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Gazeau de ses cours de biologie.
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Chapter 1

Introduction

The polygenic limit describes the limit of a model for a biological population of size N in
which each organism has a number L of genes, as N and L go to infinity. This double
scaling (N ≫ 1, L ≫ 1) is at the heart of the rich field of quantitative genetics [1, 2], but
has so far eluded much of the mathematical community (with some notable exceptions to
be mentioned). One possible reason for this is a rather murky vision of what scalings are
needed, in what order, to get from an individual-based model to the polygenic limit. This
work aims at

• offering context to the mathematically-minded audience on the motivation and impor-
tance of the polygenic limit

• providing a roadmap to the polygenic limit from an individual-based model, clarifying
the type of approximations used (see Figure 1.3)

• clarifying the biologically reasonable scaling relationships of the different observables

• deriving formal and less formal proofs of some of the approximations used.

• characterizing the equilibrium under stabilizing selection in terms of fixed point equa-
tions

• promote a vision of the polygenic limit based on the “typical locus”, as will be defined
in Chapter 4.

My focus will mostly be on a population at (or close to) equilibrium under stabilizing selection,
which as I will explain can serve as a benchmark of a “typical” wild population at stationarity.

This introduction is structured as follows. In Section 1.1, we will start by presenting
phenotypic models of evolution, used to describe the evolution of continuous traits. In Section
1.2, we will discuss classical population genetics models, which describe the evolution of
discrete “heredity particles”, that is, genes. In Section 1.3, we will discuss how polygenic
models are obtained by letting the number of genes of each organism go to infinity, and
how this limit can reconcile population genetics models with phenotypic models. In Section
1.4, we will summarize the duality of the “trait-based” and “gene-based” approaches with a
roadmap to the polygenic limit.
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1.1. Evolution from the trait’s eye-view

1.1 Evolution from the trait’s eye-view

As man can produce a great result with
his domestic animals and plants by
adding up in any given direction
individual differences, so could natural
selection, but far more easily from
having incomparably longer time for
action. [...] As man can produce, and
certainly has produced, a great result by
his methodical and unconscious means
of selection, what may not natural
selection effect ? [...] Man selects only
for his own good, Nature only for that
of the being which she tends.

Charles Darwin, The Origin of Species,
150th anniversary edition.

These words from Chapter IV of The Origin of Species establish natural selection as the
wild counterpart to human breeding. The extraordinary complexity of the living world is
paralleled with the incredible achievements of breeders described the first chapter of The
Origin of Species. Given the capabilities of the latter on the scale of decades, what incredible
power must have natural selection, acting on the scale of millions of years ?

In some cases, breeding is about finding some strange new heritable form and selecting it
until the whole population presents this new trait. The most famous example is the Ancon
sheep, which due to a mutation had very short legs. This trait was selected because such
sheep couldn’t escape their owners [3]. Similarly, in the well-known case of the peppered
moth (Biston betularia), natural selection has selected a black (melanic) form of the moth
over the typical white form in regions where the trees had gone dark due to soot pollution
[4]. Such a situation where several clearly distinguishable types exist in the population is
referred to as a polymorphism. In such a case, breeding is about picking the best type, with
the goal of obtaining a population in which all organisms have the desired type.

But most of the work of breeders is concerned with quantitative traits, that is, measurable
characteristics of an organism which take continuous values. In this case, there are no clearly-
defined types, rather a continuum of trait values. Darwin cites the short-beaked pigeon
(selected to have a short beak), the pouter (selected to have a large crop), the fantail (selected
to have more tail feathers). In the case of the fantail, one could argue that the number of
tail feathers is not a quantitative trait, and should rather be seen as a polymorphism (the
number of tail feathers is discrete and not continuous), we will return to this when presenting
the infinitesimal model.

The fundamental law of breeding can be summarized as:

If a quantitative trait is variable within a population, and if part of that variation is
heritable, then selective breeding can increase or decrease the mean value of the trait within

the population well beyond its current range.

Here, “the variation is heritable” means the offspring of organisms with high trait values
have, on average, a higher trait value than the offspring of organisms with low trait values.

The fundamental law of breeding was verified in countless experimental evolution exper-
iments. The longest running experiment to increase a quantitative trait is the experiment
from the University of Illinois to alter seed properties of maize, which has run since 1896.
Selecting for higher oil concentration led to a sustained increase until 2008 when this ex-
periment was discontinued, at which point seeds had an average oil concentration of 20%

2
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(compared to 5% at the beginning of the experiment)1. Another long-term experiment was
the domestication of the silver fox in the Institute of Cytology and Genetics of Russia, which
since 1952 selected silver foxes to be human-friendly. By the thirtieth generation, over 70% of
the population was “eager to establish human contact” [5]. Even more abstract traits such as
maternal effects (that is, the capacity for a mother to influence the traits of her offspring) [6],
plasticity (the ability of an organism to respond to the environment) [7] or bet-hedging (the
ability of an organism to switch between different phenotypes) [8], all respond to selection.

Confirming Darwin’s parallel between breeding and evolution required obtaining empirical
proofs that natural selection acts on quantitative traits. This was the goal of the biometrician
school, championed by Weldon in [9]. Proving that natural selection acts to increase or
decrease a given trait in a natural population requires the following steps:

1. Prove that there is covariance between the trait and fitness.

2. Prove that the trait is heritable.

The first point was famously illustrated with experimental measurement of natural selection
by Bumpus [10]. During the particularly severe winter of 1898, he measured various traits
of sparrows immobilized by the cold, some of which survived while the rest perished. He
concluded that natural selection favored smaller, lighter birds, with longer feathers and larger
brains for survival. The second point requires a model for the inheritance of traits: for
quantitative traits, the infinitesimal model.

1.1.1 The infinitesimal model (diploids)

Clarifying the long-term consequences of natural selection required a better understanding
of the heredity of complex traits. A crucial step was to find a suitable model to predict the
distribution of trait values among the offspring of two organisms in a sexual species. This
was achieved with the infinitesimal model [11], which was gradually developed from Galton’s
revolutionary study on human height [12], the biometrician take on the law of ancestral
heredity [13], and later on Bulmer’s work on the joint distribution of phenotypes among
relatives [14].

The goal is to model a population of organisms, each of which is described by a phenotypic
trait value in R. The infinitesimal model is defined with two parameters

• The segregation variance VS ∈ (0,+∞).

• The environmental variance VE ≥ 0.

The segregation variance quantifies the genetic diversity within the population, while the
environmental variance quantifies the non-heritable sources of phenotypic diversity. We will
focus on VE = 0 for simplicity.

Describing the infinitesimal model requires the definition of the pedigree and inbreeding
coefficient. The pedigree encodes the genealogical relationship between the organisms of the
population.

Definition 1.1.1. A pedigree is a finite directed acyclic graph (P, E), such that every node
has 0, 1 or 2 parents (See Figure 1.1).

The nodes of P correspond to the past and present organisms of the population. If there
is a path of arrows going from node A to node B, we say A is a descendent of B. Following
[11], we will consider that there is a foundational generation of unrelated individuals, which
consists of all nodes with no parents. An organism has only one parent if it results from
selfing.

3
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Ti
m
e

Figure 1.1: Example of a pedigree. Each node has two parents (grey arrows), or one parent
if it is the result of selfing (black arrow), or zero parent if it is in the founding generation.

The inbreeding coefficient quantifies the percentage of genetic material shared between two
organisms. It is typically computed under the assumption that offspring inherit a proportion
1/2 of its genetic material from each parent.

Definition 1.1.2 (See (1) and (2) in [11]). Conditional on the pedigree P, the inbreeding
coefficient is a symmetric function F : P2 → [0, 1] which we will define recursively as follows

• If A,B ∈ P have no parents then F(A,B) = 0 (even if A = B).

• If A has two parents A1, A2 (with A1 = A2 in the case of selfing) then for any B ̸= A
such that B is not a descendent of A we define

F(A,B) = F(B,A) =
1

2
(F∗(A1, B) + F∗(A2, B)) .

where for i ∈ [2]

F∗(Ai, B) :=

{
F(Ai, B) if Ai ̸= B
1+F(Ai,Ai)

2 otherwise

Also

F(A,A) = F∗(A1, A2)

In this definition, the coefficient F∗(Ai, B) appears because if B = Ai, that is, B is a
parent of A, then A automatically shares half its genetic material with B (in diploids).

The infinitesimal model can be defined in a condensed way as follows.

Definition 1.1.3 (The infinitesimal model).

1. Organism number k of the population has a measurable trait zk ∈ R.
1see the team’s website http://mooselab.cropsci.illinois.edu/longterm.html(consulted on the 08/08/2025)
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2. Organism number k of the population has a hidden genetic trait value zGk ∈ R. This
value corresponds to the thought experiment: if we were to breed many genetic clones
of this organism, letting the clones live in the same conditions as their progenitor, what
would the average of the trait values of the clones be?

3. The value of ek := zk − zGk is called the environmental component of k.

4. Suppose we know the pedigree P of two organisms labelled k1 and k2, as well as their
genetic trait values. If they have an offspring, then the environmental component of
this offspring is sampled randomly from a normal distribution N (0, VE). The genetic
trait value of the offspring is independently sampled from a normal distribution

N

(
zGk1 + zGk2

2
, VS

(
1− F(k1, k1) + F(k2, k2)

2

))
.

Remark 1. This model is named “infinitesimal” in that there are no atoms of inheritance: no
matter how small the inbreeding coefficient F(k1, k2), it is always assumed that the organisms
labelled k1 and k2 share exactly a fraction F(k1, k2) of their genetic material.

For the purpose of this PhD, it will not be needed to get into additional subtleties due to
sex (in reality, the trait of the offspring typically depends on its sex [15]). We will also ignore
environmental effects, setting VE = 0. Furthermore, rather than working with the inbreeding
coefficient F , we will work with the segregation variance c(k1, k2) := VS(1−F(k1, k2)), which
is more suited to account for mutations (see Section 1.1.2).

The parameter VS is the keystone of the infinitesimal model. Let us ignore for now
inbreeding (setting F = 0) to discuss its rôle. If VS = 0, the genetic value of the offspring is
exactly the mean of that of its parents. After a while, we expect all organisms to have the
same genetic trait value and the only source of difference between organisms to be the random
uncorrelated environmental components. Somewhat paradoxically, perfect inheritance leads
to a population with no apparent inheritance.

If instead VS > 0, inheritance is imperfect. Because the normal distribution is not
bounded, there is a non-zero (albeit small) probability that two organisms with small trait
values have an offspring with a large trait value, or vice-versa. Now, consider a breeder trying
to increase the trait value of the population. If VS = 0, and if the parents have genetic trait

values zGk1 and zGk2 , then the genetic trait value of the offspring is
zG1 +zG2

2 ≤ max{zG1 , zG2 }. In
particular, the breeder cannot increase the genetic value of the trait beyond the maximum
of the starting population. Conversely, if VS > 0, then if the pair with genetic trait val-
ues (zG1 , z

G
2 ) has many offspring, it is likely at least one of them has trait value larger than

max{zG1 , zG2 }. In fact, the larger VS , the larger this probability. So the breeder can increase
the maximum genetic trait value of the population. In this sense, VS can be seen to encode
the ability of the population to respond to directional selection.

Now, consider the effect of inbreeding through the coefficient F . Notice how, in the recur-
sion formula from Definition 1.1.2, we always have F(A,B) ≥ min{F(A1, B),F(A2, B)} for
two nodes A,B such that A1, A2 are the parents of A. In particular, the minimal inbreeding
coefficient within the population min{F(A,B)}, where the minimum is over all pairs (A,B)
of organisms alive at time t, can only increase with t. The larger F(A,A) + F(B,B), the
lower the variance of the trait value from the offspring of A and B, and the lower the prob-
ability that A and B have an offspring with larger trait value than either of its parents. In
this sense, inbreeding hampers the response to selection.

In fact, it can be seen that uniform inbreeding is equivalent to a decrease in VS as follows.
For a given pedigree P, define an alternative parameterization (F̂ , V̂S) as follows

• If A,B have no parents, then F̂(A,B) = F̂0 for some fixed value F̂0 ∈ (0, 1). Define
F̂(A,B) for all other pairs (A,B) by the same recursion as in Definition 1.1.2.
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1.1. Evolution from the trait’s eye-view

• VS = V̂S(1− F̂0).

Then it can be checked that for any A,B, we have

VS

(
1− F(A,A) + F(B,B)

2

)
= V̂S

(
1− F̂(A,A) + F̂(B,B)

2

)
.

In other words, it is strictly equivalent to use the pair (F , VS) or the pair (F̂ , V̂S) in the
infinitesimal model. Uniform inbreeding is equivalent to a reduction of the segregation vari-
ance.

To use the infinitesimal model to describe the evolution of a real population, we must
specify which traits satisfy the infinitesimal model and how they relate to fitness. If we
wish to predict the long-term behavior of the population, we furthermore need to account
for the replenishment of the segregation variance VS by mutations, countering the effect of
inbreeding.

Which traits satisfy the infinitesimal model ?

The reader may be skeptical that “traits” can be treated as a general object of study given
the vague definition we used so far, for which any measurable quantity qualifies. For instance,
as noted in [11], if a given trait satisfies the infinitesimal model, then the square of that trait
cannot satisfy the infinitesimal model. An ecologist studying a population needs a model to
classify traits, and in particular to determine which traits will satisfy the infinitesimal model.

In the nineties it became accepted that suitably transformed morphological traits
(such as the relative lengths of different body parts) generally obey the infinitesimal model
[16] (or to frame it in quantitative genetics terms, that the genetic variance for such traits is
mostly additive - see Section 1.3.4), whereas life history traits such as number of offspring
and longevity do not (in quantitative genetics terminology, their genetic variance contains a
substantial amount of dominance or epistasis variance). See also Chapter 7 of [17].

The model that emerged is described in Figure 1.2. The fitness of an organism is deter-
mined by life-history traits, which are themselves determined by morphological traits, which
when suitably scaled obey the infinitesimal model. Even the inheritance of traits such as
“log-bristle number in an abdominal segment of Drosophila melanogaster”, which are dis-
crete, is well approximated by the infinitesimal model [18] (that is, its genetic variance is
mostly additive). However, if sustained selection is applied to increase or decrease a mor-

Fitness

L1

L2

L3

M1

M2

M3

M4

M5

M6

M7

Figure 1.2: Fitness is determined by life history trait L1, L2, L3. Each of these traits is deter-
mined by morphological traits M1, . . . ,M7. Each morphological trait obeys the infinitesimal
model, but the life history traits do not. See [16].

phological trait (as for domestic species), then eventually the infinitesimal model will break
down (in quantitative genetics terminology, substantial dominance and epistasis variance will
appear) [16].
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More recently, the advent of mass transcriptomics has led to large datasets recording the
level of gene expression in a given organism, in a specific tissue at a specific developmental
time. The interpretation of these datasets typically treats the log-level of gene expression as
a quantitative trait satisfying the infinitesimal model [19].

It should be mentioned that an important class of traits, particularly in humans, does
not satisfy the infinitesimal model: they are the so-called behavioral traits. In humans, these
include IQ or educational attainment2.

To model the evolution of the population, we must further specify how the traits relate
to fitness, in order to incorporate the effect of natural selection.

On the importance of stabilizing selection.

Selective breeding can lead to rapid evolution on the scale of dozens of generations. Yet
modern wild species closely resemble their ancestors living thousands of years ago. Already
at the time of Darwin palaeontologists had observed a puzzling phenomenon: measurements
from fossils indicated that the traits of a species tend to remain remarkably constant over
time, except during abrupt transitions. Darwin believed evolution to proceed very slowly,
even on geological timescales, and blamed these abrupt transitions on the imperfection of
the geological record, as well as immigration: if an invasive species replaces its local relative,
the local fossil record will show an abrupt transition. He discusses this in Chapter IX of The
Origin of Species. The history of the debate on rates of evolution is admirably summed up
in the introduction of [20], from Lamarck’s peu à peu to the theory of punctuated equilibria
as formulated by Eldredge and Gould.

The modern opinion on this debate as summarized in [20] is

1. Traits evolve very rapidly over short timescales. Field studies typically show a change
in the mean trait value over a generation of order 0.1σ, where σ2 is the population
variance of the trait.

2. Traits remain approximately constant over long timescales, during very long periods of
evolutionary stasis. When comparing trait values z1 and z2 of fossils separated by a
time interval of ∆t generations, the typical value of |z1 − z2|/∆t is 10−4σ.

The simplest way to reconcile these two observations is the concept of stabilizing selection
(though evolutionary stasis can be influenced by other causes like mutation rates [21]). Sta-
bilizing selection corresponds to selection favouring an intermediate trait value. It maintains
the mean value of the trait within the population close to some optimum. So if the abiotic
and biotic environment of the population remain the same over geological time, the mean
trait value of the population will remain close to the optimum, while a sudden change can
lead to a rapid evolution until a new optimum is reached (there are now examples of such
transitions which have been perfectly conserved in fossils, see Chapter 9 of [20]).

Another line of evidence in favour of pervasive stabilizing selection is from empirical
studies. In [22], Weldon famously found a significant effect of natural selection in reducing the
genetic variance in morphological traits for crabs. Generally speaking, one expects organisms
with extreme trait values to have lower fitness. This correlative evidence could be biased if
genes responsible for extreme trait values also tend to decrease fitness for other causes (for
instance, if a gene shuts down a development pathway, it may lead to short height and also
severe disabilities) [23]. Under this correlative approach, the joint distribution of fitness F
and trait value z are measured in a population, and fitness is fitted as a quadratic polynomial
of trait value

F = a+ bz + cz2 + ε

2An excellent review of the literature on this subject can be found on Sasha Gusev’s substack
https://theinfinitesimal.substack.com (consulted on the 08/08/2025)
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1.1. Evolution from the trait’s eye-view

where a, b, c are fitted constants and ε is the residual [24]. It should be noted that field
studies often report apparent directional selection on a morphological traits (that is, positive
covariance between trait value and fitness) instead of stabilizing selection, without observing
a response to selection [25]. This phenomenon could be due to the time fluctuations of
selection: one year it is better to be tall, the next it is better to be short, and therefore on
average it is better to be of intermediate height [26]. In fact, in Figure 6. of [25], a review
of field studies offers a rather puzzling observation: stabilizing selection does not seem to be
more frequently detected than its converse, diversifying selection (which would favor extreme
trait values), except for height. There are a number of reasons why this should be taken
with caution, including biased trait reporting and inadequate statistical methods (see [25]).
More recently, [15] has found stabilizing selection on a large number of human traits using
the same statistical approach on very large datasets. The strongest evidence for stabilizing
selection is from GWAS data and will be discussed in Section 1.3.

There is also evidence that gene expression (which can also be modelled with the infinites-
imal model) is under stabilizing selection [27, 28]. Specifically, [27] compared gene expression
patterns in different strains/species of Drosophila and found greater divergence in gene reg-
ulation than in gene expression. That is, for a given gene A, the species had diverged in the
genetic mechanisms to control the expression of A, but kept similar levels of expression of A.

Mutations can generate genetic variability

So far, we have not discussed the cause of genetic variability. If we try to describe the evolution
of a population using the infinitesimal model as in Definition 1.1.3, it can easily be seen that
under panmixia, after a while the population will be completely inbred (F(k1, k2) = 1 for all
pairs (k1, k2) of organisms), and then the trait will cease to evolve.

And yet, fully inbred populations respond to selection after a sufficiently large number
of generations. For instance, in Drosophila populations, [29] found the genetic variance in
abdominal or sternopleural bristle numbers could be restored to its typical value in 400
generations. This points to the process of mutation, which generates genetic variability in
the trait. Mutations generate genetic differences between organisms. They can be modelled
as a force countering inbreeding, decreasing the value of the inbreeding coefficient F and
replenishing the segregation variance. In the next section, we will discuss how this process
can be incorporated into phenotypic models.

1.1.2 Phenotypic models for the evolution of a trait

Using the infinitesimal model, it is possible to model the evolution of a population from the
trait’s eye-view. In this section, we will introduce an individual-based model, give heuristics
for the simplifications which are expected to hold when the population is large, and describe
the large population limit following the work of Lande [30]. I warn the reader that the
notation introduced in this section will not be used in the rest of this dissertation.

A population is described as a probability distribution p over the trait space (here taken
to be R for simplicity). The trait of an organism uniformly sampled within the population is a
random variable with law p. The typical biological forces shaping p in an isolated population
are genetic drift (D), reproduction and selection (S), mutation (M).

Let P(R) (resp. M(R)) be the set of probability distributions (resp. measures) on R.
For p ∈ M(R) and a measurable function f : R → R, we write

p[f ] :=

∫
f(x)p(dx)

The population at generation n is described by a pair (pn, Cn) where

• pn ∈ P(R) is the distribution of the trait within the population.
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• Cn is the distribution of segregation variances. We will take it to be a probability
kernel from R2 to R, that is, for any z1, z2 ∈ R, Cn((z1, z2), ·) is the distribution of the
inbreeding coefficient between pairs of organisms such that the first one has trait value
z1 and the second one has trait value z2. If no organism has trait value zi for i ∈ {1, 2},
then we set Cn((z

1, z2), ·) = 0.

An individual-based model

The model will be specified with the following parameters

(D) the population size N

(S) the fitness function F : R → (0,+∞)

(M) the mutation probability µ ∈ (0, 1), mean mutation effect ž and mutation variance
Vm > 0.

Following [31], a natural and simple mathematical model to represent a finite population
under reproduction, selection, mutation, and genetic drift is as follows. At time t, the pop-
ulation contains N organisms with (genetic) trait values (zin)i∈[N ] and segregation variances
(cn(i, j))i,j∈[N ]. The population is therefore

p(N)
n =

1

N

∑
k∈[N ]

δzkn

where δ is the Dirac distribution. Every time step

1. Selection+Genetic drift. For each k0 ∈ [N ], two parents k1, k2 are independently picked
at random, such that the probability that organism number k is picked is proportional
to F (zkn).

2. Reproduction. Following the infinitesimal model, the trait zk0n+1 of the offspring of

zk1n , z
k2
n is taken to have distribution N

(
(1− µ) z

k1
n +z

k2
n

2 + µž, cn(k1, k2)
)
.

3. Segregation variance. The segregation variance between zin+1 and zjn+1 is defined as
follows. Write i[1], i[2] for the two parents of organism i, and similarly define j[1], j[2].
Then we have for i ̸= j

cn+1(i, j) :=2µVm

+
(1− µ)2

4
(c∗n(i[1], j[1]) + c∗n(i[2], j[1]) + c∗n(i[1], j[2]) + c∗n(i[2], j[2]))

(1.1)

cn+1(i, i) :=2µVm + (1− µ)2c∗n(i[1], i[2])

where c∗n(i, j) :=
1
2(2− 1[i=j])cn(i, j).

Remark 2. This simplified model assumes a panmictic hermaphroditic isolated unstructured
diploid3 population with discrete generations, in a constant environment. Furthermore, the
effect of mutations on the offspring k0 is assumed to be independent of the trait values of its
parents.

3For haploids, simply replace c∗n with cn.
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1.1. Evolution from the trait’s eye-view

Remark 3. The formula for the segregation variance accounting for the effect of mutations is
adapted from Section 2.2.6 of [11] for diploids. This formula should be interpreted as follows:
the segregation variance cn+1(i, j) quantifies the genetic divergence between organisms i and
j. Mutations create divergence between the two by replacing a fraction µ of the genome with
mutations with variance Vm. The rest of the divergence is made up of the divergence between
the inherited parts of the genetic material. Because each organism inherits a proportion
(1 − µ)/2 of its genome from each parent, the divergence between the inherited parts of the
genetic material is (1− µ)2 times the mean divergence between the parents of i and those of
j.

Large population limit and concentration of the segregation variance.

Taking the limit N → +∞ in the individual-based model has to my knowledge not yet been
rigorously done. It would be desirable to obtain a continuous limit process which preserves
some randomness, because such systems are often much more mathematically tractable than
the discrete individual-based model, and more realistic in that they describe the fluctuations
of the system. What has been done is to describe the segregation of the pedigrees in similar
biparental models with weak selection and weak population structure. We assume that the
mutation probability µ is of order at most 1/N .

By segregation of the pedigrees, we mean how two present-day organisms have many
distinct ancestors at generation n such that 1 ≪ n ≪ ln(N)/ ln(2), and their respective
inbreeding coefficients are determined by average properties of the population this time ago.
At equilibrium, this lets us argue that we may effectively consider the empirical distribution
of the segregation variances

1

N(N − 1)

∑
i,j∈[N ]

δcn(i,j)

as very concentrated around some value V ∗
S , which remains constant through time.

As an illustrative example, consider a neutral discrete biparental Wright-Fisher model:
each organism chooses two parents independently in the previous generation. Suppose that at
generation 1, the segregation variances (c1(i, j))i,j are i.i.d with distribution d1 on [0, VS ] and
expectation V ∗

S . Consider two organisms A,B sampled uniformly at random at generation n
with 1 ≪ n ≪ ln(N)/ ln(2). We argue that cn(A,B) ≃ cn(A,A) ≃ V ∗

S . In particular, this
means the distribution of segregation variances becomes concentrated around its expectation.
The probability that A and B have 4 distinct parents is

f1 =

(
1− 1

N

)(
1− 2

N

)(
1− 3

N

)
.

The probability that they have 8 distinct grandparents is the previous probability, times the
probability that the 4 parents have distinct parents

f2 =

(
1− 1

N

)(
1− 2

N

)(
1− 3

N

)
×
(
1− 1

N

)(
1− 2

N

)
. . .

(
1− 7

N

)
.

More generally, the probability that A and B have 2n+1 distinct ancestors n generations in
the past is

fn =

n∏
t=1

2t+1−1∏
k=1

(
1− k

N

) .

A standard Taylor expansion yields that for N ≫ 1, n≫ 1

fn = e
C 2n

N
+o

(
2n

N

)
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for some constant C > 0. In particular, whenever 1 ≪ n≪ ln(N)/ ln(2), with high probabil-
ity A and B have 2n ≫ 1 distinct ancestors n generations in the past, and inherited the same
proportion 1/2n of genetic material from each of them, and A and B share no ancestry in the
past n generations. On this event, if we neglect mutations, the segregation variance cn(A,A)
is equal to the average segregation variance between one uniformly-picked paternal ancestor
and one uniformly-picked maternal ancestor of A, and the segregation variance cn(A,B) is
equal to the average segregation variance between one uniformly-picked ancestor of the 2n

ancestors of A and one uniformly-picked ancestor of the 2n ancestors of B. Since we consid-
ered that at time 1, the (c1(i, j))i,j are i.i.d with mean V ∗

S , the law of large numbers implies
that the segregation variances cn(i, i) and cn(i, j) will both be very close to the expectation
of a random variable with distribution d1. We thus obtain that the distribution of the seg-
regation variances at generation n (cn(i, j))i,j is very concentrated around V ∗

S . This justifies
assuming that a single value V ∗

S can effectively describe the segregation variance between
two randomly sampled organisms at any given time, which remains constant over timescales
shorter than ln(N)/ ln(2). A rigorous justification that this property propagates through
time would require showing the same result for a more general structure of (c0(i, j))i,j than
i.i.d.

The behavior of the biparental pedigree of a neutral population, at generation n ∼
ln(N)/ ln(2), was famously studied in [32, 33]. In these articles, it is found that all present-day
organisms have the same ancestors at generation n ∼ ln(N)/ ln(2), with similar multiplicity.
In particular, the contribution of an ancestor n generations in the past to the present-day
population is entirely summed up by a single value called the reproductive value (see [34]).
It was later shown in [35] that this result is robust to moderate population structure. Fi-
nally, [34] showed that this is also robust to directional selection acting on the trait. On this
timescale, V ∗

S is still expected to remain constant. This is because, on one hand, mutations
are still rare. On the other hand, we argue that inbreeding still has no effect. Indeed, though
two randomly-sampled organisms at generation n share close to 100% of their ancestry at
generation 0, each ancestor only contributes a little bit. To take an extreme example, con-
sider two organisms k1, k2 from generation n which have the same 2n unrelated ancestors at
generation 0, each ancestor contributing only once to k1 and k2. Then for any ancestor, k1
and k2 inherited a fraction 2−n of genetic material from that ancestor. In particular, a frac-
tion 2−2n of genetic material of that ancestor is shared by both k1 and k2. So the inbreeding
coefficient of F(k1, k2) is the number of ancestors (2n) times the fraction of genetic material
shared between k1, k2 and that ancestor (2−2n) and is therefore of order 2−n ≪ 1.

On a larger timescale of n, the effect of inbreeding and mutations on V ∗
S kick in, which

can also be investigated in the neutral model, assuming all of the segregation variances at
generation 0 are equal to V ∗

S . If we sample two distinct organisms A,B at generation 1 at
random,

• if they share 0 parents, then c1(A,B) = V ∗
S

• they share 1 parent and are not the result of selfing with probability

4

N

(
1− 1

N

)2

≃ 4

N

in which case (1.1) yields

c1(A,B) = 2µVm +
(1− µ)2

4
V ∗
S

(
3 +

1

2

)
.

• all other events have probability of order 1/N2.

11
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We therefore find that that on a leading order of 1/N and µ,

E [c1(A,B)] ≃ 2µVm + (1− 2µ)

(
1− 4

N
+

4

N
× 7

8

)
V ∗
S

which yields

E [c1(A,B)] ≃ V ∗
S + 2µ(Vm − V ∗

S )−
1

2N
V ∗
S .

Thus, assuming µ has order 1/(2N), we find that V ∗
S at equilibrium satisfies

V ∗
S =

4µN

1 + 4µN
Vm.

This sort of reasoning was used in [36] (equation (10)). It could be adapted to account
for selection, but the traditional approaches to finding the equilibrium value of the genetic
variance within a population with selection is to use polygenic models (see Section 1.3.9).

Assuming the segregation variances are very concentrated around V ∗
S lets us model the

evolution of the large population pt under reproduction with the infinitesimal model as pt+1 =
R(pt) with the following operator

R :

{
P(R) −→ M(R)
p 7−→

∫
R×R φ

(
· − z1+z2

2 , V ∗
S

)
p(dz1)p(dz2)Leb

where Leb is the Lebesgue measure and

φ(z, V ∗
S ) :=

1√
2πV ∗

S

e
− z2

2V ∗
S .

One remarkable property of R is that normal distributions are stable under R. Formally,

∀(z̄, V ) ∈ R× R+, R(N (z̄, V )) = N
(
z̄,
V

2
+ V ∗

S

)
.

For this reason, if the system is dominated by recombination (meaning we can write pt+1 ≃
R(pt)) we expect the trait distribution to be close to a normal distribution.

In the next section, we show how this simplification lets us efficiently describe a population
under stabilizing selection.

Large population under stabilizing selection

In 1976, Lande [30] suggested the first autonomous model of a trait evolving under stabilizing
selection and genetic drift of a large population (N ≫ 1). The effect of selection is modelled
using the quadratic logfitness function

W (z) =− (z − η)2

2ω2
F = eW (1.2)

with ω−2 the strength of selection, and η the selection optimum. This type of quadratic
selection with a single optimum is known as Fisher’s Geometric Model [37].

Lande suggests the description of the population at time t with normal distribution
N (z̄t, σ

2) for some fixed parameter σ2 ≪ ω2 and a mean z̄t, which evolves following the
Stochastic Differential Equation (SDE)

dz̄t =
σ2

ω2
(η − z̄t)dt+

√
σ2

N
dBt (1.3)

This is an Ornstein-Uhlenbeck process.
For this model to be theoretically justified, it should be obtained as a scaling limit from an

individual-based model. Specifically, rigorously obtaining this model would require showing
the following decomposition
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• On a very short timescale, the pedigrees segregate so that the typical segregation vari-
ance between two organisms is V ∗

S .

• On a short timescale, reproduction mixes the phenotypic distribution pt, maintaining
it close to a normal distribution with constant variance σ2 = 2V ∗

S and mean z̄t.

• On a larger timescale, stabilizing selection and genetic drift jointly act on z̄t as in (1.3).

In [38], a very precise description of the evolution of a population under stabilizing se-
lection is achieved, under the assumption that the population trait distribution pt remains
Gaussian with constant variance, but allowing the population size to fluctuate. Specifically,
in this article the average number of offspring of a given organism is a function of the trait
zG and the population size Nt to prevent endless growth of the population. A coupled set
of SDEs for the trait mean z̄t and the population size Nt are obtained, describing the estab-
lishment of migrants in a new population and the stationary population, for which the joint
distribution of (z̄t, Nt) is obtained.

Let us now mention some of the possible applications of this model.

1.1.3 Applications of phenotypic models

The infinitesimal model (suitably extended) is at the heart of quantitative genetics, which
has had immense success for breeding, laboratory studies and field studies in the wild [1, 2],
and can be considered as one of the pillars of modern evolutionary biology. I will only briefly
mention examples of applications of the stabilizing selection model.

Application to model the divergence of populations

Lande’s Ornstein-Uhlenbeck model (1.3) has been used to compare closely-related species’
morphological traits, under the assumption that since the time at which two species split, their
mean morphological traits values have evolved as independent Ornstein-Uhlenbeck processes
[39, 40] (though see [41]). Since the time of the split is known from molecular clocks, this
lets researchers estimate with a Bayesian approach the timescales at which traits fluctuate,
and the strength of stabilizing selection.

Extension to multiple traits.

In a landmark article [24], Lande and Arnold extended the infinitesimal model to a system
with multiple traits as described in Figure 1.2, and proposed a method to infer stabilizing
selection from measurements in wild populations. Now the traits of an organism are given by
a vector z ∈ Rd, and the covariances between the different components of z are given by an
element of Md(R), the set of positive-definite matrices. The idea, from Lande’s 1979 article
[42], can be formulated as follows

1. The population traits at time t are distributed following a normal distributionN (z̄t, VP )
where VP ∈ Md(R) is the phenotypic covariance matrix.

2. The population genetic trait values are distributed following a normal distribution
N (z̄t, VG) where VG ∈ Md(R) is the genetic covariance matrix.

3. The effect of stabilizing selection is obtained as in (1.2) through the fitness function

F (z) = exp

[
−1

2
(z − η)⊤ω−2(z − η)

]
where η ∈ Rd is the selection optimum and ω−2 ∈ Md(R) is a positive-definite matrix
specifying the strength of stabilizing selection. The model also allows for other forms
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of selection, most notably directional selection (replacing ω−2(z − η) with some vector
β ∈ Rd) and disruptive selection (replacing ω−2 with −ω−2).

From a modelling perspective, this model can be obtained by updating the infinitesimal model
from Definition 1.1.3, replacing the environmental and segregation variances (respectively VE
and VS) with covariance matrices in Md(R), and assuming that the population is well-mixed.

This model has had enormous success, and Lande and Arnold’s paper [24] became one
of the most cited articles of Evolution [43], the basis of field studies on eco-evolutionary
dynamics of quantitative traits [17]. In a sense, it completes the picture from Figure 1.2,
allowing field experimentalists to disentangle the way fitness is determined by morphological
traits. It also saw use on gene expression data from transcriptomics [19].

Beyond normally-distributed traits

We have only mentioned situations where it is assumed that the trait distribution pt remains
normal within the population. The infinitesimal model assumes that the trait value of the
offspring of two organisms is normally distributed around the mean of its parents, and can
still accurately describe situations such as disruptive selection where the population pt is no
longer a normal distribution [44]. For instance, [45] emphasizes that the most computationally
efficient way to keep track of the evolution of the population is the Fourier transform, which
transforms convolutions due to the R operator to products. There has been remarkable de-
terministic work from the PDE community to prove the robustness of the normal distribution
of the trait within a population to weak selection [46, 47], competition [48], or immigration
in a spatially structured population with heterogeneous environments [49]. These works in
deterministic settings all assume that the pedigrees segregate as discussed in Section 1.1.2,
meaning the effect of reproduction can be modelled with the operator R.

Applying the infinitesimal model directly to phenotypic data in selection experiments or
long-term measurements in wild population is possible using linear mixed models. This ap-
proach, known as the “animal model”, can account for many complications due to phenotypic
plasticity, shared environment, maternal effects, environmental fluctuations (see for instance
Chapter 19 of [2]).

1.2 Evolution from the gene’s eye-view

As mentioned at the beginning of this Introduction, some traits present a mode of inheritance
radically different from the infinitesimal model. Under the infinitesimal model, extreme trait
values occur rarely. When such a rare event occurs, which leads to an organism with an
extreme trait value, the offspring of that organism tend to have less extreme trait values
(because its other parent does not have an extreme trait value), and after a few generations
the system loses all memory of this special event4.

In biological systems however, some extreme events can have long-lasting consequences. In
the case of the Ancon sheep, one should imagine a sheep born with a trait very different from
that of its parents or any other sheep within the population: an extreme form of dwarfism.
And among the offspring of that sheep, some would develop the same kind of dwarfism as
their parent, while others would be indistinguishable from the rest of the population. In such
a setting, the most appropriate description of the population seems to be a binning into dwarf
and non-dwarf discrete categories, rather than a continuous distribution.

4This is reminiscent, albeit distinct, of Galton’s regression to the mean [12]. Galton dubbed regression to
the mean a phenomenon due to the environmental component (see Definition 1.1.3), summarized as follows.
Consider the tallest midparent in the population, that is, the breeding pair with the greatest mean height. The
elements of this pair tend to have high genetic value zGk and high environmental component ek. The offspring
will most likely have a genetic trait value close to that of the midparent and a non-extreme environmental
component. Therefore, it will be shorter than its midparent.

14



Introduction

Historically, such discrete events, incompatible with the infinitesimal model, were the
main arguments used against Darwin’s theory of natural selection (though the infinitesimal
model had not yet been formalized as such). On one hand, there was still a lot of confusion
on the inheritance patterns of quantitative traits, which led to incorrect claims that natural
selection could not effectively act on a quantitative trait. On the other hand, Huxley, Galton,
de Vries and later Bateson emphasized the importance of discrete variants (which Galton
called “sports” as opposed to “variation proper”). See Chapters 1-2 of [50] for details.

At the turn of the twentieth century, the rediscovery of Mendel’s works by Hugo de Vries,
Carl Correns, and Erich von Tschermak led Hugo de Vries to formulate the concept of pangene
[51], which would eventually become genes. Genes are defined as unalterable microscopic
particles of inheritance, which are transmitted following Mendel’s laws and determine the
genetic trait values of organisms. The work of Morgan in the 1910s clarified the chromosomic
structure of the genome and the concept of locus. This ultimately led to the development
of population genetics by Wright, Fisher, and Haldane, which would lead to the modern
synthesis of evolution (see Chapter 5 of [50]). This work reached further maturity with
the use of the mathematical theory of diffusions, pioneered by Feller [52] and Kimura [53],
building up on the work of Wright and Fisher.

In this section, we will present Mendelian inheritance in Section 1.2.1 and suggest a
simple model for the evolution of the population in Section 1.2.2, with the corresponding
large-population limit. In Section 1.2.3 we will discuss how the model can be adapted to
account for diploidy.

1.2.1 The particles of heredity (haploids)

The microscopic model representing the particles of heredity in haploids can be described as
follows

• Each organism has a genome, which has L positions called loci labelled 1 to L.

• At each position, the organism has a gene. This gene has a finite number of possible
types, called alleles.

We will only be concerned with biallelic loci, that is, there are two alleles at each locus,
labelled +1 and −1. As will be discussed in Section 1.3.10, this is a standard assumption in
modern efforts to model polygenic systems.

The genome of the organism can therefore be represented as an element g ≡ (gℓ)ℓ∈[L] ∈
{−1,+1}L =: □[L]. We call a given element of □[L] a genotype, denoted γ, whereas a
□[L]-valued random variable is a genome, denoted g. Similarly, a {−1,+1}−valued random
variable is a gene whereas −1 and +1 are alleles.

The basic model of heredity for haploids (counterpart to the infinitesimal model from
Definition 1.1.3) can be described as follows

Definition 1.2.1 (Mendelian inheritance in haploids). If two genomes g1, g2 ∈ □[L] have an
offspring with genome g∗, then the offspring samples randomly a certain subset I ⊆ [L] with
some probability distribution ν. Then for every locus ℓ ∈ [L], if ℓ ∈ I then g∗ℓ = g1ℓ , otherwise
g∗ℓ = g2ℓ .

This model is parameterized by the recombination measure ν, which specifies the pattern
of inheritance (examples are given below). It is typically assumed that ν is non-degenerate,
meaning for any ℓ1, ℓ2 ∈ [L] with ℓ1 ̸= ℓ2, we can find a subset A ⊂ [L] with ℓ1 ∈ A, ℓ2 /∈ A
and ν(A) > 0.

Note the contrast with the infinitesimal model from Definition 1.1.3: here, g∗ℓ is either an
exact copy of g1ℓ or an exact copy of g2ℓ , whereas under the infinitesimal model, the genetic

trait value of the offspring zG∗ is distributed around the midparent
zG1 +zG2

2 .
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1.2. Evolution from the gene’s eye-view

The recombination measure

I mention a few of the classical recombination models to provide intuition on what this object
means.

• The model known to population geneticists as free recombination corresponds to the
case where ν(I) = 1

2L
for any I ⊆ [L]. This recombination measure is typically suited

if there is one locus per chromosome.

• Single crossover. Let µ be a probability measure on [0, 1] with positive continuous
density. Then ν is the law of the random set

J =

{
i ∈ [L],

i

L
≤ X

}
, where L(X) = µ.

This recombination measure seems suited to describe one chromosome of some species
such as butterfly [54].

• Multiple crossovers. Consider a Point Process with an intensity measure with a
strictly positive continuous density on [0, 1], seen as a random set of points λ1 < · · · <
λN . We add the boundary points λ0 := 0 and λN+1 := 1. Then ν is the law of the
random set

J =

{
i ∈ [L] : ∃k ≤ N + 1

2
s.t.

i

L
∈ [λ2k, λ2k+1)

}
This is the most general recombination measure one can wish for.

Biologically speaking, a crucial feature of ν is that except under free recombination, loci
which are very close do not recombine very often. Specifically, in the examples given (except
free recombination) one may check that if ℓ and ℓ′ are very close, then picking I with law ν,
we have

P[{ℓ, ℓ′} ⊂ I] + P[{ℓ, ℓ′} ⊂ Ic] ∼ |ℓ− ℓ′|
L− 1

.

where Ic := [L]∖ I is the complement of I. This means, in the notation of Definition 1.2.1,
that if the new genome g∗ inherits its content at locus ℓ from g1, then it is very likely to also
inherit its content at locus ℓ′ from g1.

We now illustrate how Mendelian inheritance can be used to model the evolution of a
population.

