the méfic
by digital devices) and natural (e.g. spiking neurons with(the distance between two points is defined by the infimum of

subthreshold dynamics) environments.

the lengths in the metrid/ of all continuously differentiable

The present paper benefits from these recent developmentarves connecting these points).

to provide an exponential stability result for discrete agptrid
systems governed by stochastilifference and differential

Proof Consider a € curve~ : [0,1] — R™ that connects
u andv (i.e.v(0) = u andvy(1) = v). TheM;-length of such

equations. More precisely, we prove in section Il and lllttha a curve is given by

the mean square distance between any two trajectories of a

discrete (respectively hybrid resetting) stochastic i@mnting

system is upper-bounded by a constant after exponential tra
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L, (v) = /01 \/(gZ(u)y M, (gZ(u))du



are given by a probability distributiop(¢,¢’). Then for all

Sincef is a smooth functionf(v) is also a € curve, with This implies in particular that for alk > 0

T W,
M, (ag(:l)(u)>du B (dun (0, B) < T~

Proof Let x = (a,b)T € R?". We have by the triangle in-
equality (to avoid long formulas, we drop the second argumen

+ VB E (o (6,€) (@)

Ly, (f

The chain rule next implies that

Bf(y)( - of 87( ) of f and o in the following calculations)

u

| ou T oxu Ity (anr Drin) < daa, s (F(ag) £(by)

which leads to + dwmy,, (F(ar), f(ar) + o(ar)wesr)

+  dm,, (f(br), f(by) + o(br)wy ;)

(5" s ete. 2 2 an
Let us examine the conditional expectations of the three
= fol \/(gZTalT> FTF (@1 )du (1) terms of the right hand side

L, (£())

1 o From(H1) and lemma 1 one has

< n'ere,2)d
_ fﬁ\L/i((j) fo:sE) Ex(dnt, . (F(a0). £(b1))) < v/BEx(dns, (a0, b))
1 o Next, from (H2)

Choose now a sequence of curv€s,),en such that

lim,— 00 L, (7n) = du, (u,v). From (1), one has/n € Ex(de+1(f(ak)af(ak)+U(ak)wk+l)) < Ve

N, Ly, (f(7n)) < V/BLwm, (7»)- By definition of distance, one and similarly ford £(b.). £(by) + o (b)w. . ).
then hasvn € N, dua, (F(u), £(0)) < VAL, (7). Finally, Y fordna, ., (E(be). £(bi) + o (be)uh)

by letting . go to infinity in the last inequality, one obtains  If we now setu, = Ex(d,(ax, bx)) then the above
the desired result] implies

< .+ 2VC 5
Theorem 1 (Discrete stochastic contractiorjonsider the kil = \/Buk +2ve ®)
stochastic difference equation Define nextv, = uy, — 2v/C/(1 — +/B). Then replacinguy,
by vx, 4+ 2v/C /(1 — /B) in (5) yields
a =f(ay, k) + o(ag, k)w
{ a§+:1§ () e R (2) Uks1 < V/Bog
wheref is aR™ x N — R" function, o is aR" x N — R" This implies thatvk > 0, v, < vov/B' < [vo]* V3"
matrix-valued function,{w;,k = 1,2,...} is a sequence Replacingu; by its expression in terms aof;, then yields
of independentd-dimensional Gaussian noise vectors, with
wy ~ A4(0,Qg) and ¢ is an-dimensional random variable VE>0 up < 2V/C + \/Bk Uy — 2VC
independent of thevy,. - T 1-VB 1-VB
Assume that the system verifies the following two hypothe-which is the desired result.
ses Next, integrating the last inequality with respecttdeads

) . o ) to (3). Finally, (4) follows from (3) by remarking that
(H1) the dynamicsf(a, k) is contracting in the metrics

(M}, M} 1), with contraction rate3 (0 < § < 1), g b VG +d by <
and the metrics(M})ren are uniformly positive / Mo (ab) — 1- /3 p(a,b) <
definite.