1.2.2 Models from genetics

The population is described as a probability on the set of genotypes, that is, an element of
X[L] := P(□[L]). The typical biological forces shaping an isolated population are recombina-
tion (R), selection (S), mutation (M), and genetic drift (D).

For a population x ≡ (x(γ))γ∈□[L]
∈ X[L] and a function f on □[L], we write

x[f(g)] =
∑
γ∈□[L]

f(γ)x(γ).

Mathematically speaking, x[f(g)] is the expectation of f(g), where g is a □[L]−valued random
variable with law x. Under this notation, the frequency of the +1 allele at locus ℓ is x[1[gℓ=+1]].

In this section, we formally introduce an individual-based model and describe its large-
population limit, obtaining a diffusion approximation (1.5) which jointly models mutation,
recombination, selection and genetic drift. We discuss a collision-based interpretation of this
SDE and describe the large-recombination limit.

16



Introduction

An individual-based model

Here we introduce the individual-based model which will be used in all of our simulations
(parallel to the one presented in Section 1.1.2). The model will be specified with the following
parameters

(R) the recombination measure ν(N) ∈ P(R) and recombination probability ρ(N) ∈ (0, 1)

(S) the log-fitness function W (N) : □[L] → R

(M) the mutation probabilities at each locus (µ
(N)+
ℓ , µ

(N)−
ℓ ) ∈ [0, 1]2.

(D) the population size N .

At time t, the population contains N genomes with genotypes g1, . . . , gN . The population
is therefore

X
(N)
t =

1

N

∑
k∈[N ]

δgk .

Every time step

1. Selection+Genetic drift. For each k0 ∈ [N ], two parents k1, k2 are picked at random in-
dependently, such that the probability that organism number k is picked is proportional
to eW

(N)(gk)

2. Recombination. With probability ρ(N), the genotype of the offspring g∗ of (k1, k2) is
obtained following Mendelian inheritance from Definition 1.2.1. Otherwise, g∗ = gk1 .

3. Mutation. For each locus ℓ ∈ [L] independently, with probability µ
(N)+
ℓ + µ

(N)−
ℓ , the

locus mutates. This means re-sampling g∗ℓ with law

Lℓ :=
µ
(N)−
ℓ

|µ(N)
ℓ |

δ−1 +
µ
(N)+
ℓ

|µ(N)
ℓ |

δ+1

where |µ(N)
ℓ | := µ

(N)+
ℓ + µ

(N)−
ℓ . We thus obtain a new offspring genome g∗k0 .

4. The new population is 1
N

∑
k∈[N ] δg∗k .

Remark 4. Here as in Section 1.1.2, we assume a panmictic hermaphroditic isolated un-
structured population with discrete generations, in a constant environment. The model does
not account for non-Mendelian inheritance, such as epigenetics or mitochondrial DNA [55].

Remark 5. I am not aware of any work on the polygenic limit which accounts for the fact

that the mutation probabilities (µ
(N)
ℓ )ℓ∈[L] are not constant across loci. Though, as will be

argued in Chapter 4, this is easy to add to the model, and biologically realistic [56].

Scaling to the LD-Wright-Fisher diffusion

Let N → +∞ with

ρ(N) =
ρ

N
W (N) =

W

N
∀ℓ ∈ [L], µ

(N)±
ℓ =

θ±ℓ
N

(1.4)

for some constant ρ, θℓ ≡ (θ+ℓ , θ
−
ℓ ) and a function W : □[L] → R. Then fundamental diffusion

theory tells us (X
(N)
⌊tN⌋)t≥0 converges to the following process

dXt = (ρR(Xt) + Θ(Xt) + S(Xt))dt+Σ(Xt)dBt (1.5)
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1.2. Evolution from the gene’s eye-view

with the operators that we now describe. The convergence is here implied in the Skorokhod
J1 topology [57]. It should be remembered that X[L] is isomorphic to the simplex of R2L , so

we may think of the operators R,Θ, S as being R2L−valued.
Recombination. For a subset I ⊆ [L] and x ∈ XL, define xI the marginal of x on the

hypercube □I := {−1,+1}I . Let xI ⊗ xIc
be the product measure on □[L] of x

I and xIc
.

Then we define the recombinator as

R :

 X[L] −→ R□[L]

x 7−→
∑

∅⊊I⊊[L]

ν(I)(xI ⊗ xIc − x)

Note that up to replacing ν with ν̃ : I 7→ ν(I)+ν(Ic)
2 , we can and will assume that for any

I ⊆ [L], ν(I) = ν(Ic). The recombinator has been extensively studied in the deterministic
setting [58, 59, 60]. It is a mixing operator for which entropy production bounds are known
[61].

Mutation. The mutator is defined as

Θ :

 X[L] −→ R□[L]

x 7−→
∑
ℓ∈[L]

|θℓ|
(
x[L]∖{ℓ} ⊗ Lℓ − x

)
where

|θℓ| =θ+ℓ + θ−ℓ Lℓ :=
θ−ℓ
|θℓ|

δ−1 +
θ+ℓ
|θℓ|

δ+1.

Selection. The operator S : □[L] → R□[L] is the selector defined with

S(x)(γ) := x(γ)(W (γ)− x[W (g)]) = Covx

[
W (g),1[g=γ]

]
where Covx[·, ·] are the expectation and the covariance function for a random genotype g
with law x.

Genetic Drift. The stochastic term is the traditional multiallele Wright-Fisher diffusion
term [62], which corresponds to the Fleming-Viot noise term. We consider a Gaussian process
B ≡ (Bt(γ

1, γ2))t∈[0,T ];γ1,γ2∈□[L]
indexed by □[L] ×□[L] such that

∀γ1, γ2, γ3, γ4 ∈ □[L], d ⟨B(γ1, γ2), B(γ3, γ4)⟩t = (1[γ1=γ3
γ2=γ4

] − 1[γ1=γ4
γ2=γ3

])dt
To put it differently, B(γ1, γ2) = −B(γ2, γ1), and B(γ1, γ2), B(γ3, γ4) are independent Brow-
nian motions if (γ1, γ2) /∈ {(γ3, γ4), (γ4, γ3)}.

Finally, let M(□[L] ×□[L],R□[L]) denote the space of linear functions from □[L] ×□[L] to

R□[L] . Then
Σ : X[L] → M

(
□[L] ×□[L],R□[L]

)
is defined such that

∀γ ∈ □[L], (Σ(Xt)dBt)(γ) :=
∑
γ̂ ̸=γ

√
Xt(γ)Xt(γ̂)dBt(γ, γ̂).

Comments on equation (1.5). Equation (1.5) has been remarkably under-studied
in full generality by mathematicians. It is admittedly unrealistic for biological purposes,
as it assumes the 2L possible genotypes to simultaneously exist at any given time point.

18



Introduction

Nevertheless it presents the mathematical convenience of diffusion theory and simultaneously
accounts for all four forces of biological interest: recombination, selection, mutation and
genetic drift. Existence and uniqueness of solutions to (1.5) was obtained from the martingale
problem in [63]. When L = 1, it reduces to the standard Wright-Fisher diffusion (see Chapter
4). The case L = 2 was studied by Ohta and Kimura in [64, 65], and their work is a testament
to how involved computations become even with just two loci. For a general L, X[L] is of
dimension 2L− 1 and computations become even more complex. When S = 0, [66] derived a
dual process. When Σ = 0, there is a rich literature reviewed in [67] and Chapter II of [68].

One important feature of (Xt)t≥0 is the presence of linkage disequilibrium (LD)

CovXt [gℓ1 , gℓ2 ] ̸= 0

For this reason, we will call (1.5) the LD-Wright-Fisher diffusion. It will be the focus of
Chapter 2.

The collision point of view

Equation (1.5) is interesting from the perspective of kinetics theory, in that the system
can be seen as a particle system evolving under three types of two-particle collisions and
a Markovian generator. Specifically, it can be obtained from a finite Moran-style model in
continuous time, in which the population at time t is composed of g1t , . . . , g

N
t ∈ □[L] and has

the following transitions

• (Mixing collisions). For any i, j ∈ [N ] with i ̸= j, and any subset I ⊆ [L], we have the
transition

(git, g
j
t ) −→ (g

i|I
t ⊗ g

j|Ic

t , g
j|I
t ⊗ g

i|Ic

t )

with rate ρν(I)/N , where g|I := (gℓ)ℓ∈I is the restriction of g to I and for I ⊆ [L],
ga ∈ □I , g

b ∈ □Ic , we let ga ⊗ gb be the element of □[L] such that

∀ℓ ∈ [L], (ga ⊗ gb)ℓ =

{
gaℓ if ℓ ∈ I
gbℓ otherwise.

• (Selective collisions). For any i, j ∈ [N ] with W (git) > W (gjt ), we have

(git, g
j
t ) −→ (git, g

i
t)

with rate (W (git)−W (gjt ))/N .

• (Mutations). For any ℓ ∈ [L], i ∈ [N ],

git,ℓ −→ ǧℓ

with rate |θℓ|, where ǧℓ is randomly sampled with law Lℓ.

• (Cloning collisions). For any i, j ∈ [N ] with i ̸= j we have

(git, g
j
t ) −→ (git, g

i
t)

with rate 1/2.

Define Xt ≡ (Xt(γ))γ∈□[L]
such that Xt(γ) is the frequency of the γ genotype at time t

Xt(γ) :=
1

N

∑
i∈[N ]

1[γ=git]
.

Scaling N → +∞, first and second-moment computations show that (Xt)t≥0 converges to a
solution of (1.5). This shows in particular that the selector S and the recombinator R belong
to a class of operators known as collision operators [69]. More insight on this point of view
will be obtained on this in Chapter 3.
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1.2. Evolution from the gene’s eye-view

Scaling to the LE-Wright-Fisher diffusion

If we write P ℓt := Xt[1[gℓ=+1]] for the frequency of the +1 allele at locus ℓ ∈ [L], it will be
seen in Corollary 2.3.5 (Chapter 2) that (1.5) implies

dP ℓt = sℓ(Xt)P
ℓ
t (1− P ℓt )dt+ (θ+ℓ (1− P ℓt )− θ−ℓ P

ℓ
t )dt+

√
P ℓt (1− P ℓt )dB

ℓ
t

where Bℓ is a Brownian motion and

sℓ(x) :=
Covx [W (g), gℓ]

Varx[gℓ/2]
.

If we let the recombination rate ρ go to infinity, assuming the recombination measure ν is
non-degenerate, two crucial events occur (see Chapter 2 for details)

• Xt is forced on a stable manifold in which it is a product measure, entirely determined
by (P ℓt )ℓ∈[L].

Xt =
⊗
ℓ∈[L]

((1− P ℓt )δ{−1} + P ℓt δ{+1}) (1.6)

The manifold determined by (1.6) is the manifold of Linkage Equilibrium5 (LE),
sometimes called the Wright manifold [71], which will be denoted Γ[L].

• The Brownian motions (Bℓ)ℓ∈[L] become independent.

As a consequence, the dynamics of (P ℓt )ℓ∈[L] can be treated as an autonomous set of L SDE,
which we call the LE-Wright-Fisher diffusion. Specifically, we write

dP ℓt = s̄ℓ(Pt)P
ℓ
t (1− P ℓt )dt+ (θ+ℓ (1− P ℓt )− θ−ℓ P

ℓ
t )dt+

√
P ℓt (1− P ℓt )dB

ℓ
t (1.7)

where Pt ≡ (P ℓt )ℓ∈[L], B
ℓ is a Brownian motion and

s̄ℓ(p) :=
Covp [W (g), gℓ]

Varp[gℓ/2]
. (1.8)

where here, Varp and Covp are the variance and covariance of the random variable g such
that (gℓ)ℓ∈[L] are independently sampled such that gℓ has law ((1− pℓ)δ−1 + pℓδ+1).

This system is convenient to work with, and in particular it has a known stationary
distribution [72] which was obtained by Kimura in [53], confirming an earlier derivation by
Wright in [73]. When L = 1, the (one-dimensional) Wright-Fisher diffusion given by (1.7) is
very well known [74, 75, 76, 77].

The convergence to LE and stability of equilibria, when L is fixed and Σ = Θ = 0
(no mutation, no genetic drift) has received much attention (reviewed in Chapter II and
Chapter V.4 of [68]). It has recently been proved [78] that mixing by free recombination
(see Section 1.2.1) leads to the “cutoff phenomenon”, well-known to probabilists working on
mixing systems. This means that considering (Xt)t≥0 evolving under recombination R alone,
the distance between Xt and Γ[L] converges to a step function of t as L → +∞, the cutoff
time being tc = ln2(L).

5Not to be confused with Quasi-Linkage Equilibrium (QLE), which is a manifold close to the LE manifold,
defined by the first-order perturbations of the LE manifold due to selection (chapter II.6 of [68]). Statistical
physicists use a similar but slightly different definition of QLE [70].
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1.2.3 Diploidy

Diploidy refers to the situation in which an organism has two haploid genomes. In this
section we discuss how the model from the previous section can be modified to account for
diploidy. This will require that we adapt the notation. Specifically, compared with haploidy,
the genome of an organism is described by an element G = (Gℓ,(1), Gℓ,(2))ℓ∈[L] of ({0, 1}2)L
(here, the alleles are labelled 0 and 1 instead of −1 and +1 to stay closer to the terminology
of the literature).

Under diploidy the law of inheritance is modelled as

Definition 1.2.2 (Mendelian inheritance in diploids). If two genomes G1, G2 ∈ ({0, 1}2)L
have an offspring with genome G∗, then we sample independently two subset I1, I2 ⊆ [L] with
the same probability distribution ν. Then for every locus ℓ ∈ [L], and i ∈ {0, 1}

G∗
ℓ,(i) =

{
Giℓ,(1) if ℓ ∈ Ii
Giℓ,(2) otherwise

It is then straightforward to adapt the individual-based model from Section 1.2.2, with the

same parameters N ∈ N, ρ(N) ∈ [0, 1], (µ
(N)±
ℓ )ℓ∈[L] ∈ [0, 1]2L, a probability ν on the subsets

of [L] and a fitness function W (N).

In this setting, the population at generation n is a probability distribution X
(N)
n on

({0, 1}2)L. Letting 2N go to +∞ with strong recombination ρ(N) ≫ 1/N and the following
analog to (1.4)

W (N) =
W

2N
∀ℓ ∈ [L], µ

(N)±
ℓ =

θ±ℓ
2N

the population mixes analogously to what was seen in Section 1.2.2 and reaches LE, meaning

(X
(N)
⌊t2N⌋)t∈[0,T ] converges to a diffusion (Xt)t∈[0,T ] such that the (Gℓ)ℓ∈[L] are independent

under Xt. Furthermore, if G is a random variable with law Xt, the two haploid genomes
(Gℓ,(1))ℓ∈[L] and (Gℓ,(2))ℓ∈[L] are independent. This follows from the fact that a genome G
inherits its first chromosome G·,(1) from its first parent and its second chromosome G·,(2) from
its second parent, which under panmixia are sampled independently. By analogy with the
Wright manifold, we call the manifold of P(({0, 1}2)L) on which this last condition is true is
the strong Hardy-Weinberg manifold (HW). Under HWLE, it is the same to randomly
sample a genome G at time t in the population and to independently sample (Gℓ,(i))ℓ∈[L],i∈[2]
such that Gℓ,(i) has law Bernoulli(P ℓt ), with P

ℓ
t the frequency of the +1 allele at time t. It

follows that the population is entirely described by the frequencies of the +1 allele at each
locus (P ℓt )ℓ∈[L]. For p ∈ [0, 1]L, we write Êp for the corresponding population. In particular,

for a measurable function f : ({0, 1}2)L → R, Êp[f(G)] is the expectation of f(G) where
G ≡ (Gℓ,(1), Gℓ,(2))ℓ∈[L] has law Êp.

The analog to the LE-Wright-Fisher diffusion in the diploid case is the HWLE-Wright-
Fisher diffusion for the frequencies of the +1 allele at each locus Pt ≡ (P ℓt )ℓ∈[L] is

dP ℓt = ŝℓ(Pt)P
ℓ
t (1− P ℓt )dt+ (θ+ℓ (1− P ℓt )− θ−ℓ P

ℓ
t )dt+

√
P ℓt (1− P ℓt )dB

ℓ
t (1.9)

where (Bℓ)ℓ∈[L] are independent Brownian motions and for any p ≡ (pℓ)ℓ∈[L] ∈ [0, 1]L

ŝℓ(p) :=
Ĉovp [W (G), |Gℓ|]

V̂arx[|Gℓ|]
(1.10)

where for p ∈ [0, 1]L, Ĉovp and V̂arp are the covariance and variance associated to Êp.
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1.3. Polygenic trait models

1.3 Polygenic trait models

Here, I will motivate the introduction of polygenic model, formally define them, and briefly
go over the historical development of these models as well as their current uses. I will explain
how the main polygenic trait models used today were developed. I warn the reader not to
expect mathematical rigor, and that some results will be simplified for ease of reading, at the
cost of reducing their extent.

1.3.1 Historical motivation for polygenic trait models

Historically, the development of polygenic trait models can be traced back to the debate
between the biometricians and the Mendelians at the turn of the twentieth century. The
biometricians, as emphasized in Section 1.1, focused on evolution through natural selection
acting on traits which satisfied the infinitesimal model. The Mendelians focused on simple
genetic systems in which one or two Mendelian loci determine a polymorphism. For a variety
of reasons including insufficiently specified models, mathematical mistakes, difficult commu-
nication and personal enmity, the two communities could not reconcile their respective visions
into a unifying framework (see Chapter 3 of [50]). The missing ingredient was a model under
which the genetic value of the trait zG from the infinitesimal model (definition 1.1.3) is seen
as a function Z(L)(g) ≡ Z(g) of L≫ 1 genes (gℓ)ℓ∈[L], which are inherited following Mendel’s
laws (definition 1.2.1). Such a model was pointed to by Yule in 1906 ([50], Chapter 3), but
was only established as a unifying framework following Fisher’s landmark article in 1918 [79].

Before discussing this, let us clarify what we mean by a polygenic model.

1.3.2 Definition

We will define the polygenic limit as the limit of a gene-centric system (either the LD-
Wright-Fisher diffusion (1.5) or the LE-Wright-Fisher diffusion (1.7)) when the number of
loci is large L≫ 1. If this limit is obtained jointly with the limit distribution of Z(g), where
Z : □[L] → R is a trait function, then we speak of the polygenic trait limit.

I will call a model polygenic whenever this model explicitly describes

1. the stochastic evolution of allele frequencies at any given locus6.

2. the dynamics of the macroscopic observables emerging from all loci.

I call a model a polygenic trait model if it models a third process on top of the two
ones enumerated above

3. the dynamics of the distribution of Z(g) under Xt for some trait function Z.

In the next section, we discuss the usual additivity assumption on the trait function Z.

1.3.3 The additive model

The simplest model for Z(g) is the additive model, devised by Fisher [79] and Wright
[84]. Under the additive model, the genetic value of a trait is obtained as the sum of the
contributions of a large number of underlying genes, which are inherited following Mendel’s

6This excludes a large class of models which assume a deterministic evolution at a given locus, due to
selection being much stronger than genetic drift (the classical example being the selective sweep [80]). This
is known in the literature as the oligogenic regime [81]. Our definition also excludes Kimura’s infinite-alleles
model [82] which considers the evolution of the population at one locus to be deterministic. This model
requires the per-locus mutation rates (θ±ℓ )ℓ∈[L] to be much greater than the per-locus recombination rate ρ/L,
which is now deemed biologically unrealistic [83].
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laws (Definition 1.2.1). As will be seen in Section 1.3.5, this model lets us recover the
infinitesimal model from Definition 1.1.3 when the number of loci L is large.

To clarify, we take the Mendelian model of inheritance, and we define the following func-
tion in the haploid case

Z :

{
□[L] −→ R
γ 7−→ z0 +

∑
ℓ∈[L] αℓγℓ

(1.11)

where αℓ ∈ R is the additive effect at locus ℓ. Functions of the form (1.11) are called
(haploid) additive traits.

Similarly, an additive diploid trait function is defined as

Z :

{
({0, 1}2)L −→ R
G 7−→ z0 +

∑
ℓ∈[L] αℓ|Gℓ|

(1.12)

Common extensions of the additive model will be considered in Chapter 4: these allow
us to incorporate pleiotropy, epistasis and dominance. We quickly go through them.

Pleiotropy

Pleiotropy refers to models in which a given locus influences more than one trait. To this
end, we take the parameter αℓ to be an element of Rd for some parameter d, and Z defined
as in (1.11) is a function from □[L] to Rd. Proponents of the omnigenic model [85] argue that
pleiotropy is pervasive, meaning loci which affect one additive trait tend to affect all other
additive traits.

Epistasis

The haploid trait function Z is said to be functionally epistatic if we can find A ⊊ [L],
g1, g2 ∈ □A and g3, g4 ∈ □[L]∖A such that

Z(g1 ⊗ g3) + Z(g2 ⊗ g4) ̸= Z(g1 ⊗ g4) + Z(g2 ⊗ g3).

In particular, additive traits (1.11) are not functionally epistatic: for g1, g2, g3, g4 as above,
we have

Z(g1 ⊗ g3) + Z(g2 ⊗ g4) =
∑
ℓ∈A

g1ℓ +
∑

ℓ∈[L]∖A

g3ℓ +
∑
ℓ∈A

g2ℓ +
∑

ℓ∈[L]∖A

g4ℓ

=Z(g1 ⊗ g4) + Z(g2 ⊗ g3)

Functional epistasis in the diploid case is defined similarly.

Dominance

Recall from Section 1.2.3 that for diploids, the gene content |Gℓ| at locus ℓ takes values in
{0, 1, 2} instead of {−1,+1}. The definition of an additive trait and epistasis in diploids is
the analog of (1.11). A non-additive trait Z is said to exhibit functional dominance at
locus ℓ if Z is not a linear function of |Gℓ|. Formally, we can find G ∈ ({0, 1}2)[L]∖{ℓ} such
that

Z(G⊗ (1, 1)) + Z(G⊗ (0, 0)) ̸= Z(G⊗ (1, 0)) + Z(G⊗ (0, 1)).

It can be checked again that additive traits (1.12) do not display functional dominance because

Z(G⊗ (1, 1))− Z(G⊗ (1, 0)) = αℓ = Z(G⊗ (0, 1))− Z(G⊗ (0, 0)).
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Diploidy also brings the possibility of cis effects of gene expression[28], which would corre-
spond to a trait function Z satisfying for some G ∈ ({0, 1}2)[L]∖{ℓ}

Z(G⊗ (0, 1)) ̸= Z(G⊗ (1, 0))

Cis effects will be ignored throughout this work.

In the next section, we discuss how the additive model can be used in practice for real data.
This crucially relies on the fact that any trait function Z in a given HWLE population can be
locally decomposed into additive, dominance and epistasis components by linear regression,
which is the method used in empirical studies to describe the genetic architecture of a trait
in a given population.

1.3.4 The additive projection of a trait

One major goal of field work on quantitative traits is to determine the underlying genetic
architecture, that is, to infer statistical properties of (Z,X). The genetic architecture of a
polygenic trait is important to answer the following questions

• How much of the genetic variance VarX[Z(g)] can be explained by an additive model ?

• Is the genetic variance mostly determined by a few loci with large effects, or many loci
with small effects ?

• How is the variability within the population shaped by the forces of natural selection,
random genetic drift, mutation and recombination ?

Fisher [79] suggested that a given pair (Z,p), where Z : {0, 1, 2}L → R is a diploid trait
function and p ∈ [0, 1]L is a HWLE population, can be decomposed into additive, dominance
and epistasis components. I will summarize how this is done in diploid (the haploid case is
analogous), following the method used in [86] for the decomposition. Recall that in a diploid
model, Ep is a probability distribution on ({0, 1}2)L such that if G has law Ep, then for any
ℓ ∈ [L], i ∈ [2], Gℓ,(i) is a Bernoulli(p

ℓ) variable, and the notation |Gℓ| := Gℓ,(1) +Gℓ,(2).

Define the additive, dominance and epistasis projections of Z under x as follows

ZAdd :

{
({0, 1}2)L −→ R
γ 7−→ Ep[Z(G)] +

∑
ℓ
Covp[Z(G),|Gℓ|]

Varp[|Gℓ|] (|γℓ| − 2pℓ)

ZDom :

{
({0, 1}2)L −→ R
γ 7−→

∑
ℓ
Covp[Z(G),(Gℓ,(1)−pℓ)(Gℓ,(2)−pℓ)]

Varp[Gℓ,(1)]
2 (γℓ,(1) − pℓ)(γℓ,(2) − pℓ)

ZEpi : = Z − ZA − ZD

In particular, ZAdd is simply the linear regression of Z on the uncorrelated variables (|Gℓ|)ℓ∈[L]
under Ep. It can be checked that the covariances between ZAdd, ZDom and ZEpi are zero,
which yields

VarEp [Z(G)] = VarEp [ZAdd(G)] +VarEp [ZDom(G)] +VarEp [ZEpi(G)]

The term on the left-hand side is called the genetic variance of the trait Z in the population
p, the terms on the right-hand side are respectively the additive, dominance and epistasis
variances. The pair (Z,p) is said to be statistically epistatic if it has nonzero epistasis
variance. Functional epistasis of Z is necessary but non-sufficient for statistical epistasis of
(Z,p). For instance, if p = (0, 0, . . . , 0), then the pair (Z,p) is never functionally epistatic.

This decomposition in additive, dominance and epistasis components can be extended to
more than two alleles per locus, see Chapter II.3 of [68]. It is also known from [87] that the
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decomposition into additive and non-additive variance can be achieved outside HWLE, but
contrary to what is sometimes claimed7, it is not possible to decompose genetic variance into
additive, dominance and epistasis variance in the general case [89]. Assuming the population
is in HWLE, fitting the animal model to empirical measurements (Chapter 19 of [2]) yields
estimates of the additive, dominance and epistasis variance of a given trait, which quantifies
whether the trait is well approximated from an additive model.

We may now discuss the profound link between the additive model and the infinitesimal
model from Definition 1.1.3.

1.3.5 Convergence to the infinitesimal model

The crucial result, proved in [11], is that as L → +∞, the inheritance pattern of Z(G)
converges to the infinitesimal model under reasonable assumptions on the distribution of αℓ
(which depends on L). Informally, considering a diploid additive trait function Z, assuming

• the (αℓ)ℓ∈[L] are i.i.d variables uniformly bounded by a constant C/
√
L.

• we start from a “well-mixed” population of independent genomes G0,1, . . . , G0,N ∈
({0, 1}2)L independently sampled under a HWLE distribution X0.

• we produce new genomes (Gm,i)i∈[N ],m∈[n] such that Gm,i is produced by Mendelian
inheritance from two genomes Gm−1,j1 , Gm−1,j2 under free recombination (see Section
1.2.1). We keep track of the pedigree (see Definition 1.1.1), that is, an oriented graph
P on N2 such that (i,m+ 1) is connected to (j,m) iff Gm,j is a parent of Gm,i.

• we produce a genome Gn+1,1 by Mendelian inheritance from Gn,1 and Gn,2.

• two technical conditions to account for inbreeding and unlikely recombination events

then, conditional on Z(Gn,1) = z1 and Z(Gn,2) = z2 and P, letting L→ +∞ with n≪
√
L,

the distribution of Z(Gn+1,1) converges to

N
(
z1 + z2

2
, VS (1−F((n, 1), (n, 2)))

)
where F((n, 1), (n, 2)) is the inbreeding coefficients between Gn,1 and Gn,2, defined from P
as in Definition 1.1.2 and the segregation variance is

VS = lim
L→+∞

∑
ℓ∈[L]

(αℓ)
2P ℓ0(1− P ℓ0).

This result can easily be extended to haploids and to accomodate mutations (in which case
we recover (1.1)) and pleiotropy (in which case the segregation variance VS is replaced by a
covariance matrix), and has been extended to models where (Z,x) is statistically epistatic
and shows dominance [90], though in these cases the limit phenotypic model is much more
involved8.

7In 2019, [88] claimed to have achieved this, but I wrote a computer program available on
https://github.com/PhCourau/Orthogonal decomp additive variance which proves using their method that
there is non-zero covariance between the dominance and additive components.

8Specifically, conditional on the trait values of the parents z1, z2 and the pedigree P, the trait value of the
offspring is no longer independent from the other trait values of the population, and its variance depends on
more microscopic parameters than VS .
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1.3. Polygenic trait models

1.3.6 Wright’s formula

Taking the limit L ≫ 1 in the LE-Wright-Fisher diffusion (1.7) requires specifying a log-
fitness function W on □[L]. In the context of the polygenic trait limit, the most natural
method is to specify W as a function of Z. Specifically we set

W (g) = U(Z(g)) (1.13)

for some function U : R → R (or U : Rd → R if we have a pleiotropic model). The goal is to
let L go to infinity, letting α (and therefore Z) as well as U depend on L. Wright [73] made
an ingenious observation9 which would prove crucial to develop polygenic models. Define the
mean fitness function

W̄ :

{
[0, 1]L −→ R
p −→ Ēp[W (g)]

where Ēp is the element of Γ[L] with marginals (pℓ)ℓ∈[L]

Ēp :=
⊗
ℓ∈[L]

((1− pℓ)δ{−1} + pℓδ{+1}).

The notation Ēp is the haploid analog of Êp from Section 1.2.3.
Then the following holds true

∂ℓW̄ (p) = Ēp[W (g)|gℓ = +1]− Ēp[W (g)|gℓ = −1].

In particular, simple computations show that the selection coefficient at locus ℓ given by (1.8)
is

s̄ℓ(p) = ∂ℓW̄ (p). (1.14)

The analog of [1.14] is true for diploids with the HWLE-Wright-Fisher diffusion (1.9).

Application of the formula to the polygenic limit

Consider a haploid additive trait Z as in (1.11). If we consider a population p ∈ [0, 1][L]

in LE (1.6), then the central limit theorem tells us that under reasonable assumptions on
(αℓ, pℓ)ℓ∈[L] such as uniform boundedness (see Chapter V of [91] for details) then Z(g) under
Ēp can be approximated as L → +∞ with a normal distribution N (z̄(p), V (p)) for some
parameters (z̄(p), V (p)) ∈ R× R+.

Suppose log-fitness is determined by Z as in (1.13)

W (g) = U(Z(g)).

Then the normal approximation means we can compute W̄ as

W̄ (p) ≃ Ū(z̄(p), V (p))

where Ū(z̄, V ) is the expectation of U(Z) for some variable Z with law N (z̄, V ) and

z̄(p) :=
∑
ℓ∈[L]

αℓpℓ V (p) :=
∑
ℓ∈[L]

α2
ℓpℓ(1− pℓ).

Then applying Wright’s formula to W = U ◦ Z we get

s̄ℓ(p) = ∂z̄Ū(z̄, V )× ∂ℓz̄ + ∂V Ū(z̄, V )× ∂ℓV (1.15)

where we dropped p to alleviate notation.
The next two sections are examples of applications of Wright’s formula, specifically to

directional and stabilizing selection.

9In his work, he considers discrete time, and the fitness function eW instead of the log-fitness function W .
I here simplify in an attempt to concisely derive the polygenic limit.
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1.3.7 Limits to artificial selection

The simplest model on which to apply the previous method is directional selection on diploids,
in which U(z) = βz for some β ∈ R. In this setting, we find

ŝℓ(p) = βαℓpℓ(1− pℓ).

This result was used in one of the earliest derivations of a polygenic model: Robertson’s work
on the limits to artificial selection [92], which is of crucial importance to breeders [93]. The
fundamental question is: considering a population of size N , applying sustained selection
to increase the value of a quantitative trait with initial mean z̄0, what is the asymptotic
behavior of z̄t, the mean trait value at time t ? The goal is to predict this long-term behavior
as a function of the short-term behavior of the population, that is, the mean trait value in
generation 0 and 1, corresponding to z̄0 and z̄1/(2N).

Robertson’s derivation assumes no mutations (θ = 0) in the LE-Wright-Fisher diffusion
(1.7), and constant additive effects (αℓ = 1). We also assume the (P ℓ0)ℓ∈[L] are i.i.d. We then
get

dP ℓt = 2NβP ℓt (1− P ℓt )dt+
√
P ℓt (1− P ℓt )dB

ℓ
t . (1.16)

In particular, the (P ℓt )ℓ∈[L] evolve independently. From (1.12), the trait mean is

z̄t =
∑
ℓ∈[L]

2P ℓt .

The asymptotic value of z̄t is therefore

z̄∞ =
∑
ℓ∈[L]

2P ℓ∞

where P ℓ∞ is 1 if the trait-increasing locus at locus ℓ has reached fixation, and 0 otherwise.
From diffusion theory, it can be found from [53]

P[P ℓ∞ = 1] =
1− e−4NβP ℓ

0 − 1

1− e−4Nβ

Using a the law of large numbers (Chapter IX of [91]), we write the approximation

z̄∞ ≃2LE
[
P 1
0

]
=2LP[P 1

0 = 1]

≃2LE

[
1− e−4NβP 1

0

1− e−4Nβ

]

If we assume 4Nβ ≪ 1, a Taylor expansion yields

z̄∞ ≃ 2LE
[
P 1
0 + 2NβP 1

0 (1− P 1
0 )
]

On the other hand we have

z̄1/(2N) − z̄0 ≃
1

2N

d

dt

∣∣∣
t=0

z̄t

≃ 1

2N

d

dt

∣∣∣
t=0

2LE
[
P ℓt

]
=2LβE

[
P 1
0 (1− P 1

0 )
]

using the law of large numbers.
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1.3. Polygenic trait models

We thus obtain from (1.16) the key result of Robertson

z̄∞ ≃ z̄0 + 2N(z̄1/(2N) − z̄0) (1.17)

for diploids (for haploids, replace 2N with N).

This remarkable result is straightforward to obtain, because in this model the selection
coefficient at locus ℓ given by ŝℓ(Pt) in (1.10) is only a function of P ℓt , and therefore the
LE-Wright-Fisher diffusion (1.7) can be seen as a set of L independent diffusions. The same
kind of tools can be used to model positive [80] and purifying [94] selection, in which the
effect of selection on a locus is independent of macroscopic observables.

Studying the evolution of a polygenic trait under directional selection is still an active
area of research [95].

1.3.8 Stabilizing selection and the Latter-Bulmer model

For stabilizing selection let us define W with (1.13), where Z is an additive trait (1.11) and
U is defined as follows

U(z) := − 1

(ωe)2
(z − η)2 (1.18)

where η is the optimal trait value and ω−2
e is the rescaled selection strength. Because of the

scaling (1.4), this is equivalent to (1.2) if we set ωe := ω/
√
N (for haploids, for diploids N

should be replaced with 2N).

Using the reasoning just described, as well as scaling approximations which will be made
clearer in Chapter 4, we find

s̄ℓ(p) ≃ − αℓ
(ωe)2

(η − z̄(p))−
α2
ℓ

(ωe)2

(
1

2
− xℓ

)
. (1.19)

where

z̄(p) =
∑
ℓ∈[L]

2αℓpℓ.

This was obtained by Wright in [96] (equation (19)). The first term drives the population
to the optimum η, whereas the second term drives allele frequencies to the boundary {0, 1}.
This second term is often called “Robertson’s underdominant term”, referring to Robertson’s
derivation in [23].

Carrying this into the LE-Wright-Fisher diffusion (1.7), it is possible, as will be seen in
Chapter 4, to describe the equilibrium distribution of the population. This was originally
done by Latter [97] and Bulmer in [98]. In particular, we will explain in Chapter 4 how to
obtain a system of equations (4.28-4.30) such that

• Selection acts on a locus in a way that depends on the mean-field behavior of the other
loci.

• The trait mean z̄t = Xt[Z(g)] evolves as an Ornstein-Uhlenbeck process, consistent
with (1.3).

• The distribution of the trait Z(g) under Xt is close to a normal distribution.

We thus see how powerful Wright’s formula (1.15) is, letting us describe the limit system
of the LE-Wright-Fisher diffusion (1.7). One major limitation is that it assumes LD is
negligible, which is not the case in natural populations. This is why other methods have
been developped, to account for some small amount of loose LD among pairs of loci, which
we now turn to.
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1.3.9 Cumulant-based approaches to LD

One problem of the previous approach is that its starting point is the LE-Wright-Fisher
diffusion (1.7), which assumes LE, whereas in a biologically realistic setting LE cannot be
attained. There has however been remarkable effort to account for LD with cumulant-based
approaches (see Chapter V of [68]).

At the heart of cumulant-based approaches is the cumulant distribution function. Specif-
ically, for x ∈ X[L], define the moment-generating function of x as

φx :

{
R[L] −→ R
λ ≡ (λℓ)ℓ∈[L] 7−→ x

[
e
∑

ℓ∈[L] λℓgℓ
]

The cumulant-generating function of x is then

ψx := lnφx.

The cumulant-generating function ψx entirely characterizes x. For a subset I ⊆ [L], the
I−cumulant of x is defined as

χI(x) := ∂Iψx(0)

where ∂I is the partial derivative with respect to all the elements of I. It can be seen when
#I > 1

χI(x) = x

[∏
ℓ∈I

(gℓ − x[gℓ])

]
and χ{ℓ}(x) = x[gℓ] for ℓ ∈ [L].

The goal of cumulant-based approaches can be summarized as follows

• For a system Xt evolving under recombination, selection, mutation, sometimes genetic
drift (see chapter VII.2 of [68]) and possibly other forces, find recursion equations for
the cumulants dχI(Xt).

• Simplify this system, typically by neglecting all cumulants χI such that #I > cmax for
some fixed cmax (typically cmax = 2).

• Solve for dχI(Xt) with #I ≤ cmax.

• Control departures of the distribution of Z(g) under Xt from a normal distribution.

This method, as presented in [99], was developed in a very general setting, which could
allow for infinitely-many alleles at each locus (in which case, instead of the (χI)I⊆[L], we
must keep track of the (χi)i∈N[L] where the i are multi-index, see Chapter V of [68]), and
epistasis (see [86]). In our system of biallelic loci, it can be seen that for an LE population
x ∈ Γ[L] all cumulants are zero except (χℓ(x))ℓ∈[L] = (x[gℓ])ℓ∈[L]. In particular, cumulant-
based approaches recover the LE-Wright-Fisher diffusion (1.7) when cmax = 1, but allow for
some loose LD when cmax > 1. In a sense, when #I > 1, χI(x) quantifies the amount of LD
of the marginal of x on I. This method seems appropriate as long as the population is “well-
mixed”, meaning the dynamics at locus ℓ are well approximated by its intrinsic parameters
(αℓ, θℓ) rather than the correlation under Xt between gℓ and fit allele combinations at other
loci (the so-called hitch-hiking effect [100]).

The most recent theoretical developments using these methods are to be found in [101, 70].
All cumulants of order greater than cmax are neglected, meaning the population can be
represented as

Xt(γ) :=
1

Z (ϕ(t))
exp

 ∑
I⊆[L]

#I≤cmax

ϕI(t)
∏
ℓ∈I

γℓ


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where Z is the partition function and the (ϕI(t))I⊆[L],#I≤cmax
characterize Xt. Such a

representation of a probability distribution on □[L] with negligible higher-order cumulants is
called a Potts model. It is commonly used in statistical physics to model complex systems
[102].

These models are typically deemed appropriate when the log-fitness function is of the
form

W (γ) =
∑
ℓ∈[L]

fℓγℓ +
∑

ℓ1,ℓ2∈[L]

fℓ1ℓ2γℓ1γℓ2

where the (fℓ)ℓ∈[L] and (fℓ1ℓ2)ℓ1,ℓ2∈[L] are described in terms of their distributions. If the fℓ1ℓ2
are independent Gaussian variables, this is akin to the Sherrington-Kirkpatrick form from
spin-glass theory [103].

Statistical physicists have characterized the phase transition to regimes in which the
general premise that high-order cumulants can be neglected is no longer satisfied. They have
in particular used spin-glass theory to characterize a phase transition to “clonal condensation”
[104], in which some very fit genotypes dominate the population, and described a transition
to “non-random coexistence” [70], in which a diffuse cloud of fit genotypes dominates the
population.

The papers mentioned so far focus on macroscopic observables, typically the joint dis-
tribution of (P ℓt )ℓ∈[L] and average covariance. But how does LD manifest itself if we only
look at one locus ? Very recently, [105] (not yet peer-reviewed) applied this cumulant-based
method to an additive trait under stabilizing selection, to determine a parameter α̂ℓ, which
should be thought of as an effective additive effect at locus ℓ in the presence of low levels
of LD (when the population is at the optimum). Their approach follows that of Bulmer in
[106], which assumes a version of the infinitesimal model with LD10.

From a mathematical point of view, what is rather surprising is that these methods ac-
count for LD between pairs of loci which are very far away, but neglect LD between triplets of
loci which are very close, which seems at odds with the typical assumptions that recombina-
tion mixes more effectively over long distances than short distances. That is, these methods
will account for the cumulants χ{ℓ1,ℓ2}(x) even when ℓ1, ℓ2 are very far, but neglect cumulants
of the form χ{ℓ′1,ℓ′2,ℓ′3} when ℓ′1, ℓ

′
2, ℓ

′
3 are very close. This is loosely justified with the idea that

though the recombinator R is a more efficient mixing force on {ℓ1, ℓ2} than on {ℓ′1, ℓ′2, ℓ′3}, the
selector S has a stronger action on the former set than on the latter. In [107], the theoretical
validity of the cumulant-based approach when cmax = 2 is discussed when genetic drift is
neglected: in particular it is shown that this approach is self-consistent provided the typical
value of χ{ℓ1,ℓ2} is much smaller than 1/L. More details on this approximation are given in
Appendix A.

Application to detecting epistasis

Direct Coupling Analysis was applied to the Potts model for pathogens with high recombi-
nation rates such as HIV, to learn from massive genomics data the fitness coefficients fℓ, fℓ1ℓ2
(reviewed in [70]). The real data can be seen as a distribution x on the set possible virus geno-
types □[L]. The goal is then to infer (fℓ, fℓ1,ℓ2)ℓ,ℓ1,ℓ2 from the cumulants (χ{ℓ}, χ{ℓ1,ℓ2})ℓ,ℓ1,ℓ2
in a computationally efficient way, which is precisely what Direct Coupling Analysis is about.

Application to the maintenance of genetic variation

One fundamental goal of polygenic models is to predict the value of the additive genetic
variance VA (see Section 1.3.4), which is routinely measured in wild populations (chapter 2

10This infinitesimal model with LD has not yet been obtained rigorously as a scaling limit of a finite-L
model. It is equivalent to neglecting all cumulants of order greater than 2, and assuming that the population
trait distribution remains Gaussian.
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of [17]) and underlies the trait-based model from Lande & Arnold (in their nomenclature,
the G matrix [108]). Predictions have been obtained using the cumulant-based approach ,
see Chapter 28 of [2] and Chapter VI.7 of [68]. The goal is to express how genetic variance
can be maintained by the interaction of natural selection, mutation, LD (when possible) and
genetic drift.

This is still an active area of research: for instance, [26] (not yet peer-reviewed) recently
proposed a new prediction for the additive genetic variance VA accounting for environmental
fluctuations.

1.3.10 Contributions and challenges from Genome-Wide Association Stud-
ies

The advent of high-throughput sequencing and the massive datasets that were subsequently
obtained led to the development of Genome-Wide Association Studies (GWAS). These studies
aim at explaining phenotypic data using genomic data, or, to frame it in our notation, to infer
the coefficients (αℓ)ℓ∈[L] from a joint distribution of (g, Z(g)) sampled within a population,
accounting for confounders such as population structure [109]. The typical output from such
studies is a joint distribution (P̂ ℓ, α̂ℓ)ℓ∈[L] where P̂

ℓ is the inferred frequency of a variant
allele at locus ℓ and α̂ℓ is the inferred additive effect of the variant allele. This can be used
to construct a polygenic score

Ẑ : g 7−→
∑
ℓ∈[L]

α̂ℓgℓ.

In the population Xt, the quality of the polygenic score can be measured as the proportion
of genetic variance explained by the polygenic score

1− VarXt [Ẑ(g)− Z(g)]

VarXt [Z(g)]
.

For the reference trait of human height, GWAS has now achieved a saturated map, meaning11

the proportion of genetic variance explained is close to 1 [110].

GWAS confirm polygenic additive traits under stabilizing selection

The first contribution of GWAS was to confirm the highly polygenic structure of typical
traits. For instance, the saturated map for human height in [110] requires 12,111 loci. More
generally, [111] found on 30 human traits that a chromosome’s contribution to the additive
genetic variance VA is roughly proportional to its length (their Figure 5). This suggests that
loci which contribute to the trait are spread on every chromosome [85].

GWAS also vindicated the additive model from Section 1.3.3. Though population struc-
ture can lead to substantial bias in polygenic scores, in particular for behavioral traits [112],
GWAS results for traits such as height are very robust, meaning the estimates (α̂ℓ) are con-
sistent across diverse genetic backgrounds [113]. To put it differently, the estimate of α̂ℓ for a
population of European ancestry is consistent with that of a population of a different origin.
Dominance effects are found to be rare (though their detection requires more power): [114]
found only 175 loci exhibiting dominance patterns when considering 1,000 human traits.

The distribution of (P̂ ℓ, α̂ℓ)ℓ∈[L] is particularly amenable to evolutionary interpretations
[115]. In particular, it is generally observed that variants of large effects (large value of α̂ℓ)

11To be more specific, in real studies such as [110], this is further complicated by the fact that the mea-
surement of Z includes environmental noise (see Definition 1.1.3). In this setting, the environmental variance
VE is obtained from heritability studies, which rely on the infinitesimal model. Saturation is achieved when
Vart[Ẑ(g)− z] is close to the environmental variance VE , where Pt is the law of a pair (g, z) with g a genome
and z the phenotypic trait value of a randomly sampled organism at time t.
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tend to segregate at very low frequencies (P̂ ℓ is close to {0, 1}), which is interpreted as the
result of stabilizing selection (that is, Robertson’s underdominant term in (1.19)). Some of
the landmark studies on the subject are [116, 117, 118, 119] and more recently [120] (not
yet peer-reviewed). In particular, [120] found evidence for stabilizing selection on medical
traits which one would have intuitively assumed to be under directional selection, including
liability to type II diabetes, arthritis or schizophrenia (see their Figure 3).

Why biallelic loci ?

The models mentioned for the evolutionary interpretation of GWAS usually consider that
each locus only has two alleles segregating at any given time. This assumption is typically
satisfied for GWAS, because alleles are defined with Single Nucleotide Polymorphisms (SNP):
that is, if two humans have DNA sequence AATA and TATA at the same position of their
genomes, it will be considered that there are two alleles (A and T) segregating within the
population at this position. Situations in which a third human has DNA sequence, say,
CATA, segregating at this position will be extremely rare, and a biallelic model thus seems
appropriate.

The reader should be warned of the limitations of this two-allele model when applied to
GWAS data: because the population is typically not at HWLE, a GWAS analysis usually
segments the genome into genomic fragments which are sufficiently small to only have a
small amount of SNPs each, but sufficiently large that one may ignore LD between genomic
segments (see for instance [120]). One reference SNP is picked in each genomic segment,
and then the statistical processing considers that there are only two alleles at this genomic
segment, given by the two versions of the SNP. For this reason, and also because many
DNA variants are not SNPs (for instance insertions, deletions), the reference SNP is a binary
summary of a complex genomic region, and “tags” all other causal variants within this region
(see also SI section 6 of [116]).

The infinite-site model

Underlying the models mentioned is the infinite-site model, in which two mutations never
occur on the same position. In terms of the individual-based model from Section 1.2.2, each
organism has a chromosome seen as a continuous segment [0, 1], on which mutations occur
as a Poissonian process (see for instance [121]), and the additive effect of each mutation is
independently sampled with a certain common law. This model is also obtained as the limit
of our genetic model from Section 1.2.2 when L → +∞, and the mutation rate is small
|θℓ| → 0 (for instance in [122]).

I am not aware of a rigorous mathematical representation of the infinite-site model from
the gene’s eye-view, modelling genetic drift and selection, but I believe this can be achieved
using the excursion theory of Wright-Fisher diffusions developped in [76, 77].

1.3.11 Out-of-equilibrium dynamics under stabilizing selection

One recent class of work aims at describing the evolution of the population after a sudden
change of optimum. That is, start from a stationary population evolving under stabilizing
selection (1.18), and suddenly change the value of the selection optimum η (say, increase its
value). If the change is very large, then the first term of the selection coefficient (1.19) becomes
very large and many alleles which were segregating at intermediate frequencies will suddenly
come under strong selection, and will go very quickly to fixation: such a phenomenon is called
genetic sweep [80] and the corresponding regime is called the oligogenic regime [81]. In the
LE-Wright-Fisher diffusion (1.7), for any locus ℓ such that αℓ is large, P

ℓ
t will quickly go to

one. On the other hand, if the change in optimum is small, then the response to selection
will be through small shifts of allele frequencies. That is, P ℓt will only change a little to
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accommodate the new optimum. This regime is called the polygenic regime [81], and this
matches the terminology I introduced in Section 1.3.2 in that the dynamics at a given locus
will be stochastic.

This subject has been much studied [123, 124, 81, 125, 126] (former work neglecting
genetic drift was done in [127, 128, 129, 130, 131], and a simulation study was done in [132]).
In particular, [124] has described the two phases of adaptation: one rapid initial phase which
is roughly equivalent to directional selection on each locus, and one slower phase when the
population is close to the optimum. Considering a larger parameter space, [81, 125] has
characterized the transition from the oligogenic to the polygenic regimes of adaptation in
terms of background mutation rates and genetic architecture. To be more precise, [81] use
the infinite-site model which we described in the Section 1.3.10: in this model, the number of
segregating loci is a function of the mutation rate. The oligogenic regime is then characterized
by a sufficiently small number of segregating loci, that adaptation results in selective sweeps
at each segregating locus. This is as opposed to the polygenic regime where the number of
segregating loci is sufficiently large, that adaptation of the trait only translates in small shifts
of allele frequencies. Finally, [126] has uses path integrals (tools from statistical physics) to
more efficiently compute the transition semigroup of P ℓt at a given locus ℓ.

Possible applications are finding footprints of past selection events on genomic data,
though population stratification make this challenging [133, 134]. Traces of selective sweeps
are rare in humans, which suggests that adaptation in humans in the past thousands of years
has mostly occurred through the polygenic regime [135].

1.3.12 Bridging the gap towards ecology: accounting for spatial structure
and demography.

Integrating ecological and evolutionary dynamics is essential to make sense of field studies,
because of the fact that polygenic adaptation can occur on the scale of a few generations,
that is, the same timescale as ecological factors such as environmental fluctuations. While
much work has been done to reconcile trait-based quantitative genetics models with ecological
factors [17], there has also been efforts to reconcile polygenic models with ecology.

In [136], a model is studied under which a population evolves under directional selection,
mutation, genetic drift and migration. In the individual model from section 1.2.2, migration
should be seen as a fixed probability m each generation for an offspring to turn into the
(−1, . . . ,−1) genome (with minimal fitness). [136] shows that, in the equation for P ℓt , this
migration translates as an effective inputme in trait-decreasing alleles. In this sense, the effect
of me is the same as that of the negative mutation rate θ−. The system is then equivalent to a
system with no immigration, with mutation rate at locus ℓ given by (θ+ℓ , θ

−
ℓ +me). The value

of me is derived accounting for LD but neglecting genetic drift (that is, me is derived using
the discrete-time equivalent of the LD-Wright-Fisher diffusion (1.5) with free recombination
(see Section 1.2.1) under the assumption of large ρ, large m and large W , thus neglecting the
Brownian term).

In [137], semi-deterministic approximations are developed to model a spatially structured
population with fluctuating population size. Specifically, the population size Nt evolves as a
stochastic logistic process, with growth rate proportional to mean fitness Xt[W (g)], and the
genetic drift in (1.7) is inversely proportional to

√
Nt. In [137], an approximation is obtained

for the joint stationary distribution of (Xt, Nt) by neglecting the fluctuations of Nt.

In [138, 139], the LE-Wright-Fisher diffusion (1.7) is studied in the polygenic limit (L≫ 1)
under stabilizing selection, in a continuous spatial setting. Specifically

• Xt is a function of space, that is, a continuous function from R to X[L].

• in (1.7) a Laplacian ∆Xt accounts for migration
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• Fitness is local: specifically, the optimum η in (1.19) is a linear function of space.

This model also accounts for varying population size (that is, the Brownian term in (1.7)
depends on a locally fluctuating parameter determined by the local mean fitness Xt[W (g)]).
The appearance of range limits is described, that is, even though space is infinite, the popula-
tion is only maintained within a finite range. In [140] (not yet peer-reviewed), this theoretical
framework is applied to predict how climate change can impact a species’ range and clarify
what parameters will influence its resilience.

1.4 A probabilist’s roadmap to the polygenic limit.

The roadmap to the polygenic limit is summarized in Figure 1.3. We start from the individual-
based model from Section 1.2.2. There are three limit objects of interest: we want the
distribution of the trait Z(g) to be approximately normal, we want the mean trait value z̄t to
follow an Ornstein-Uhlenbeck process and we want a description of the behavior of the typical
locus. Ideally, one would want to obtain the limit directly from the individual-based model,
simultaneously letting N and L go to infinity, with an appropriate scaling of the log-fitness
function W , the mutation rate µℓ, and the recombination measure ν. This is at present too
difficult. An alternative approach to the first two limit objects can be obtained from the
trait’s eye-view, by scaling L → +∞ to obtain the infinitesimal model (Section 1.3.5), and
then scaling N → +∞ (Section 1.1.2, though this has not yet been proved rigorously). But
such an approach precludes the modelling of a typical locus, because we lose all information
on the underlying gene frequencies, which end up summarized on the macroscopic parameters
such as mutational variance Vm, and the mean segregation variance V ∗

S .
The goal of this work is to map the way to the three limit objects from the gene’s eye-view,

by letting N → +∞ to obtain the Wright-Fisher diffusion and then L → +∞. The gene’s
eye-view is the scholarly term to refer to the philosophical stance of Fisher and his followers,
who believed that an appropriate description of a biological population could be achieved by
only focusing on allele frequencies (P ℓt )ℓ∈[L] and neglecting epistasis and population structure,
or to put it another way, that the gene is the “true” unit of selection [141].

Two distinct approaches will be presented. In Chapter 2, we will start from the LD-
Wright-Fisher diffusion (1.5) and let L go to infinity, while simultaneously scaling the re-
combination rate ρ, the log-fitness function W and the recombination measure ν. We will
rigorously prove that a polygenic limit can be obtained this way, in which the selection coef-
ficient at a locus sℓ given by (1.19) is replaced by a mean-field coefficient s∗. The reason for
starting from the LD-Wright-Fisher diffusion is that we want to obtain the polygenic limit in
as little steps as possible. In particular, we want to know how ρ must scale with L, that is,
how strong recombination needs to be with respect to selection so that we may neglect LD
and derive the polygenic limit. In Theorem 2.1.1, we will see that for most recombination
measures, it is sufficient for ρ to be much greater than L2 ln(L)2 when the log-fitness function
W is of order L (which, as will be discussed in Chapter 4, corresponds to weak selection).
This criterion, though quite laughable from a biologist’s perspective, presents several inter-
esting features. In Appendix A.2, we show ρ must be greater than 2L in order for the whole
population Xt to be close to LE, that is, for the LD-Wright-Fisher diffusion (1.5) to be close
to the LE-Wright-Fisher diffusion (1.7). The criterion of Theorem 2.1.1 shows that this is
not needed to reach the polygenic limit. To put it another way, we know that Xt will not
be globally at LE when ρ is a power of L, and yet we still derive the polygenic limit. Fur-
thermore, our derivation is rigorous: to the best of my knowledge, this is the first proof in a
setting with recombination, selection, and genetic drift (a noteworthy derivation in the case
of recombination and general selection is given in [121]).

Our approach justifies the choice of the individual-based model in Section 1.2.2, in which
we allowed organisms to reproduce clonally a fraction ρ/N of the time. This clonal reproduc-

34



Introduction

tion is inserted in our model in order to guarantee that we can scale N → +∞ and obtain a
well-defined object (the LD-Wright-Fisher diffusion (1.5)) which still retains LD. This object
being a continuous diffusion, it is much more convenient to work with, which lets us derive
our result.

Chapter 3 is a short addition to Chapter 2 in which we obtain an ancestral process when
there is no genetic drift (Σ = 0), which we argue can be used to build intuition on the
first-order perturbations to LE due to selection.

In Chapter 4, we will completely ignore the difficulties of LD, starting instead from the
LE-Wright-Fisher diffusion (1.7). This chapter corresponds to an article soon to be submitted,
which is aimed at a biological audience: in particular, we drop mathematical rigor and most
results there presented are not properly derived. For a mathematician, this chapter should
be seen as a research project: we present and classify all the arguments needed to get from
the LE-Wright-Fisher diffusion to the polygenic limit, as illustrated in Figure 1.3, including
a mean-field approximation, a separation of timescales between the evolution of the trait
mean (z̄t)t≥0 and the evolution of a given locus (P ℓt )t≥0, and a central limit theorem. We
also discuss how this behavior changes when instead of an additive trait Z, we take a general
trait showing dominance or epistasis.

The notation used will be broadly consistent with that introduced in the past sections,
the only notable difference being that we will focus in Chapters 2-3 exclusively on haploids,
whereas Chapter 4 will be concerned with diploids. Furthermore, in Chapter 2 the log-fitness

of an organism with trait z is expressed as e
L
N
W (z) whereas in (1.5) it is e

W (z)
N . The notation

will be reintroduced in each chapter to make reading more convenient.
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LE-Wright-Fisher
diffusion

Polygenic limit

Diffusion approximation 
Mixing
Mean-field approximation
Separation of timescales
Central limit theorem

Quantitative PDE

Proven
Discussed
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Degree of proof Type of proof Complications

Diploidy/Dominance
Strong selection
Epistasis
Population structure/Demography

Figure 1.3: Roadmap to the polygenic limit. “Mixing” designates the situation where a
strong force maintains the population on a submanifold of low dimensionality, such as strong
recombination maintaining the population in LE or the shuffling of biparental pedigrees.
“Mean-field approximation” designates approximations where we consider that the mean
behavior of a large system of interacting particles is close to deterministic. “Separation
of timescales” designates approximations where the fluctuations of a system are ignored
when computing the evolution of a much slower system. Chapter 2 will be concerned in
getting from the LD-Wright-Fisher diffusion to the polygenic limit, Chapter 4 will classify
the required steps to get from the LE-Wright-Fisher diffusion to the polygenic limit and
Ornstein-Uhlenbeck process for the trait mean z̄t as in (1.3), including when facing specific
complications due to dominance, epistasis, or very strong selection. The scaling from finite
(L,N) to L≫ 1 has been described in [11, 90]. The scaling from the individual-based model
to the LD-Wright-Fisher diffusion has been discussed for instance in [31]. The scaling from
the LD-Wright-Fisher diffusion to the LE-Wright-Fisher diffusion can be proved using the
same kind of arguments as in Chapter 2. The scaling from the infinitesimal model to PDEs
for the trait distribution using the infinitesimal operator from Section 1.1.2 with segregation
of the pedigrees is still lacking (though see [32, 33, 35, 34]). The scaling from PDEs on the
trait distribution to a population with a normally distributed trait was discussed in Section
1.1.3. Quantifying the deviation from normality of a finite population is explored for instance
in [45].
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2.1 Introduction

Here, we consider the LD-Wright-Fisher diffusion (1.5), and we let the number of loci go to
infinity under the assumption of strong recombination. We characterize the limit behavior
of a given locus with a McKean-Vlasov SDE and the corresponding Fokker-Planck IPDE.
In words, the selection on a typical locus depends on the mean behaviour of the other loci
which can be approximated with the law of the focal locus. Results include the independence
of two loci and explicit stationary distribution for allelic frequencies at a given locus (under
some assumptions on the fitness function).
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2.1. Introduction

2.1.1 Definition of the model.

To motivate the definition of our model let us first consider a single locus/{−1,+1} alleles.
When the population N is large, under the joint action of mutation, selection and genetic
drift, the evolution of the frequency of +1-allele is well approximated by the Wright-Fisher
diffusion

dXt = s(Xt)Xt(1−Xt)dt+Θ(Xt)dt+
√
Xt(1−Xt)dBt (2.1)

where s is a frequency dependent selection term, B is a Browian motion and

Θ(x) := θ+(1− x)− θ−x

with θ+, θ− the rates of mutations from the −1 allele to the +1 allele and back.

The aim of the present article is to consider a L-loci/{−1,+1} allele model. In the
following, we will consider a diffusion analog to the classical Wright-Fisher diffusion (2.1),
but in order to provide more intuition on our continuum model, we first consider a discrete
population in discrete time comprised of N individuals, each with L genes encoded by an
element of the hypercube □[L] := {−1,+1}L.

The evolution of the population results from the combined effect of Selection (S), Recom-
bination (R), Mutation (M) and random sampling. Those fundamental evolutionary forces
are encoded by the following parameters.

(S) Let W : □[L] → R.

(R) Let ρ > 0 and ν be a probability measure on {I ⊂ [L] : I ̸= ∅, [L]}.

(M) Let θ+, θ− ≥ 0.

Reproduction then occurs according to Wright-Fisher sampling. Start with N genomes at
time k = 0, meaning a vector (g1, . . . , gN ) ∈ (□[L])

N . At every generation k > 1, each of the
N genomes comprising the new generation independently picks two parent genomes γ1, γ2

with probability proportional to their fitnesses

exp

(
L

N
W (γ1)

)
, exp

(
L

N
W (γ2)

)
(2.2)

The function W is often referred to as the log-fitness function. As we will see, the L
N factor

is important so that the strength of selection felt by one locus is of order 1.
With probability 1 − ρ/N , the new genome g0 inherits the whole genome of one of its

two parents g1 and g2 chosen uniformly at random. With probability ρ/N , a recombination
occurs and g0 inherits a mixture of the genetic material of the two parents according to ν.
More precisely, a subset I ⊂ [L] is sampled according to ν and g0 inherits the genetic material
of g1 at loci I, and the material of g2 at loci Ic.

Finally, we assume that each generation, each locus on each allele can mutate with prob-
ability θ+/N (resp., θ2/N) from −1 to +1 (resp. +1 to −1) after reproduction.

Let k ∈ N, and define X
(N)
k = (X

(N)
k (γ))γ∈□[L]

where X
(N)
k (γ) is the frequency of genotype

γ at generation k. The process (X
(N)
k )k∈N is valued in the space of probability distributions

on the hypercube □[L] that we denote by X[L]. Let us now consider the large population limit

(N → +∞) of the rescaled process (X
(N)
⌊tN⌋)t≥0. A straightforward generator computation

indicates that the process converges to a diffusive limit (Xt)t≥0 valued in X[L] which is solution
to a Stochastic Differential Equation (SDE) on X[L] of the form

dXt = (ρR(Xt) + Θ(Xt) + LS(Xt))dt+Σ(Xt)dBt (2.3)
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that we now explain. This equation will be the focus of this article.

Recombination. For a subset I ⊆ [L] and x ∈ XL, define xI the marginal of x on the
hypercube □I := {−1,+1}I . Let xI ⊗ xIc

be the product measure on □[L] of x
I and xIc

.
The recombinator operator has been extensively studied in the deterministic setting, see e.g.,
[142, 58, 60, 61, 78] and is defined as

R :

 X[L] → R□[L]

x 7→
∑

∅⊊I⊊[L]

ν(I)(xI ⊗ xIc − x) (2.4)

Note that up to replacing ν with ν̃ : I 7→ ν(I)+ν(Ic)
2 , we can and will assume that for any

I ⊆ [L], ν(I) = ν(Ic).

Mutation. The mutator is defined as

Θ :

 X[L] −→ R□[L]

x 7−→ |θ|
∑
ℓ∈[L]

(
x[L]∖{ℓ} ⊗ Lθ − x

)
where |θ| is the total mutation rate per locus and Lθ is the mutational law defined with

|θ| :=θ+ + θ− Lθ :=
θ−

|θ|
δ−1 +

θ+

|θ|
δ+1.

Selection. The operator S : □[L] → R□[L] is the selector defined with

S(x)(γ) := x(γ)(W (γ)− x[W (g)]) = Covx

[
W (g),1[g=γ]

]
where x[·] and Covx[·, ·] are the expectation and the covariance function for a random geno-
type g with law x. This can be thought of as an application of the Price equation [143] to the
trait F γ(g) := 1[g=γ]. See for instance [144]. The factor L in front of S in (2.3) corresponds to
the strength of selection, which stems from (2.2) and will be discussed in the next subsection.

Genetic Drift. The stochastic term is the traditional multiallele Wright-Fisher diffusion
term [62] and with xthe following covariance structure.〈

(Σ(Xt)dBt)(γ), (Σ(Xt)dBt)(γ
′)
〉
= δγ,γ′Xt(γ)−Xt(γ)Xt(γ

′).

More precisely, we will consider B ≡ (Bt(γ
1, γ2))t∈[0,T ];γ1,γ2∈□[L]

a Gaussian process indexed

by □[L] × □[L] such that B(γ1, γ2) = −B(γ2, γ1), and B(γ1, γ2), B(γ3, γ4) are independent
Brownian motions if (γ1, γ2) /∈ {(γ3, γ4), (γ4, γ3)}.

Finally, let M(□[L] ×□[L],R□[L]) denote the space of linear functions from □[L] ×□[L] to

R□[L] . Then

Σ : X[L] → M
(
□[L] ×□[L],R□[L]

)
is defined such that

∀γ ∈ □[L], (Σ(Xt)dBt)(γ) :=
∑
γ̂ ̸=γ

√
Xt(γ)Xt(γ̂)dBt(γ, γ̂) (2.5)

Remark 6. Existence and uniqueness of solutions to (2.3) was obtained from the martingale
problem in [63].
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2.1.2 Propagation of chaos.

For any ℓ ∈ [L], define

pℓ(Xt) :=
∑
γ∈□[L]

1[γℓ=+1]Xt(γ)

as the frequency of +1 allele at locus ℓ at time t. We are interested in describing the joint
evolution of the pℓ(Xt)’s together with the allelic averaged process µXt , where for x ∈ X[L]

µx :=
1

L

∑
ℓ∈[L]

δpℓ(x)

When focusing on just a few loci, the high dimensionality of the SDE (2.1) renders the problem
practically intractable. However, as L→ +∞ and recombination becomes sufficiently strong
to neglect correlations between loci, a mean field approximation applies where any focal locus
only experiences the averaged effect of the rest of the genome, a phenomenon commonly
known as the propagation of chaos. See Fig 2.1.

Let us now describe our results in more details. We will consider a sequence of models
indexed by L where the dependence in L is in

(ρ, ν,W,X0) ≡ (ρL, νL,WL,XL
0 ),

whereas other parameters remain constant. Our theorem is concerned with the limit of (2.3)
as L→ +∞. We make several assumptions on the order of the parameters.

The most restrictive assumption is that the log-fitness W is a quadratic polynomial with
bounded coefficients. More precisely,

∀γ ∈ □[L], W (γ) := U(Z(γ)) ; Z(γ) :=
1

L

∑
ℓ∈[L]

γℓ (2.6)

where Z(γ) is the additive trait value associated with genotype γ and U is a polynomial of
order 1 or 2. In particular, if U is of order 2 it can be written up to an additive constant

U(z) = −κ(z − z∗)2 (2.7)

for some κ, z∗ ∈ R. This assumption on the functional form for the log-fitness is classic in
quantitative genetics. Take z∗ ∈ [−1, 1]. The case κ > 0 (resp., κ < 0) corresponds to a
scenario of stabilizing (resp., disruptive selection) on a quantitative additive trait [30, 116].
The assumption that the fitness within the population is mostly determined by stabilizing
selection on a (multi-dimensional) highly polygenic trait is known as Fisher’s geometric fitness
model and has had countless applications [37].

Let us briefly discuss the scaling. With the functional form of the log-fitness, selection
acts on the additive trait Z. Under sufficiently strong recombination, it is reasonable to
assume that selection impacts all loci similarly. Due to the additive nature of the trait, this
influence is evenly distributed across all loci. Therefore, if we start with a selection of order
L at the trait level as in (2.3), we expect selection to have an effect of order 1 at the locus
level. In particular, the rescaling in (2.2) ensures that the dynamics at the gene level remain
well-defined and non-degenerate.

We will need to assume that recombination is strong as compared to selection. In order
to quantify this relation, we first define some summary statistics related to the recombination
measure ν. For A ⊆ [L], let νA be the marginal of ν on A. Define the recombination rate
between two distinct loci ℓ1, ℓ2 ∈ [L]

r{ℓ1,ℓ2} := ν{ℓ1,ℓ2}({ℓ1}) + ν{ℓ1,ℓ2}({ℓ2})
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Figure 2.1: We consider the discete population of N = 1000 individuals with L = 100
genes each for T = 1000 generations, simulated as detailed in Section 2.1.1 with single
uniform crossing-over (see below). The mutation rates are θ = (1.1, 3.3), the strength of
stabilizing in (2.7) is κ = 15 and z∗ = 0. At time t = 0, the population is distributed
according to the neutral discrete Wright-Fisher equilibrium with mutation rate θ. The grey
lines show the trajectories of the frequency of the +1 allele at each individual locus. The
green line is the average of the grey lines. The orange line corresponds to the mean-field
approximation (2.19), computed with an Euler approximation scheme. The code is available
on https://github.com/PhCourau/Gene-s_eye_view_of_quantitative_genetics.

We assume that ν is non-degenerate, that is, infℓ1 ̸=ℓ2 r{ℓ1,ℓ2} > 0. For a given locus ℓ0 ∈ [L],
define r∗ℓ0 the harmonic recombination at ℓ0 as

1

r∗ℓ0
:=

1

L− 1

∑
ℓ1∈[L]∖{ℓ0}

1

r{ℓ0,ℓ1}
(2.8)

and the average harmonic recombination rate along the genome as

1

r∗∗
:=

1

L

∑
ℓ0∈[L]

1

r∗ℓ0
(2.9)

The next theorem states that under strong enough recombination (see conditions (2.12-
2.14)), a mean-field approximation applies and the pℓ(Xt)’s converge to independent McKean-
Vlasov diffusions [69]

dft = s(L (ft)) ft(1− ft)dt+Θ(ft)dt+
√
ft(1− ft) dBt (2.10)

where s(ζ) = 2U ′(< ζ, 2Id− 1 >) ; Θ(x) := θ+(1− x)− θ−x

and L (ft) denotes the law of the process ft. This shows that in polygenic adapation, selection
at the genome level “percolates” at the locus level where it dictates a non-linear Wright-
Fisher dynamics. Further, the averaged process µXt converges to L (ft) which in turn can be
calculated as the weak solution of the non-linear IPDE (integro partial differential equation)
corresponding to the Fokker-Planck equation associated to (2.10)

∂tut(x) = −∂x
[(
s̄ (ut(·))x(1− x) + Θ(x)

)
ut(x)

]
+

1

2
∂xx (x(1− x)ut(x)) . (2.11)

We now state our main result on the convergence to (2.11). We let P([0, 1]) be the set of
probability measures on [0, 1] equipped with the weak topology.

41

https://github.com/PhCourau/Gene-s_eye_view_of_quantitative_genetics


2.1. Introduction

Theorem 2.1.1. Assume that µX0 converges in law to a deterministic measure m0, and that

ρr∗∗ ≫ L2 ln(ρ) (2.12)

Then

1. For every T > 0
(µXt)t∈[0,T ] =⇒ (L (ft))t∈[0,T ]

where =⇒ denotes weak convergence in D([0, T ],P([0, 1])) for the Skorokhod J1 topology
(see [57], Chapter 3), and ft is the unique solution of the McKean-Vlasov equation
(2.10) with initial distribution m0. In particular, (L (ft))t∈[0,T ] is the unique weak
solution to (2.11) (see Section 2.2 for details).

2. Let n ∈ N. Assume there exists a sequence integers ℓL1 < · · · < ℓLn in [L], such that

(pℓ
L
i (X0))i∈[n] has law converging to P0 ∈ P([0, 1]n) and that

min
i∈[n]

ρr∗
ℓLi

≫ L2 ln(ρ) (2.13)

min
i,j∈[n]
i̸=j

ρr{ℓLi ,ℓLj }
≫ L (2.14)

Then for every T > 0

• (pℓ
L
i (Xt))t∈[0,T ];i∈[n] converges in distribution to n diffusions (pit)t∈[0,T ];i∈[n] solu-

tions to

dpit = s(L (ft))p
i
t(1− pit)dt+Θ(pit)dt+

√
pit(1− pit) dB

i
t (2.15)

with (Bi)i∈[n] independent Brownian motions and initial conditions L ((pi0)i∈[n]) =
P0.

• If P0 = m⊗n
0 then (pℓ

L
i (Xt))t∈[0,T ];i∈[n] converges in distribution to n independent

McKean-Vlasov diffusions (2.10).

Let us briefly discuss the previous assumptions. First, the theorem relies on the parameter
r∗∗, the importance of which was already noted by Bulmer [106]. Secondly, the strong recom-
bination conditions (2.12–2.14) are satisfied provided that recombination grows significantly
with L.

The intuition is as follows: recombination needs to be strong enough to sufficiently break
correlations between loci, allowing a mean-field approximation to be valid. The technical
challenge arises because selection tends to induce correlations along the genome. For instance,
if the optimum z∗ is at 0 and one knows that γℓ = +1 at a given locus, selection will tend
to favor −1 at other loci to compensate, keeping the trait near the optimum. In this way,
selection introduces negative correlations across the genome.

Since the strength of selection scales with L, it becomes necessary to assume a recombi-
nation rate that also scales sufficiently-specifically, one that is large in L-to counteract these
correlations.

To provide more intuition on the strong recombination conditions (2.12-2.14) of the pre-
vious theorem, we apply it to the classical recombination models.

• The model known to population geneticists as free recombination corresponds to the
case where ν(I) = 1

2L
for any I ⊆ [L]. In this case we can check that

∀ℓ0 ∈ [L], r∗ℓ0 = r∗∗ =
1

2

so that conditions the strong recombination conditions (2.12-2.14) are satisfied provided
that ρ≫ L2 ln(L).
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• Single crossing-over. Let µ be a probability measure on [0, 1] with stricty positive
continuous density. Then ν is the law of the random set

J =

{
i ∈ [L],

i

L+ 1
≤ X

}
, where L (X) = µ.

The strong recombination conditions (2.12-2.14) are satisfied provided ρ≫ L2 ln(L)2.

• Multiple crossing-overs. Consider a Poisson Point Process with an intensity measure
with a strictly positive continuous density, seen as a random set of points λ1 < · · · < λN .
We add the boundary points λ0 := 0 and λN+1 := 1. Then ν is the law of the random
set

J =

{
i ∈ [L] : ∃k ≤ N + 1

2
s.t.

i

L+ 1
∈ [λ2k, λ2k+1)

}
The strong recombination conditions (2.12-2.14) are satisfied provided ρ≫ L2 ln(L)2.

2.1.3 Invariant distribution(s).

Assume that θ+, θ− > 0. For any y ∈ R, define

Πy(x) = Cyx
2θ+−1(1− x)2θ

−−1e2xydx (2.16)

with Cy a normalization constant so that Πy is a probability on [0, 1]. It is well known that
the classical Wright-Fisher SDE (2.1) with a constant selection term s has a unique invariant
distribution Πs. From there, the Lipschitzness of s trivially implies

Theorem 2.1.2. Define

χ : y 7−→ s(Πy) (2.17)

where s̄ is the function defined in the McKean-Vlasov equation (2.10). Then χ admits at
least one fixed point. Futher,

• The set of invariant distribution for (2.10) coincides with

{Πy∗ : χ(y∗) = y∗}

• Assume that the initial condition of (2.10) is given by Πy∗ with χ(y∗) = y∗. Then (ft)t≥0

is distributed as a classical Wright-Fisher diffusion (2.1), with a constant selection term
s ≡ s(Πy∗) and initial distribution Πy∗.

We emphasize that there may exist several solutions to the fixed point problem of Theorem
2.1.2. For U as in (2.7) with z∗ = 0 and θ+ = θ−, we show in Corollary 2.2.4 the existence
of a critical κc < 0 at which the system undergoes a pitchfork-like bifurcation. See Fig 2.2.

2.1.4 Trait Variance.

A biologically important quantity is the variance of the trait VarXt [Z(g)]. Our mean-field
approximation in Theorem 2.1.1(1) entails that the variance goes to 0. The next result
provides a second order approximation.
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Figure 2.2: Supercritical pitchfork bifurcation in disruptive selection (2.7). For each value
of κ on the x-axis, we simulated two discrete population (as detailed in Section 2.1.1) with
N = 200, L = 100 after T = 20N generations, with initial conditions ”all +1” or ”all −1”.
The red dots correspond to < µXT

, 2Id−1 > at the end of the simulation. The mutation rates
are fixed θ+ = θ− = 0.6, and the selection optimum is z∗ = 0. The blue lines correspond
to the possible values of E [2ft − 1] for stationary solutions to the limit equation (2.10).
Corollary 2.2.4 predicts a pitchfork-like bifurcation at κc = −1.7.

Theorem 2.1.3. Assume that the assumptions of Theorem 2.1.1 part 1. hold. Set

εL :=
1√
ρr∗∗

(2.18)

Define the genetic variance σ2t := 4E [ft(1− ft)]. Then

E

[
sup

t∈[εL,T ]

∣∣LVarXt [Z(g)]− σ2t
∣∣] −→ 0

Equation (2.11) has a biologically important corollary. Assume for simplicity there is no
mutation θ+ = θ− = 0. The mean of the trait distribution satisfies

d

dt
E [2ft − 1] = U ′(E [2ft − 1])× σ2t (2.19)

This is known as Lande’s equation [124]. The term U ′(E [2ft − 1]) is called the selection
gradient.

2.1.5 Significance and extensions

Population genetics and quantitative genetics have mostly been developed in parallel through-
out the twentieth century. Interpreting modern GWAS results requires understanding how
the two interact, that is, how selection on a polygenic trait translates on the dynamics of
allele frequencies [83]. The historical approach to this problem, which we call the trait’s eye-
view, can be traced back to the works of Latter [97] and Bulmer [98] and has been applied to
GWAS in [116]. It consists in making assumptions on the distribution of the trait (typically a
normality assumption), and conditional on the trait to model the evolution of the genes. Here
we take the gene’s eye-view [141], meaning we start from a finite model of coupled equations
representing the evolution of gene frequencies, and then let the number of loci go to infinity.
In this setting, the marginal fitness of an allele depends not just on intrinsic properties of
this allele but on the mean behavior of the other alleles within the population. Theorem
2.1.1 describes this limit with equation (2.10), which is a Wright-Fisher equation typical of
population genetics. The behavior of the trait then emerges from the distribution of allele
frequencies. This is seen in Theorem 2.1.3 which describes the evolution of the trait once
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the behavior of the genes is known. From there we obtain equation (2.19) which is a typical
equation of quantitative genetics. To the best of our knowledge, this gene-centric approach
is new. We do note similarities with the ideas of the Dynamic Maximum Entropy (DME)
approximation method [145]. This approximation from statistical physics consists in a joint
modelling of deterministic macroscopic observables, corresponding in our setting to s(L (ft)),
and the evolution of a typical locus conditional on these observables.

Genetic structure

Our approach raises the prospects of future exciting developments. The gene’s eye-view in
equation (2.10) can be extended without any difficulty to incorporate diploidy and dominance.
It would also be important in terms of application to incorporate unequal allelic effects,
replacing the set of genotypes {−1,+1}L with

∏
ℓ∈[L]{−αℓ,+αℓ} where the αℓ have some

distribution. This is not hard to do in our current setting, provided the allelic effects are
bounded. However the ideal scaling would allow the distribution of allelic effects to have
an exponential or even heavy (polynomial) tail. For instance, [146] found rough estimates
of tail exponents in additive effects between 1 and 2.5, and [116, 124] assume exponential
tails. Similarly, we could account for mutation rate variation, letting θ+, θ− vary between
the different loci. We will explore some of these extensions in Chapter 4.

The strength of selection

We chose in (2.2) to let the logfitness of an organism be of order L. This let us accommodate
both stabilizing, directional and disruptive selection. In the limit equation (2.19), we see
that for any initial condition, the mean trait value will evolve on the same timescale as ft
in equation (2.10). In biological terms, the evolution of the trait is on the same timescale as
genetic drift. This is in stark contrast with articles from the literature on stabilizing selection
such as [124] which typically find that the evolution of the trait is much faster than the
evolution of the underlying genes. There are differences with the underlying model, including
in the way mutations are specified (they use the infinite-allele infinite-loci model and assume
no mutational bias), but we believe that the results of [124] can be recovered from our model
assuming the strength of selection to be of order L2. Indeed, in Lemma 2.3.6, we compute
the contribution of selection to the dynamics of locus ℓ under linkage equilibrium. Under
stabilizing selection (κ > 0 in (2.7)), our result reads

4κ

η − 1

L

∑
ℓ′∈[L]

(2Xℓ′
t − 1)

+O
(
1

L

)

where we recall that µXt is the empirical distribution of (pℓ(Xt))ℓ∈[L]. But the same computa-
tions, replacing L with L2 in the base equation (2.21) yield the following selection coefficient
at locus ℓ

4κ

Lη − ∑
ℓ′∈[L]

(2Xℓ′
t − 1)

+ 2κ

(
Xℓ
t −

1

2

)
(2.20)

This corresponds to the selection coefficient as computed from Wright’s formula in [96]. The
second term is known to biologist as Robertson’s underdominant term [23], and has been
crucial for the evolutionary interpretation of GWAS results [116].

Extending our results to the case where selection is of order L2 requires handling the
possibly degenerate first term of (2.20). Furthermore, our control on linkage disequilibrium
from Section 2.3.4 will be affected, meaning the requirements on the strength of recombination
ρ for propagation of chaos will be stronger than in Theorem 2.1.1.
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Returning to the case when selection is of order L, if we assume (θ+−θ−)/(θ++θ−) ̸= z∗

in (2.7) and X has distribution given by the stationary solution in Corollary 2.2.4, then

E [2X − 1− z∗] = O(1)

whereas Theorem 2.1.3 states

σ2 = O(1/L).

This means in particular that at equilibrium, the population is very far from the selection
optimum |E [Z(g)] − z∗| ≫ σ. This corresponds to the drift-barrier hypothesis from [147].
The idea is that when selection is very weak, it cannot overpower the forces of mutation and
genetic drift, and therefore the population at equilibrium remains very far from the optimum.
This hypothesis was developed specifically for the evolution of the mutation rate, meaning
the trait Z(g) corresponds to the probability that g mutates, making the models required to
study this much more involved than ours (see for instance [148]).

The suppression of linkage by recombination

Obtaining equation (2.10) required strong recombination, effectively enforcing independent
between most loci. This prevents the formation of ”linkage blocks”. We do not believe our
result to be optimal. For instance, if all loci are evenly spaced, except two loci ℓ1, ℓ2 so that
r{ℓ1,ℓ2} = 0, then r∗∗ = 0, even though we expect that these two loci should not matter
in the grand scheme of things. Furthermore, equation (2.10) seems to fit the dynamics of
simulations even when ρ is of order L (see Fig 2.1).

Finding the optimal scaling for ρ will be a daunting task. The suppression of linkage blocks
by recombination was masterfully described in [121], in a very broad deterministic setting with
recombination, bounded selection (whereas ours is of order L) and point mutations (no genetic
drift). This approach assumes very rare mutations: a newborn’s mutations are given by a
point process on [0, 1] (representing the positions of the mutations along the chromosome).
The main result is that linkage will be negligible if, loosely speaking, recombination separates
two new mutations before a third one occurs. Statistical physicists have studied polygenic
adaptation using Random Energy Models. These models typically assume the fitness of a
genotype γ to be of the form

W (γ) =
∑
ℓ1,ℓ2

fℓ1ℓ2γℓ1γℓ2

for i.i.d random coefficients (fℓ1ℓ2)ℓ1,ℓ2∈[L]. At least two phase transitions were identified for
low recombination, which they call the transition from quasi-linkage equilibrium to clonal
condensation or to non-random coexistence [70]. These transitions see the appearance of
very fit combination of genes which disproportionally contribute to the population without
recombination breaking them up fast enough. The distinction between the two is that clonal
condensation sees the appearance of true clones whereas in non-random coexistence a cloud
of fit genotypes dominates the population. The phase transition occurs when selection is of
the same order as recombination, corresponding in our system to ρ ∼ L.

2.1.6 Outline of the paper

Our paper is organized as follows. In Section 2.2, we formally introduce McKean-Vlasov diffu-
sions which generalize (2.10) and prove well-posedness of the associated martingale problem.
In Section 2.3, we prove Theorems 2.1.1 and 2.1.3.
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On notation

Summary of notations

□A For A ⊆ [L], the set {−1,+1}A
γ|A For A ⊆ [L] and γ ∈ □[L], the restriction of γ to A

XA The set of probability measures on □A, denoted
x = (x(γ))γ∈□A

xA = (xA(γ))γ∈□A For x ∈ R□[L], the marginal of x on □A

pℓ(x) The frequency of the +1 allele at locus ℓ: it is the same

as x{ℓ}(+1)

π(x) The linkage equilibrium projection of x (see Section 2.3.1)

x[φ(g)] For x ∈ X[L], φ a function on □[L], this is the expectation

of φ(g) where g has law x.