(H2) the impact of noise is uniformly upper-bounded by a /dMO (a,b)dp(a,b) = E (dm, (&,¢)) O
constanty/C' in the metricsM,
Remark In the particular context of state-independent met-
Va ko da (f(a, k), £(a, k) + o(a, k)wy) < VC rics, hypothesigH2) is equivalent to the following simpler
Let a;, andb,, be two trajectories whose initial conditions condition

Va,k tr(o(a,k)"Myi0(a, k)Qx) < C

k>0
W C Also, for state-independent metrics, one has
1 —-VB dm, (ak, br)” = (ar — br)” Mi(ax — bi) = [lar — bilpr,
\f / [dM a,b) \F dp(a b) 3) which leads to the following stronger result instead of (4)
’ -VP 20
E (llax — bil3s,) < —— + BE (J|¢ — €|}
wheral]* — max(0, ). (lax = brllRe,) < 1= + 9B (¢ - € IR,



Ill. HYBRID SYSTEMS Proof For allt > 0, letu(t) = E (Ha(t) - b(t)||§/l(t)) and

We have derived above the discrete stochastic contractidet us study the evolution af(t) betweenkr™ and (k+1)7".

theorem fortime- and state-dependemnetrics, contrary to Condition (i) and theorem 2 of [4] yield
the context of continuous systems, where the state-depende B o T\ onr
metrics version of the contraction theorem is still unprbiA. u((k+1)77) < 5 +u(kr)e ©)

We now address the case of hybrid systems, but due to the Next, condition (i) and theorem 1 above yield

present limitations of continuous stochastic contractiamly

state-independent metrics will be considered. u((k+1)7) < 294 4 Bu((k + 1)77) 9)
For clarity, we assume in this papeonstant dwell-times - .

although more elaborate conditions regarding dwell-ticess Substituting (8) into (9) leads to

be adapted from [3]. u((k+1)7) 254 + B (S + Bu(krT)e )
Consider the hybrid resetting stochastic dynamical system % + % + Be~PATyu(krt)

{ Vk>1 a(krt) =fy(alkt),k) + oa(alkr™), k)wy

A

1—
Then, similarly to the proof of theorem 1, we havg,; <

© Uk and thenvy, < r¥[v]™, which implies

i — 2C4 4 BCc - +) _ _
Wk > 0Vt €lkr. (k+1)7 da = f.(a,)dt + ou(a, ) -, DSNeDr =17 + 53¢ andu = u(kr™) = Dy /(1 =),

a(0%) = ¢

where f;, o4, f., o. are four functions of appropriate di- D D, 17

: ; : : krt) < 1 ot L k
mensions and is a random variable independent of the u(kr™) < 1= + |u(07) - 1—r &1
and of the proces®/’. Furthermoref, ando. verify suitable Dy

conditions for the existence and uniqueness of the solsitadn + u(0F)rk
the continuous parts (cf e.g. [4]).

All the contraction properties below will be stated with ~ Now, for anyt > 0, choosek = [t/7]. Then

IA

1—T1

respect to a uniformly positive definite time-varying metri C. Ty —2A(t—kr)

M(t) = ©(t)T©(t). Furthermore, it will be assumed that for u(t) < DU u(kt™)e

all k> 0, M is continuously differentiable ifkr, (k + 1)7]. C,  Dye2Mi—kT) " o
Finally, M(k7~) andM (k7 ) will respectively denote the left S vt u(07)3 e
and right limits of M(¢t) att = k7 (and similarly for®). C. D, !