Varx,Covx The variance and covariances associated with x (applied
to functions of g)

µx The allelic law: µx := 1
L

∑
ℓ∈[L]

δpℓ(x)

L (X) The law of a variable X.

O We write φ1 = O(φ2) iff there is a constant C > 0 such that
|φ1| ≤ C|φ2|.

o We write φ1 = o(φ2) iff there is a function h such that
|φ1| ≤ h|φ2| and h→ 0.

C A positive constant whose value may change from
one line to the next.

Marginals and restrictions

For a genotype γ ∈ □[L] and a subset A ⊆ [L], γ|A := (γℓ)ℓ∈A ∈ □A is the restriction of γ to
A.

A population x ∈ X[L] can be seen as a vector of R□[L] , written (x(γ))γ∈□[L]
. It can also

be seen as a probability on □[L]. We write x[F (g)] for the expectation of F (g), where g is a
random variable on □[L] with law x and F is a function on □[L]. We similarly define Covx

and Varx to be the covariance and variance associated with x, evaluated on functionals of g.

For I ⊆ [L], x ∈ R□[L] , we let xI ≡ (xI(γ))γ∈□I be the marginal of x on I. For y ∈ R□[L]

we may then define xI ⊗ yIc
as the product vector, that is, the vector such that its γ−th

coordinate is ∑
γ1,γ2∈□[L]

γ1|I=γ|I

γ1|I=γ|I
c

x(γ1)y(γ2)

The parameters
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L The number of loci and the strength of selection
Recombinator R parameters

ρ The strength of recombination (it depends on L, see Theorem 2.1.1)
ν The measure associated to recombination (it depends on L)

Mutator Θ parameters
θ+, θ− The mutation rate from −1 to +1 and back.

Selector S parameters
U Under quadratic selection (2.6), W (γ) = U(Z(γ)) where U is a

polynomial of order 1 or 2

2.2 Large genome limit

In this section, we describe McKean-Vlasov diffusions and the associated non-linear IPDEs,
making sense of equation (2.10) which describes the limit behavior of our system as L→ +∞.
We fix two bounded measurable functions a : R → R+ and b : R×P(R) → R and a compactly
supported probability measure m0 ∈ P(R).

2.2.1 McKean-Vlasov diffusions

Our aim is to give a sense to the following McKean-Vlasov SDE

dft = b(ft, ξt)dt+
√
a(ft)dBt ; L (f0) = m0

with ξt = L (ft), the law of ft (2.21)

Before going into (2.21), we first make a small detour and consider an alternative problem.
Let us now consider the following SDE

df̂t = b(f̂t, ζt)dt+

√
a(f̂t)dBt ; L (f̂0) = m0 (2.22)

with ζ ∈ D([0, T ],P(R)). Recall that (2.22) admits a weak solution on [0, T ] iff there exists
a filtration (Ft; t ≥ 0) and an adapted pair (f̂ , B), such that B is a Brownian motion and
(2.22) is satisfied. Theorem 6.1.6 of [149] implies the existence of weak solutions to (2.22) for
any initial condition m0 as long as a and b(·,m) are continuous for any m ∈ P(R).

Given ζ ∈ P(R), let us now define the following differential operator

∀φ ∈ C2
c (R), Gζφ(x) := b(x, ζ)φ′(x) +

1

2
a(x)φ′′(x).

where C2
c (R) is the space of R−valued, compactly supported, continuously twice differentiable

functions on R.
The existence and uniqueness in law of a solution to (2.22) can be investigated through

the associated martingale problem. For ζ ∈ D([0, T ],P(R)), we say f̂ solves the martingale
problem for (Gζt)t∈[0,T ] iff

(∗) ∀φ ∈ C2
c (R), φ(f̂t)− φ(f̂0)−

∫ t
0 duGζuφ(f̂u) is a martingale in the filtration of f̂ and

L (f0) = m0

Existence and uniqueness in law of a weak solution to (2.22) is equivalent to existence and
uniqueness of a solution to (∗) (see Theorem 4.5.2 in [149]).

Analogously, one can define a weak solution to the McKean-Vlasov SDE (2.21). Existence
and uniqueness of weak solutions to the SDE (2.21) again boil down to the existence and
uniqueness of solutions to the mean-field Martingale problem

(∗∗) ∀φ ∈ C2
c (R), φ(ft)− φ(f0)−

∫ t
0 duGξuφ(fu) is a martingale in the filtration of f

with L (f0) = m0 and L (ft) = ξt
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2.2.2 Weak solutions to non-linear IPDEs

We say a measure-valued process ξ ∈ D([0, T ],P(R)) is a weak solution to the non-linear
IPDE

∂tut(x) = −∂x(b(x, ut(·))ut(x)) +
1

2
∂xx(a(x)ut(x)) ; u0 = m0 (2.23)

if t 7→ ξt is continuous, ξ0 = m0 and we have

∀φ ∈ C2
c (R),

d

dt
< ξt, φ > = < ξt, b(·, ξt)φ′ > +

1

2
< ξt, aφ

′′ >

Consider (ft)t∈[0,T ] a weak solution to the McKean-Vlasov equation (2.21). Then the
process (L (ft))t∈[0,T ] is a weak solution to the non-linear Fokker-Planck IPDE (2.23).

Let us now discuss the reciprocal statement: whether a weak solution to (2.23) is neces-
sarily associated with a weak solution to (2.21). We will need

Theorem 2.2.1 (Superposition principle (see Theorem 2.5 of [150])). Consider ã, b̃ measur-
able bounded functions on R× [0, T ] and define the generator

Gtφ(x) := b̃(x, t)φ′(x) +
1

2
ã(x, t)φ′′(x)

Let ξ ∈ D([0, T ],P(R)) be a weak solution to

∂tut(x) = −∂x(b̃(x, t)ut(x)) +
1

2
∂xx(ã(x, t)ut(x)) ; u0 = m0

Then there exists a solution to the martingale problem

∀φ ∈ C2
c (R), φ(ft)− φ(f0)−

∫ t
0 duGuφ(fu) is a martingale in the filtration of f .

such that L (ft) = ξt.

Remark 7. Our notion of weak solution corresponds to the notion of narrowly-continuous
weak solution in [150].

Let ξt be a weak solution to (2.23). Then in particular ξ is a weak solution to the linear
PDE

∂tut(x) = −∂x(b(x, ξt)ut(x)) +
1

2
∂xx(a(x)ut(x)) ; u0 = m0

We may therefore apply the superposition principle to ξ to find a solution (ft)t∈[0,T ] to the
martingale problem

∀φ ∈ C2
c (R), φ(ft)− φ(f0)−

∫ t
0 duGξuφ(fu) is a martingale in the filtration of f

such that ft has law ξt. It follows that ft is a solution to (∗∗).
This shows that if we prove uniqueness of the solutions to (∗∗), we will automatically get

uniqueness of solutions to (2.23).

2.2.3 Uniqueness of solutions to Wright-Fisher-type McKean-Vlasov SDE

There is a large literature on McKean-Vlasov diffusions, but Wright-Fisher-type SDEs such as
ours require special handling because the Brownian coefficient is degenerate and not Lipschitz.
This motivates the next theorem.

We metrize the weak topology on P(R) with the total variation distance (see [69], propo-
sition 4)

∀ξ, ζ ∈ P(R), D1(ξ, ζ) := sup
||φ||∞≤1

| < ξ − ζ, φ > |

with ⟨ξ, φ⟩ =
∫ 1
0 φ(x)ξ(dx), where the supremum is over all measurable functions φ bounded

by 1.
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Proposition 2.2.2. Consider three bounded measurable function a, c, Θ̃ : R → R+ and a
Lipschitz function s̃ : P(R) → R, and define b(x, ζt) :=

√
a(x)c(x)s̃(ζt) + Θ̃(x). Assume that

for any fixed ζ ∈ D([0, T ],P(R)), the linear martingale problem (*) admits a unique weak
solution. Then the McKean-Vlasov SDE (2.21) admits at most one weak solution and the
non-linear PDE (2.23) admits at most one weak solution.

Proof. We prove uniqueness of solutions with a Girsanov transform, followed by Grönwall’s
Lemma. This sort of proof was already used in [151].

Let us consider two solutions to the Martingale problem (∗∗) with initial distribution m0

and denote by ξ and ζ their respective laws. We can construct two weak solutions (f ξ, Bξ)
and (f ζ , Bζ) to the McKean-Vlasov SDE (2.21). Consider a test function φ. We wish to
bound the distance

| < ξt − ζt, φ > | =
∣∣∣E [φ(f ξt )]− E

[
φ(f ζt )

]∣∣∣
and show that it must be 0.

Step 1: Girsanov transform. Consider the classical Cameron-Martin-Girsanov change
of measure

Mt :=

∫ t

0

b(f ζu , ξu)− b(f ζu , ζu)√
a(f ζu)

dBζ
u

dQ
dP

:= exp[MT − 1

2
⟨M⟩QVT ]

where ⟨·⟩QV is the quadratic variation. Since for any x ∈ R,

b(x, ξu)− b(x, ζu)√
a(x)

= c(x) (s̃(ξu)− s̃(ζu))

is bounded, Q is well-defined since Mt satisfies Novikov’s condition.

Theorem 6.4.2 of [149] implies that f ζ under Q satisfies the martingale problem

∀φ ∈ C2
c (R), φ(ft)− φ(f0)−

∫ t
0 duGξuφ(fu) is a martingale with L (f0) = m0

Since we assumed that this linear martingale problem has a unique solution, it follows that
f ζ under Q has the same law as f ξ under P. We thus obtain

E
[
φ(f ξt )

]
= Q

[
φ(f ζt )

]
= E

[
φ(f ζt )e

Mt− 1
2
⟨M⟩QV

t

]
.

Step 2: Grönwall’s Lemma. We now alleviate notations by writing f ζ ≡ f . From the
previous discussion,

| < ξt − ζt, φ > | =
∣∣∣E [φ(ft)eMt− 1

2
⟨M⟩QV

t

]
− E [φ(ft)]

∣∣∣
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Write Et := eMt− 1
2
⟨M⟩QV

t . We have

| < ξt − ζt, φ > | = |E [φ(ft) (Et − 1)]|

≤||φ||∞ E
[∣∣∣eMt− 1

2
⟨M⟩QV

t − 1
∣∣∣]

=||φ||∞ E
[∣∣∣∣∫ t

0
dMu Eu

∣∣∣∣]
=||φ||∞ E

[∣∣∣∣∫ t

0
dBu c(fu)(s̃(ξu)− s̃(ζu))Eu

∣∣∣∣]

≤||φ||∞ E

[(∫ t

0
dBu c(fu)(s̃(ξu)− s̃(ζu))Eu

)2
] 1

2

≤||φ||∞
(
E
[∫ t

0
du c(fu)

2 (s̃(ξu)− s̃(ζu))
2 E2

u

]) 1
2

≤Cs̃||φ||∞ ||c||∞
(∫ t

0
du D1(ξu, ζu)

2E
[
E2
u

]) 1
2

where Cs̃ is the Lipschitz constant of s̃. We used in the third line that Et is the exponential
martingale associated with Mt, and in the fifth line we used the Cauchy-Schwarz inequality.
Since E

[
E2
u

]
has uniform bounds on [0, T ], we thus obtain

< ξt − ζt, φ >
2 ≤ ||φ||2∞C2

∫ t

0
du D1(ξu, ζu)

2

for some constant C > 0. Taking the supremum over ||φ||∞ ≤ 1 yields

D1(ξt, ζt)
2 ≤ C

∫ t

0
du D1(ξu, ζu)

2

The result follows from Grönwall’s lemma.

We obtain as a Corollary the well-posedness of (2.10).

Corollary 2.2.3. For m0 ∈ P([0, 1]), there exists a unique weak solution to the McKean
Vlasov problem (2.10)

dft = s(L (ft)) ft(1− ft)dt+Θ(ft)dt+
√
ft(1− ft) dBt ; L (f0) = m0

In particular L ((ft)t∈[0,T ]) is a weak solution to the IPDE (2.11) on [0, 1]

∂tut(x) = −∂x
[(
s(ut(·))x(1− x) + Θ(x)

)
ut(x)

]
+

1

2
∂xx (x(1− x)ut(x))

with initial condition m0.

Proof. Existence will be obtained from a convergence argument in the next section (see
Theorem 2.1.1).

Let a(x) = c(x)2 = x(1 − x)1[0,1](x) and Θ̃ = Θ, s̃ = s in Proposition 2.2.2. Note
that for ξ ∈ P([0, 1]), ξ 7→< ξ, 2Id − 1 > is Lipschitz. Finally, note that for any fixed
ζ ∈ D([0, T ],P([0, 1])), the equation

dft = s(ζt) ft(1− ft)dt+Θ(ft)dt+
√
ft(1− ft) dBt ; L (f0) = m0

is a Wright-Fisher diffusion with a unique weak solution.
We may therefore apply Proposition 2.2.2. The IPDE (2.11) is the Fokker-Planck equation

associated with (2.10). The uniqueness of its solution is given by the discussion in Section
2.2.2.
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2.2.4 Stationary distribution for quadratic selection

We focus on quadratic selection.

Corollary 2.2.4. Assume θ+, θ− > 0 and consider the case of symmetric quadratic selection

s(ξ) = −2κ (< ξ, 2Id− 1 > −z∗)

for some parameter κ ∈ R, z∗. Then

• (stabilizing selection) Suppose κ ≥ 0. Then χ has a unique fixed point at 0.

• (disruptive selection) Assume κ < 0 and no mutational bias: θ+ = θ− and z∗ = 0. Let

κc := −4θ++1
2 . Then we can find δ > 0 such that if κ ∈ (κc − δ, κc], χ has at least three

fixed points.

Proof. Recall the definition of Πy in (2.16) and the definition of χ in (2.17). Let F be the
cumulant generating function of Π0

F (y) := ln(< Π0, exp(y Id) >)

A quick computation shows that χ(y) = −2κ(2F ′(2y)− 1− z∗). In particular

χ′(y) = −8κF ′′(2y) (2.24)

It is also easy to see that F ′′(2y) is the variance of Πy, and in particular is positive. In the
κ ≥ 0 case, we get that χ is non-increasing. In particular it will have a single fixed point.

We turn to the case κ < 0, z∗. First, notice that by symmetry we will always have
s(Π0) = 0. In particular, for any κ, 0 is a fixed point of χ. Further,

χ(y) = yχ′(0) +
y2

2
χ′′(0) +

y3

6
χ′′′(0) + o(y3) (2.25)

The variance of Π0 is F ′′(0) = 1
4(4θ++1)

. From (2.24) we find

χ′(0) =
κ

κc

We similarly compute

χ′′(0) = −16κ F ′′′(0) ; χ′′′(0) = −32κF ′′′′(0)

Since F ′′′(0) is the skew of Π0, it is 0 by symmetry. Recall F ′′′′(0) is the fourth cumulant
of Π0. This can be seen to be negative for symmetric Beta distributions (using for instance
(25.15d), p.217 of [152]). We then rewrite (2.25) as

χ(y)− y = y
κ− κc
κc

− y3

6
κ32F ′′′′(0) + o(y3)

When κ ≤ κc, the two terms on the right-hand side are of opposite signs. The result follows.

2.3 Convergence to the McKean-Vlasov SDE under strong
recombination

In this section we prove Theorem 2.1.1 (in Section 2.3.6), and Theorem 2.1.3 (in Section
2.3.7). We start with an outline of the main step of the proofs.
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2.3.1 Heuristics and outline of the proof

Recall that we consider a multidimensional SDE of the form

dXt = (ρR(Xt) + Θ(Xt) + LS(Xt))dt+Σ(x)dBt

Step 1. For every x ∈ X[L], define π(x) as

π(x) :=
⊗
ℓ∈[L]

x{ℓ}

i.e., π(x) is the product measure whose one dimensional marginals coincides with the ones of
x. We extend the definition of π to

⋃
A⊆[L]XA, such that

∀x ∈ XA, π(x) :=
⊗
ℓ∈A

x{ℓ}. (2.26)

π gives the attractors of the recombinator R as the following Lemma shows.

Lemma 2.3.1. For x0 ∈ X[L], define xt to be the unique solution to dxt
dt = R(xt) with initial

condition x0. Then, provided the recombination measure ν is non-degenerate, xt converges
to π(x0) as t→ +∞.

Proof. We refer the reader to [61] and the references therein.

Under the strong recombination assumption, the driving force is recombination. From
the previous result, we may expect that

Xt ≈ π(Xt)

so that the SDE should asymptotically diffuse on the stable manifold for the recombinator

Γ[L] := {x ∈ X[L] | x = π(x)}.

Biologically speaking, we expect the system to be at linkage equilibrium (LE) due to the
overwhelming effect of recombination.

Step 2. For ℓ ∈ [L], define
Sℓ(x) := S{ℓ}(x)(+1)

where we recall that S{ℓ} is the marginal of S on {ℓ}. We show in Corollary 2.3.5 that

∀ℓ ∈ [L], dpℓ(Xt) =
(
Θ(pℓ(Xt)) + LSℓ(Xt)

)
dt+

√
pℓ(Xt)(1− pℓ(Xt))dB̂

ℓ
t

where B̂l is a Brownian motion. It is also easy to see that if x belongs to the LE manifold
(see Lemma 2.3.6)

LSℓ(x) ≈ s̄(µx)p
ℓ(x)(1− pℓ(x)) (2.27)

It should follow that for any ℓ ∈ [L],

dpℓ(Xt) ≈
(
Θ(pℓ(Xt)) + s̄(µXt)p

ℓ(Xt)(1− pℓ(Xt)))
)
dt+

√
pℓ(Xt)(1− pℓ(Xt))dB̂

ℓ
t

In order to derive a mean field approximation, it remains to prove that loci become
decorrelated at the limit. Define the linkage disequilibrium between ℓ1 ̸= ℓ2 ∈ [L] as

Dℓ1,ℓ2(x) := Covx

[
1[gℓ1=+1],1[gℓ2=+1]

]
(2.28)
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where we recall that Covx is the covariance of functionals of a random variable g with law
x. We show (again in Corollary 2.3.5) that

d
〈
pℓ1(X), pℓ2(X)

〉QV
t

= Dℓ1,ℓ2(Xt)dt = 0 (2.29)

where the last equality holds provided that Xt is on the LE manifold Γ[L]. Putting everything
together, if recombination is strong enough, we should expect a propagation of chaos principle
to hold.

Technical ingredients. The previous heuristics rely on the underlying assumption that
Xt is on the LE manifold. Making this rigorous will raise one major difficulty. We need to
derive the conditions on the recombinator so that Xt remain close enough to the boundary
so that the previous estimates remain valid.

The first step is the following proposition which allows to justify (2.27) and (2.29) by
controlling

Y A
t := ||XA

t − π(XA
t )||2 (2.30)

on every subset A ⊂ [L] of size 2 or 3.

Proposition 2.3.2. We have

∀ℓ1 ̸= ℓ2 ∈ [L], |Dℓ1,ℓ2(x)| ≤ ||x{ℓ1,ℓ2} − π(x{ℓ1,ℓ2})||2 (2.31)

∀ℓ0 ∈ [L],
∣∣Sℓ0(x)− Sℓ0(π(x))

∣∣ ≤ C
∑

A⊆[L]∖{ℓ0}
1≤#A≤2

1

L#A
||x{ℓ0}∪A − π(x{ℓ0}∪A)||2

(2.32)

for some constant C > 0 independent of L.

To get control on (2.30), we will use the linearized recombinator ∇R. The eigenvalues of
∇R were computed in [153] p. 107. We give a full spectral characterization of ∇R in Section
2.3.3. In particular, we obtain that the system is always attracted towards the LE manifold
at a rate at least

rA := min
ℓ1,ℓ2∈A
ℓ1 ̸=ℓ2

r{ℓ1,ℓ2} (2.33)

In Section 2.3.4, we use this estimate through a combination of Itô’s and Grönwall’s lemmas
to get quantative bounds on (2.30). In Section 2.3.6 we conclude the proof of Theorem 2.1.1
with standard martingale arguments to prove convergence of (µXt)t∈[0,T ] and (pℓ(Xt))t∈[0,T ].
Finally, we obtain Theorem 2.1.3 in Section 2.3.7.

Remark 8. Katzenberger [154] considered a generic SDE with a strong drift attracting the
dynamics on an invariant manifold and derived a slow-fast principle for the stochastic evo-
lution on the manifold. This sort of proof was already used in a population genetics context,
in the case ρ → +∞, L = 2 in [155]. Our system presents two additional complexities.
The first difficulty is that the dimension of the problem explodes exponentially with L just as
the strength of recombination becomes large. The second difficulty is that we not only need
x ≈ π(x), we actually need the difference to be small, of order 1/L, because the strength of
selection is of order L. We therefore require quantitative bounds on the linkage disequilibrium
on any small set A ⊆ [L].
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2.3.2 Evolution of the marginals

In this section we will derive the SDE for pℓ(Xt). We will in fact study XA
t for any A ⊆ [L],

of which {ℓ} is a special case. The reason why we need to study XA
t for a general A is because

we will need to control the divergence from LE of XA for small sets A of size at most 3.
Recall the definition of R,Θ,Σ as defined in in the introductory Section 2.1.1. For any

subset A, we define the same quantity R̂A, Θ̂A, Σ̂A but on the hypercube □A. For instance,the
operators R̂A, Θ̂A : XA → R□A read

∀x ∈ XA, Θ̂A(x)(γ) :=|θ|
∑
ℓ∈A

(
x[L]∖{ℓ} ⊗ Lθ − x

)
∀x ∈ XA R̂A(x) :=

∑
∅⊊I⊊A

νA(I)
(
xI ⊗ xA∖I − x

)
where we recall that νA is the marginal of ν on A, and we take an empty sum to be equal to
zero. Similarly, Σ̂A is a function

Σ̂A : X□A → M
(
□A ×□A,R□A

)
Define SA : XL → R□A as

∀x ∈ XL, SA(x) = (S(x))A

so that SA(x) is the generalized marginal of S(x) on A. A direct computation shows that

∀x ∈ X[L], SA(x)(γ) =xA(γ)
(
x
[
W (g)

∣∣ g|A = γ
]
− x

[
W (g)

])
(2.34)

=Covx[W (g),1[ g|A=γ]] (2.35)

Remark 9. Note that SA(x) is the marginal on A of S(x). However, it is not so for R̂A.
R̂A is defined on XA (not on X[L]). To stress out the distinction, we write R̂A and not RA.
The same goes for Θ̂A, Σ̂A.

Proposition 2.3.3. For A ⊆ [L], there exists B̂A = (B̂A(γ1γ2))γ1 ̸=γ2∈□A
a Gaussian process

such that

∀γ ∈ □A, dXA
t =

(
ρR̂A(XA

t ) + Θ̂A(XA
t ) + LSA(Xt)

)
dt+ Σ̂A(XA

t )dB̂
A
t (2.36)

Furthermore, B̂A(γ1, γ2) = −B̂A(γ2, γ1) and B̂A(γ1, γ2), B̂A(γ3, γ4) are independent Brown-
ian motions whenever (γ1, γ2) /∈ {(γ3, γ4), (γ4, γ3)}.

Proof. We have

dXA
t (γ) =

∑
γ̂∈□[L]

1[γ̂|A=γ]dXt(γ̂)

= (R(Xt) + Θ(Xt))
A (γ)dt+ LSA(Xt)(γ)dt

+
∑

γ̂1,γ̂2∈□[L]

γ̂1 ̸=γ̂2

1[γ̂A1 =γ]

√
Xt(γ̂1)Xt(γ̂1)dBt(γ̂1, γ̂2) (2.37)

We first calculate the marginal effect of recombination. We use the Proposition 6 of [59],
where the following consistency relation is shown

(R(x))A = R̂A(xA)
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Secondly, recall that Θ is the generator corresponding to mutation: each locus mutates
independently of the others, from −1 to +1 (resp. −1 to +1) at rate θ+ (resp. θ−). We can
therefore expect a consistency property, by which taking the marginal effect of Θ on the loci
in A, each locus in A mutates independently of the rest with rates θ+, θ−, which translates
into

(Θ(x))A = Θ̂A(xA)

Formally, this can be proved as follows.

(Θ(x))A(γ) = |θ|
∑
ℓ∈[L]

((
x[L]∖{ℓ} ⊗ Lθ

)A
− xA

)

For any ℓ /∈ A, we have
(x[L]∖{ℓ} ⊗ Lθ)A = xA

This means the sum on ℓ ∈ [L] can be restricted to A, which yields Θ̂A(xA).
Finally, we turn to the Brownian term. This term corresponds to the equation for a

neutral Wright-Fisher diffusion with 2L alleles. It is well-known that the multi-allele Wright-
Fisher diffusion admits a consistency property, by which if we group alleles together into 2#A

families, the frequencies of these families behave like a 2#A-allele Wright-Fisher diffusion.
For the unconvinced reader we give a sketch of the proof.

For γ1, γ2 ∈ □A, define

dB̂A
t (γ

1, γ2) :=
∑

γ̂1,γ̂2∈□[L]

γ̂A1 =γ1

γ̂A2 =γ2

√
Xt(γ̂1)Xt(γ̂2)

XA
t (γ

1)XA
t (γ

2)
dBt(γ̂1, γ̂2)

Check that B̂A is formally well-defined because

1[γ̂A1 =γ1,γ̂A2 =γ2]

Xt(γ̂1)Xt(γ̂2)

XA
t (γ

1)XA
t (γ

2)
≤ 1.

Recall that for any γ̂1, γ̂2, γ̂3, γ̂4 ∈ □[L]

d ⟨B(γ̂1, γ̂2), B(γ̂3, γ̂4)⟩QVt = (1[γ̂1=γ̂3,γ̂2=γ̂4] − 1[γ̂1=γ̂4,γ̂2=γ̂3])dt

From there, it is straightforward to obtain for γ1, γ2, γ3, γ4 ∈ □A

d ⟨B̂A(γ1, γ2), B̂A(γ3, γ4)⟩ =
(
1[γ1=γ3,γ2=γ4] − 1[γ1=γ4,γ2=γ3]

)
dt.

To conclude, let us show Σ̂A(XA
t )dB

A
t is equal to the Brownian term from (2.37). We write

for fixed γ1 ∈ □A∑
γ2∈□[L]∖{γ1}

√
XA
t (γ

1)XA
t (γ

2)dB̂A
t (γ

1, γ2) =
∑

γ̂1,γ̂2∈□[L]

γ̂A1 =γ1 ̸=γ̂A2

√
Xt(γ̂1)Xt(γ̂2)dBt(γ̂1, γ̂2)

We can extend the sum to the cases where [γ̂A2 = γ1, γ̂2 ̸= γ̂1] because the terms (γ̂1, γ̂2) and
(γ̂2, γ̂1) cancel out. This yields the Brownian term from (2.37).

Remark 10. We may notice that if W = 0, then SA = 0 and the equation for XA
t is

autonomous.

We can apply the previous Proposition to A = {ℓ} and obtain an important Corollary.
We need a Lemma
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Lemma 2.3.4 (Fleming-Viot property [156]). For functions F1 and F2 on □[L] we have

d ⟨X[F1(g)],X[F2(g)]⟩t = CovXt [F1(g), F2(g)]dt

Proof. We have

d ⟨X[F1(g)],X[F2(g)]⟩t =
∑

γ1,γ2∈□[L]

F1(γ
1)F2(γ

2)
(
Xt(γ

1)1[γ1=γ2] −Xt(γ
1)Xt(γ

2)
)
dt

=
∑

γ1∈□[L]

F1(γ
1)F2(γ

1)Xt(γ
1)dt−

∑
γ1,γ2∈□[L]

F1(γ
1)F2(γ

2)Xt(γ
1)Xt(γ

2)dt

where in the first equality we used that

d ⟨X(γ1), X(γ2)⟩t =
(
1[γ1=γ2]Xt(γ

1)−Xt(γ
1)Xt(γ

2)
)
dt.

The last line is CovXt [F1(g), F2(g)].

Corollary 2.3.5.

∀ℓ ∈ [L], dpℓ(Xt) =
(
Θ(pℓ(Xt)) + LSℓ(Xt)

)
dt+

√
pℓ(Xt)(1− pℓ(Xt))dB̂

ℓ
t (2.38)

with Θ from Theorem 2.1.1 and (B̂ℓ)ℓ∈[L] a L-dimensional Brownian motion with

∀i ̸= j ∈ [L], d ⟨pℓi(X), pℓj (X)⟩QVt = Dℓ1,ℓ2(Xt)dt (2.39)

where we recall Dℓ1,ℓ2 from (2.28).

Proof of Corollary 2.3.5. We apply Proposition 2.3.3 to A = {ℓ} and consider the +1 coordi-
nate, recalling that pℓ(x) = x{ℓ}(+1)). We also use the fact that R̂{ℓ} = 0, i.e., recombination
does not alter allele frequencies. To get (2.39), apply Lemma 2.3.4 with Fi(g) = 1[gℓi=+1] for

i ∈ {1, 2}.

Comparing equation (2.38) and the desired limit equation (2.10), we see that we need two

things. On the one hand, for any ℓ1 ̸= ℓ2 we must obtain that ⟨pℓ1(X), pℓ2(X)⟩QVt → 0. This
will be achieved by controlling Dℓ1,ℓ2(Xt). On the other hand, we need that

|LSℓ(Xt)− pℓ(Xt)(1− pℓ(Xt))s(µXt)| −→ 0

This is much more difficult to obtain. We will get it by showing Sℓ(Xt) ≃ Sℓ(π(Xt)) and
using the following Lemma

Lemma 2.3.6. We have

∀ℓ ∈ [L], LSℓ(π(x)) = pℓ(x)(1− pℓ(x))s(µx) +O
(
1

L

)
where O is uniform in x.

Proof. Recall from the definition of π that pℓ(π(x)) = pℓ(x). Applying this to equation (2.34)
for ℓ ∈ [L] we get

LSℓ(π(x)) =Lpℓ(x) (π(x)[U(Z(g))|gℓ = +1]− π(x)[U(Z(g))])

=Lpℓ(x)

(
π(x)

U
 1

L
+

1

L

∑
ℓ̂∈[L]∖{ℓ}

gℓ̂

∣∣∣gℓ = +1


− π(x)

U
gℓ
L

+
1

L

∑
ℓ̂∈[L]∖{ℓ}

gℓ̂

)

=pℓ(x)× 2(1− pℓ(x))× π(x)

U ′

 1

L

∑
ℓ̂∈[L]∖{ℓ}

gℓ̂

+O
(
1

L

)
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where in the third equality we used that gℓ̂ and gℓ are independent under π(x) and π(x)[gℓ] =
2pℓ(x)− 1. To conclude, write

π(x)

 1

L

∑
ℓ̂∈[L]∖{ℓ}

gℓ̂

 = < µx, 2Id− 1 > +O
(
1

L

)

Since we assumed U to be a quadratic polynomial, then U ′ is of degree one and we get the
result.

We conclude this section by proving Proposition 2.3.2 which states that we may control
both Dℓ1,ℓ2(Xt) and S

ℓ(Xt) with ||XA
t − π(XA

t )||2 for small sets A ⊆ [L].

Proof of Proposition 2.3.2. The first inequality is readily obtained with

∀ℓ1 ̸= ℓ2,
∣∣∣Dℓ1,ℓ2(x)

∣∣∣ = ∣∣∣Covx

[
1[gℓ1=+1],1[gℓ2=+1]

]∣∣∣
=
∣∣∣x [1[gℓ1=+1,gℓ2=+1]

]
− π(x)

[
1[gℓ1=+1,gℓ2=+1]

]∣∣∣
≤
∣∣∣∣∣∣x{ℓ1,ℓ2} − π{ℓ1,ℓ2}(x)

∣∣∣∣∣∣
2

For the second inequality, it is enough to prove the result when W (g) = Z(g) or W (g) =
Z(g)2, and the general case will follow by linearity. We show this for W (g) = Z(g)2. In this
case we write from Proposition 2.3.3

Sℓ0(x) =Covx

[
Z(g)2,1[gℓ0=+1]

]
=

1

L2

∑
ℓ1,ℓ2∈[L]

Covx

[
gℓ1gℓ2 ,1[gℓ0=+1]

]
=

1

L2

∑
ℓ1,ℓ2∈[L]

x
[
gℓ1gℓ21[gℓ0=+1]

]
− x [gℓ1gℓ2 ] p

ℓ0(x)

The analog holds for Sℓ0(π(x)). It follows

∣∣∣Sℓ0(x)− Sℓ0(π(x))
∣∣∣ ≤ 1

L2

∑
ℓ1,ℓ2∈[L]

(∣∣∣x [gℓ1gℓ21[gℓ0=+1]

]
− π(x)

[
gℓ1gℓ21[gℓ0=+1]

] ∣∣∣
+pℓ0(x)×

∣∣∣x[gℓ1gℓ2 ]− π(x)[gℓ1gℓ2 ]
∣∣∣)

We may remove the summand corresponding to ℓ1 = ℓ2 = ℓ0, because x and π(x) have the
same marginals on ℓ0. We conclude by rewriting this∣∣∣Sℓ0(x)− Sℓ0(π(x))

∣∣∣ ≤ 2

L2

∑
A⊂[L]∖{ℓ0}
1≤#A≤2

∣∣∣∣∣∣x{ℓ0}∪A − π(x{ℓ0}∪A)
∣∣∣∣∣∣
1

Similar calculations when W (g) = Z(g) yield∣∣∣Sℓ0(x)− Sℓ0(π(x))
∣∣∣ ≤ 2

L

∑
ℓ1∈[L]∖{ℓ0}

∣∣∣∣∣∣x{ℓ0,ℓ1} − π(x{ℓ0,ℓ1})
∣∣∣∣∣∣
1

We conclude using the equivalence of the L1 and L2 norms in R□A .
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2.3.3 Eigenvalues of the linearized recombinator

The goal of this section is to obtain some properties of the jacobian of the recombinator
∇R̂A, which will allow us to find a lower bound for the contribution of recombination to the
dynamics of XA

t . Because R̂
A is the analog of R, we will simplify our proofs without loss of

generality by assuming A = [L]. The following Lemma motivates the study of the jacobian
of the recombinator by relating it to the recombinator itself.

Lemma 2.3.7.

∀x ∈ X[L], ∇R(x)(x− π(x))−R(x) =
∑

∅⊊I⊊[L]

ν(I)(x− π(x))I ⊗ (x− π(x))I
c

In particular, if #A = 3 then

∀x ∈ XA, R̂A(x) = ∇R̂A(x)(x− π(x)) (2.40)

Proof. A simple computation shows that for any h ∈ R□[L]

∇R(x)h =
∑

∅⊊I⊊[L]

ν(I)(xI ⊗ hIc
+ hI ⊗ xIc − h) (2.41)

And thus

∇R(x)h−R(x) =
∑

∅⊊I⊊[L]

ν(I)
(
xI ⊗ hIc

+ (h− x)I ⊗ xIc − (h− x)
)

Applying this to h = x− π(x) yields

∇R(x)(x− π(x))−R(x) =
∑

∅⊊I⊊[L]

ν(I)(xI ⊗ (x− π(x))I
c − π(x)I ⊗ xIc

+ π(x))

=
∑

∅⊊I⊊[L]

ν(I)(xI ⊗ (x− π(x))I
c − π(x)I ⊗ (x− π(x))I

c
)

=
∑

∅⊊I⊊[L]

ν(I)(x− π(x))I ⊗ (x− π(x))I
c

where in the second equality we used π(x) = π(x)I ⊗ π(x)I
c
.

Because R̂A is the analog of R on XA, we obtain

∀x ∈ XA, ∇R̂A(x)(x−π(x))− R̂A(x) =
∑

∅⊊I⊊A

νA(I)(x−π(x))I ⊗ (x−π(x))A∖I (2.42)

Recall from (2.26) that for any ℓ ∈ A,

x{ℓ} = π(x){ℓ}

It follows that whenever #I ∈ {1, 2}, we necessarily have

(x− π(x))I ⊗ (x− π(x))A∖I = 0

This yields (2.40).

Let us define the following quantities

∀I ⊆ [L], I ̸= ∅, βI :=
∑

∅⊊K⊊I

νI(K) = 1− νI(I)− νI(∅) = 1− 2νI(I) (2.43)
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We call βI the probability that there is a recombination within I. Also define β∅ := −β[L].
We note the following order property

∀J ⊆ I ⊆ [L], βI ≥ βJ . (2.44)

For I ⊆ [L], we define the I-linkage vector with

wI :=

(
2−

L
2

∏
ℓ∈I

γℓ

)
γ∈□[L]

∈ R□[L] (2.45)

We start with computational properties of the linkage vectors.

Lemma 2.3.8. The (wI)I⊆[L] form an orthonormal basis of R□[L] for the usual scalar prod-
uct, which will be denoted ⟨·, ·⟩. Furthermore, we have

∀J ⊆ [L], wI =2−
L
2 wJ

I∩J ⊗wJ c

I∩J c (2.46)

∀J , I ⊂ [L],∀x ∈ R□[L] , ⟨wJ
I ,x

J ⟩ =2L−#J ⟨wI ,x⟩1[I⊆J ] (2.47)

Proof. We compute

⟨wI ,wJ ⟩ =2−L
∑
γ∈□[L]

∏
ℓ∈I

γℓ
∏
ℓ∈J

γℓ

=2−L
∑
γ∈□[L]

∏
ℓ∈I⊕J

γℓ

where we write I ⊕ J := (I ∪ J )∖ (I ∩ J ). If I = J , this yields 1. Otherwise, we can find
ℓ0 ∈ I ⊕ J . Then we can cancel out the term γ of the sum with the term γ−ℓ0 , which we
define to be γ with the ℓ0−th coordinate flipped. This yields that (wI)I⊆[L] is an orthonormal
basis.

Let us observe that whenever γ ∈ □J , I ⊆ J we have

wJ
I (γ) =

∑
γ̂∈□[L]

γ̂|J=γ

2−
L
2

∏
ℓ∈I

γℓ = 2−
L
2 × 2L−#J

∏
ℓ∈I

γℓ

We then get (2.46) with

wJ
I∩J ⊗wJ c

I∩J c(γ) = 2
L
2
−#J

∏
ℓ∈I∩J

γℓ × 2
L
2
−#J c

∏
ℓ∈I∩J c

γℓ = 2
L
2 wI

To get (2.47) when I ⊆ J we write

〈
wJ

I , xJ 〉 = 2
L
2
−#J

∑
γ∈□[L]

(∏
ℓ∈I

γℓ

)
x(γ) = 2L−#J ⟨wI , x⟩

When I ⊈ J , then we can find ℓ0 ∈ I ∖ J . We then write

wJ
I (γ) =

∑
γ̂∈□[L]

γ̂|J=γ

2−
L
2

∏
ℓ∈I

γℓ = 0

where we cancelled out the γ̂ term of the sum with the corresponding term with the ℓ0−th
coordinate flipped.
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We can now compute ∇R explicitly in the next Theorem.

Theorem 2.3.9. We have for any I,J ⊆ [L].

⟨wI ,∇R(x)wJ ⟩ = −1[I=J ]βI + 1[J⊊I]
∑

∅⊊K⊊[L]

ν(K)21+
L
2 ⟨wI∩K , x⟩1[I∩Kc=J ]

In particular, we have
∀J ⊈ I, ⟨wI ,∇R(x)wJ ⟩ = 0 (2.48)

Remark 11. A well-known method to handle the recombinator is Haldane linearization [60].
This method relies on considering linkage, not on subsets I ⊆ A, but rather on partitions
of A. This approach may prove necessary if we want to control linkage on subsets A with
arbitrary size, but will not be needed here.

Proof. According to (2.41) (replacing [L] by the set A),

⟨wI ,∇R(x)wJ ⟩ =
∑

∅⊊K⊊[L]

ν(K)
〈
wI , x

K ⊗wKc

J +wK
J ⊗ xKc −wJ

〉
=

∑
∅⊊K⊊[L]

ν(K)
(〈
wI , x

K ⊗wKc

J
〉
+
〈
wI , w

K
J ⊗ xKc〉− 1[I=J ]

)
Using ν(K) = ν(Kc), we can rewrite this

⟨wI ,∇R(x)wJ ⟩ =
∑

∅⊊K⊊[L]

ν(K)
(
2
〈
wI , x

K ⊗wKc

J
〉
− 1[I=J ]

)
(2.49)

Using (2.46) we get 〈
wI , x

K ⊗wKc

J
〉
=2−

L
2
〈
wK

I∩K , xK〉 〈wKc

I∩Kc ,wKc

J
〉

=2
L
2 ⟨wI∩K , x⟩1[I∩Kc=J ]

where in the second equality we used (2.47) twice. We thus obtain from (2.49)

⟨wI ,∇R(x)wJ ⟩ =
∑

∅⊊K⊊[L]

ν(K)
(
21+

L
2 ⟨wI∩K , x⟩1[I∩Kc=J ] − 1[I=J ]

)
=

∑
∅⊊K⊊[L]

ν(K)21+
L
2 ⟨wI∩K , x⟩1[I∩Kc=J ] − 1[I=J ]β[L] (2.50)

where in the last equality we used ∑
∅⊊K⊊[L]

ν(K) = β[L]

Notice that the sum in (2.50) can only be nonzero if J ⊆ I. When J ̸= I, we get the result.
When I = J we write

⟨wI ,∇R(x)wI⟩ =
∑

∅⊊K⊊[L]

ν(K)21+
L
2 ⟨w∅ , x⟩1[I∩Kc=I] − β[L]

=
∑

∅⊊K⊊[L]

2ν(K)1[I⊆Kc] − β[L]

where we used ⟨w∅,x⟩ = 2−
L
2 . If I = ∅, the sum is equal to 2β[L] and we get

⟨w∅,∇R(x)w∅⟩ = β[L] = −β∅
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If I ̸= ∅, we can extend the sum to K ∈ {∅, [L]} and write∑
∅⊊K⊊[L]

2ν(K)1[I⊆Kc] =
∑

∅⊆K⊆[L]

2ν(K)1[I⊆Kc] − 2ν(∅)

=2νI(I)− (1− β[L])

It follows

⟨wI ,∇R(x)wI⟩ =2νI(I)− (1− β[L])− β[L]

=2νI(I)− 1

=− βI

2.3.4 Controlling linkage disequilibrium over a small subset

For any A ⊆ [L] with #A ≥ 2, recall from (2.33)

rA := min
ℓ1,ℓ2∈A
ℓ1 ̸=ℓ2

r{ℓ1,ℓ2}

where r{ℓ1,ℓ2} is the probability of a recombination event between ℓ1 and ℓ2, and in particular
from (2.43) r{ℓ1,ℓ2} = β{ℓ1,ℓ2}. From (2.44) we have for any J ⊆ A

rA ≤ βJ ≤ 1. (2.51)

The goal of this subsection is to prove

Proposition 2.3.10. Let T > 0. Assume that η := 1√
ρrA

≤ 1 and ρ ≥ e. There exists a

constant C independent of (A,L) such that for every ε ∈ [0, T ],

∀A ⊆ [L],#A ≤ 3, E

[
sup
t∈[ε,T ]

||XA
t − π(XA

t )||2

]
≤ C

(
1

ρrAε
+

L

ρrA
+

√
ln(ρ)

ρrA

)
.