< 3 . 4 u(0+)ﬂk672/\t
A. The discrete and continuous parts are both contracting -n
Theorem 2 (Hybrid stochastic contraction, case- 0):

Assume the following conditions

ulations.d
0] For all &, th_e discrete part is stochasticglly contract-g - only the discrete part is contracting
ing at kT with rate 5 < 1 and boundCy, i.e.

n T
Va e R"  Amax (F(’”) F(’”)) <p continuous part is not contracting, more precisely wheq 0

whereF(kr) = @(k‘TJF)%(a, k) (kr—), and ?n gj For this, we shall need to revisit the proof of theor2m
in [4].
VaeR" tr(oa(a, k)" M(kr")oa(a k)Qr) < Ca Theorem 3 (Casé = 0): Assume all the hypotheses of

(i)  For all k, the continuous part is stochastically con- theorem 2 except that = 0 in (7). Then for allt = 0
tracting in]kr, (k + 1)7[ with rate A > 0 and bound E (Ila(t) - b(t)lli/[(t)) <

C.,i.e.VaeR", Vt €|k, (k+ 1)7[, "2 ¢
Gy +E (g — € lRyq)) 87

d of 1
s (000 005 ) © (t))s S
™ 12

Proof As in the proof of theorem 2 in [4], let

_ T 4y — (a—b)T -
Let a(t) and b(¢) be two trajectories whose initial condi- Vixt)=V((@b)’,1) = (a—b) M(t)(a—b)
tions are given by a probability distributigi(¢,£’). Then for  Lemma 1 of [4] is unchanged, yielding (see [4] for more

tr (o.(a,t)" M(t)oc(a,t)) < C.

which leads to the desired result after some algebraic manip

Let us examine now the more interesting case when the

allt>0 details)
E (|la() ~ b)) < Vit €lkr, (k+ )7 AV(x(),1) < 2C.
Cy +E (Hf - 5/”12\/1(0)) plt/Tle=2xt where A is the infinitesimal operator associated with the
N . . processx(t) (see section 2.1.2 of [4] or p. 15 of [10] for
whereC; = dk&;ﬁ%ﬁif{fﬂ < andry = fe 2. more details).




By Dynkin’s formula [10], one then obtains for all € R?"

ExV (x(t),t) — V(x, k7T) Ex [ AV (x(s), s)ds
Ey [} 2C.ds
2C.(t — kT)

Integrating the above inequality with respectitdhen yields

vt €lkr, (k+ 1)7[ u(t) < 20.(t — k1) + u(kr™)

Al

In particular, (8) becomes
uw((k+1)77) <207 +u(ktt)
which leads to, after substitution into (9),

2Cy
1=5

w((k+1)rh) < +26C.7 + Bu(kr™T)

This finally implies
4 +26C,T

u(kr™) < -

+u(0")3

The remainder of the proof can be adapted from that of

theorem 20

Theorem 4 (Case < 0): Assume all the hypotheses of

theorem 2 except that < 0 in (7). Letk = [¢/7]. There
are two cases:

o If B <e 27 then letry = Be2M™ < 1. For allt > 0
E (Jla(t) - b3y ) <
Cs+E (I = €3xo) ) €277

2|A|Cy+(1—8)(1+8—r2)e2M7C,
A[(1=8)(1—72) )

where(Cs =

which implies
u((k+1)7+) < Dy + BNy (kr )

where Dy = $4 4 B2 (27 — 1),
There are three cases:

o If 3 < e 27 thenry, = Be?M™ < 1. By the same
reasoning as in theorem 1, one obtains

(10)

D
u(kr™) < 2 4 u(0)rh
1-— T2
The remainder of the proof can be adapted from that of
theorem 2
o If 3=e2A"7 then (10) reads

u((k+1)77) < Dy + u(kr™)

which impliesVk > 0, w(kt™) < kD + w(0T). From
this, it is clear that there is — in general — no finite bound
for u(krt).
o If 3 > e 27 thenry = Be?M™ > 1. By the same
reasoning as in theorem 1, one obtains
D2> & Do
ro — 1 Tro — 1

u(kr™) < (u(0+) +

Sincery > 1 in this case, it is clear that there is — in
general — no finite bound far(kr™). O
Remarks Theorems 3 and 4 show that it is possible to

stabilize an unstable system by discrete resettings. If the
continuous system igdifferent (A = 0), then any sequence
of uniformly contracting resettings is stabilizing. Hoveeyit
should be noted that the asymptotic boufid — oo when
8 — 1. In contrast, if the continuous systemsisictly unstable

« If 3> =277 then there is — in general — no finite bound (A < 0), then specific contraction rates (depending on the

onE (Ha(t) - b(t)Hi/I(t)) ast — +oo.
Proof One has now for alt €]k, (k + 1)7],
AV (x(t),t) < 2|\ V(x(t),t) + 2C,

with |[A\| > 0. By Dynkin's formula, one has, for at € R?"