We will prove the result for #A = 3. We start with two Lemmas.

Lemma 2.3.11. Consider A ⊂ [L] with #A ≤ 3. Then

∀x ∈ XA, (Id−∇π(x)) R̂A(x) = ∇R̂A(x)(x− π(x)) (2.52)

where we abusively write ∇π for the □A ×□A jacobian of π, seen as a R□A−valued function
on XA.

Proof. Because of (2.40) in Lemma 2.3.7, we only need to show

∀x ∈ XA, ∇π(x)R̂A(x) = 0 (2.53)

Fix x0 ∈ XA. We define (xt)t≥0 as the solution to

d

dt
xt = R̂A(xt)

with initial condition x0. By Lemma 2.3.1, we have

∀t ≥ 0, π(xt) = π(x0).

Taking the time derivative of π(xt), we get

0 =
d

dt
π(xt) = ∇π(xt)R̂A(xt)

Evaluating the right-hand side at t = 0 gives (2.53).
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Lemma 2.3.12. Consider a continuous martingale (Mt)t≥0 with quadratic variation uni-
formly bounded by C0 > 0. Then we can find a universal constant C(C0) such that for any
λ ≥ 1, T > 0

E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0
e−λ(t−u)dMu

∣∣∣∣
]
≤ C

√
1 + ln+(2λT )

λ

with ln+(x) = (ln(x)) ∨ 0.

Proof. Let us write

Zt :=

∫ t

0
eλudMu ; Yt :=

∫ t

0
e−λ(t−u)dMu

such that

Yt = e−λtZt (2.54)

The martingale (Zt)t∈[0,T ] has quadratic variation

⟨Z⟩QVt =

∫ t

0
e2λud ⟨M⟩QVu ≤ C0

e2λt

2λ

Let us define the iterated logarithm

ln(2)(x) := ln+(ln+(x)).

Since λ ≥ 1

ln(2)

(
e2λt

2λ

)
≤ ln+(2λT ).

Therefore

F (t) := ⟨Z⟩QVt
(
1 + ln(2)(⟨Z⟩QVt )

)
≤ C0

e2λt

2λ

(
1 + ln(2)(C0) + ln+(2λT )

)
It follows from (2.54)

sup
t∈[0,T ]

|Yt| = sup
t∈[0,T ]

e−λt|Zt|

= sup
t∈[0,T ]

e−λt
√
F (t)× |Zt|√

F (t)

≤
√
C0

√
1 + ln+(C0) + ln+(2λT )

2λ
sup
t∈[0,T ]

|Zt|√
F (t)

We show in Appendix B the existence of a universal constant C > 0 (only depending on C0)
such that

E

[
sup
t∈[0,T ]

Zt√
F (t)

]
≤ C.

This completes the proof of the lemma.

Proof of Proposition 2.3.10. For I ⊆ A, define by analogy with (2.45)

ŵA
I =

(
2−#A/2

∏
ℓ∈A

γℓ

)
γ∈□A
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One may check that ŵA
I = 2(L−#A)/2wA

I . By the analog of Lemma 2.3.8, (ŵA
I )I⊆A is an

orthonormal basis of R□A and we have for any y ∈ R□A

||y||22 =
∑
I⊆A

⟨ŵA
I ,y⟩

2
.

Therefore, to get the result we only need to control, for all I ⊆ A,

Y I
t := ⟨ŵA

I ,X
A
t − π(XA

t )⟩ .

Note that because ŵA
I and XA

t −π(XA
t ) have coefficients bounded by 1, and RA has dimension

at most 23, then ⟨ŵA
I ,X

A
t ⟩ and Y I

t are uniformly bounded by a constant C independent of
(L,A).

Recall from the definition of π in (2.26) that for any x ∈ XA

Y ∅
t = ⟨ŵA

∅ ,xt − π(xt)⟩ = 0 ; ∀ℓ ∈ A, Y
{ℓ}
t = ⟨ŵA

{ℓ},xt − π(xt)⟩ = 0 (2.55)

It remains to consider #I ∈ {2, 3}. We apply Itô’s formula to write

d
(
XA
u − π(XA

u )
)
=
(
Id−∇π(XA

u )
)
dXA

u −
∑

γ1,γ2∈□A

∂γ1,γ2π(X
A
u ) d ⟨XA(γ1), XA(γ2)⟩QVu

Using Proposition 2.3.3 this can be rewritten

d
(
XA
u − π(XA

u )
)
= ρ

(
Id−∇π(XA

u )
)
R̂A(XA

u )dt+ Fudu+ dMu

where

Ft :=
(
Id−∇π(XA

t )
) (

Θ̂A(XA
t ) + LSA(Xt)

)
−

∑
γ1,γ2∈□A

∂γ1,γ2π(X
A
t )

d

dt
⟨XA(γ1), XA(γ2)⟩QVt

dMt :=
(
Id−∇π(XA

t )
)
Σ̂A(XA

t )dB̂
A
t .

In particular, Ft has coefficients uniformly bounded by CL and Mt is a continuous martinale
with quadratic variation uniformly smaller than C for some constant C > 0 independent of
(A,L). Finally, Lemma 2.3.11 yields for I ⊆ A

dY I
u = ρ

〈
ŵA

I ,∇R̂A(XA
u )
(
XA
u − π(XA

u )
)〉

du+
〈
ŵA

I ,Fu
〉
du+

〈
ŵA

I , dMu

〉
(2.56)

Case #I = 2:
Theorem 2.3.9 and (2.55) imply〈

ŵA
I ,∇R̂A(XA

u )
(
XA
u − π(XA

u )
)〉

= −βI
〈
ŵA

I , X
A
u − π(XA

u )
〉
= −βIY I

u

Therefore (2.56) becomes

dY I
u = −ρβIY I

u du+
〈
ŵA

I ,Fu
〉
du+

〈
ŵA

I , dMu

〉
It can be checked that this implies

Y I
t = Y I

0 e
−ρβIt +

∫ t

0
e−ρβI(t−u)

〈
ŵA

I ,Fu
〉
du+

∫ t

0
e−ρβI(t−u)

〈
ŵA

I , dMu

〉
(2.57)
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The fact that Y I
0 is uniformly bounded means the first term is smaller than Ce−ρβIε for

any t ∈ [ε, T ]. We use e−x ≤ 1
x for x ≥ 0 to write

Y I
0 e

−ρβIt ≤ C

ρβIε
≤ C

ρrAε

from (2.51). Because Ft is smaller than CL, the first integral is smaller than C L
ρβI

. For the
second integral, we use Lemma 2.3.12 applied with λ = ρβI . Because ρβI ≥ ρrA ≥ 1 by
assumption, this Lemma yields a a bound on the second integral of

C

√
1 + ln+(ρβI2T )

ρβI
≤ C

√
ln(ρ)

ρrA
.

using (2.51) and ρ ≥ e, for some constant C independent of (ε,A, L). We thus obtain from
(2.57)

E

[
sup
t∈[ε,T ]

|Y I
t |

]
≤ C

(
1

ρrAε
+

L

ρrA
+

√
ln(ρ)

ρrA

)

Case #I = 3:
When I = A, Theorem 2.3.9 and (2.55) imply〈

ŵA
A,∇R̂A(XA

u )
(
XA
u − π(XA

u )
)〉

= −βA
〈
ŵA
A, X

A
u − π(XA

u )
〉

+
∑
J⊊A
#J=2

νA(J )21+
#A
2
〈
ŵA
A∖J , X

A
u

〉 〈
ŵA

J , X
A
u − π(XA

u )
〉

Therefore, (2.56) becomes

dY A
t = −ρβAY A

t dt+ ρ
∑
J⊊A
#J=2

νA(J )21+
#A
2
〈
ŵA
A∖J , X

A
t

〉
Y J
t dt

+
〈
ŵA
A,Ft

〉
dt+

〈
ŵA
A, dMt

〉
which can be solved as

Y A
t = Y A

0 e
−ρβAt + ρ

∑
J⊊A
#J=2

νA(J )21+
#A
2

∫ t

0
e−ρβA(t−u) 〈ŵA

A∖J , X
A
u

〉
Y J
u du

+

∫ t

0
e−ρβA(t−u) 〈ŵA

A,Fu
〉
du+

∫ t

0
e−ρβA(t−u) 〈ŵA

A, dMu

〉
.

The first, third and fourth terms are handled as in the case #I = 2. For the second term,
let us define

b1(t) :=ρβA

∫ t

0
e−ρβA(t−u) ×

∣∣Y J
0

∣∣ e−ρβJ udu
b2(t) :=ρβA

∫ t

0
e−ρβA(t−u)

(∫ u

0
e−ρβJ (u−v) ∣∣〈ŵA

J ,Fv
〉∣∣ dv) du

b3(t) :=ρβA

∫ t

0
e−ρβA(t−u)

∣∣∣∣∫ u

0
e−ρβJ (u−v) 〈ŵA

J , dMv

〉∣∣∣∣ du
65



2.3. Convergence to the McKean-Vlasov SDE under strong recombination

Notice from (2.43) that νA(J ) ≤ βJ . This, along with the boundedness of
〈
ŵA
A∖J , X

A
u

〉
and

(2.57) lets us write for J ⊆ A with #J = 2

ρνA(J )

∫ t

0
e−ρβA(t−u) ∣∣〈ŵA

A∖J , X
A
u

〉
Y J
u

∣∣ du ≤ C(b1(t) + b2(t) + b3(t)) (2.58)

where C is a constant independent of (ε,A, L). We now control b1 by writing

b1(t) = ρβJ

∫ t

0
e−ρβA(t−u)e−ρβJ udu

∣∣Y J
0

∣∣+ ρ(βA − βJ )

∫ t

0
e−ρβA(t−u)e−ρβJ udu

∣∣Y J
0

∣∣
= ρβJ e

−ρβJ t
∫ t

0
e−ρ(βA−βJ )(t−u)du

∣∣Y J
0

∣∣
+ e−ρβJ t

∫ t

0
ρ(βA − βJ )e

−ρ(βA−βJ )(t−u)du
∣∣Y J

0

∣∣
Because of the order property (2.44), βA ≥ βJ . So the first integral is smaller than t, the
second one is smaller than one. We thus obtain

b1(t) ≤ C(1 + ρβJ t)e
−ρβJ t

We can use the inequality

∀x, h ≥ 0, (x+ h)e−(x+h) ≤ C

x

with x = ρβJ ε and h = ρβJ (t− ε) to conclude

sup
t∈[ε,T ]

b1(t) ≤
C

ρβJ ε
≤ C

ρrAε
(2.59)

for some universal constant C, using rA ≤ βJ .

We now control b2. Because Ft is of order L we can write

b2(t) ≤ CLρβA

∫ t

0
e−ρβA(t−u)

(∫ u

0
e−ρβJ (u−v)dv

)
du ≤ CL

ρβJ
≤ CL

ρrA
(2.60)

for C independent of (ε,A, L). Finally, we turn to b3. Because the martingale Mu has
uniformly bouded quadratic variation, we can use Lemma 2.3.12 to write

E

[
sup
t∈[0,T ]

b3(t)

]
≤ρβA

∫ t

0
e−ρβA(t−u)duE

[
sup
t∈[0,T ]

∣∣∣∣∫ u

0
e−ρβJ (u−v) 〈ŵA

J , dMv

〉∣∣∣∣
]

≤

√
1 + ln+(ρβJ 2T )

ρβJ

≤C

√
ln(ρ)

ρrA

using (2.51) and ρ ≥ e. We obtain the result by combining this with (2.59) and (2.60) in
(2.58).

2.3.5 Summing controls of linkage equilibrium across loci

We now prove the following estimates

66



CHAPTER 2. THE GENE’S EYE-VIEW OF QUANTITATIVE GENETICS

Proposition 2.3.13. Recall from (2.18)

εL :=
1√
ρr∗∗

Let us assume (2.12), that is,

ρr∗∗ ≫ L2 ln(ρ)

We have

lim
L→+∞

∑
ℓ∈[L]

E
[∫ T

0
|Sℓ(Xt)− Sℓ(π(Xt))|dt

]
=0 (2.61)

lim
L→+∞

1

L

∑
ℓ1,ℓ2∈[L]
ℓ1 ̸=ℓ2

E

[
sup

t∈[εL,T ]

∣∣∣Dℓ1,ℓ2(Xt)
∣∣∣dt] =0 (2.62)

Consider a sequence integers ℓL ≡ ℓ ∈ [L] satisfying Assumptions (2.13). Then

lim
L→+∞

LE
[∫ T

0
|Sℓ(Xt)− Sℓ(π(Xt))|dt

]
=0 (2.63)

Finally, consider ℓL1 ≡ ℓ1, ℓ
L
2 ≡ ℓ2 such that

ρr{ℓ1,ℓ2} ≫ L (2.64)

Then

lim
L→∞

E
[∫ T

0
|Dℓ1,ℓ2(Xt)|

]
= 0 (2.65)

We use the following computational Lemma.

Lemma 2.3.14. We can find a constant C independent of (L, ε) such that for any ℓ0 ∈ [L]

∑
A⊆[L]∖{ℓ0}
1≤#A≤2

1

L#A

(
1

ρr{ℓ0}∪Aε
+

L

ρr{ℓ0}∪A
+

√
ln(ρ)

ρr{ℓ0}∪A

)

≤ C

((
1

ρε
+
L

ρ

)(
1

r∗ℓ0
+

1

r∗∗

)
+

√
ln(ρ)

ρr∗ℓ0
+

√
ln(ρ)

ρr∗∗

)
(2.66)

Furthermore,

∑
A⊆[L]

2≤#A≤3

1

L#A

(
1

ρrAε
+

L

ρrA
+

√
ln(ρ)

ρrA

)
≤ C

(
1

ρr∗∗ε
+

L

ρr∗∗
+

√
ln(ρ)

ρr∗∗

)
(2.67)

Proof. In the following, we write aℓ0 for the left-hand side of (2.66). Then

aℓ0 =

(
1

ρε
+
L

ρ

) ∑
A⊆[L]∖{ℓ0}
1≤#A≤2

1

L#Ar{ℓ0}∪A
+

√
ln(ρ)

ρ

∑
A⊆[L]∖{ℓ0}
1≤#A≤2

1

L#A√r{ℓ0}∪A
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From Jensen’s inequality,

∑
A⊆[L]∖{ℓ0}
1≤#A≤2

1

KL#A
× 1

√
r{ℓ0}∪A

≤

 ∑
A⊆[L]∖{ℓ0}
1≤#A≤2

1

KL#A
× 1

r{ℓ0}∪A


1
2

where K is a normalization constant

K :=
∑

A⊆[L]∖{ℓ0}
1≤#A≤2

1

L#A

Because K is of order 1, we can absorb it into a universal constant C and we get

aℓ0 ≤ C

( 1

ρε
+
L

ρ

)
Hℓ0 +

√
ln(ρ)

Hℓ0

ρ

 (2.68)

where

Hℓ0 :=
∑

A⊆[L]∖{ℓ0}
1≤#A≤2

1

L#A
× 1

r{ℓ0}∪A

We write

Hℓ0 =
1

L

∑
ℓ1∈[L]∖{ℓ0}

1

r{ℓ0,ℓ1}
+

1

L2

∑
ℓ1,ℓ2∈[L]∖{ℓ0}

ℓ1 ̸=ℓ2

1

r{ℓ0,ℓ1,ℓ2}

≤ 1

r∗ℓ0
+

1

L2

∑
ℓ1,ℓ2∈[L]∖{ℓ0}

ℓ1 ̸=ℓ2

1

r{ℓ0,ℓ1,ℓ2}

from the definition of r∗ℓ0 in (2.8) .
Since rA = min

ℓ1 ̸=ℓ2∈A
r{ℓ1,ℓ2}

1

r{ℓ0,ℓ1,ℓ2}
≤ 1

r{ℓ0,ℓ1}
+

1

r{ℓ0,ℓ2}
+

1

r{ℓ1,ℓ2}

It follows

1

L2

∑
ℓ1,ℓ2∈[L]∖{ℓ0}

ℓ1 ̸=ℓ2

1

r{ℓ0,ℓ1,ℓ2}
≤ 1

L2

∑
ℓ1,ℓ2∈[L]∖{ℓ0}

ℓ1 ̸=ℓ2

1

r{ℓ1,ℓ2}
+

1

L2

∑
ℓ1,ℓ2∈[L]∖{ℓ0}

ℓ1 ̸=ℓ2

1

r{ℓ0,ℓ1}
+

1

r{ℓ0,ℓ2}

The first sum is smaller than 1
r∗∗ , the second one is smaller than 2

r∗ℓ0
. Putting it all together

we find a constant C independent of (ε, L, ℓ0) such that

Hℓ0 ≤ C

(
1

r∗ℓ0
+

1

r∗∗

)

We thus obtain that for any ℓ0 ∈ [L]

aℓ0 ≤ C

( 1

ρε
+
L

ρ

)(
1

r∗ℓ0
+

1

r∗∗

)
+

√
ln(ρ)

ρ

(
1

r∗ℓ0
+

1

r∗∗

) 1
2


68



CHAPTER 2. THE GENE’S EYE-VIEW OF QUANTITATIVE GENETICS

for C independent of (ε, L, ℓ0). To get (2.66), use that
√
x+ y ≤

√
x+

√
y for any x, y ≥ 0.

We turn to (2.67). Write a∗ for the left-hand side of (2.67). We have

a∗ =
1

L

∑
ℓ∈[L]

aℓ

≤C

( 1

ρε
+
L

ρ

) 1

L

∑
ℓ∈[L]

1

r∗ℓ
+

1

r∗∗

+

√
ln(ρ)

ρr∗∗
+

√
ln(ρ)

ρ

1

L

∑
ℓ∈[L]

1√
r∗ℓ


≤C

( 1

ρε
+
L

ρ

)
2

r∗∗
+

√
ln(ρ)

ρr∗∗
+

√
ln(ρ)

ρ

1

L

∑
ℓ∈[L]

1√
r∗ℓ


We conclude with Jensen’s inequality

1

L

∑
ℓ∈[L]

1√
r∗ℓ

≤

 1

L

∑
ℓ∈[L]

1

r∗ℓ

 1
2

=
1√
r∗∗

Proof of Proposition 2.3.13. First, let us notice that (2.12) implies

ρ≫ L2

r∗∗
=

L2

L(L− 1)

∑
ℓ1,ℓ2∈[L]
ℓ1 ̸=ℓ2

1

r{ℓ1,ℓ2}
≥ max

ℓ1,ℓ2∈[L]
ℓ1 ̸=ℓ2

1

r{ℓ1,ℓ2}
=

1

r[L]

In particular, for any A ⊆ [L] we have ρrA ≥ ρr[L] ≫ 1 so that we may apply Proposition
2.3.10 and Lemma 2.3.14. Second, we note that by (2.12), εL satisfies

1

ρr∗∗
≪ εL ≪ 1

L
(2.69)

Let us start with (2.61). We have

∑
ℓ∈[L]

E
[∫ T

0
|Sℓ(Xt)− Sℓ(π(Xt))|dt

]
=O(LεL) + E

∑
ℓ∈[L]

∫ T

εL

|Sℓ(Xt)− Sℓ(π(Xt))|dt


≤o(1) + T

∑
ℓ∈[L]

E

[
sup

t∈[εL,T ]

∣∣∣Sℓ(Xt)− Sℓ(π(Xt))
∣∣∣]

from (2.69). Using (2.32) from Proposition 2.3.2 we get

∑
ℓ∈[L]

E

[
sup

t∈[εL,T ]

∣∣∣Sℓ(Xt)− Sℓ(π(Xt))
∣∣∣] ≤ CL

∑
A⊆[L]

2≤#A≤3

1

L#A
E

[
sup

t∈[εL,T ]
||XA

t − π(XA
t )||2

]

Then, Proposition 2.3.10 and (2.67) from Lemma 2.3.14 yield

∑
ℓ∈[L]

E

[
sup

t∈[εL,T ]

∣∣∣Sℓ(Xt)− Sℓ(π(Xt))
∣∣∣] ≤ CL

(
1

ρr∗∗εL
+

L

ρr∗∗
+

√
ln(ρ)

ρr∗∗

)

By (2.12) and (2.69), we obtain that the right-hand side is o(1). We obtain (2.62) the same
way, using (2.31) from Proposition 2.3.2.
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We now consider a sequence ℓL ≡ ℓ satisfying (2.13). We define

εℓ,L ≡ εℓ :=
1√
ρr∗ℓ

∨ εL

Just as in (2.69) we have by (2.13)

1

ρr∗ℓ
≪ εℓ ≪

1

L

It follows as before

LE
[∫ T

0
|Sℓ(Xt)− Sℓ(π(Xt))|dt

]
≤O(Lεℓ) + TLE

[
sup

t∈[εℓ,T ]

∣∣∣Sℓ(Xt)− Sℓ(π(Xt))
∣∣∣]

≤o(1) + TLE

[
sup

t∈[εℓ,T ]

∣∣∣Sℓ(Xt)− Sℓ(π(Xt))
∣∣∣]

Using Proposition 2.3.10 and (2.66) from Lemma 2.3.14 we get

TLE

[
sup

t∈[εℓ,T ]

∣∣∣Sℓ(Xt)− Sℓ(π(Xt))
∣∣∣]

≤ CL

((
1

ρεL
+
L

ρ

)(
1

r∗ℓ
+

1

r∗∗

)
+

√
ln(ρ)

ρr∗ℓ
+

√
ln(ρ)

ρr∗∗

)

≤ C

(
L

ρr∗ℓ εL
+

L

ρr∗ℓ
+

L

ρr∗∗εL
+

L

ρr∗∗
+

√
ln(ρ)L2

ρr∗ℓ
+

√
ln(ρ)L2

ρr∗∗

)

for some constant C independent of (L, ℓ). The right-hand side is small from (2.12),(2.13)
and the definition of εℓ.

Finally, to prove (2.65) we define εℓ1,ℓ2,L ≡ εℓ1,ℓ2 := 1√ρr{ℓ1,ℓ2}
∨ 1√

ρr∗∗
. We have

∫ t

0

∣∣∣Dℓ1,ℓ2(Xu)
∣∣∣ du ≤ εℓ1,ℓ2 + t sup

u∈[εℓ1,ℓ2 ,T ]

∣∣∣Dℓ1,ℓ2(Xt)
∣∣∣

The first term on the right-hand side is o(1) from Assumption (2.64). For the second term,
(2.31) from Proposition 2.3.2 and Proposition 2.3.10 tell us

E

[
sup

u∈[εℓ1,ℓ2 ,T ]
|Dℓ1,ℓ2(Xt)|

]
≤ C

(
1

ρr{ℓ1,ℓ2}εℓ1,ℓ2
+

L

ρr{ℓ1,ℓ2}
+

√
ln(ρ)

ρr{ℓ1,ℓ2}

)

The result follows from Assumption (2.64) and the definition of εℓ1,ℓ2 .

2.3.6 Proof of Theorem 2.1.1

In this section, we make the following assumptions of Theorem 2.1.1:

• µX0 converges in law to a deterministic measure m0.

• We have ρr∗∗ ≫ L2 ln(ρ) (2.12)
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The proof is broken down into several lemmas. Let us define for y ∈ X[L] and φ ∈ C2([0, 1])

Gℓyφ(x) := x(1− x)LSℓ(y)φ′(x) + Θ(x)φ′(x) +
1

2
x(1− x)φ′′(x) (2.70)

GℓXt
can be thought of as the generator for the ℓ−th locus. And the limit generator is

∀x ∈ [0, 1], ξ ∈ P([0, 1]), Gξφ(x) :=
(
s(ξ)x(1− x) + Θ(x)

)
φ′(x)+

1

2
x(1−x)φ′′(x) (2.71)

Lemma 2.3.15. Consider a sequence ℓL ≡ ℓ ∈ [L] satisfying (2.13), that is

ρr∗ℓ ≫ L2 ln(ρ)

We have for φ ∈ C2([0, 1])

E
[∫ T

0
du
∣∣∣GℓXu

φ(pℓ(Xu))−GµXu
φ(pℓ(Xu))

∣∣∣] −→ 0 (2.72)

Furthermore, for any φ ∈ C2([0, 1]) we have

E

 1

L

∑
ℓ∈[L]

∫ T

0
du
∣∣∣GℓXu

φ(pℓ(Xu))−GµXu
φ(pℓ(Xu))

∣∣∣
 −→ 0 (2.73)

Proof. We first consider the case where ℓL ≡ ℓ is such that ρr∗ℓ ≫ L2 ln(ρ). For any t ∈ [0, T ]
we have from (2.70)∣∣∣GℓXt

φ(pℓ(Xt))−GµXt
φ(pℓ(Xt))

∣∣∣
=
∣∣∣LSℓ(Xt)− s(µXt)p

ℓ(Xt)(1− pℓ(Xt))
∣∣∣× |φ′(pℓ(Xt))|

Observe that∣∣∣LSℓ(Xt)− s(µXt)p
ℓ(Xt)(1− pℓ(Xt))

∣∣∣ ≤ L
∣∣∣Sℓ(Xt)− Sℓ(π(Xt))

∣∣∣
+
∣∣∣LSℓ(π(Xt))− s(µXt)p

ℓ(Xt)(1− pℓ(Xt))
∣∣∣

The expectation of the integral of the first term is o(1) from (2.63) in Proposition 2.3.13.
The expectation of the second term is O

(
1
L

)
from Lemma 2.3.6. To prove (2.73), write∣∣∣(GℓXt

−GµXt

)
φ(pℓ(Xt))

∣∣∣
=

1

L

∑
ℓ∈[L]

∣∣∣LSℓ(Xt)− s(µXt)p
ℓ(Xt)(1− pℓ(Xt))

∣∣∣× |φ′(pℓ(Xt))|

≤ ||φ′||∞
L

∑
ℓ∈[L]

L
∣∣∣Sℓ(Xt)− Sℓ(π(Xt))

∣∣∣
+

||φ′||∞
L

∑
ℓ∈[L]

∣∣∣LSℓ(π(Xt))− s(µXt)p
ℓ(Xt)(1− pℓ(Xt))

∣∣∣
The expectation of the integral of the first term is o(1) from (2.61) in Proposition 2.3.13, and
the second term is small from Lemma 2.3.6.

To get the convergence of (µXt)t∈[0,T ] we follow a classical proof, with first a tightness
Lemma, then proof that we get the correct martingale problem in the limit.
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Lemma 2.3.16. Consider a sequence ℓL ≡ ℓ ∈ [L] such that (2.13) is satisfied, that is,

ρr∗ℓ ≫ L2 ln(ρ)

The law of (pℓ(Xt))t∈[0,T ] ∈ D([0, T ], [0, 1]) is tight for the Skorokhod J1 topology. Further-
more, the allelic law process (µXt)t∈[0,T ] ∈ D([0, T ],P([0, 1])) is tight for the Skorokhod J1
topology.

Proof. To prove tightness of pℓ(Xt)t∈[0,T ] in D([0, T ], [0, 1]) for the Skorokhod J1 topology, we
use the classical Rebolledo criterion (see Theorem C.4 in [157]). We first separate martingale
and finite variation part from the SDE (2.38).

pℓ(Xt)− pℓ(X0) =

∫ t

0
GℓXu

Id(pℓ(Xu)))du+

∫ t

0

√
pℓ(Xu)(1− pℓ(Xu))dB̂

ℓ
u =: V ℓ

t +M ℓ
t

The Rebolledo criterion has three conditions:

1. pℓ(X0) is tight.

2. V ℓ
t and M ℓ

t are tight for all t ∈ [0, T ].

3. For A = V ℓ or A = ⟨M ℓ⟩QV we have

∀ε > 0, lim
δ↓0

lim sup
L→+∞

sup
(t1,t2)∈Sδ

P [|At2 −At1 | > ε] = 0

where Sδ is the set of pairs of stopping times (t1, t2) for the natural filtration of the
process (Ft)t∈[0,T ], such that |t1 − t2| < δ a.s.

Since pℓ(X0) lives in [0, 1], the first condition is trivially satisfied. We turn to the second

condition. Since ⟨M ℓ⟩QVt ≤ t from Corollary 2.3.5, M ℓ
t is tight. Furthermore, since V ℓ

t =

pℓ(Xt)−pℓ(X0)−M ℓ
t , it is necessarily tight. The third condition for A = ⟨M ℓ⟩QV is trivially

satisfied for ⟨M ℓ⟩QV since for t ∈ [0, T ] we have d
dt ⟨M

ℓ⟩t ≤ 1. For A = V ℓ, we write∫ t2

t1

|GℓXu
Id(pℓ(Xu)))|du

≤
∫ t2

t1

|GµXu
Id(pℓ(Xu)))|du+

∫ T

0

∣∣∣GℓXu
Id(pℓ(Xu)))−GµXu

Id(pℓ(Xu)))
∣∣∣ du

The first term can be bounded by C|t1 − t2| for some deterministic constant C, the second
term goes to 0 in probability from (2.72) in Lemma 2.3.15 uniformly in t1, t2. This yields the
tightness of (pℓ(Xt))t∈[0,T ].

To get the tightness of (µXt)t∈[0,T ] ∈ D([0, T ],P([0, 1])), following Theorem 2.1 of [158],
we only need to show that for any φ ∈ C2([0, 1]), the process (< µXt , φ >)t∈[0,T ] is tight. We
may again apply the Rebolledo criterion, writing

< µXt , φ > − < µX0 , φ > =
1

L

∑
ℓ∈[L]

φ(pℓ(Xt))− φ(pℓ(X0)) =
1

L

∑
ℓ∈[L]

V φ,ℓ
t +Mφ,ℓ

t

with

V φ,ℓ
t :=

∫ t

0
GℓXu

φ(pℓ(Xu))du Mφ,ℓ
t :=

∫ t

0
φ′(pℓ(Xu))

√
pℓ(Xu)(1− pℓ(Xu))dB̂

ℓ
u

The condition 1 of the Rebolledo criterion is easily verified, since < µX0 , φ > is tight because
bounded by ||φ||∞. The condition 2 is obtained as above. Indeed, on the one hand, the
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quadratic variation of Mφ,ℓ
t is uniformly bounded by T ||φ′||∞ so Mφ,ℓ

t is tight for any fixed

t ∈ [0, T ]. On the other hand, since pℓ(Xt) is in [0, 1], it is also tight, and therefore V φ,ℓ
t is

tight.

Controlling L−1
∑
ℓ∈[L]

V φ,ℓ
t works just as above, using (2.73) instead of (2.72). We only

need to control the martingale L−1
∑
ℓ∈[L]

Mφ,ℓ
t . We have for t1, t2 ∈ [0, T ]

〈
1

L

∑
ℓ∈[L]

Mφ,ℓ

〉QV
t2

−

〈
1

L

∑
ℓ∈[L]

Mφ,ℓ

〉QV
t1

=
1

L2

∑
ℓ1,ℓ2∈[L]

⟨Mφ,ℓ1 ,Mφ,ℓ2⟩QVt2 − ⟨Mφ,ℓ1 ,Mφ,ℓ2⟩QVt1

Using the Kunita-Watanabe inequality (see Corollary 1.16, chapter IV in [159]), we have

∣∣∣⟨Mφ,ℓ1 ,Mφ,ℓ2⟩QVt2 − ⟨Mφ,ℓ1 ,Mφ,ℓ2⟩QVt1
∣∣∣

≤
√∣∣∣⟨Mφ,ℓ1⟩QVt2 − ⟨Mφ,ℓ1⟩QVt1

∣∣∣× ∣∣∣⟨Mφ,ℓ2⟩QVt2 − ⟨Mφ,ℓ2⟩QVt1
∣∣∣

This is uniformly bounded by ||φ′||2∞ |t2 − t1|, which yields the result.

We can now show that (µXt)t∈[0,T ] converges to a solution of (2.10).

Proof of Theorem 2.1.1 part 1. We will prove for any function φ ∈ C2([0, 1])

< µXt , φ > − < µX0 , φ > −
∫ t

0
< µXu , GµXu

φ > du −→ 0

in probability. Notice that

Mφ
t :=

1

L

∑
ℓ∈[L]

φ(pℓ(Xt))− φ(pℓ(X0))−
∫ t

0
duGℓXu

φ(pℓ(Xu))

= < µXt , φ > − < µX0 , φ > −
∫ t

0
du

1

L

∑
ℓ∈[L]

GℓXu
φ(pℓ(Xu))

is a martingale, which by Itô’s formula and Corollary 2.3.5 satisfies

dMφ
t :=

1

L

∑
ℓ∈[L]

√
pℓ(Xt)(1− pℓ(Xt)) φ

′(pℓ(Xt))dB̂
ℓ
t .

We split the equation between a martingale and non-martingale part

∣∣∣∣< µXt , φ > − < µX0 , φ > −
∫ t

0
du < µXu , GµXu

φ >

∣∣∣∣
= |Mφ

t |+
∫ t

0
du

∣∣∣∣∣∣< µXu , GµXu
φ > − 1

L

∑
ℓ∈[L]

GℓXu
φ(pℓ(Xu))

∣∣∣∣∣∣
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Let us show Mφ
t goes to 0. We have

d ⟨Mφ⟩QVt =
1

L2

∑
ℓ∈[L]

φ′(pℓ(Xt))
2pℓ(Xt)(1− pℓ(Xt))dt

+
1

L2

∑
ℓ1,ℓ2∈[L]
ℓ1 ̸=ℓ2

φ′(pℓ1(Xt))φ
′(pℓ2(Xt)) d ⟨pℓ1(X), pℓ2(X)⟩QVt

≤ 1

L
||φ′||2∞ +

1

L2

∑
ℓ1,ℓ2∈[L]
ℓ1 ̸=ℓ2

||φ′||2∞
∣∣∣Dℓ1,ℓ2(Xt)

∣∣∣ dt
where we used (2.39) from Corollary 2.3.5. It follows

⟨Mφ⟩QVT ≤ 1

L
||φ′||2∞T +

1

L2

∑
ℓ1,ℓ2∈[L]
ℓ1 ̸=ℓ2

||φ′||2∞
∫ T

0

∣∣∣Dℓ1,ℓ2(Xt)
∣∣∣ dt

The first term goes to 0. The expectation of the second term is oP(1) from (2.62) in Propo-
sition 2.3.13. Since the quadratic variation goes to 0, it follows that Mφ goes to zero in the
Skorokhod toplogy from the Dambis, Dubins-Schwartz theorem (Theorem 1.6, chapter V of
[159]).

We now need to control

∫ t

0
du

∣∣∣∣∣∣< µXu , GµXu
φ > − 1

L

∑
ℓ∈[L]

GℓXu
φ(pℓ(Xu))

∣∣∣∣∣∣
≤ 1

L

∑
ℓ∈[L]

∫ T

0
du
∣∣∣GµXu

φ(pℓ(Xu))−GℓXu
φ(pℓ(Xu))

∣∣∣
The result follows from (2.73) from Lemma 2.3.15.

We thus obtain that any subsequential limit of (µXt)t∈[0,T ] must satisfy equation (2.10),
with initial law m0. In particular, this yields existence of a solution to (2.10), which is unique
from Proposition 2.2.3. This completes the proof of the first part Theorem 2.1.1

We conclude with the second part of the Theorem.

Proof of Theorem 2.1.1 part 2. First, notice that for every i ∈ [n], Lemma 2.3.16 implies the

tightness of (pℓ
L
i (X))L≥1. Since a finite union of tight families is tight, we also get tightness

for (pℓ
L
i (X))L≥n,i∈[n]. We will write ℓLi ≡ ℓi to alleviate notations.

For φ ∈ C2([0, 1]n), x ∈ X[L] and y ∈ [0, 1]n we define

Gxφ(y) :=
∑
i∈[n]

Gℓix ⋄i φ(y) +
1

2

∑
i,j∈[n]
i̸=j

∂i,jφ(y)D
ℓi,ℓj (x)

where Gℓx ⋄i φ(y) means Gℓx applied to the function z 7→ φ(y1, . . . , yi−1, z, yi+1, . . . , yn),
evaluated in z = yi. Define Yt := (pℓi(Xt))i∈[n]. We know from Itô’s formula that

Mφ
t := φ(Yt)− φ(Y0)−

∫ t

0
du GXuφ(Yu)
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is a martingale for any φ ∈ C2([0, 1]n). Furthermore, using ⟨p(X)⟩t ≤ t, we can find uniform
bounds for the quadratic variation of Mφ

t . It remains to show∫ t

0
du GXuφ(Yu)−

∫ t

0
du
∑
i∈[n]

Gξu ⋄i φ(Yu) −→ 0

where ξ is the limit of µX. We write∣∣∣∣∣∣
∫ t

0
du GXuφ(Yu)−

∫ t

0
du
∑
i∈[n]

Gξu ⋄i φ(Yu)

∣∣∣∣∣∣
≤
∑
i∈[n]

∫ t

0
du
∣∣∣GℓiXu

⋄i φ(Yu)−GµXu
⋄i φ(Yu)

∣∣∣
+
∑
i∈[n]

∫ t

0
du
∣∣GµXu

⋄i φ(Yu)−Gξu ⋄i φ(Yu)
∣∣+ 1

2

∑
i,j∈[n]
i̸=j

∫ t

0
du
∣∣∣∂i,jφ(Yu)D

ℓi,ℓj (Xu)
∣∣∣

The first term on the right-hand side goes to zero from (2.72) in Lemma 2.3.15. The second
term goes to zero from the first part of the theorem. For the third, we use (2.65) in Proposition
2.3.13.

2.3.7 Convergence of the genetic variance

Here, we show Theorem 2.1.3, which states that the population trait variance converges as
L→ +∞ to the genetic variance.

Theorem 2.1.3. Set εL := 1√
ρr∗∗

and define the genetic variance σ2t := 4E [ft(1− ft)] where

(ft)t∈[0,T ] is solution to (2.10). Under the assumptions of Theorem 2.1.1 we have

E

[
sup

t∈[εL,T ]

∣∣LVarXt [Z(g)]− σ2t
∣∣] −→ 0

Proof. First, note that

VarXt [Z(g)] =
1

L2

∑
ℓ1,ℓ2∈[L]

CovXt [gℓ1 , gℓ2 ]

This implies∣∣LVarXt [Z(g)]− 4E [ft(1− ft)]
∣∣

≤

∣∣∣∣∣∣ 1L
∑
ℓ∈[L]

VarXt [gℓ] − 4E [ft(1− ft)]

∣∣∣∣∣∣ +
1

L

∑
ℓ1,ℓ2∈[L]
ℓ1 ̸=ℓ2

|CovXt [gℓ1 , gℓ2 ]|

≤

∣∣∣∣∣∣ 1L
∑
ℓ∈[L]

4pℓ(Xt)(1− pℓ(Xt)) − 4E [ft(1− ft)]

∣∣∣∣∣∣+ 1

L

∑
ℓ1,ℓ2∈[L]
ℓ1 ̸=ℓ2

∣∣∣Dℓ1,ℓ2(Xt)
∣∣∣

≤ 4 |< µXt , Id(1− Id) > −E [ft(1− ft)]| +
1

L

∑
ℓ1,ℓ2∈[L]
ℓ1 ̸=ℓ2

∣∣∣Dℓ1,ℓ2(Xt)
∣∣∣

where in the second inequality we used that under Xt, gℓ has law 2Ber(pℓ(Xt))− 1. Taking
the expectation on both sides of the inequality, the convergence of the first term on the
right-hand side follows from Theorem 2.1.1. For the second term we use (2.62) in Proposition
2.3.13.
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An ancestral process in an infinite
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Ancestral processes are useful tools to build intuition about the behavior of a population
by describing the ancestry of a randomly sampled organism at present. Unfortunately, no
such process exists for the LD-Wright-Fisher diffusion (2.3). When S = 0, the dual process
is the discrete ancestral recombination graph [160]. When R = 0, the dual process is
the ancestral selection graph [161]. The dual of the LE-Wright-Fisher diffusion (1.7) with
quadratic fitness was obtained in [162]. In this chapter we will present an ancestral process
when Σ = 0 (no genetic drift). This process helps build intuition about the evolution of a
population and the interaction between selection and recombination, but the greatest interest
of this ancestral process is negative: in Section 3.2.2, we will see that it is simply not possible
to find an ancestral process to the general LD-Wright-Fisher diffusion with genetic drift. The
ancestral process we will study works as follows (see Figure 3.1): to sample a genome at time
T , we do

1. Go back to time 0 under the action of recombination and mutation
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2. Sample ancestral genomic components with law X0 and mutations with law (Lℓ)ℓ∈[L].

3. Going forward in time, decide selection events based on the deterministic probabilities
that a block is outcompeted by an organism randomly sampled within the population.

This method can help clarifying the use by articles such as [163] of heuristics to determine
the ”effective chromosome block length”, that is, the typical length of a chromosome block
on which the effect of selection dominates that of recombination.

3.1 Definitions and notation

We will use the notation □[L] := {−1,+1}L,X[L] := P(□[L]) from Section 1.2.2 (though the
model can trivially be extended to a finite number of alleles per locus as long as mutations
are specified by the House-of-Cards model [164]). We recall that for X ∈ X[L], XA is the
marginal of X on □A := {−1, 1}A. We recall the recombinator R, the selector S and the
mutator Θ

R :x 7−→
∑

∅⊊I⊊[L]

ν(I)(xI ⊗ xIc − x) (3.1)

S :x 7−→
(
Covx

[
W (g),1[g=γ]

])
γ∈□[L]

(3.2)

Θ :x 7−→
∑
ℓ∈[L]

|θℓ|
(
x[L]∖{ℓ} ⊗ Lℓ − x

)
(3.3)

where W : □[L] → R is the log-fitness function (on which no assumption is made), ν is the

recombination measure, θ+ℓ , θ
−
ℓ are mutation rates, and we define the total mutation rate and

the mutational distribution at locus ℓ as

|θℓ| :=θ+ℓ + θ−ℓ Lℓ :=
θ−ℓ
|θℓ|

δ−1 +
θ+ℓ
|θℓ|

δ+1

We consider that ν is non-degenerate, that is, that for any pair ℓ1, ℓ2 ∈ [L] with ℓ1 ̸= ℓ2,
ν{ℓ1,ℓ2}({ℓ1}) > 0 where νA is the marginal of ν on A. We define ν̂A as the marginal of ν on
A, excluding (∅, A), that is

∀I ⊆ A, ν̂A(I) = νA(I)1[I /∈{∅,A}]. (3.4)

We recall the following definition for any subset A ⊆ [L]

βA :=
∑

∅⊊I⊊A

νA(I). (3.5)

Throughout, we fix (Xt)t∈[0,T ] as the solution to the recombination-selection-mutation
equation

d

dt
Xt = R(Xt) + S(Xt) + Θ(Xt) (3.6)

with initial condition X0 ∈ X[L].
In particular, with respect to the LD-Wright-Fisher diffusion (1.5), we take the recombi-

nation rate ρ to be equal to 1. In this setting, the strong recombination limit corresponds to
the limit max

ℓ∈[L]
|θℓ|+max

□[L]

|W | ≪ 1.

3.1.1 Forward and backwards processes.

We will be handling processes which are either defined from an initial condition at time 0
(forward in time) or from an initial condition at time T (backwards in time). To make things
more convenient, we will always denote forward time with the letter t or τ and backwards
time with the letter u or υ.

78



CHAPTER 3. AN ANCESTRAL PROCESS IN AN INFINITE POPULATION

Recombination

Mutation

Selection

A

B

C

Figure 3.1: The ancestral process. First, we go backwards in time under mutation and
selection. Then we pick the ancestors and the mutants. Then we go forward in time, with
possible selection events replacing a block with a different one.

79



3.1. Definitions and notation

3.1.2 Sub-partitions and recombination-mutation process

A sub-partition of [L] is a set of disjoint subsets of [L]. We let S be the set of sub-
partitions of [L]. We let Π∖r I be the subpartition obtained by removing I from the block
of Π. Formally

Π∖r I := {A ∩ ([L]∖ I) |A ∈ Π, A ̸= I}.

We say a subpartition Π1 is finer than a subpartition Π2 if for any block I ∈ Π1, we have
a block J ∈ Π2 with I ⊆ J . We then write Π1 ⪯ Π2. A right-continuous Markov process
(Πu)u∈[0,T ] such that Πu1 ⪯ Πu2 whenever u1 ≤ u2 is called a subpartitioning process.

We can now define the recombination-mutation process, which takes us backwards from
time T to time 0.

Definition 3.1.1 (Recombination-mutation process). For any subset A ⊆ [L], we define
the recombination-mutation process started at Ξ ∈ S as the subpartitioning process
(Πu)u∈[0,T ] such that Π0 = Ξ, and with transition rates

1. Πu → Πu ∖r {ℓ} with rate |θℓ|, for each ℓ ∈ Πu.

2. Πu → (Πu ∖ I) ∪ {I ∩ J , I ∩ J c} with rate νI(J ), for each I ∈ Πu and subset J with
∅ ⊊ J ⊊ I.

We fix a probability space (Ω,F ,P[0,T ],Ξ) on which a process (Πu)u∈[0,T ] is defined such that
for any Ξ ∈ S , (Πu)u∈[0,T ] under P[0,T ],Ξ is the recombination-mutation process started at Ξ.

We let (F−
u )u∈[0,T ] be the filtration of (Πu)u∈[0,T ], called the backwards filtration.

3.1.3 Warm-up: duality for the recombination-mutation process

The following Theorem is taken from [160] when there is no coalescence (Σ = 0).

Theorem 3.1.2. The recombination-mutation process Xt solution to

d

dt
Xt = R(Xt) + Θ(Xt)

is dual to the process Πu. In particular, sample G ∈ □[L] such that conditional on F−
T , we

have

• ∀A ∈ ΠT , G|A has law XA
0

• for any ℓ ∈ [L] not in ΠT , Gℓ has law Lℓ.

Then G has law XT .

3.1.4 Genomic components process

We let Π̃t := ΠT−t be the forward-time process associated with Π. We recall that for an
element γ ∈ □[L] and a subset I ⊆ [L], γ|I = (γℓ)ℓ∈I is the restriction of γ to I.

Definition 3.1.3 (Genomic components process). The genomic components process is the
□[L]−valued process (Gt)t∈[0,T ] ≡ ((Gt,ℓ)ℓ∈[L])t∈[0,T ] generated conditional on (Πu)u∈[0,T ] as
follows

• For any A ∈ Π̃0, (G|A
0 ) is independently sampled with law XA

0 .

• For ℓ not in Π̃0, G0,ℓ is independently sampled with law Lℓ.
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• At time t ∈ [0, T ], if A ∈ Π̃t, then for any γ ∈ □A, we have the transition G|A
t → γ with

rate (
Xt

[
W (g)

∣∣ g|A = γ
]
−Xt

[
W (g)

∣∣ g|A = G|A
t

])
+
Xt[1[g|A=γ]]

where Xt[·
∣∣·] is the conditional expectation and a+ := max{a, 0}. Such a transition is

called a selective collision on the block A of Π̃t.

The smallest filtration (F+
t )t∈[0,T ] such that F−

T ⊂ F+
0 and (Gt)t∈[0,T ] is F+−adapted is

called the forward filtration.

3.1.5 No-singletons genomic components process

Here we build another ancestral process, which only accounts for collisions on blocks of size
greater than 2. Specifically, conditional on (Πu)u∈[0,T ], we define for ℓ ∈ [L] the last time at
which ℓ is in a singleton as

τℓ = sup{t ∈ [0, T ], {ℓ} ∈ Π̃t} (3.7)

with sup ∅ = 0. We then define (Ht)t∈[0,T ] as follows

• Initial conditions:

– If A ∈ Π̃0, then sample H|A
0 with distribution XA

0 .

– For ℓ such that τℓ > 0, sample H0,ℓ with law X
{ℓ}
τℓ

– If ℓ is such that H0,ℓ was not yet sampled, sample it with law Lℓ.

• For t ∈ [0, T ], if A ∈ Π̃t is such that #A ≥ 2, then H|A
t jumps to γ ∈ □A with rate(

Xt

[
W (g)

∣∣ g|A = γ
]
−Xt

[
W (g)

∣∣ g|A = H|A
t

])
+
Xt[1[g|A=γ]]

3.2 Main result

We state the main result fixing an initial condition Ξ for (Πu)u∈[0,T ].

Theorem 3.2.1. The law of GT under P[0,T ],Ξ is
⊗

I∈ΞXI
T . Furthermore, consider υ a

[0, T ]−valued F−−stopping time. Then conditional on F−
υ , the (G|I

T−υ)I∈Πυ are independent

F+
T−υ-measurable variables such that G|I

T−υ has law XI
T−υ.

The same holds replacing (Gt)t∈[0,T ] with (Ht)t∈[0,T ].

The proof is in Section 3.3.
One conceptually interesting consequence of this Theorem is that LD between loci is

created by selection collisions on (Ht)t∈[0,T ]. In particular, if recombination is strong, such
collisions will become rarer, which implies that the population will get closer to LE. Condi-
tional on a rare collision having occurred, we may ask whether this collision took place on a
large or a small block.

3.2.1 Application: the fundamental difference between free recombination
and single-point crossing-over

Here we will briefly illustrate one application of Theorem 3.2.1. We will consider two possible
recombination mechanisms, namely free recombination νfr and single-point crossing-over νsp
defined with

νfr :=
1

2L

∑
I⊆[L]

δI νsp :=
1

L− 1

∑
ℓ∈[L−1]

δ[ℓ]
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3.2. Main result

We pick a fitness function corresponding to stabilizing/disruptive selection

W (g) =κZ(g)2 Z(g) =
∑
ℓ∈[L]

gℓ

for some parameter κ ∈ R. Under stabilizing selection (κ < 0), the appearance of LD is
known as the Bulmer effect [98], and under disruptive selection (κ > 0) the appearance of LD
has been compared to the paramagnetic/ferromagnetic phase transition of the Ising model
[107]. We will heuristically show the following dichotomy

• Under free recombination, if we are close to LE, most selection collisions occur on large
blocks.

• Under single-point crossing-over, if we are close to LE, most selection collisions occur
on small blocks.

Method

Fix a locus ℓ0 ∈ [L], assuming L ≫ 1. For u ∈ [0, T ], write Aℓ0(u) for the block of Πu
containing ℓ0 with Aℓ0(u) = ∅ if ℓ0 is not in Πu. Then we know from Theorem 3.2.1 that

GT−u has law X
Aℓ0

(u)

T−u . In particular, the rate at which a selection collision occurs at GAℓ0
(u)

T−u
is VAℓ0

(u),T−u where for A ⊆ [L] we define the rate of collisions

VA,t := XA⊗2
t

[∣∣∣Xt

[
W (g)

∣∣ g|A = g(1)
]
−Xt

[
W (g)

∣∣ g|A = g(2)
]∣∣∣]

where under XA⊗2
t , g(1), g(2) are two i.i.d random variables with law XA

t .
Understanding the appearance of linked selection requires tackling two questions

• What is the typical size of Aℓ0(u) ?

• What is the typical value of VA,t for a given block A ?

In other words, we want to approximate the distribution of selective collisions on [0, T ] with

Dℓ0(du) := VAℓ0
(u),T−udu.

Size of the Aℓ0(u)

The typical size of Aℓ0(u) can be approximated deterministically. We claim

Claim 3.2.2. Let us assume Θ = 0 (negligible mutations), and L ≫ 1. Under free recombi-
nation if 0 ≤ uL, we have

E [#Aℓ0(uL)] = 1 + (L− 1)e−uL/2.

Under single-point crossing-over if 1 ≪ uL ≤ L we have

#Aℓ0(uL) ≍
L

1 + uL
.

Here, the notation X ≍ Y means X/Y is tight and does not converge to zero.

Proof under free recombination. The process (Aℓ0(u))u∈[0,T ] is a Markov process such that

the transition I → J occurs with rate νI(J ) for ℓ0 ∈ J ⊊ I ⊆ [L].
For free recombination, one easily finds νI(J ) = 21−#I . In particular, the process

(#Aℓ0(u))u∈[0,T ] is a pure-death process with initial condition L and transition rates

82



CHAPTER 3. AN ANCESTRAL PROCESS IN AN INFINITE POPULATION

i→ j with rate
(
i
j

)
21−i for i > j ≥ 1.

This can be represented as a process (Nu)u≥0 such that at rate 1, Nu jumps to

1 +
∑

i∈[Nu−1]

Bi

for some independent Bernoulli(1/2) variables (Bi)i∈[Nu]. At time uL, the number KuL of
jumps of NuL is Poisson(uL) distributed. Furthermore, we have

NuL =
∑
i∈[L]

∏
n∈[KuL

]

Bi,n

for i.i.d Bernoulli variables (Bi,n)i∈[L],n∈[KuL
]. In particular,

E [NuL ] = 1 + (L− 1)E
[
2−KuL

]
Because KuL is a Poisson(uL) variable, we have E

[
2−KuL

]
= e−uL/2. This yields the result.

Proof under single-point crossing-over. Under single-point crossing-over, let us consider the
left-hand size of Aℓ0(u) defined as

#lAℓ0(u) := #([ℓ0 − 1] ∩Aℓ0(u)).

For n < ℓ0, the event [#lAℓ0(uL) > n] corresponds to the fact that Π no recombination events
on the block {ℓ0 − n − 1, . . . , ℓ0} during the interval [0, uL]. This is the probability that a
Poisson variable with parameter (n− 1)uL is equal to zero, and therefore

P[#lAℓ0(uL) > n] = e−(n−1)uL .

In particular, because L ≫ 1, we see that #lAℓ0 is of order L/uL. A symmetric reasoning
yields the result for the right-hand size of Aℓ0(u).

Rate of collisions

Let us now compute VA,t for A such that #A≫ 1. We assume

• that Xt[gℓ] = 0 for all ℓ ∈ [L]

• that Xt ≃
⊗

ℓ∈[L]X
{ℓ}
t (the population is close to LE)

• that Xt ≃ X0 (the population does not evolve much on the timescale considered).

The first assumption is made for simplicity. If we consider a large subset A ⊆ [L], we can
approximate Z(g) under Xt with z

A + zA
c
, where zA and zA

c
are independent normally dis-

tributed variables with mean zero and respective variances σ2A = #A
L σ2L and σ2Ac =

(L−#A)
L σ2L,

where σ2L is the variance of gℓ for a typical locus ℓ.
We then compute

VA,t ≃ |κ|E
[∣∣E [(zA1 + zA

c
)2 | zAc]− E

[
(zA2 + zA

c
)2 | zAc]∣∣]

where zA1 , z
A
2 are independent with law N (0, σ2A). We find

VA,t ≃ |κ|E
[∣∣(zA1 − zA2 )(z

A
1 + zA2 )

∣∣]
which yields

VA,t ≍ |κ|σ2A ≃ |κ|σ2L
#A

L
.

where ≍ is heuristically used from now on to describe the expected order of magnitude of
VA,t.
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Conclusion: distribution of collisions

We find that Dℓ0(du) is of order

|κ|σ2L
#Aℓ0(u)

L
du

We may now state the following crucial dichotomy

• Under free recombination, we have for u ∈ [0, log2(L)]

Dℓ0(du) ≍ |κ|σ2Le−u/2du

The total rate of collisions is ∫ log2(L)

0
Dℓ0(du) ≍ |κ|σ2L

In particular, selection collisions may appear as soon as |κ|σ2L is non-negligible, and
the time at which these selection events occur is distributed as an Exponential(ln(2))
variable. At such a time, the typical size of Aℓ0 is Le−u/2 ≍ L.

• Under single-point crossing-over, we have for u ∈ [0, L]

Dℓ0(du) ≍ |κ|σ2L
du

1 + u

The total rate of collisions is ∫ L

0
Dℓ0(du) ≍ |κ|σ2L ln(L)

In particular, selection collisions may appear as soon as |κ|σ2L ln(L) is non-negligible.
The time at which these selection collisions occur is of order L. At such a time, the
typical size of Aℓ0 is of order 1.

3.2.2 Why can’t we add genetic drift ?

The algorithm used to generate GT seems at first glance like it could easily incorporate genetic
drift: one would simply need to allow coalescence in the subpartition process (Πu)u∈[0,T ]. That
is, one would allow two blocks of Πu to coagulate with rate 1. This is formally possible, and
the resulting object may present interesting features. Nevertheless, Theorem 3.2.1 cannot
hold in this setting because the process (Xt)t∈[0,T ] used to define (Gt)t∈[0,T ] should not be
independent of the coalescence process. This is because the coalescent process comes down
from infinity, which means a coalescence event between two organisms some time u in the
past which affects the present potentially impacts a significant fraction of the population
[165]. To put it another way, we should either generate (Xt)t∈[0,T ] conditional on (Πu)u∈[0,T ]
or the other way around, before we can generate (Gt)t∈[0,T ].

3.3 Proof of Theorem 3.2.1

We will obtain the result for (Gt)t∈[0,T ] assuming no mutations (Θ = 0), and discuss how to
adapt the proof for mutations in Section 3.3.6. In Section 3.3.7, we obtain as a corollary the
result for (Ht)t∈[0,T ].

The proof is structured as follows: we construct a forward stochastic process (G̃t)t∈[0,T ]
such that G̃t has law XA

t for some subset A ⊆ [L], then we show that we can construct
a process (G̃t)t∈[0,T ] from Poisson point processes. Standard properties from Poisson point
processes let us reverse time, that is, we may generate τ the ”last recombination event on
[0, T ]”, and then generate (G̃t)t∈[τ,T ] conditional on this last recombination event. Iterating
this construction, we obtain (Gt)t∈[0,T ].
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3.3.1 The marginal forward genome process

We fix a subset A ⊆ [L].
For I ⊆ A, γ(1) ∈ □I , γ

(2) ∈ □A∖I , we let γ(1) ⊗ γ(2) be the element of □A such that its
restriction to I is γ(1) and its restriction to A∖ I is γ(2).

For A ⊆ [L], we define the A-marginal forward genome process to be the right-
continuous □A−valued Markov process (G̃t)t∈[0,T ] with initial condition G̃0 sampled with law

XA
0 and transition rates

• G̃t → G̃|I
t ⊗ γ with rate ν̂A(I)XA∖I

t (γ) for any I with ∅ ⊊ I ⊊ A and γ ∈ □A∖I .

• G̃t → γ with rate (Xt[W (g)|g|A = γ]−Xt[W (g)|g|A = G̃t])+XA
t (γ) for γ ∈ □A.

Proposition 3.3.1. If G̃t is the A−marginal forward genome process, then the law of G̃t is
XA
t .

Proof. We prove the result for A = [L] to alleviate notation, the general result follows from
the same computations using the marginal operators R̂A and SA from Proposition 2.3.3.

We simply compute the generator Q̃t of G̃t at time t, seen as a transition-rate matrix
(Q̃t(γ

(1), γ(2)))γ1,γ(2)∈□[L]
such that Q̃t(γ

(1), γ(2)) is the rate of transition from γ(1) to γ(2).

We write the decomposition
Q̃t = R̃t + S̃t

where R̃t, S̃t correspond to the two types of jumps of G̃t. We must show

(R̃t)
⊤Xt =R(Xt) (S̃t)

⊤Xt =S(Xt)

where ⊤ denotes matrix transposition and Xt is seen as a column vector.
It is easy to find that if γ(1), γ(2) ∈ □[L] with γ

(1) ̸= γ(2), then the recombination jump

from γ(1) to γ(2) occurs with rate

R̃t(γ
(1), γ(2)) =

∑
∅⊊I⊊A

ν(I)1[γ(2)|I=γ(1)|I ]X
Ic

t (γ(2)|I
c
)

and the diagonal coefficient is

R̃t(γ
(1), γ(1)) = −

∑
γ(2)∈□[L]∖{γ(1)}

R̃t(γ
(1), γ(2))

From there we obtain for any γ ∈ □[L](
(R̃t)

⊤Xt

)
(γ) =

∑
γ′∈□[L]∖{γ}

R̃t(γ
′, γ)Xt(γ

′)− R̃t(γ, γ
′)Xt(γ)

=
∑

∅⊊I⊊A

ν(I)
∑

γ′∈□[L]∖{γ}

(
1[γ|I=γ′|I ]X

Ic

t (γ|I
c
)Xt(γ

′)

−1[γ′|I=γ|I ]X
Ic

t (γ′|I
c
)Xt(γ)

)
=
∑

∅⊊I⊊A

ν(I)
(
XI
t (γ

|I)XIc

t (γ|I
c
)−Xt(γ)

)
which corresponds to the recombinator R.

Similarly, if γ(1), γ(2) ∈ □[L] with γ(1) ̸= γ(2), then the selection jump from γ(1) to γ(2)

occurs with rate

S̃t(γ
(1), γ(2)) =

(
W (γ(2))−W (γ(1))

)
+
Xt(γ

(2))
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and the diagonal coefficient is

S̃t(γ
(1), γ(1)) = −

∑
γ(2)∈□[L]∖{γ(1)}

S̃t(γ
(1), γ(2)).

It follows for any γ ∈ □[L](
(S̃t)

⊤Xt

)
(γ) =

∑
γ′∈□[L]∖{γ}

S̃t(γ
′, γ)Xt(γ

′)− S̃t(γ, γ
′)Xt(γ)

=
∑

γ′∈□[L]∖{γ}

((
W (γ)−W (γ′)

)
+
Xt(γ)Xt(γ

′)

−
(
W (γ′)−W (γ)

)
+
Xt(γ

′)Xt(γ)
)

which can be rewritten(
(S̃t)

⊤Xt

)
(γ) =

∑
γ′∈□[L]∖{γ}

(
W (γ)−W (γ′)

)
Xt(γ)Xt(γ

′)

=W (γ)Xt(γ)−

 ∑
γ′∈□[L]

W (γ′)Xt(γ
′)

Xt(γ)

=CovXt [W (g),1[g=γ]]

which yields the result.

3.3.2 Construction from Poisson point processes

Here we construct G̃T from two independent Poisson point processes (PPP) representing
recombination and selection. Specifically, we let ηR, ηS be PPP defined as follows

• ηR is a PPP on [0, T ]×P(A) with intensity dt⊗ ν̂A, where P(A) is the set of subsets
of A.

• ηS is a PPP on [0, T ]×□A × R+ with intensity
∑

γ∈□A
dt⊗ δγ ⊗ dx.

We construct a process (Ĝt)t∈[0,T ] as follows

• Sample Ĝ0 with law X0.

• If ηR has a point (t, I) then sample g′t with law XA∖I
t , and Ĝ|A∖I

t jumps to g′t

• If ηS has a point (t, γ, x), and if

x < (Xt[W (g)|g|A = γ]−Xt[W (g)|g|A = Ĝt])XA
t (γ)

then Ĝt jumps to γ.

Proposition 3.3.2. The process (Ĝt)t∈[0,T ] is equal in law to the process (G̃t)t∈[0,T ].

Proof. This is a standard result from Poisson point processes, see for instance Theorem 7.6
of [166].

The set on which ηS and ηR have points at the same time-coordinate has probability zero,
and will therefore be ignored.
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3.3.3 Conditioning on the last recombination event

For 0 ≤ a ≤ b ≤ T , define η(a,b] as the restriction of η to (a, b]× E with η∅ = 0.
The goal of this section is to show the following proposition

Proposition 3.3.3. Let (τ, I) be the last point of ηR on [0, T ], with τ = 0 and I = [L] if ηR

is empty.
Then conditional on (τ, I), Ĝτ has law XI

τ ⊗XA∖I
τ and is independent of ηS(τ,T ].

This will be obtained as a corollary of the following proposition. For A ⊆ [L], recall βA
the probability that there is a recombination event within A from (3.5).

Proposition 3.3.4. Let (τ, I) be the last point of ηR on [0, T ]. Consider (τ̃ , Ĩ) sampled
independently of (Ĝt)t∈[0,T ] such that

• τ̃ = (0 ∨ (T − E)) where E has law Exponential(βA)

• If τ̃ = T , Ĩ = [L]. Otherwise Ĩ is independently sampled with law 1
βA
ν̂A(·).

For t ∈ [0, T ], let Ĝt− be the left limit of Ĝ at t with Ĝ0− = Ĝ0.
Then L (τ, I, ηS , Ĝτ−, g′τ ) = L (τ̃ , Ĩ, ηS , Ĝτ̃−, G̃′

τ̃ ) where, conditional on (τ̃ , Ĩ), G̃τ̃ ′ has law
XĨ
τ̃ .

We need the following Theorem (see Theorem 7.4 of [166]).

Theorem 3.3.5 (Memoryless property of PPP). Consider some measurable space E, T > 0
and a non-zero finite measure Λ on E. Consider η a PPP on R+ ×E with intensity dt⊗ Λ.
Generate a process η̂ as follows

• Generate an exponential variable υ with parameter Λ(E).

• Generate a random variable Y with law Λ(·)/Λ(E)

• Generate an independent PPP η′ on R+ × E with intensity dt⊗ Λ

• Set η̂ := ϑυη
′ + δ(υ,Y ), where ϑt is the linear time-shift operator defined as ϑtδ(t0,y0) =

δ(t0+t,y0).

Then L (η) = L (η̂) almost surely.

With this theorem, we may prove the following Lemma

Lemma 3.3.6. Consider some measurable space E, T > 0 and a non-zero finite measure Λ
on E. Consider a PPP η on [0, T ]×E with intensity dt⊗Λ. Consider υ the first time such
that η has a point (υ, Y ), with (υ, Y ) = (+∞, Ỹ ) if η is empty, where Ỹ is independently
sampled with law Λ(·)/Λ(E).

Now, consider an independent variable υ̃ such that with probability e−Λ(E), υ̃ = +∞,
otherwise υ̃ has law Exponential(Λ(E)) conditioned on being smaller than T .

Then L (η(υ,T ], υ, Y ) = L (η(υ̃,T ], υ̃, Ỹ ).

Proof. We consider a PPP η̂ on R+ × E, and in particular almost surely

L (η̂(0,T ]) = L (η).

Then Theorem 3.3.5 tells us that η̂ is equal in distribution to ϑυ̂η
′ + δ(υ̂,Ỹ ) where η′ is

independent of (υ̂, Ỹ ) and υ̂ has law Exponential(Λ(E)).
The restriction of η̂ to (υ, T ] is equal in distribution to ηυ, and is also equal in distribution

to the restriction of η′ to (0, T − υ̃]. The fact that the restriction of η′ to (0, T − υ̃] is
equal in distribution to η(υ̃,T ] follows from the invariance of time-homogeneous PPP by time
translations (see Theorem 7.4 of [166]).
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Proof of Proposition 3.3.4. The event [τ = 0] and [τ̃ = 0] have the same probability, and in
both cases Ĝ0 has distribution XA

0 . We therefore work on the events [τ > 0] and [τ̃ > 0].

We know that Ĝτ− is a function of ηR(0,τ), η
S
(0,τ) and (g′ti)i:ti<τ , where ti are the times at

which ηR(0,τ) has points. In particular, conditional on τ , Ĝτ− is independent of ηR[τ,T ]. From
Lemma 3.3.6 applied to υ := T − τ , we have

L (τ, I, ηR(0,τ), η
S , (g′ti)ti<τ , g

′
τ ) = L (τ̃ , Ĩ, ηR(0,τ̃), η

S , (g′ti)i:ti<τ̃ , G̃
′
τ̃ ).

This yields the result.

Proof of Proposition 3.3.3. From Proposition 3.3.4 and Propostion 3.3.2, we know that Ĝτ−
conditional on (τ, I, g′τ ) has law Xτ . It follows from the definition of Ĝ that Ĝ|I

τ conditioned

on τ has law XI
τ , whereas Ĝ

|A∖I
τ = g′τ conditioned on (τ, I) has law XA∖I

τ . The independence
of Ĝτ and ηS(τ,T ] conditional on (τ, I) is obtained from the independence of ηS(τ,T ] and ηS(0,τ ]
conditional on τ , and the fact that Ĝτ is only a function of (ηR(0,τ), η

S
(0,τ), (g

′
ti)i:ti≤τ , I).

3.3.4 Consistency property

We now turn to (Gt)t∈[0,T ] to obtain a consistency result. For 0 ≤ a < b ≤ T and Ξ ∈ S ,
we write P[a,b],Ξ for the law of ((Πu)u∈[T−b,T−a], (Gt)t∈[a,b]) defined analogously to the general
process, but on the interval [a, b] with initial condition ΠT−b = Ξ.

Proposition 3.3.7. Consider ((Πu)u∈[υ,T ], (Gt)t∈[0,T−υ]) with law P[0,T ],Ξ for some Ξ ∈ S .

For any F−−stopping time υ, ((Πu)u∈[υ,T ], (Gt)t∈[0,T−υ]) conditional on F−
υ has law

P[0,T−υ],Πυ
.

Proof. The fact that (Πu)u∈[υ,T ] under P[0,T ],Ξ, conditional on F−
υ , has the same law as

(Πu)u∈[0,T−υ] under P[0,T−υ],Πυ
is a standard application of the strong Markov property. Fur-

thermore, by construction GT−υ conditional on (Πu)u∈[υ,T ] is independent of F−
υ . The result

follows.

3.3.5 Iterative backwards construction and proof of the theorem

Proof of Theorem 3.2.1. We will prove that for Ξ ∈ S , GT under P[0,T ],Ξ has the same

law as (G̃I
T )I∈Ξ where (G̃I

t )t∈[0,T ],I∈Ξ are independent processes such that (G̃I
t )t∈[0,T ] is an

I−marginal forward genome process. The theorem follows from Proposition 3.3.1 and Propo-
sition 3.3.7.

We prove the result by recursion on Ξ. Suppose Ξ only has singletons

Ξ = {ℓi, i ∈ [n]}.

for some (ℓi)i∈[n]. Then η
R has intensity 0 and in particular GT has the same law as indepen-

dent processes (G̃I
t )t∈[0,T ],I∈ΠT

.

Suppose the result holds when Ξ contains sets of size at most k for k ≥ 1. Consider
Ξ = {A} where #A = k + 1. Define υ as the time of the first jump of (Πu)u∈[0,T ], with
υ = +∞ if ΠT = Π0. On the event [υ = +∞], (Gt)t∈[0,T ] is equal in distribution to the

A-marginal forward process (G̃At )t∈[0,T ], conditioned not to have recombination events.

On the event [υ < T ], we know from Proposition 3.3.7 that GT−υ has law P[0,T−υ],Πυ
. From

the recursion hypothesis, writing Πυ = {I, A ∖ I}, this implies that GT−υ has law XI
T−υ ⊗

XA∖I
T−υ . But this means GT is equal in distribution to a process obtained by sampling (υ, I),

sampling GT−υ with law XI
T−υ⊗XA∖I

T−υ , sampling ηS(T−υ,T ], and then generating (Gt)t∈[T−υ,T ].
It follows that GT is equal in distribution to ĜT from Proposition 3.3.4. This proves the result
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when Ξ = {A} with #A = k+1. This result is straightforwardly extended to any Ξ ∈ S such

that the largest block of Ξ has length k + 1 by noticing that the restrictions (Π
|I
u )u∈[0,T ],I∈Ξ

are independent, where for Π ∈ S and I ⊆ [L] we define the marginal of Π on I as

Π|I := {A ∩ I, A ∈ Π}.

3.3.6 Adding mutations

Mutations are handled with mutation collisions. In the definition of the marginal forward
genomic process (G̃t)t∈[0,T ] in Section 3.3.1, a third kind of jump occurs: with rate |θℓ|, G̃t,ℓ
jumps to ǧt,ℓ independently sampled with law Lℓ. This process can be represented using
a PPP ηΘ on [0, T ] × [L] × {−1,+1} with intensity

∑
ℓ∈A |θℓ|dt × δℓ × Lℓ. Recall (ηR, ηΘ)

can be represented as a couple (ηR+Θ, Y ), where ηR+Θ is a PPP on [0, T ] with intensity
βA+

∑
ℓ∈A |θℓ| and for any point t of ηR+Θ, Yt is an independently sampled random variable

determining whether the jump at t is a mutational collision or recombination collision (see
Theorem 5.6 of [166]). Therefore, we can use the same kind of arguments as in Section 3.3.3,
to obtain that if υ is the last jump of ηR + ηΘ, then G̃υ− has law Xυ− and is independent of
what the event at υ is.

We may then conclude the proof of Theorem 3.2.1 as above with a recursion on the size
of the largest block of Ξ.

3.3.7 Proof for Ht

Define the set of singletons
T := {ℓ ∈ [L], τℓ > 0}

Let ℓ0 be a latest singleton, that is, such that τℓ0 ≥ τℓ for ℓ ̸= ℓ0. Conditional on τℓ0 = 0,
(Ht)t∈[0,T ] and (Gt)t∈[0,T ] clearly have the same distribution.

Notice T − τℓ0 is a F−−stopping time, for which ℓ0 is measurable. It follows from the

first part of the Theorem that Gτℓ0 ,ℓ0 has law X
{ℓ0}
τℓ0

, and that G[L]∖{ℓ0}
τℓ0

is independent of

Gτℓ0 ,ℓ0 , conditional on F−
T−τℓ0

. We may then iterate the argument to show that conditional

on (τℓ)ℓ∈[L], the (Gτℓ,ℓ)ℓ∈T are independent such that L (Gτℓ,ℓ) = X
{ℓ}
τℓ , and are independent

of G[L]∖T
0 .
In particular, we have from the definition of H:

L
(
(Gτℓ,ℓ)ℓ∈T ,G

[L]∖T
0

)
= L

(
(Hτℓ,ℓ)ℓ∈T ,H

[L]∖T
0

)
(3.8)

As in Section 3.3.2, we can construct GT from (F−,G0) using an independent PPP ηS on
[0, T ]×

⋃
A⊆[L]□A ×R+ with constant intensity. Specifically, if A ∈ Π̃t and if ηS has a point

on (t, γ, x) for γ ∈ □A, then G|A
t jumps to γ as long as

x <
(
Xt

[
W (g)

∣∣ g|A = γ
]
−Xt

[
W (g)

∣∣ g|A = H|A
t

])
+
Xt[1[g|A=γ]].

and similarly H|A
t jumps to γ with the same rate, provided #A > 1.

We get the result by combining (3.8) with the fact that the restriction of ηS to [0, T ] ×⋃
A⊂[L];#A>1□A × R is independent from (F−, (Gτℓ,ℓ)ℓ∈T ,G

[L]∖T
0 ).
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Chapter 4

Focus on stabilizing selection.

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Description of the population model . . . . . . . . . . . . . . . . . 93

4.2.1 The individual-based model . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.2 Three trait values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2.3 Diffusion approximation . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Macroscopic observables from gene’s eye view . . . . . . . . . . . 96

4.3.1 Locus dynamics and mean field approximation . . . . . . . . . . . . 96

4.3.2 Bridging microscopic and macroscopic scales . . . . . . . . . . . . . 97

4.3.3 Selection regimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.4 Trait dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4.1 Describing a polygenic system from the gene’s eye-view . . . . . . . 103

4.4.2 On the importance of trait mutational bias . . . . . . . . . . . . . . 104

4.4.3 Example of a practical application: moderate selection and human
height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4.4 Applicability to GWAS data . . . . . . . . . . . . . . . . . . . . . . 105

4.4.5 Extensions and applications . . . . . . . . . . . . . . . . . . . . . . . 106

4.A Model and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.A.1 Miscellaneous notations . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.A.2 Individual-based model . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.A.3 Representation from allele frequencies . . . . . . . . . . . . . . . . . 108

4.A.4 Typical locus and genetic architecture . . . . . . . . . . . . . . . . . 108

4.A.5 Wright-Fisher diffusion . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.B Outline of the derivation . . . . . . . . . . . . . . . . . . . . . . . . 108

4.B.1 The polygenic equation from the gene’s eye view . . . . . . . . . . . 109

4.B.2 Simplifying assumptions on the parameters . . . . . . . . . . . . . . 111

4.B.3 Necessary assumptions for consistency . . . . . . . . . . . . . . . . . 112

4.C The diffusion approximation . . . . . . . . . . . . . . . . . . . . . . 112

4.C.1 First moment computation . . . . . . . . . . . . . . . . . . . . . . . 113

4.C.2 Selection coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.C.3 Second moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.D The polygenic equation from the gene’s eye-view . . . . . . . . . 115

4.D.1 Dynamics of the trait mean . . . . . . . . . . . . . . . . . . . . . . . 116

91



4.1. Introduction

4.D.2 Decoupling of the trait and the typical locus . . . . . . . . . . . . . 117

4.D.3 Recovering the Ornstein-Uhlenbeck process . . . . . . . . . . . . . . 119

4.E Observables and scalings . . . . . . . . . . . . . . . . . . . . . . . . 119

4.E.1 Observables at stationarity . . . . . . . . . . . . . . . . . . . . . . . 120

4.E.2 Ultra-weak selection regime . . . . . . . . . . . . . . . . . . . . . . . 121

4.E.3 Scaling of observables . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.E.4 The bias-correcting coefficient . . . . . . . . . . . . . . . . . . . . . 123

4.F Breakdown of the polygenic limit . . . . . . . . . . . . . . . . . . . 124

4.F.1 Discussion of (H2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.F.2 Discussion of HWLE (H1) . . . . . . . . . . . . . . . . . . . . . . . . 125

4.F.3 Discussion of the mean-field hypothesis (H3) . . . . . . . . . . . . . 128

4.F.4 Discussion of (H4-4’) . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.F.5 Breakdown of the equation for the dynamics of the trait mean . . . 133

4.G Equivalence with the trait’s eye-view . . . . . . . . . . . . . . . . 138

4.H Derivation of the criterion for selection to increase genetic vari-
ance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.I Some extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.I.1 Polyploidy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.I.2 Pleiotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.I.3 Dominance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.I.4 Epistasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.J A small note on integral computations . . . . . . . . . . . . . . . . 149

4.1 Introduction

Historically, the infinitesimal model [11] has been considered to bridge population genetics,
which is the field that studies the evolution of the genetic composition of populations, and
quantitative genetics, which is the field that studies the evolution of quantitative traits. In
the infinitesimal model, (suitably transformed) quantitative traits are determined by the sum
of a genetic trait value and an independent environmental effect. The genetic trait value is
inherited as follows: if two unrelated organisms with respective genetic trait values zA and zB

reproduce, their offspring has normally distributed genetic trait value with mean (zA+zB)/2
and variance VS called the segregation variance. It was long conjectured [79] and proved in
[11] that this model is compatible with Mendelian genetics, provided the quantitative trait
is determined by a large number of loci acting additively on the trait, with no major-effect
locus.

This allows for an autonomous description of the evolution of the trait, which we call
the trait’s eye view. This was historically done by Wright [96] and Lande [30], and a
wealth of mathematical models extending this approach has been developed since [38] with
recent efforts from the partial differential equation community to determine their analytical
properties and robustness (see, for instance, [47, 46]).

The segregation variance VS is the key component of the infinitesimal model. Modeling its
evolution requires understanding how mutations generate genetic variability, which itself is
eroded by genetic drift and selection. Therefore, it should require modeling jointly the genetic
composition of the population with the evolution of the trait [122]. However, in trait-based
models, such as Lande’s famous study of stabilizing selection [30], the segregation variance
is a fixed parameter of the model.

Recently, some authors have used tools such as Wright’s formula [73] to study the dy-
namics of the frequency of a single allele conditional on the evolution of the trait. Assuming
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linkage equilibrium, this formula gives the effective selection coefficient at a biallelic locus as
a function of the gradient of mean logfitness in the population. This approach was used to in-
terpret Genome-Wide Association Studies (GWAS) results in [116], and to model adaptation
after a change of environment in [123, 124].

In principle, since the genes determine the trait and only the genes are transmitted, the
genetic composition of the population evolves autonomously, without the need to specify
any auxiliary variable, and from it the trait distribution should be deduced. In the present
article, we seek to fullfil this program and start directly from the allele frequencies at all loci
underlying a polygenic trait. We assume stabilizing selection which, as emphasized in [115],
is a realistic assumption for wild populations.

The difficulty of this approach is that genes are coupled in a nontrivial manner by re-
combination and selection. Now, if we assume that genes are in perfect linkage equilibrium
(see Appendix 4.C.E.1 for a mathematical discussion about the domain of validity of this
assumption), then selection remains as the only coupling force–the selective advantage of an
allele at a given locus depends on the entire trait distribution, which itself depends on all
other loci.

We show using varied mathematical tools (diffusion approximation, mean field theory,
fixed-point equations, slow-fast approximations) that this dependence vanishes with the num-
ber of loci.

We call the gene’s eye-view this approach, which studies the distribution of a polygenic
trait determined by a large number of unlinked loci, through the dynamics of their allele
frequencies, to which diffusion approximations and mean-field approximations are applied.
This approach arose recently, notably in the seminal paper by Charlesworth [122], and to
describe spatial populations in [167, 168]. It lets us characterize properties of the trait
distribution that emerge directly from the sole description of genes, such as the genetic
variance, the distance to the selection optimum, and the magnitude of the fluctuations of the
population mean trait value at statistical equilibrium–though our model can in principle be
extended to describe the dynamics out-of-equilibrium.

Our computations distinguish three regimes which we call weak, moderate and strong
selection, based on the value of the selection-drift ratio

ω−2
e := 2N(Lᾱ)2ω−2

compared to powers of L, where N is the (haploid) effective population size, ω−2 is the
strength of stabilizing selection, ᾱ is the average effect size of a locus and L is the number of
loci.

4.2 Description of the population model

4.2.1 The individual-based model

We consider a large, panmictic population composed of N diploid organisms, displaying an
additive quantitative trait z controlled by L biallelic loci. We assume that N ≫ 1 and L≫ 1.

A genotype g = (gℓ)ℓ∈[L] determines the value Z(g) of the trait as

Z(g) = z0 +
∑
ℓ∈[L]

αℓgℓ,

where gℓ ∈ {0, 1, 2} is the gene content and αℓ ≥ 0 is the genetic additive effect of the
trait-increasing allele at locus ℓ. We define the mean additive effect ᾱ := (1/L)

∑
ℓ αℓ.

The model can accomodate extensions to polyploidy, pleiotropy, dominance or some forms of
epistasis (see Appendix 4.I). We assume that z0 = 0 without loss of generality.
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η z z

F(z)
φ(z)
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Δω

ν

Figure 4.1: Phenotypic observables. The wide curve is the Gaussian fitness function F (z) =
eW (z), which has typical width ω and is centered on η. The narrow curve is the distribution
of the trait in the population, which has mean z̄ and variance σ2. The deviation of z̄ from
the optimum is ∆ = z̄ − η. The broken line represents the fluctuations of z̄ through time,
which have magnitude ν.

We define the probability of mutation per generation from the trait-decreasing allele to the
trait-increasing allele at locus ℓ, and back, as µℓ = (µ+ℓ , µ

−
ℓ ). We assume that the (αℓ, µℓ)ℓ∈[L]

are exchangeable, such that (αℓ, µℓ) has a prescribed distribution which is not heavy-tailed,
so that in particular there are no large-effect mutations.

The logfitness of an organism with trait value z is given by

W (z) = − 1

2ω2
(z − η)2 (4.1)

with ω−2 the selection strength and η the selection optimum.
Reproduction occurs via Wright-Fisher sampling: at each generation, organisms indepen-

dently choose two parents with probability proportional to their fitness and the two parental
genomes recombine with one or several crossovers.

Importantly, we assume that recombination is strong enough to allow us to neglect linkage
disequilibrium (this assumption is discussed in Appendix 4.F.2).

4.2.2 Three trait values

A model studying the dynamics of a polygenic trait under stabilizing selection from the gene’s
eye-view distinguishes three important theoretical trait values.

The first is the selection optimum η.
The second is the mutational optimum zM defined as the mean trait value that the

population would reach at equilibrium if selection were completely absent

zM :=

L∑
ℓ=1

αℓ
2µ+ℓ

µ+ℓ + µ−ℓ
, (4.2)

because 2µ+ℓ /(µ
+
ℓ +µ−ℓ ) is the mean value of gℓ at mutational equilibrium. This value has no

a priori reason to coincide with η, and we call zM − η the trait mutational bias.
The third is the heterozygous trait value zH , which is the trait value of an organism

heterozygous at every locus

zH :=

L∑
ℓ=1

αℓ = Lᾱ. (4.3)
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We assume that 0 < η < 2zH , so that many different genotypes can realize the selection
optimum and the population close to the optimum is not depleted in genetic variability. We
may also assume that the trait is measured in units such that zH = 1 so that in particular
ᾱ = 1/L.