E.V (x(t),t) - V(x, k) < Eyx /kt 2|\ V (x(s),s)+2C.)ds

Let now g(t) = ExV (x(t),t). The above equation then yields

¢
g(t) = V(x, ktt) +2C.(t — k7) + 2|| g(s)ds
kT

Applying the classical Gronwall’'s lemma [11] id¢) leads

V(x, k%) +2C.(t — k7)+
2| fi, (V6 k7 + 2Ces) exp ([ 2\ Idu) ds

_ ICT\ (2N E=kT) _ 1) 4V (x, kr+)e2M(t=kD)

g(t) <

Integrating the above inequality with respectxtahen yields
vt €lkr, (k+ 1)7],
u(t) < CC| (eQ\AI(t—kr) _ 1) + u(k7_+)e2\A|(t—kT)

dwell-time and the “expansion” rate of the continuous syste
of the resettings are required. Finally, note that in botbesa
the asymptotic bound§'; and C5 are increasing functions of
the dwell-timer.

IV. COMMENTS
A. Modelling issue: distinct driving noise

In the same spirit as [4], and contrary to previous works on
the stability of stochastic systems (see the referenced])n [
thea andb systems considered in sections Il and Il are driven
by distinct and independent noise processes. This approach
enables us to study the stability of the system with respect t
variations in initial conditionsand to random perturbations:
indeed, two trajectories of any real-life system are tyfhica
affected by distinctealizationsof the noise. In addition, this
approach leads very naturally to nice results regarding the
comparison of noisy and noise-free trajectories (see mecti
IV-B), which are particularly useful in applications (seg.e
section V).

However, because of the very fact that the two trajectories
are driven by distinct noise processes, we cannot expect the
influence of noise to vanish when the two trajectories gey ver
close to each other. As a consequence, the asymptotic bounds
2C/(1 — ) (for discrete systems) and,, Cs, Cs (for hybrid



systems) are strictly positive. These bounds are nevedhel  Atinstantst = k7, k € N, the three oscillators are coupled
optimal in the sense that they can be attained (adapt than the following way (assuming noisy measurements)
Ornstein-Uhlenbeck example in section 2.3.1 of [4]). o _

x;(ktT) = xi(k77)

B. Noisy and noise-free trajectories Tt (R (Xi“(kf) + 7%“”“) - Xi(mi))
Instead of considering two noisy trajectoriesaindb as in ~ With x4 =x; and
theorem 1, we assume now thatis noisy, whileb is noise- 1 /3
free. More precisely, for alk € N R=| 4 7
2 2

a1 = flag, k) + o(ar, k)wes Between two interaction instants, the oscillators folldwe t

br1 = f(by, k) uncoupled, noisy, dynamics
To show the exponential convergencesofind b to each dx; = f(x;)dt + &dW
other, one can follow the same reasoning as in the proof of V2

theorem 1, withC' being replaced by’/2. This leads to the where
following result i Ti — Yy — T — xY;

Corollary 1: Assume all the hypothesis of theorem 1 and £(xi) = £ < " ) - ( T4y — Y3 — yia? >
consider a noise-free trajectoly, and a noisy trajectoryy '
whose initial conditions are given by a probability distrilon
p(ag). Then, for allk € N

S oS-

We apply now the projection technique developped in [7],
[4]. We recommend the reader to refer to these papers for more
details about the following calculations.