Other key ecological observables are represented in Fig. 4.1 and are explicitly defined in
Section 4.3.

Assumptions The details of our explicit quantitative assumptions are given in Appendix
4.B. Some assumptions are made for mathematical convenience, others are necessary to reach
the polygenic limit. Here, we informally explain the underlying philosophy.

The mathematically convenient assumptions are as follows. We assume that (A1) all
loci have mutation rates of order |θ̄| and additive effect αℓ ∼ 1/L, so that no one locus
disproportionately contributes to the trait or the genetic variance. We assume that (A2)
mutations are weaker than genetic drift (|θ̄| ≲ 1) and that (A3, A6) the mutational bias is not
too large or too small. We assume that (A4) the selection optimum η is accessible, meaning
many different genotypes can realize the selection optimum (in particular, the population
close to the optimum will not be depleted in genetic variability). We assume that (A5)
selection is strong enough to have a detectable footprint on the genes, but not so strong as
to completely deplete genetic variability in the trait.

We argue in Appendix 4.F that the equations we obtain further require a sufficiently
large population size (N1) and a sufficient mutational input (N2, N3) to provide an accurate
description of the system.

4.2.3 Diffusion approximation

We let P ℓt denote the frequency of the trait-increasing allele at locus ℓ, where time is now
measured in units of 2N generations; that is, P ℓt represents the frequency at generation ⌊2Nt⌋.
We define

θℓ := 2Nµℓ, ωe :=
ω√
2N

,

so that θℓ is the effective mutation rate, and ω−2
e = 2Nω−2 is the selection-drift ratio.

As explained in Appendix 4.C), neglecting linkage disequilibrium allows approximating
allele frequency dynamics of the individual loci by Wright-Fisher diffusions which are only
coupled by selection

dP ℓt = sℓ(Pt)P
ℓ
t (1− P ℓt ) dt

+
(
θ+ℓ (1− P ℓt )− θ−ℓ P

ℓ
t

)
dt+

√
P ℓt (1− P ℓt ) dB

ℓ
t , (4.4)

where (Bℓ)ℓ are independent Brownian motions. Classically, the selection coefficient sℓ is the
regression coefficient of the fitness W on genotype gℓ

sℓ(Pt) := 2N
CovPt [W (Z(g)), gℓ]

VarPt [gℓ]
,

where for p = (pℓ)ℓ∈[L] ∈ [0, 1]L, Covp andVarp are the covariance and variance of a vector of
independent random variables g = (gℓ)ℓ∈[L] such that gℓ is Binomial(2, pℓ) (Hardy-Weinberg
Linkage Equilibrium). We can show that sℓ (see Appendix 4.C.2) satisfies

sℓ(Pt) = −αℓ
ω2
e

(z̄t − η) +
α2
ℓ

ω2
e

(
P ℓt −

1

2

)
, (4.5)
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where z̄t is the mean trait value at time t

z̄t =

L∑
ℓ=1

αℓEPt(gℓ) =

L∑
ℓ=1

2αℓP
ℓ
t .

As a result, allele frequencies (P ℓt ) are now coupled only by their weighted mean z̄t. This
coupling can be further simplified when L is large thanks to a mean-field approximation.

4.3 Macroscopic observables from gene’s eye view

4.3.1 Locus dynamics and mean field approximation

Mean-field theory is a powerful approach for analyzing complex systems composed of a large
number L of interacting components. When the constituents interact through a weighted
mean of their individual characteristics, as L → ∞ this weighted mean behaves determinis-
tically as by the law of large numbers, and the constituents effectively behave independently
[69].

In the case where the genetic effects and mutation rates (αℓ, θℓ) ≡ (α, θ) are equal across
loci, by replacing the mean with its expectation

z̄t =
L∑
ℓ=1

2αP ℓt = 2Lα×

(
1

L

L∑
ℓ=1

P ℓt

)
≈ 2LαE [Pt] , (4.6)

where Pt has the law of P ℓt (which here does not depend on ℓ). When the (αℓ, θℓ) are now
distributed, we replace the weighted mean with an ‘augmented’ expectation which includes
averaging over the distribution of (αℓ, θℓ)

z̄t ≈ 2LE [αPt] . (4.7)

We can now define ∆t := z̄t− η as the deviation of the trait mean from the optimum and ∆∗

as the mean deviation at statistical equilibrium

∆∗ := 2LE∗[αPt]− η (4.8)

where E∗ is the expectation at equilibrium, which is also the time average

E∗[αPt] = lim
T→+∞

1

T

T∑
t=0

1

L

L∑
ℓ=1

αℓP
ℓ
t .

Then, the allele frequency P ℓt at each locus ℓ independently obeys the following stochastic
differential equation which is autonomous in the sense that each term only depends on P ℓt
itself

dP ℓt = ξ∆∗,αℓ
(P ℓt )P

ℓ
t (1− P ℓt ) dt

+
(
θ+ℓ (1− P ℓt )− θ−ℓ P

ℓ
t

)
dt+

√
P ℓt (1− P ℓt ) dB

ℓ
t , (4.9)

where

ξδ,a(x) := − a

ω2
e

δ +
a2

ω2
e

(
x− 1

2

)
. (4.10)

A formal justification for this mean-field approximation is spelled out in Section 4.3.4, where
we also describe the dynamics of the trait.
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Let us briefly discuss the expression of ξ∆∗,αℓ
given in (4.10). The second term is known

as Robertson’s underdominant effect [23]. The term −αℓ∆∗/ω2
e can be interpreted as a bias-

correcting selection coefficient. It reflects the selective advantage of trait-increasing alleles
when ∆∗ < 0 (the trait is on average below the optimum) and their disadvantage when
∆∗ > 0 (the trait is on average above the optimum). We define s∗ as its mean value

s∗ = − ∆∗

Lω2
e

. (4.11)

In the absence of selection, mutations naturally drive the trait to the mutational optimum
zM defined in (4.2). In view of (4.10) and (4.11), this occurs when ω−2

e ≪ L. Then ∆∗ ≈
zM−η = O(1), and selection is negligible at the genetic and trait levels (see Appendix 4.E.2).
As soon as the order of magnitude of ω−2

e is equal to L or higher, what shapes the value of
∆∗ is the balance between mutation (pushing z̄t to zM ) and selection (pushing z̄t to η).

4.3.2 Bridging microscopic and macroscopic scales

The consistency between microscopic (locus-level) and macroscopic (trait-level) dynamics is
central to the mean-field approach and allows for an explicit determination of ∆∗ as the
solution to a fixed-point problem.

In (4.9), take (∆∗, αℓ, θℓ) = (δ, α, θ). The stationary density of this diffusion [53] is then
given for p ∈ (0, 1) by

Πδ,α,θ(p) := Cδ,α,θ p
2θ+−1(1− p)2θ

−−1e2
∫ p
0 ξδ,α(u) du, (4.12)

where Cδ,α,θ is a normalizing constant. Using the mean-field approximation to average trait
contributions across loci, from (4.8) we deduce that ∆∗ satisfies the following fixed-point
equation:

∆∗ = 2LE
[
α

∫ 1

0
xΠ∆∗,α,θ(x)dx

]
− η, (4.13)

where the expectation is now only taken over the distribution of (αℓ, θℓ). The latter relation
embodies a self-consistency condition from the gene’s eye-view of quantitative genetics that
allows tying the dynamics of allelic frequencies with macroscopic observables. We deduce from
this fixed-point equation in Appendix 4.E.3 that (except when ω−2

e ≪ L, where ∆∗ ≈ zM−η)
the mean trait deviation always scales as

∆∗ ∼ ω2
eL = ω2 L

2N
. (4.14)

In this equation, L/(2N) can be interpreted as the genetic drift accumulated along the
genome, while ω2 is the inverse of the strength of directional selection felt by the trait away
from the optimum.

Similarly, we can deduce the trait variance σ2 as a result of the independent, genetic
additive contributions

σ2 = 2LE
[
α2

∫ 1

0
x(1− x)Π∆∗,α,θ(x)dx

]
∼ |θ̄|

L
. (4.15)

where |θ̄| is the mean mutation rate

|θ̄| := E
[
θ+ + θ−

]
.

We plot in Fig. 4.3 the result of simulations using the individual-based model against our
theoretical predictions for different selection strengths. As expected, stronger selection leads
to a smaller distance to the optimum ∆∗. We also see that when selection is sufficiently
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strong, it depletes the genetic variance σ2. More precisely, we see that when selection is
weak, our theoretical predictions for ∆t and σt match simulation results even when L = 100
and N = 50. On the other hand, when selection is strong, we see a mismatch in the ge-
netic variance σ2 due to the build-up of negative Linkage Disequilibrium (LD): this is the
so-called Bulmer effect [106]. The mismatch is decreased when the population size is in-
creased (N = 500). Furthermore, the decrease in σ2 due to the Bulmer effect decreases the
effectiveness of the bias-correcting coefficient of selection, increasing the equilibrium distance
to the optimum ∆∗ with respect to neutral expectations. Following the Quasi-Linkage Equi-
librium approach [101], we argue in Appendix 4.F.2 that the Bulmer effect can be neglected
if N ≫ |θ̄| ln(L)/(Lω2

e).

4.3.3 Selection regimes

As noted above, when ω−2
e ≪ L, selection has no substantial effect on the system (Ap-

pendix 4.E.2). In contrast, when ω−2
e ≫ L2, Robertson’s underdominant effect becomes

degenerate (α
2

ω2
e
≫ 1), resulting in a depletion of genetic variance with a high concentration of

allelic frequencies at 0 and 1. In this “ultra-strong” selection regime, the intensity of selec-
tion is the main determinant of genetic variance. Inbetween these two extremes, our analysis
identifies three distinct regimes, as illustrated in Fig. 4.2 and summarized in Table 4.1. Recall
from (4.15) that the trait population variance σ2 is always of order |θ̄|/L.

1. Weak selection regime (ω−2
e ∼ L): In this regime, the population is concentrated away

from the fitness optimum:

σ ≪ ∆∗ ∼ 1.

2. Strong selection regime (ω−2
e ∼ L2): Here, the population is tightly concentrated around

the fitness optimum:

∆∗ ≪ σ ≪ 1.

It is only in this regime that Robertson’s underdominant effect becomes significant, so
that genes also experience disrupting selection in addition to genic selection against
mutational bias.

3. Moderate selection regime (L≪ ω−2
e ≪ L2): This regime interpolates between the weak

and the strong regime, with ∆∗ and σ of the same order when ω−2
e |θ̄|

1
2 ∼ L3/2.

Persistence of s∗ across scales. At the locus level, the mean selection coefficient of trait-
increasing alleles s∗ = −∆∗/(Lω2

e) is proportional to the product of the trait deviation ∆∗

from the optimum and of the strength of selection ω−2
e . At the trait level, we see from (4.14)

that the strength of selection has a direct effect on ∆∗ which keeps the product ∆∗ω−2
e of

order L. As a result, s∗ remains of order 1 throughout the three regimes and as L increases.
In other words, the mutational bias always has a substantial effect at the locus level. This
effect is asymptotically (L→ ∞) independent of the strength of selection since s∗ approaches
some value independent of ωe as long as L≪ ω−2

e ≪ L2 (Appendix 4.E.4).

In particular, in this regime, which we call the moderate selection regime, the same
genetic architecture, and accordingly similar macroscopic observables, can arise for very dif-
ferent values of ω−2

e . We illustrate this in Fig. 4.4, in which the theoretical prediction for the
rescaled genetic variance Lσ2 is plotted in the limit L→ +∞, as a function of the selection
power defined with ω−2

e = Lb, equivalent to

b :=
ln(ω−2

e )

ln(L)
(4.16)
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Figure 4.2: The histogram shows the distribution of the population mean trait z̄t and
not a snapshot of the trait distribution at a given time. For three different values of ωe
corresponding respectively to weak, moderate and strong selection, we show a histogram
of 10, 000 values of z̄t after a burn-in of 24, 000 generations. The parameters used are
N = 100, L = 100, η = 1.2, θ = (0.1, 0.2), and the parameters (αℓ)ℓ∈[L] were sampled with
distribution Exponential(L). We superimpose in red the fitness function F (z), and the dot
corresponds to η. In particular, ∆∗ is the distance between the mean of the orange distri-
bution and the red dot, and ν is the width of the orange distribution. As the strength of
selection increases, both ∆∗ and ν decrease. Only in strong selection (right panel) do we see
∆∗ and ν being of the same order of magnitude.

In this figure, it can be seen that Lσ2 is expected to converge to a step function of b, with
a single value corresponding to 1 < b < 2 and discontinuities at b = 1 (weak selection
regime) and b = 2 (strong selection regime). Similarly, in the moderate selection regime we
expect ∆∗Lb−1 to be independent of b (see Table 4.1). In particular, the mutational bias
only has a macroscopically detectable effect ∆∗ ≳ 1 when σ ≲ ∆∗, which corresponds to
ω−2
e |θ̄|1/2 ≲ L3/2 (see Table 4.1). This means that the strength of selection ω−2

e cannot be
inferred when |θ̄|−1/2L3/2 ≪ ω−2

e ≪ L2, neither from macroscopic data, because ∆∗ cannot
be measured, nor from genomic data, because the distribution of Pt is independent of ω

−2
e .

Non-monotonicity of the variance. Another counterintuitive prediction of our model is
that σ does not always decrease with higher selection pressure. In the absence of selection,
when mutational bias is strong, allele frequencies tend to accumulate close to 0 or to 1
depending on the sign of mutational bias. Increasing selection at the trait level (parameter b
in Fig. 4.4, panels D, E, F) induces bias-correcting directional selection at the locus level that
recenters the frequencies, thus increasing the population variance. We prove in Appendix 4.H
that when the (αℓ, θℓ) are constant across loci, the criterion for some level of weak selection
to increase σ is that going from the mutational optimum zM to the selection optimum η
brings the trait closer to the heterozygous trait value zH . That is: η, zH < zM or η, zH > zM .
To put it another way, starting from a situation with very weak selection, where E∗[z̄] ≃
zM , decreasing ω (increasing the strength of selection) brings E∗[z̄] closer to η. If, in so
doing, E∗[z̄t] also gets closer to zH , then the action of selection will lead some loci which the
mutational bias kept at one boundary closer to 1/2, and σ will increase for entropic reasons.

Heterogeneity across loci. In Fig. 4.5 we plot the joint distribution of (P ℓt , αℓ), assuming
that mutation rates are symmetric (θ+ = θ− = 1/2) and that the trait mutational bias zM−η
is negative, thereby selecting trait-increasing alleles.

As expected, the distribution of allele frequencies is observed to be approximately uniform
in the absence of selection and to be biased to the right in the presence of substantial selection.
In the moderate regime, the bias-correcting selection term indeed shifts the distribution to the
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Figure 4.3: Comparison of theoretical predictions with numerical simulations for the macro-
scopic observables of Fig. 4.1 for varying selection regimes, from weak selection (left) to
strong selection (right). The simulations were carried out with L = 100, the same mutation
probabilities for all loci θ = (0.1, 0.2), and additive effects (αℓ)ℓ∈[L] exponentially distributed
with parameter L (in particular ᾱ = 1/L), so that zM = 2/3. The selection optimum is
η = 1.2. The same (αℓ)ℓ∈[L] were used in all simulations, and the predictions were made
conditional on the (αℓ)ℓ∈[L]. The simulations were run for T = 500N generations, and each
observable was measured as an average over the last 250N generations. For the magnitude
of the fluctuations ν and the autocorrelation parameter ρ, the predictions for weak selection
use the corrections derived in Appendix 4.F.5. The predictions of the fixed point equation
are derived in Appendix 4.E.1. The predictions for moderate selection are derived in Ap-
pendix 4.E.4. For the genetic variance, the simulation results distinguish between the genetic
variance in the trait within the population (filled triangles), and the genic variance (three-
pointed stars), which is the variance in the trait if the population was in linkage equilibrium
(neglecting correlations between pairs of loci).
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Figure 4.4: The predicted genetic variance at equilibrium in a limit system with L →
+∞, N → +∞ with no mutational bias (A,B,C with θℓ = (0.1, 0.1)) or strong mutational
bias (D,E,F with θℓ = (0.01, 0.1)), as a function of the selection power b (see (4.16)) and
the selection-drift ratio ω−2

e . We set η = 1.5 and let (αℓ)ℓ∈[L] be exponentially distributed

with parameter L (in particular ᾱ = 1
L). A&D We expect the rescaled genetic variance

Lσ2 in the limit to converge to a step function of the parameter b. When b < 1 the genetic
variance is equivalent to that of a neutral model (no selection), when b > 2 we expect the
genetic variance to be completely depleted, and when b ∈ (1, 2), Lσ2 converge to the variance
corresponding to moderate selection. The behavior at the critical points b = 1 and b = 2
correspond respectively to weak selection (B and E) and strong selection (C and F).
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Figure 4.5: For no selection, weak, moderate and strong selection respectively, we plot the
joint distribution of (P ℓt , αℓ) after a single run. We chose symmetric mutation rates to make
the transition between the selection regimes more apparent θ = (0.5, 0.5). The other param-
eters are L = 100, N = 500, η = 1.2 and αℓ is distributed as Exponential(L). The colour
plot correspond to the predicted densities in the corresponding regimes.

right, effectively counteracting the asymmetry of mutation rates. In the strong regime, the
disruptive selection driven by Robertson’s underdominant effect (4.10) results in a U-shape
distribution, increasing the weight on extreme allelic frequencies.

4.3.4 Trait dynamics

In Appendix 4.D, we show that in the moderate and strong regimes (ω−2
e ≫ L), the fluctua-

tions of the mean deviation ∆t away from its statistical average ∆∗ evolves according to an
Ornstein–Uhlenbeck process:

d∆t = ρ(∆∗ −∆t) dt+ ν
√
2ρ dBt, (4.17)

In this equation, ν captures the magnitude of the stochastic fluctuations and ρ the autocor-
relation parameter of z̄t such that

Cov[z̄t, z̄t+u] = ν2e−ρu. (4.18)

We find in Appendix 4.E.3 that

ν ∼ ωe and ρ ∼ 1

τ
(4.19)

where we define the characteristic timescale of the trait τ := Lω2
e

|θ̄| . Under weak selection

(ω−2
e ∼ L), we show in Appendix 4.F.5 that (4.17) is no longer justified mathematically (see

Fig. 4.12). We derive a correction for ν2 and ρ2 which, though not mathematically rigorous,
yield a good mumerical approximation when mutation rates |θℓ| are constant across loci. See
the right panels of Fig. 4.3 for a comparison between theoretical predictions and individual-
based simulations for ρ and ν. Increasing the strength of stabilizing selection decreases the
magnitude of the fluctuations of z̄t (ν

2), but accelerates them (increase in ρ). We plot in
Fig. 4.12 the validity of equation 4.18 for the autocorrelation: it fits well even for weak
selection, in which we expect this equation not to be valid.

Justifying the mean-field approximation. The previous observations provide further
insight into justifying the mean-field approximation discussed in section 4.3.1. In Section
4.3.1, the locus dynamics was obtained by formally replacing ∆t with its average ∆∗. How
do we justify this approximation? From (4.5), we have

sℓ(Pt) = − α

ω2
e

(∆∗ + εt) +
α2

ω2
e

(
P ℓt −

1

2

)
, (4.20)
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Observable Symbol Magnitude Eq.

Mean trait deviation from optimum ∆∗ L−(b−1) (4.8)

Std deviation of trait distribution σ |θ̄|1/2L−1/2 (4.15)

Timescale of trait mean fluctuation τ |θ̄|−1L−(b−1) (4.19)

Amplitude of trait mean fluctuation ν L−b/2 (4.19)

Bias-correcting selection coeff. s∗ 1 (4.11)

Robertson’s underdominant effect ᾱ2

ω2
e

L−(2−b) (4.10)

Table 4.1: Order of magnitude of macroscopic observables as a function of the number L
of loci and b ∈ [1, 2], assuming ω−2

e ∼ Lb, interpolating between the weak regime (b = 1),
the moderate regime (b ∈ (1, 2)) and the strong regime (b = 2). This table is derived in
Appendix 4.E.3

where εt := ∆t −∆∗ is the fluctuation of the trait mean.

In the weak/moderate regimes (L ≲ ω−2
e ≪ L2), the fluctuations are negligible compared

to the mean deviation ∆∗ (ν ≪ ∆∗ in Table 4.1) and a classical mean-field approximation
applies.

The strong regime (ω−2
e ∼ L2) is more subtle and can only be justified by a dynamical

mean-field approach. As already discussed, fluctuations can not be ignored (ν ∼ ∆∗, see
Table 4.1) and at first sight, it seems that ∆t is not approximately constant equal to ∆∗ in
(4.20). To address this issue, we adopt a slow-fast approximation [169]. Since the trait mean
∆t fluctuates on a much faster timescale than the locus-level dynamics, this separation of
timescales leads to a slow-fast averaging effect, allowing us to effectively decouple macroscopic
(trait-level) and microscopic (locus-level) dynamics. As a result, in (4.5), we may still, despite
non-negligible fluctuations, approximate ∆t by ∆∗, now seen as a time average.

4.4 Discussion

4.4.1 Describing a polygenic system from the gene’s eye-view

Our paper offers a comprehensive framework to describe a polygenic system from the gene’s
eye-view. This lets us describe the distribution of a gene at stationarity as well as macro-
scopic observables. These ideas were already present in the case of constant (α, θ) across loci,
small mutation rates (|θ̄| ≪ 1) and moderate/strong selection (ω−2

e ≫ L) in [122] (see Ap-
pendix 4.E.4). We show in Appendix 4.G that the gene’s eye-view and the traditional trait’s
eye-view from [96] lead to the same equations. In Appendix 4.F, we discuss the breakdown
of our equations. Qualitative breakdown in which the population dynamics completely shift
to genotype selection was described as clonal condensation in [104] and non-random coexis-
tence [70], and the appearance of sweeps at individual loci was described [170, 81, 125]. The
first two phenomena depend on linkage disequilibrium and are discussed in Appendix 4.F.2.
The appearance of sweeps is what we expect to occur in the “ultra-strong” selection regime
ω−2
e ≫ L2, when selection completely overwhelms genetic drift, or in the out-of-equilibrium

dynamics if the system is originally very far from the optimum [81]. We also require the
mutation rate to be large enough to maintain genetic diversity (we show in Appendix 4.F
Fig. 4.12 that the model is robust to low mutation rates and significant mutational bias is
high), and the (αℓ)ℓ∈[L] to have well-defined moments (our plot in Appendix 4.F Fig. 4.11
suggests that the model is still accurate when the distribution of (αℓ)ℓ∈[L] is heavy-tailed).
This last assumption is of questionable biological relevance: [146] found rough estimates of
tail exponents in additive effects between 1 and 2.5 (see also [171]).

The equation for the evolution of an allele depends on microscopic, intrinsic properties
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of the allele (the mutation probability µ, the genetic effect α) and also on an external vari-
able, the bias-correcting coefficient s∗, which is determined by the value of a macroscopic
observable (the mean trait value), which is itself a solution to a fixed point equation. This
sort of approach from the gene’s eye-view has seen increasing use in the past few years: for
instance, [167] and [168] have used a similar approach to describe the stationary distribution
of a population under directional selection and immigration. Another example is [26] (not yet
peer-reviewed), in which the macroscopic observable is the genetic variance σ2 under fluctu-
ating stabilizing selection, which determines the allele frequencies, which in turn determine
the genetic variance, thus yielding a fixed-point equation (their equation 16).

Taking a different approach based on the stationary solution to the multi-locus Wright-
Fisher diffusion (4.4), [172] has recently found an explicit approximate expression for the
solution ∆∗ to the fixed-point equation (4.13) when the mutational bias is small (|zM−η| ≪ 1)
and θ+ = θ−: this approximation is equivalent to computing the variance Var∗[Pt|α, θ] by
approximating the distribution of Pt with the neutral distribution Π0,0,θ. Using this idea
coupled with the central limit theorem leads to the first-order perturbation to Π0,0,θ due to
selection.

4.4.2 On the importance of trait mutational bias

Trait mutational bias in a quantitative trait describes the situation in which the additive effect
of mutations on the trait has a nonzero mean. This should not be confused with mutational
bias in fitness. Mutational bias in fitness refers to the fact that if the population is close to
the optimum, new mutations will tend to be deleterious (see for instance [173]). Even if there
was no trait mutational bias (say zH = η = zM ), due to Robertson’s underdominant term in
the selection coefficient (4.10), we would still have that, on average, a mutation with large
effect α is deleterious. The impact of trait mutational bias on a polygenic trait has been
described in [174] numerically, and [122] has provided a theoretical treatment which includes
approximate solutions assuming low mutation rates (|θ̄| ≪ 1) and constant (θℓ, αℓ) across
loci. [122] suggests two methods to approximate ∆∗, one (Eq. A3.b) which coincides with
our own (see our Appendix 4.E.4) and one which requires approximating E [Pt(1− Pt)|(α, θ)]
with its neutral expectation (Eq. S3.3b).

Apart from these two exceptions, trait mutational bias is typically neglected in theoreti-
cal studies of polygenic traits under stabilizing selection. For instance, [23, 97, 98, 175, 176,
177, 116] all study a quantitative trait under stabilizing selection, and always assume that
at equilibrium the mutation rate does not push the population in any specific direction away
from the optimum ([116] consider anisotropic pleiotropic mutations as an extension of their
base model, but still assume that the mean effect of any new mutation is zero). The mod-
els for quantitative traits from statistical physics such as [101, 177, 70] also typically assume
symmetric mutation rates. This seems to be motivated not just by mathematical tractability,
but by the idea that when the mutation rate is very low, the directional effect of mutations
can be neglected. It would be unreasonable to argue that mutational bias is typically small,
as this would imply that mutation favors the same trait values as selection, which would
be a strange coincidence, in particular if this were satisfied across distinct environments. In
fact, experimental data on this can be obtained from the evolution of morphological traits
in mutation accumulation (MA) experiments. Morphological quantitative traits are typically
assumed to be under stabilizing selection [115]. In MA lines, such traits generally evolve in a
deterministic direction. For instance, table 2 of [178] reviews the case of drosophila, in which
the proportion of trait-increasing mutations for sternopleural/abdominal bristle number and
wing length range between 0.4 and 0.07. More recently, [179] has reported significant muta-
tional bias in locomotion traits in Caenorhabditis elegans. Mutational bias could also account
for cases in which directional selection and stabilizing selection are simultaneously observed
on phenotypic data [15]. Population genetic analyses also suggest significant mutational bias
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for codon usage [180, 181, 182, 183]. Finally, [118] has established an empirical test of muta-
tional bias for GWAS in humans, and successfully detected a bias for traits such as height,
BMI, and educational attainment.

In the presence of mutational bias, which we expect to be pervasive, weak selection cannot
be distinguished from directional selection [174], because the population is too far from
the optimum (∆

∗

σ ≫ 1). Such an equilibrium population would be in selection/mutation
balance for a quantitative trait. While stable quantitative traits under directional selection
are sometimes found in natural populations, mutational bias is however rarely mentioned as
a putative explanation, presumably due to the relative strength of observed selection with
respect to mutation (it is for instance never mentioned on reviews such as [25]). The possibility
of mutations and genetic drift preventing a population from reaching the optimal trait value
is discussed in the literature as the drift-barrier hypothesis. The typical quantitative trait for
which this is deemed plausible is the mutation rate [184]. Our framework could be adapted
to model this, following [148].

4.4.3 Example of a practical application: moderate selection and human
height

One convenient aspect of our classification is that the qualitative behavior of the stationary
system relies on parameters ωe, |θ̄|, τ , which could be empirically estimated.

If we take the example of the human population, the effective population size is of order
Ne ∼ 20, 000 [185]. For a trait like height, [117] estimate the mutational target to be of order
107 ([110] obtained a saturated GWAS map for height from 12, 111 loci, so a certain lower
bound for L is 10,000). The average effect of a locus is taken to be of order ᾱ = 10−1cm, in
line with previous estimates (the effect sizes vary between .03cm and 1cm according to [186]).
EXPRESS IN NATURAL UNIT MEASURE? (METER) In [15], the UK biobank was used

to estimate the parameter ω−2

2 , which was found to be of order 1.5 × 10−2 in units of σ−2,
with σ of order 10cm. Finally, we take the mean mutation rate |θ̄| per locus per generation
to be 10−8Ne, where Ne is the effective population size [187]. If we neglect environmental
variation for simplicity, we may compute

ω−2
e =Ne(Lᾱ)

2ω−2

=20, 000× (107 × 10−1)2 × (2× 1.5× 10−2/102)

=6× 1012

This is compatible with moderate selection. Of course, applying this crude computation to
human data assumes equilibrium and ignores population structure, linkage, the fluctuations of
selection, the environmental contribution to height, pleiotropy and the fact that the additive
effects α have a heavy-tailed distribution.

4.4.4 Applicability to GWAS data

Our theoretical model yields a stationary distribution for the joint distribution of allele fre-
quency and additive effect (Pt, α). This distribution is precisely what GWAS are measuring,
and which the works of [118, 116, 117, 120] are interpreting from an evolutionary standpoint.
Our contribution to their framework is the bias-correcting selection coefficient s∗. From
(4.10), we expect the distribution of Pt conditional on α to be proportional to Π[ξα, µ,Ne]
where

ξα(x) := Aα+Bα2

(
1

2
− x

)
(4.21)

for some constants A and B which could be estimated empirically by maximal likelihood.
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Empirically, [118] validates our core idea by detecting asymmetries in the distribution of
(Pt, α). More precisely, their model is concerned with (Yt, β) where Yt is the frequency of the
derived allele (as opposed to the ancestral allele) and β is its additive effect. Compared to
our model, β can be negative, but |β| = α. When β < 0, then Yt = 1−Pt, otherwise Yt = Pt.
They consistently reject the null hypothesis of unbiased mutations (same average value of β
conditional on Yt = p or on Yt = 1 − p) in 6 out of 9 GWAS of human traits. One would
expect this to mean our model (4.21) would fare well in practice.

It turns out that model (4.21) has been tested in the case of quantitative disease GWAS in
[120] (not yet peer-reviewed). In this preprint, the authors do not really justify model (4.21),
but test it against the “traditional” model of [116] which corresponds to setting A = 0. Model
(4.21) fares rather poorly, and for only 2 of 27 tested traits this model outperforms the A = 0
model in terms of restricted maximum likelihood (versus 21 traits that support the A = 0
model).

If it was confirmed that model (4.21) generally underperforms with respect to the model
with A = 0, this could be interpreted in at least two different directions. First, we assume
that genetic diversity is maintained by mutations. It can also be maintained by spatial
structure [138]: if a very large population is subdivided into many small demes, then genetic
diversity within each deme can be maintained by migration. In our model, if we assume a
Levene migration model [188] we could add this effect by replacing the mutation probabilities

(µ+ℓ , µ
−
ℓ ) with (µ+ℓ +mE∗[P ℓt ], µ

−
ℓ +mE∗[1 − P ℓt ]) for some migration parameter m ≫ µ

(±)
ℓ .

In such a setting, mutational bias should become negligible. Second, it could be seen as
a signature of selection on the distribution (α, θ) itself. For instance, the mutation rate
is highly variable across the genome [56], shaped by evolvable factors such as chromatin
structure [189]. The distribution of α be shaped through second-order selection favoring
robust gene regulatory networks. A quantitative trait under stabilizing selection can evolve
towards robustness in a stable environment, because selection favors genes which reduces
the genetic variance in the trait [190]. The process by which stabilizing selection shapes the
distribution of α is called genetic canalization [191] (see also [192]).

A framework for a systematic evolutionary analysis GWAS analysis was recently proposed
[117] (currently in revision). The model considers that each locus has a highly pleiotropic
effect, which determines its selection coefficient in Robertson’s underdominant term (the
pleiotropic equivalent of the second term of (4.10), see Appendix 4.I.2). It is assumed that
conditional on this selection coefficient, the additive effect of the alleles at this locus on a given
focal trait has a symmetric distribution. This assumption posits that selection and mutation
act identically on trait-increasing and trait-decreasing alleles, implying that zM = zH = η
and that the distributions of (α, Pt) and (α, 1 − Pt) are identical. We would argue for a
generalization of this approach including a possible bias in mutation and in allelic effects, for
example through the addition of a hyperparameter.

4.4.5 Extensions and applications

Many extensions are possible. In Appendix 4.I.1 we mention polyploidy, for which the results
are essentially unchanged, replacing 2Ne with kNe where k is the ploidy. In Appendix 4.I.2
we add pleiotropy: each allele influences d traits. Future work could study this behavior
when d ≫ 1, which should agree with the conclusions of [116, 118]. In Appendix 4.I.3 we
add dominance: the selection coefficient (4.10) is then a polynomial in P ℓt of degree 3. In
Appendix 4.I.4 we discuss epistasis. We argue that under some conditions, the effect of a
locus on the trait can be locally approximated as additive. It will also be straightforward
to add fluctuating environments as in [26] (provided the fluctuations are of the same order
as σ or smaller), genes influencing plasticity (G×E interactions, which are studied from the
trait’s eye-view in [193]), spatial structure as in [138], and more sophisticated selection (for
instance if W (z) is skewed).
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One could also hope to derive first-order corrections for linkage disequilibrium, following
[106, 105]. Another mechanism to consider would be insertion-deletions, which would let
the number of loci L evolve [194, 195, 196, 197, 198]. On another level, there is growing
evidence for the rôle of introgression and admixture [199] as an alternative to mutation for
generating genetic diversity. Theoretical models such as [200] offer powerful descriptions of
the long-term effect of an admixture event on a polygenic trait. These models allow for the
representation of migration as an input in genetic variability under assumptions of strong
recombination and weak selection [136]. Finally, one should account for the evolution of the
effective population size Ne, the fluctuations of which can be influenced directly by the effect
of selection [38, 138, 137].

Future work will also describe the dynamics of the system out-of-equilibrium, extending
the work of [124, 126]. This will allow us to tackle questions such as the response of a
population to a decrease in population size or a change in optimum, and the corresponding
genetic load [201]. Overall, our framework lets us account for most biologically relevant
features of polygenic systems (with the exception of LD) and provides efficient theoretical
predictions as well as explicit criteria on the parameters for our predictions to hold.

Material and methods

Our programs were run on Python 3.10.12. All of our code is available at
https://github.com/PhCourau /gene s eye view of quantitative genetics applications. Our
derivations rely on the following three kinds of mathematical tools.

4.A Model and notation

To make this appendix self-contained, we recall the model and notation from the chapter.

4.A.1 Miscellaneous notations

For a, b ∈ R+, the notation a ≲ b is taken to mean that we don’t have a ≫ b, and a ∼ b
means we neither have a≪ b nor b≪ a. We use the notation [L] = {1, . . . , L}.

4.A.2 Individual-based model

The individual-based model as implemented in our numerical simulation is a classical diploid
L−loci biallelic Wright-Fisher model with a population of size N . Each organism can be
described by its genome g = (gℓ)ℓ∈[L] ∈ {0, 1, 2}L, with gℓ representing the number of trait-
increasing allele at locus ℓ. The (genetic) trait value of a genome is given by the trait
function

Z :

{
{0, 1, 2}L −→ R
g 7−→

∑
ℓ∈[L] αℓgℓ

where αℓ ≥ 0 is the additive coefficient at locus ℓ. We take the (αℓ)ℓ∈[L] to be an exchangeable
vector of random variables such that ∑

ℓ∈[L]

αℓ = 1. (4.22)

In particular, unless their distribution is degenerate (see Fig. 4.11) the typical value of αℓ is
of order 1/L. The assumption of (4.22) is made to guarantee that Z(g) is always between
0 and 2. It can be seen as a form of rescaling: we measure the trait in units such that the
maximal possible trait value is 2 and the smallest one is 0.
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4.B. Outline of the derivation

The fitness of an organism is obtained with the fitness function

F (z) :

{
R −→ R
z 7−→ exp

(
−ω−2

2 (z − η)2
)

We let W := lnF be the log-fitness function.

Reproduction occurs by sampling two parents with probability proportional to fitness,
and for each parent picking a crossover position uniformly on [L]. Mutations at locus ℓ to
(resp. from) the trait-increasing allele occur with probability µ+ℓ (resp. µ−ℓ ) per locus per
generation per haploid genome. A formal definition of the model will be given in Section
4.C.3.

4.A.3 Representation from allele frequencies

For t ≥ 0 we let P ℓt be the frequency of the trait-increasing allele at generation ⌊2Nt⌋ at
locus ℓ.

For p = (pℓ)ℓ∈[L] ∈ [0, 1]L we let Ep[φ(g)] be the expectation of φ(g) when g = (gℓ)ℓ∈[L] is
a vector of independent variables such that gℓ has law Binomial(2, pℓ). We write Varp,Covp

for the variance and covariance associated to Ep. For all other random variables the notation
E,Var and Cov are used.

Consider t ≥ 0. The population at time t is in Hardy-Weinberg Linkage Equilibrium
(HWLE) if conditional on Pt = (P ℓt )ℓ∈[L], the law of of a uniformly sampled genome is EPt .

4.A.4 Typical locus and genetic architecture

For ℓ ∈ [L], we define the summary vector at locus ℓ at time t as the vector

P⃗ ℓt := (P ℓt , αℓ, θℓ).

This vector contains all the information we need from locus ℓ at time t. Consider ℓU a uniform
random variable on [L]. We call

P⃗t = (Pt, α, θ) := P⃗ ℓUt

the typical locus at time t. The genetic architecture at time t is the law of P⃗t.

4.A.5 Wright-Fisher diffusion

A process (Pt)t≥0 is a standard Wright-Fisher diffusion with parameters s > 0, θ+ > 0, θ− > 0
if it satisfies the Stochastic Differential Equation (SDE)

dPt = sPt(1− Pt)dt+ (θ+(1− Pt)− θ−Pt)dt+
√
Pt(1− Pt)dBt (4.23)

where Bt is a Brownian motion.

Similarly, a process (Pt)t≥0 is a frequency-dependent Wright-Fisher diffusion with param-
eters ξ, θ+, θ− where ξ is a continuous function on [0, 1] and θ+ > 0, θ− > 0 if it satisfies the
SDE

dPt = ξ(Pt)Pt(1− Pt)dt+ (θ+(1− Pt)− θ−Pt)dt+
√
Pt(1− Pt)dBt (4.24)

4.B Outline of the derivation

We outline the content of Sections 4.C-4.F.
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4.B.1 The polygenic equation from the gene’s eye view

In Sections 4.C-4.D, we will derive an equation that jointly describes the evolution of the
typical locus Pt and the mean trait value within the population. This will be done in two
successive steps.

The diffusion equation

Our first step relies on deriving coupled diffusion equations for the evolutions of the allelic
frequencies at various loci. Define ∆t as the deviation from the optimum at time t

∆t := EPt [Z(g)]− η =
∑
ℓ∈[L]

2αℓP
ℓ
t − η. (4.25)

In Section 4.C, we derive the following diffusion equation for P ℓt on the time scale N

dP ℓt = ξ∆t,αℓ
(P ℓt )P

ℓ
t (1− P ℓt ) dt+

(
θ+ℓ (1− P ℓt )− θ−ℓ P

ℓ
t

)
dt+

√
P ℓt (1− P ℓt ) dB

ℓ
t , (4.26)

where (Bℓ)ℓ∈[L] are independent Brownian motions, θ±ℓ = 2Nµ±ℓ , and the selection coefficient
ξ is such that for a ∈ R+, δ ∈ R:

ξδ,a(p) := −aδ
ω2
e

+
a2

ω2
e

(
p− 1

2

)
. (4.27)

where

ω2
e :=

ω2

2N
.

The derivation of of this result relies on the following hypotheses

H 1. The population remains close to HWLE.

H 2. The law of F (Z(g)) when g has law EPt is very concentrated around F̂t := eW̄t where
W̄t = EPt [Z(g)], so that we may write

F (Z(g)) ≃ F̂t(1 +W (Z(g))− W̄t).

(H1) implies the (P ℓt )ℓ∈[L] are sufficient to fully describe the population at time t. (H2)
should be interpreted as: the typical fitness difference between two randomly sampled organ-
isms is small.

Mean-field approximation

From now on, we simplify the problem by considering that the system is at statistical equilib-
rium, and we denote by P∗ the equilibrium distribution of the typical locus P⃗t. The diffusion
(4.26) is of dimension L − 1, which makes it inconvenient to work with when L ≫ 1. In
Section 4.D, we derive a simplified system for the dynamics of the typical locus from (4.26)
using mean-field approximations.

Mean-field approximations are an important tool in the study of interacting particles
[69, 157]. In our setting, the mean-field approximation reads

H 3 (Mean-field approximations). For any test function f ,

1

L

∑
ℓ∈[L]

f(P⃗ ℓt ) ≃ E∗[f(P⃗t)] = E∗[f(P⃗0)].

where the last equality follows from the fact that the system is assumed to be at equilibrium.
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The left hand side is a random quantity, whereas the right-hand side is deterministic and
is obtained by looking at the expected value of an observable of a typical locus at time 0
(under the equilibrium distribution P∗).

Intuitively, in our system, the loci are coupled by ∆t in the selection coefficient (4.27),
and ∆t is determined by all loci. But this dependence is diffuse and evenly spread across all
loci, as each locus only has a very small influence on ∆t. So the dependence between different
loci is weak, and we may expect (H3) to hold. This phenomenon, known as propagation of
chaos [69], has been rigorously proven to occur in our system when ω−2

e ∼ L in Chapter 2.
In Section 4.D, we formally derive the limit equation for the distance of the trait mean

to the optimum and a typical locus Pt at stationarity, and the fluctuations of the mean trait
value εt := ∆t −∆∗.

dPt =ξ∆∗,α(Pt)Pt(1− Pt) dt+
(
θ+(1− Pt)− θ−Pt

)
dt+

√
Pt(1− Pt) dB

P
t (4.28)

∆∗ :=E∗[∆0] = E∗[∆t] = 2LE∗[αPt]− η (4.29)

dεt =− ρεt dt+ ωe
√

2ρ dB∆
t (4.30)

where BP , B∆ are Brownian motions. In particular, (εt)t≥0 is an Ornstein-Uhlenbeck process
with autocorrelation parameter ρ defined as

ρ :=
1

τ
× E∗[2(Lα)2Pt(1− Pt)]

|θ̄|
(4.31)

where the characteristic timescale of the trait τ are

τ :=
Lω2

e

|θ̄|
. (4.32)

where |θ| := θ++ θ− and θ̄ = (E [θ+] ,E [θ−]). This system is much more convenient than the
SDE (4.26), and in particular it has a simple stationary distribution (see Section 4.B.1).