E (Ilak _ bk||%v1k) < c + Consider first the (quear) ;ubspaﬁa of the global state
’ 1-p space (the global state is definedby= (x1, x2, x3)”) where
c 1t the oscillators ar@r/3-phase-locked
8 [ [1a= bl - 15| @ (1)
1-p

M = {(R2(x),R(x),x)T 1X € RQ}
Remarks
« The above derivation of corollary 1 is only permitted by L€tV andU be two orthonormal projections aft* and

our choice of considering distinct driving noise processesM .respectiv'ely and.consid.(-;?. = Vx. Since the mapp?ng
for systemsa andb (see section IV-A). is linear, using B differentiation rule yields the following

. Based on theorems 2, 3 and 4, similar corollaries can bdynamics fory

obtained for hybrid systems. VkeN v(krt) = g (v(kr)) + 9d 12
« These corollaries provide a robustness result for con- yikr?) = galy(kr™) 7\/iwk (12)
tracting discrete and hybrid systems, in the sense that vt elor (k4 1 05 — o (9)d Oc 13
any contracting system mutomaticallyprotected against t €lkr, (k+ )7l dy = ge(y)dt + V2 (13)

noise, as quantified by (11). This robustness could be

related to the exponential nature of contraction stability with
g4(y) = VLx = VL(VTy + UTUx) = VLVTy
V. APPLICATION: OSCILLATOR SYNCHRONIZATION BY ~ ~ ~ ~
DISCRETE COUPLINGS g:(y) = VE(V'y + UTUx)
; Lo ._where
Using the above developped tools, we study in this section
the synchronization of nonlinear oscillators in presente o (1 =)L "R 0
random perturbations. The novelty here is that the intemast L= 0 (1=, 7R
between the oscillators occurdiscretetime instants, contrary R 0 (1 =1z

to many previous works devoted to synchronlzatlon in the £(%) = (£(x1), £(x2), £(x3))T
state-spack (see [7] and references therein).

Specifically, consider the Central Pattern Generator (CPG) Remark thatg,(0) = 0 andg.(0) = 0 (the last equality
delivering2r /3-phase-locked signals of section 5.3 in [7]. This holds because of the symmetry Bfvx, f(Rx) = R(f(x))).
CPG consists of a network of three Andronov-Hopf oscillator Thus,0 is a particular solution to the noise-free version of the
x; = (x5,9:)7, i = 1,2,3. We construct below a discrete- hybrid stochastic system (12,13).

couplings version of this CPG. Let us now examine the contraction properties of equations
(12) and (13).
IDiscrete couplings are more frequent in the literature dbdb phase We have first
oscillators synchronization, wher@hase reductiortechniques are used (see T
e.g. [12]). However, contrary to our approach, these tephes are only ga” 08a — VLTVIVLVT = (3,),2 —3y+ DI,

applicable in the case of weak coupling strenghs and smadenaiensities. dy 0y



S0 thathmax (%%dT%i) =312—-3y+1<1(for0 <~ <1).
Second,

—~ of < 0 0
8;’; - V%VT —-V XE) ! Eo) 0 |V
0 0 5 (X3)
Now observe thah ., (35) =1—2%—y? < 1. SinceV
is an orthonormal projection, one then hgg.x (%%ys . <1
Therefore, if
377 =3y +l<e™ (14)

then theorem 4 together with the corollaries of section IV-B

imply that, after exponential transients,
2y%05 + (1= B)(1 + B — pe*T)e* o2
2(1=p)(1 = pe*n)

E (Ily*) <

where = 3v2 — 3y + 1.
To conclude, observe that
1 3
IylI* = vx[* = 3 > IRxi1 — x|
i=1

Define thephase-locking quality by

3
5= [Rx;1 — x|

i=1
then one finally obtains
2 2 1— 1 _ 27\ 27 2
E((S) S 67 Ud+3( ﬂ)( +ﬁ 2ﬁ€ )6 UC
2(1 - p)(1 — pe*n)
after exponential transients.
A numerical simulation is provided in Fig. 1.

(15)
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