The derivation will be based on the mean-field hypothesis (H3) and either one of the
following two hypotheses

H 4. We have ω−2
e ≪ L2.

H 4’. We have

a) ω−2
e ∼ L2

b) E∗ [(Lα)2Pt(1− Pt)
]
∼ |θ̄|

c) Lω2
e ≪ |θ̄|

d) the timescale on which (Pt)t≥0 evolves is of order 1 or greater

(H4) corresponds to what we call the weak/moderate selection regime. (H4’a) corresponds
to the strong selection regime.

(H4’b) is a classical result of population genetics. If we take P̂t a neutral Wright-Fisher
diffusion with mutation rates θ, then at stationarity P̂t has distribution Beta(2θ

+, 2θ−), and
in particular

E
[
P̂t(1− P̂t)

]
=

θ+θ−

|θ|
(
1
2 + |θ|

)
In particular, provided θ+ ∼ θ− ≲ 1, we have

E
[
P̂t(1− P̂t)

]
∼ |θ|

The same holds if P̂t is a frequency-dependent Wright-Fisher diffusion (4.24) with selection
coefficient of order 1. In light of this, we may expect (H4’b) to hold as soon as α ∼ 1/L and
the mutational bias is small. See Section 4.E for further details.

(H4’c) can be rewritten τ ≪ 1. (H4’d) is verified for any Wright-Fisher diffusion in which
genetic drift plays a significant rôle.
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Stationary distribution

Using the decoupling of Pt and ∆t, we can rewrite (4.28) as

dP ℓt = ξ∆∗,αℓ
(P ℓt )P

ℓ
t (1− P ℓt ) dt+

(
θ+ℓ (1− Pt)− θ−ℓ Pt

)
dt+

√
P ℓt (1− P ℓt ) dB

ℓ
t (4.33)

This means that conditional on (αℓ, θℓ), (P
ℓ
t )t≥0 behaves as a frequency-dependent Wright-

Fisher diffusion (4.24). In particular, its equilibrium distribution [53] is Π∆∗,αℓ,θℓ where for
δ ∈ R, a ∈ R+, θ ∈ (0,+∞)2 we define

Πδ,a,θ(p) := Cδ,a,θ p
2θ+−1(1− p)2θ

−−1e2
∫ p
0 ξδ,a(u) du. (4.34)

with Cδ,a,θ a normalization constant. Furthermore, the distribution of a typical locus P⃗t is
given by

E∗[f(P⃗t)] = E
[∫

f(p, α, θ)Π∆∗,α,θ(p)dp

]
Since we know the distribution of a typical locus, we can compute

∆∗ ≃ 2LE∗[αPt]− η.

This can be rewritten

∆∗ ≃ 2 I(∆∗)− η (4.35)

with

I(δ) := E
[∫

LαpΠδ,α,θ(p)dp

]
. (4.36)

With words, I(δ) is the expectation of LαP̂ δt , where P̂
δ
t is a stationary frequency-dependent

Wright-Fisher diffusion with parameters (ξδ,α, θ) ((4.24)).

In mathematical terms, (4.35) is what is known as a fixed point equation: we obtain ∆∗

as a function of ∆∗. The fact that this equation has a unique solution can be seen from the
fact that I is continuous, non-increasing and bounded by 1 on R.

4.B.2 Simplifying assumptions on the parameters

In Section 4.E, we consider the stationary solution of the system given by (4.28-4.30), and we
derive the order of magnitude of macroscopic observables based on the following assumptions.

A 1 (Uniform boundedness). There is a constant C ∼ 1 such that for any ℓ ∈ [L], |θℓ| ≤ C|θ̄|
and αℓ ≤ C

L .

A 2 (Mutations smaller than genetic drift). |θ̄| ≲ 1.

A 3 (Mutational bias not too extreme). There is a constant C ∼ 1 such that for any ℓ,
θ−ℓ /C ≤ θ+ℓ ≤ Cθ−ℓ .

A 4 (Accessibility of the selection optimum). η ∈ (0, 2) satisfies η(2− η) ∼ 1.

A 5 (Weak/moderate/strong selection). L ≲ ω−2
e ≲ L2.

A 6 (Distance between the selection and the mutation optimum). We have

|2 I(0)− η| ∼ 1.
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4.C. The diffusion approximation

(A1) is a strong assumption that guarantees no single locus disproportionally contributes
to the genetic variance. It makes computations much more tractable. Future work should
relax this assumption (see also Fig. 4.11). (A2-3) ensure mutations rates are not too large
or too asymmetric. (A4) ensures that there are many different genotypes that can satisfy
Z(g) = η. (A5) rules out ultra-weak (ω−2

e ≪ L) selection, under which the system is close
to neutrality (see Section 4.E.2), and ultra-strong ω−2

e ≫ L2, under which natural selec-
tion strongly depletes the genetic variability. (A6) is quite technical, but when ω−2

e ≪ L2

(weak/moderate selection) it can be rewritten |zM − η| ∼ 1 where zM := 2LE
[
α θ+

θ++θ−

]
is

the mutational optimum (the mean trait value if there was no selection). In such a setting,
(A6) precludes coincidental situations in which the mutational optimum would be very close
to the selection optimum. Under strong selection (ω−2

e ∼ L2), the condition is more complex,
but it similarly rules out a very coincidental situation.

4.B.3 Necessary assumptions for consistency

In Section 4.F, we will show that the following assumptions are necessary for (A1-6) to be
consistent with (H1-4’).

N 1 (Sufficiently large population). 2N ≫ |θ̄| ln(L)
Lω2

e
+ L

√
|θ̄|.

N 2 (Minimal mutational input every generation). |θ̄|L≫ 1.

Furthermore, the following assumption (stronger than (N2)) is needed for (4.30) to de-
scribe the fluctuations of the distance to the optimum (εt)t≥0.

N 3 (Sufficient mutational input). |θ̄|
Lω2

e
≫ 1.

Condition (N2) guarantees that sufficient genetic variability within the population is main-
tained by mutations. (N1) ensures HWLE (H1) and that the fitness variance is small (H2).
Finally, (N3) guarantees that selection is the force stabilizing the fluctuations of (εt)t≥0 (see
Section 4.F for details), it can be rewritten as τ ≪ 1 with τ the timescale of the trait from
(4.32).

4.C The diffusion approximation

In this section, we aim at obtaining the SDE (4.26), assuming N ≫ 1, θ±ℓ = µ±ℓ 2N ∼ 1,
HWLE (H1) and that fitness is very concentrated (H2). Equation (4.26) is well-known to be
the limit of the individual-based model under the hypothesis of HWLE as N → +∞, when
selection and mutation are weak (see [72]), and the selection coefficient (4.27) was obtained
by Wright in [96]. We recall the derivation of these equations in an effort to be self-contained.

We will obtain the diffusion equation by computing the first and second moments. Specif-
ically, we must show

E
[
P ℓ
t+ 1

2N

− P ℓt
∣∣ Pt

]
≃ 1

2N

(
ξ∆t,αℓ

(P ℓt )P
ℓ
t (1− P ℓt ) + θ+ℓ (1− P ℓt )− θ−ℓ P

ℓ
t

)
(4.37)

Var
[
P ℓ
t+ 1

2N

∣∣ Pt

]
≃ 1

2N
P ℓt (1− P ℓt ) (4.38)∣∣∣∣Cov [P ℓ1t+ 1

2N

, P ℓ2
t+ 1

2N

∣∣ Pt

]∣∣∣∣≪ 1

2N
(4.39)
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4.C.1 First moment computation

We write P ∗ℓ
t for the frequency of the trait-increasing allele at generation ⌊2Nt⌋ after re-

production but before mutation. Assume the population at time 2Nt is in HWLE (H1).
Because a genome g from generation ⌊2Nt⌋ has an average number of offspring proportional
to F (Z(g)), and because P ∗ℓ

t is half the expectation of gℓ post-reproduction, we find

E
[
P ∗ℓ
t

∣∣Pt

]
=

EPt [
gℓ
2 F (Z(g))]

EPt [F (Z(g))]
.

It follows from P ℓt = 1
2EPt [gℓ]

E
[
P ∗ℓ
t − P ℓt

∣∣Pt

]
=

CovPt [F (Z(g)), gℓ]

2EPt [F (Z(g))]
.

As a sidenote, this can also be seen as an application of the Price equation [143] to the trait
gℓ
2 . Writing F̂t = eW̄t we get from (H2)

CovPt [F (Z(g)), gℓ]

2EPt [F (Z(g))]
≃ CovPt [F̂t(1 +W (Z(g))− W̄t), gℓ]

2F̂t
=

CovPt [W (Z(g)), gℓ]

2

Using VarPt [gℓ] = 2P ℓt (1− P ℓt ) we find

E
[
P ∗ℓ
t − P ℓt

∣∣Pt

]
≃ sℓ(Pt)

2N
P ℓt (1− P ℓt )

where sℓ is the selection coefficient at locus ℓ

sℓ :

{
[0, 1]L −→ R
p 7−→ 2N

Covp[W (Z(g)),gℓ]
Varp[gℓ]

(4.40)

In particular, sℓ
2N can be seen as the linear regression of W (Z(g)) on gℓ (see Fig. 4.6).

Taking into account the effect of mutation we find

E
[
P ℓ
t+ 1

2N

− P ℓt
∣∣ Pt

]
≃ 1

2N

(
sℓ(Pt)P

ℓ
t (1− P ℓt ) + θ+ℓ (1− P ℓt )− θ−ℓ P

ℓ
t

)
To get (4.37), we must show sℓ(Pt) = ξ∆t,αℓ

(P ℓt ).

4.C.2 Selection coefficient

We find from the definition of sℓ and W

sℓ(p)

2N
=

Covp

[
− 1

2ω2

(∑
ℓ′∈[L] αℓ′gℓ′ − η

)2
, gℓ

]
2pℓ(1− pℓ)

= − 1

4ω2pℓ(1− pℓ)

Covp

 ∑
ℓ1,ℓ2∈[L]

αℓ1gℓ1αℓ2gℓ2 , gℓ

− 2ηαℓVarp [gℓ]



= − 1

4ω2pℓ(1− pℓ)

Covp

∑
ℓ′∈[L]
ℓ′ ̸=ℓ

2αℓ′gℓ′αℓgℓ, gℓ

+Covp

[
(αℓgℓ)

2, gℓ
]
− 4ηαℓpℓ(1− pℓ)


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Figure 4.6: A population of N = 100 individuals with L = 100 biallelic loci, was evolved
for T = 100 generations under stabilizing selection with parameters η = 1.2, ω−2

e = 103 and
θ = (0.1, 0.2). The logfitness of the organisms within the population is plotted as a function
of gℓ. The left and right figure correspond to two different loci (ℓ = 0 and ℓ = 7 respectively).
The selection coefficient sℓ(Pt) at generation t at locus ℓ is given by the linear regression
coefficient of logfitness W (Z(g)) on gℓ (see Section 1A). This corresponds to the slope of the
red line.

where in the last equality we used (H1) which guarantees the independence of gℓ1gℓ2 and gℓ
when ℓ /∈ {ℓ1, ℓ2}. This independence further yields for ℓ′ ̸= ℓ

Covp [αℓ′gℓ′αℓgℓ, gℓ] =αℓ′Ep [gℓ′ ]αℓVarp[gℓ]

=αℓ′ × 2pℓ′ × αℓ × 2pℓ(1− pℓ)

Similarly we can compute

Covp

[
(αℓgℓ)

2 , gℓ

]
=α2

ℓ (2 + 4pℓ) pℓ(1− pℓ)

From there it is elementary to obtain

sℓ(p)

2N
=
αℓ
ω2

η − 2
∑
ℓ′∈[L]

αℓ′ pℓ′

 +
α2
ℓ

ω2

(
pℓ −

1

2

)

We thus get (4.27) using (4.25).

4.C.3 Second moment

Here we compute Var
[
P ℓ
t+ 1

2N

∣∣ Pt

]
and Cov

[
P ℓ1
t+ 1

2N

, P ℓ2
t+ 1

2N

∣∣ Pt

]
for ℓ1 ̸= ℓ2. For this, it will

be useful to give a more formal definition of the individual-based model.

Formal definition of the individual-based model.

The population is described with an array (Gn,iℓ,(j))ℓ∈[L],j∈[2],i∈[N ] in which

• n ∈ N is a time-coordinate, it denotes the generation under consideration

• i ∈ [N ] is the label of the organism under consideration

• j ∈ [2] is the label of the chromosome

• ℓ ∈ [L] is the label of the locus.
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In particular, we have Gn,iℓ,(j) = 1 (resp. 0) if the i−th organism at generation n has the

trait-increasing (resp. decreasing) allele on its j−th chromosome, at locus ℓ. Then gn,i =
(gn,iℓ )ℓ∈[L] := (Gn,iℓ,(1) +Gn,iℓ,(2))ℓ∈[L] is the genome of organism i at generation n.

The generation n + 1 is generated from generation n as follows. For i ∈ [N ], j ∈ [2], the
j−th chromosome of the i−th organism (Gn+1,i

ℓ,(j) )ℓ∈[L] is independently generated in two steps

• (Reproduction). we sample a parental genome Ii,j with probability proportional to

F (Z(gn,Ii,j )). A crossover positions ℓ
(j)
U is uniformly sampled on [L], as well as a

Bernoulli(1/2) variable bj . Then we set

∀ℓ ∈ [L], Gn+1,i
ℓ,(j) =

{
G
n,Ii,j
ℓ,(bj)

if ℓ < ℓ
(j)
U

G
n,Ii,j
ℓ,(1−bj) otherwise

• (Mutation). With probability |µℓ| := µ+ℓ + µ−ℓ , G
n,i
ℓ,(j) mutates and is replaced by an

independently sampled variable with law Bernoulli(µ+ℓ /(µ
+
ℓ + µ−ℓ )).

Second moment: diagonal coefficients.

From the formal model, we see that each (G
⌊2Nt⌋+1,i
ℓ,(j) )i∈[N ],j∈[2] is independently generated

with the same procedure. We therefore find

Var
[
P ℓ
t+ 1

2N

∣∣ Pt

]
=

1

(2N)2

∑
i∈[N ],j∈[2]

Var
[
G

⌊2Nt⌋+1,i
ℓ,(j)

∣∣ Pt

]
=

1

2N
Var

[
G

⌊2Nt⌋+1,1
ℓ,(1)

∣∣ Pt

]
.

Because G
⌊2Nt⌋+1,1
ℓ,(1) is a Bernoulli variable we find

Var
[
P ℓ
t+ 1

2N

∣∣ Pt

]
=

1

2N
E
[
G

⌊2Nt⌋+1,1
ℓ,(1)

∣∣ Pt

]
E
[
1−G

⌊2Nt⌋+1,1
ℓ,(1)

∣∣ Pt

]
.

Since conditional on P ℓ
t+ 1

2N

, G
⌊2Nt⌋+1,1
ℓ,(1) has law Bernoulli(P ℓ

t+ 1
2N

), we find

Var
[
P ℓ
t+ 1

2N

∣∣ Pt

]
=

1

2N
E
[
P ℓ
t+ 1

2N

∣∣ Pt

]
E
[
1− P ℓ

t+ 1
2N

∣∣ Pt

]
. (4.41)

Using the first-order approximation E
[
P ℓ
t+ 1

2N

∣∣ Pt

]
≃ P ℓt yields (4.38).

Second moment: cross coefficients

We can use again the fact that G
⌊2Nt⌋+1,i1
ℓ1,(j1)

and G
⌊2Nt⌋+1,i2
ℓ1,(j2)

are independently generated when-
ever j1 ̸= j2 or i1 ̸= i2 to find

Cov
[
P ℓ1
t+ 1

2N

, P ℓ2
t+ 1

2N

∣∣ Pt

]
=

1

2N
Cov

[
G

⌊2Nt⌋+1,1
ℓ1,(1)

, G
⌊2Nt⌋+1,1
ℓ2,(1)

∣∣ Pt

]
.

If the population at time t + 1
2N is in HWLE (H1), then this last term is zero, which yields

(4.39).

4.D The polygenic equation from the gene’s eye-view

We now assume that the system is at statistical equilibrium, writing P∗ for the corresponding
probability. We use mean-field approximations to obtain the system (4.28-4.30) for (Pt,∆

∗, εt)
where εt := ∆t −∆∗.

This section is structured as follows
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• In Section 4.D.1, we apply the mean-field hypothesis (H3) to (∆t)t≥0.

• In Section 4.D.2, we discuss the decoupling of (∆t)t≥0 and P⃗t under (H4) and (H4’),
which lets us obtain (4.28) by replacing ∆t in (4.26) with its mean value ∆∗.

• In Section 4.D.3, we recover (4.30) for (εt)t≥0.

4.D.1 Dynamics of the trait mean

Here we will derive the following equation for ∆t

d∆t =
1

τ

(
−∆t ×

1

|θ̄|
× E∗ [2(Lα)2Pt(1− Pt)

]
+

1

|θ̄|
× E∗

[
2L2α3

(
Pt −

1

2

)
Pt(1− Pt)

]

+
Lω2

e

|θ̄|
× E∗ [2Lα (θ+(1− Pt)− θ−Pt

)])
dt +

1√
τ
×

√
ω2
e

|θ̄|
E∗ [(2Lα)2Pt(1− Pt)]dB

∆
t

(4.42)

The derivation is as follows. From (4.25), the dynamics of ∆t are given by

d∆t =
∑

ℓ=1,...,L

αℓ2dP
ℓ
t

= 2
∑
ℓ∈[L]

αℓ

(
ξ∆t,αℓ

(P ℓt )P
ℓ
t (1− P ℓt )P

ℓ
t (1− P ℓt )dt+ (θ+ℓ (1− P ℓt )− θ−ℓ P

ℓ
t )dt

+
√
P ℓt (1− P ℓt )dB

ℓ
t

)
We find from (4.27)

d∆t = 2
∑
ℓ∈[L]

−∆t
α2
ℓ

ω2
e

P ℓt (1− P ℓt )dt + 2
∑
ℓ∈[L]

α3
ℓ

ω2
e

(
P ℓt −

1

2

)
P ℓt (1− P ℓt )dt

+ 2
∑
ℓ∈[L]

αℓ

(
θ+ℓ (1− P ℓt )− θ−ℓ P

ℓ
t

)
dt + 2

∑
ℓ∈[L]

αℓ

√
P ℓt (1− P ℓt )dB

ℓ
t

We now express this as a function of τ from (4.32)

d∆t =
1

τ

(
2Lω2

e

|θ̄|
∑
ℓ∈[L]

−∆t
α2
ℓ

ω2
e

P ℓt (1− P ℓt ) +
2Lω2

e

|θ̄|
∑
ℓ∈[L]

α3
ℓ

ω2
e

(
P ℓt −

1

2

)
P ℓt (1− P ℓt )

+
2Lω2

e

|θ̄|
∑
ℓ∈[L]

αℓ

(
θ+ℓ (1− P ℓt )− θ−ℓ P

ℓ
t

))
dt +

1√
τ

∑
ℓ∈[L]

2αℓ

√
Lω2

e

|θ̄|
P ℓt (1− P ℓt )dB

ℓ
t

which we rewrite

d∆t =
1

τ

(
− 2

|θ̄|
∆t×

1

L

∑
ℓ∈[L]

(Lαℓ)
2P ℓt (1−P ℓt ) +

2

|θ̄|
× 1

L

∑
ℓ∈[L]

L2α3
ℓ

(
P ℓt −

1

2

)
P ℓt (1−P ℓt )

+
Lω2

e

|θ̄|
× 1

L

∑
ℓ∈[L]

2Lαℓ

(
θ+ℓ (1− P ℓt )− θ−ℓ P

ℓ
t

))
dt +

1√
τL

∑
ℓ∈[L]

2Lαℓ

√
ω2
e

|θ̄|
P ℓt (1− P ℓt )dB

ℓ
t .

(4.43)
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We now use (H3) on the first, second and third term

1

L

∑
ℓ∈[L]

(Lαℓ)
2P ℓt (1− P ℓt ) ≃ E∗ [(Lα)2Pt(1− Pt)

]
(4.44)

1

L

∑
ℓ∈[L]

L2α3
ℓ

(
P ℓt −

1

2

)
P ℓt (1− P ℓt ) ≃ E∗

[
L2α3

(
Pt −

1

2

)
Pt(1− Pt)

]
(4.45)

1

L

∑
ℓ∈[L]

2Lαℓ

(
θ+ℓ (1− P ℓt )− θ−ℓ P

ℓ
t

)
≃ E∗ [2Lα (θ+(1− Pt)− θ−Pt

)]
(4.46)

The last term of (4.43) is a Brownian term with quadratic variation

1

τL

∑
ℓ∈[L]

(2Lαℓ)
2 × ω2

e

|θ̄|
P ℓt (1− P ℓt ) ≃

1

τ
× ω2

e

|θ̄|
E∗ [(2Lα)2Pt(1− Pt)

]
(4.47)

where we used again (H3). We thus obtain (4.42) with B∆ a Brownian motion such that for
any ℓ ∈ [L],

d

dt
⟨∆, P ℓ⟩t = 2α

d

dt
⟨P ℓ⟩t = 2α× P ℓt (1− P ℓt ) ∼

1

L
(4.48)

where ⟨·, ·⟩ denotes quadratic variation.

4.D.2 Decoupling of the trait and the typical locus

We obtain the polygenic system (4.28-4.30) from the SDE for (P ℓt )t≥0 in (4.26) and that for
(∆t)t≥0 (4.42), by showing that we may replace ξ∆t,αℓ

with ξ∆∗,αℓ
in the SDE (4.26) for P ℓt .

Crucially, our derivation assumes either (H4) or (H4’).

Derivation under (H4). At stationarity, equation (4.42) is an Ornstein-Uhlenbeck equation
with fluctuations of order ωe. It follows that

ξ∆t,αℓ
= ξ∆∗,αℓ

+O(1/(Lωe))

In particular, because ω−2
e ≪ L2, we get that ξ∆t,αℓ

− ξ∆∗,αℓ
= o(1).

Derivation under (H4’). We invoke the principle of time-averaging which we illustrate in
Fig. 4.7.

This crucially relies on the fact that (∆t)t≥0 evolves on a timescale of τ ≪ 1. This can
be seen as follows

• from (4.42) we know that (∆t)t≥0 is an Ornstein-Uhlenbeck process with autocorrelation
ρ, and in particular it evolves on a characteristic timescale of 1

ρ

• (H4’b) and (4.31) implies ρ ∼ 1
τ

• (H4’c) implies τ ≪ 1.

Let us now recall the principle of time-averaging. Suppose we know (P0,∆0), where
∆0 = ∆∗+O(ωe). Let us consider what the first-order increments of Pt are, where t is chosen
such that τ ≪ t≪ 1. The SDE for Pt can be written from (4.26) as

Pt = P0 +

∫ t

0

(
ξ∆u,α(Pu)Pu(1− Pu) +

(
θ+(1− Pu)− θ−Pu

))
du+

∫ t

0

√
Pu(1− Pu) dB

P
u

for some Brownian motion BP . We write from (4.27)

ξ∆u,α = −α∆u −∆∗

ω2
e

+ ξ∆∗,α.
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Figure 4.7: The slow/fast principle applied in strong selection. The population was evolved
with ω−2

e = L2 (strong selection) and L = 1000, N = 1000, η = 1.2, θ = (0.1, 0.2), and αℓ has
law Exponential(L). In the left figure, we see that (∆t)t≥0 evolves with very short excursions
away from its mean value before returning there. Meanwhile, P ℓt only explores the segment
[0.6, 0.9], a small portion of the state space of Pt. On the right-hand side, we zoom in on
a time window in which P ℓt stays effectively constant, whereas ∆t evolves very quickly. In
particular, the fluctuations of ∆t do not impact Pt. The time-averaging principle is then to
consider a small time interval dt with τ ≪ dt ≪ 1, to replace ∆t in the equation of P ℓt with
its time average over [t, t+ dt], and consider that the law of P ℓt does not evolve on [t, t+ dt].

Therefore, to replace ξ∆u,α by ξ∆∗,α in the equation for Pt, we must show

∣∣∣∣∫ t

0
−α∆u −∆∗

ω2
e

Pu(1− Pu)du

∣∣∣∣≪ t

From (H4’d), on the interval [0, t] the typical locus Pt scarcely evolves, and we may therefore
suppose for u ∈ [0, t]

Pu ≃ P0.

Therefore, we must show ∣∣∣∣∫ t

0
−α∆u −∆∗

ω2
e

du

∣∣∣∣≪ t

Because the fluctuations of (∆u)u≤t are of order ωe and since (H4’a) implies α
ωe

∼ 1, we only
have to show that

1

t

∫ t

0
∆udu ≃ ∆∗

This ergodic theorem (see for instance [202]) crucially hinges on (H4’b), which tells us that
the characteristic timescale for the evolution of (∆u)u≥0 is τ .

As we have done throughout this appendix, we defer to future work a rigorous proof of
this time-averaging, but we do note that a result close to the one needed here has already
been obtained by [169]. A rigorous proof in our system will face difficulties which are not
tackled in [169], in particular the fact that B∆ and BP are not independent (see (4.48)).
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4.D.3 Recovering the Ornstein-Uhlenbeck process

Here we recover the Ornstein-Uhlenbeck SDE (4.30) for (εt)t≥0 from (4.42). If we define
εt := ∆t −∆∗, we get from (4.42)

dεt = −εt ×
1

τ |θ̄|
× E∗ [2(Lα)2Pt(1− Pt)

]
+

1√
τ
×

√
ω2
e

|θ̄|
E∗ [(2Lα)2Pt(1− Pt)]dB

∆
t

+
1

τ

(
1

|θ̄|
× E∗

[
2L2α3

(
Pt −

1

2

)
Pt(1− Pt)

]
+
Lω2

e

|θ̄|
× E∗ [2Lα (θ+(1− Pt)− θ−Pt

)]
−∆∗ × 1

|θ̄|
× E∗ [2(Lα)2Pt(1− Pt)

])
dt

It remains to show

∆∗ =
E∗ [2L2α3

(
Pt − 1

2

)
Pt(1− Pt)

]
+ Lω2

eE∗ [2Lα (θ+(1− Pt)− θ−Pt)]

E∗ [2(Lα)2Pt(1− Pt)]
. (4.49)

where

∆∗ = 2LE∗[αPt]− η.

We start by noticing that because the system is at stationarity, we have

d

dt
E∗[Pt | (α, θ)] = 0.

Applying (4.28) to E∗[Pt | (α, θ)], we find

d

dt
E∗[Pt | (α, θ)] = E∗ [ξ∆∗,α(Pt)Pt(1− Pt) + θ+(1− Pt)− θ−Pt

∣∣ (α, θ)] = 0.

From the definition of ξ∆∗,α in (4.27) we find

E∗
[(

− α

ω2
e

∆∗ +
α2

ω2
e

(
Pt −

1

2

))
Pt(1− Pt) +

(
θ+(1− Pt)− θ−Pt

) ∣∣ (α, θ)] = 0.

We rewrite this, multiplying by 2L2αω2
e

∆∗E∗ [2(Lα)2Pt(1− Pt) | (α, θ)
]

= E∗
[
2L2α3

(
Pt −

1

2

)
Pt(1− Pt) + Lω2

e × 2Lα
(
θ+(1− Pt)− θ−Pt

) ∣∣ (α, θ)]
Taking the expectation with respect to (α, θ), this yields (4.49).

4.E Observables and scalings

Here, we consider that the polygenic limit holds, that is, that the system (4.28-4.29) holds
for (Pt,∆

∗). We do not assume that (4.30) for (εt)t≥0 holds unless stated otherwise.

In Section 4.E.1, we show how the macroscopic observables of the system can be computed
from the stationary distribution of P⃗t. In section 4.E.2 we briefly discuss the ultra-weak
selection regime (ω−2

e ≪ L). In section 4.E.3, we discuss how macroscopic observables scale
under (A1-6). In section 4.E.4, we introduce the bias-correcting selection coefficient s∗ and
discuss its behavior in moderate selection (L≪ ω−2

e ≪ L2).
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4.E. Observables and scalings

4.E.1 Observables at stationarity

With the fixed point equation (4.35), we showed how to compute ∆∗ = E [∆t] and the
distribution of the typical locus P⃗t. In this subsection we detail how to compute the theoretical
predictions for other observables. We assume (4.28-4.29) and HWLE (H1) hold.

We define the following observables at stationarity

σ2t :=VarPt [Z(g)] W̄t :=EPt [W (Z(g))] Vt :=VarPt [W (Z(g))] (4.50)

ν2 :=Var[∆t] ρu :=− ln

(
Cov [∆t,∆t+u]

Var[∆t]

)
(4.51)

where t, u ≥ 0. They are respectively the trait variance, the fitness load, the fitness variance,
the fluctuations of the trait mean and its log-autocorrelation function.

We argue

σ2t ≃2LE∗[α2Pt(1− Pt)] (4.52)

W̄t =− 1

2ω2
e

(
σ2t +∆2

t

)
(4.53)

Vt ≃
σ2t (σ

2
t + 2∆2

t )

2ω4
(4.54)

Furthermore if (4.30) holds then

ν =ωe ∀u ≥ 0, ρu =uρ (4.55)

where ρ was defined in (4.31).

Remark 12. Because Var∗[σ2t ] ≪ E∗[σ2t ]
2, we will consider σ2t as a constant in the rest of

this work rather than a fluctuating quantity, writing σ2 = σ2t .

Let us start by computing a first-order approximation for the genetic variance σ2t . We
have

σ2t =VarPt

∑
ℓ∈[L]

αℓgℓ


≃
∑
ℓ∈[L]

2α2
ℓP

ℓ
t (1− P ℓt )

=L× 1

L

∑
ℓ∈[L]

2α2
ℓP

ℓ
t (1− P ℓt )

where we used the HWLE hypothesis (H1) to neglect cross-correlations. Using a mean-field
approximation (H3) we get (4.52).

We turn to W̄t

W̄t =− 1

2ω2
e

EPt [(Z(g)− η)2]

=− 1

2ω2
e

(
VarPt [Z(g)] +EPt [Z(g)− η]2

)
We thus get (4.53).

Third, we compute Vt

Vt =
1

4ω4
VarPt

[
(Z(g)− η)2

]
=

1

4ω4
VarPt

[
(Z(g)− z̄t)

2 − 2(Z(g)− z̄t)∆t

]
=

1

4ω4

(
VarPt

[
(Z(g)− z̄t)

2
]
− 4CovPt

[
(Z(g)− z̄t)

2 , Z(g)− z̄t

]
∆t + 4σ2t∆

2
t

)
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where in the second line we used z̄t − η = ∆t and in the third line VarPt [Z(g)] = σ2t . We
simplify the computations of Vt by approximating the law of Z(g) under EPt with a N (z̄t, σ

2
t )

distribution (this is a consequence of the Central Limit Theorem under HWLE (H1), provided
there is sufficient genetic variability). Under this approximation, the covariance between
(Z(g)− z̄t)

2 and Z(g)− z̄t is zero and

VarPt [(Z(g)− z̄t)
2] ≃ EPt [(Z(g)− z̄t)

4]− σ4t ≃ 2σ4t

We thus obtain

Vt ≃
1

4ω4

(
2σ4t + 4σ2t∆

2
t

)
.

This yields the result.
The last two equalities are obtained from (4.30). When ω−2

e ≫ L, (4.30) implies that εt is
an Ornstein-Uhlenbeck. Furthermore, standard properties of Ornstein-Uhlenbeck processes,
yield that ∆t has autocorrelation structure

∀t1 < t2, Cov[εt1 , εt2 ] = ω2
ee

−ρ(t2−t1)

This yields (4.55).

4.E.2 Ultra-weak selection regime

Let us briefly discuss the case of ultra-weak-selection regime (ω−2
e ≪ L).

Because of the definition of ∆t and (4.22), we necessarily have |∆t| ≤ 2 as long as
η ∈ [0, 2]. It follows from the definition of ξ (4.27) that when ω−2

e ≪ L, |ξ∆t,α| ≪ 1, and
therefore P ℓt evolves as a neutral Wright-Fisher diffusion. In this regime, an individual locus
is not affected by selection in a detectable way. In particular, the macroscopic observables
∆∗, σ can be computed from the neutral distribution Π0,0,θ.

4.E.3 Scaling of observables

We now assume (A2-5) hold. We claim

|∆∗| ∼Lω2
e σ ∼

√
|θ̄|
L

(4.56)

If furthermore (4.30) holds for (εt)t≥0 then

ρ ∼1

τ
∼ |θ̄|ω2

e E∗[W̄t] ∼− 1

2N

(
|θ̄|
Lω2

e

+ L2ω2
e

)
E∗[Vt] ∼

|θ̄|
(2N)2

(
|θ̄|

(Lω2
e)

2
+ L

)
. (4.57)

Let us detail the computations.

Magnitude of ∆∗. We must show |∆∗| ∼ Lω2
e . Specifically, we will show that if ∆∗ satisfies

the fixed-point equation (4.35), then x∗ := ∆∗

Lω2
e
satisfies a non-degenerate equation and in

particular has order 1. Without loss of generality, we assume 2I(0) − η > 0, so that in
particular ∆∗ > 0.

We rewrite (4.35) as

∆∗ = 2E∗
[
(Lα)

∫
pΠ∆∗,α,θ(p)dp

]
− η.

From the definition of Πδ,a,θ in (4.34) we have

Π∆∗,α,θ(p) =
Π0,α,θ(p)∫

Π0,α,θ(p′)e
−2∆∗

ω2
e
αp′

dp′
e
−2∆∗

ω2
e
αp
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In particular, the fixed point equation becomes

∆∗ = 2E∗

(Lα)∫ pΠ0,α,θ(p)e
−2∆∗

ω2
e
αp
dp∫

Π0,α,θ(p)e
−2∆∗

ω2
e
αp
dp

− η.

Rewriting this in terms of x∗, we get

x∗Lω2
e = 2E∗

[
(Lα)

∫
pΠ0,α,θ(p)e

−2(Lα)x∗pdp∫
Π0,α,θ(p)e−2(Lα)x∗pdp

]
− η. (4.58)

Let us show that x∗ necessarily satisfies x∗ ∼ 1, by showing that we neither have x∗ ≪ 1 nor
x∗ ≫ 1.

If x∗ satisfied x∗ ≪ 1, from (A5) we have x∗Lω2
e ≪ 1 and therefore (4.58) yields

|2I(0)− η| ≪ 1

which is impossible from (A6). Let us now show that we cannot have x∗ ≫ 1. It can be

checked that the mass of Π0,α,θ between 0 and ε < 1/2 is of order θ−

θ++θ− ε
2θ+ . For α ∼ 1/L

and θ such that θ+ ∼ θ− ≲ 1, it follows that

Π0,α,θ(p)∫
Π0,α,θ(p′)e−2(Lα)xp′dp′

e−2(Lα)xp

is close to a Dirac mass on 0 whenever x≫ 1. In particular,∫
pΠ0,α,θ(p)e

−2(Lα)xpdp∫
Π0,α,θ(p)e−2(Lα)xpdp

≪ 1

If the solution to the fixed-point equation (4.58) satisfied x∗ ≫ 1, then we would have

x∗Lω2
e ≃ −η

The left-hand side is non-negative whereas the right-hand side is negative of order 1 from
(A4), which yields a contradiction.

Magnitude of σ. Recall from (4.27) and (4.34)

ξδ,a(p) :=− aδ

ω2
e

+
a2

ω2
e

(
p− 1

2

)
Πδ,a,θ(p) :=Cδ,a,θ p

2θ+−1(1− p)2θ
−−1e2

∫ p
0 ξδ,a(u) du.

with Cδ,a,θ a normalization constant. Then if α ∼ 1
L we find from ∆∗ ∼ Lω2

e and (5) that
ξ∆∗,α ∼ 1 and therefore∫

p(1− p)Π∆∗α,θ(p)dp ∼
∫
p2θ

+
(1− p)2θ

−
dp∫

p2θ+−1(1− p)2θ−−1dp
=
Beta(2θ+ + 1, 2θ− + 1)

Beta(2θ+, 2θ−)

where Beta is the Beta function. In particular∫
p(1− p)Π∆∗α,θ(p)dp ∼

θ+θ−

|θ|

where |θ| = θ+ + θ−. As a consequence, if we consider a typical locus P⃗t we have

E∗[(Lα)2Pt(1− Pt)] ∼ E
[
(Lα)2

θ+θ−

|θ|

]
∼ |θ̄|
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where we used (A3). We thus find

σ2 = LE∗[α2Pt(1− Pt)] ∼
|θ̄|
L
.

Derivation of (4.57). We obtain from (4.31) and σ ∼
√
|θ̄|/L that ρ ∼ 1

τ = |θ̄|
Lω2

e
from the

definition of τ in (4.32). Finally, (4.53) implies

E∗[W̄t] ∼ − 1

ω2

(
σ2 + (∆∗)2 + ω2

e

)
using E∗[∆2

t ] = (∆∗)2 + ω2
e from (4.55). Using ω2 = 2Nω2

e and the previous estimates for
σ2,∆∗ we find

E∗[W̄t] ∼− 1

2Nω2
e

(
|θ̄|
L

+ (Lω2
e)

2 + ω2
e

)
∼− 1

2N

(
|θ̄|
Lω2

e

+ L2ω2
e + 1

)
.

The result follows from the fact that under (A5), we have L2ω2
e ≳ 1, and therefore the

last term can always be absorbed into the second term. Similarly (4.54) yields

E∗[Vt] ∼
σ2

ω4

(
σ2 + (∆∗)2 + ω2

e

)
∼ |θ̄|
(2N)2ω4

eL

(
|θ̄|
L

+ (Lω2
e)

2 + ω2
e

)
∼ |θ̄|
(2N)2

(
|θ̄|

(Lω2
e)

2
+ L+

1

Lω2
e

)
and the last term can be absorbed in L.

4.E.4 The bias-correcting coefficient

Define the bias-correcting coefficient s∗ as

s∗ := − ∆∗

Lω2
e

(4.59)

From (4.56), we know that s∗ is always of order 1. In this subsection we claim that for
L≪ ω−2

e ≪ L2 (moderate selection), s∗ is solution to

2LE
[
α
θ+

|θ|
× 1F1(2θ

+ + 1 ; 2|θ|+ 1 ; 2s∗Lα)

1F1(2θ+ ; 2|θ| ; 2s∗Lα)

]
≃ η

where 1F1 is the confluent hypergeometric function. In particular, s∗ is independent of ω−2
e .

Furthermore, if we have |θ̄| ≪ 1 and ω−2
e ≫ L, then s∗ is a solution to

2LE
[
α

θ+

θ+e2s∗Lα + θ−
e2s

∗Lα

]
≃ η.

As noticed in [122] (Eq. A.2), assuming (αℓ, θℓ) is constant across loci, this equation can be
solved for s∗ explicitely to find

2αLs∗ ≃ ln

(
θ−

θ+

)
+ ln

(
η

2αL− η

)
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4.F. Breakdown of the polygenic limit

The derivation is as follows.
In moderate selection, we find from (4.56) that |∆∗| ∼ Lω2

e ≪ 1 ∼ η. It follows that
(4.35) can be rewritten

2I(∆∗) ≃ η (4.60)

On the other hand, we find from (4.27) that for a typical α,

ξ∆∗,α(p) ≃ −s∗Lα ∼ 1

where we neglected α2

ω2
e
∼ 1

L2ω2
e
≪ 1. It follows

Π∆∗,α,θ(p) ≃
p2θ

+−1(1− p)2θ
−−1e2s

∗Lαp∫
y2θ+−1(1− y)2θ−−1e2s∗Lαydy

From the definition of I in (4.36) we get

I(∆∗) ≃E

[
Lα

∫
p2θ

+
(1− p)2θ

−−1e2s
∗Lαpdp∫

p2θ+−1(1− p)2θ−−1e2s∗Lαpdp

]

=E
[
α
θ+

|θ|
× 1F1(2θ

+ + 1 ; 2|θ|+ 1 ; 2s∗Lα)

1F1(2θ+ ; 2|θ| ; 2s∗Lα)

]
where we recall the notation |θ| := θ+ + θ−. Carrying this into (4.60), we get the first result.

Now assume |θ̄| ≪ 1 and ω−2
e ≫ L. It is well-known that the distribution of Pt at equilib-

rium is concentrated on {0, 1}. This means conditional on (α, θ), the stationary distribution
Π∆∗,α,θ of Pt is close to a Bernoulli law with parameter

θ+

θ+e2s∗Lα + θ−
e2s

∗Lα

Plugging this into (4.29) we get

∆∗ ≃ 2LE
[
α

θ+

θ+e2s∗Lα + θ−
e2s

∗Lα

]
− η

From (4.56), we have that ∆∗ ≪ 1 when ω−2
e ≫ L. This yields the second result.

4.F Breakdown of the polygenic limit

Here, we discuss (H1-4’) in light of Section 4.E. We assume (A1-6) hold and the polygenic
equation for (Pt,∆

∗)t≥0 in (4.28-4.30) hold. In particular, the orders of magnitude derived
in Section 4.E let us characterize the parameter values for which (A1-6) are consistent with
(H1-4’). We argue that if (N1-2) is not satisfied, then (4.56) is incompatible with (H1-4’),
and in particular that the polygenic system in (4.28-4.29) breaks down. In Section 4.F.5, we
argue that if (N3) is not satisfied, then (4.30) cannot provide an accurate description of the
fluctuations of (εt)t≥0.

4.F.1 Discussion of (H2)

We illustrate our method by discussing (H2), which assumes that the fitness F (Z(g)) is
very concentrated around its mean value under EPt . In particular, this requires the fitness
variance Vt to be very small. In light of (4.57), this requires(

|θ̄|
2NLω2

e

)2

≪1
|θ̄|L
(2N)2

≪1
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which we rewrite

2N ≫ |θ̄|
Lω2

e

2N ≫
√
|θ̄|L.

Both these conditions are satisfied under (N1).

Let us be more precise. In Section 4.C, (H2) was used to write

CovPt [F (Z(g)), gℓ] ≃CovPt [F̂t(W (Z(g))− W̄t), gℓ] EPt [F (Z(g))] ≃F̂t

By Taylor expansion, this is justified if

∑
k>1

1

k!

∣∣∣CovPt [(W (Z(g))− W̄t)
k, gℓ]

∣∣∣
≪
∣∣CovPt [(W (Z(g))− W̄t), gℓ]

∣∣∑
k≥2

1

k!
EPt [|W (Z(g))− W̄t|k] ≪ 1

A proper justification of (H2) would require a control of CovPt [(W (Z(g)) − W̄t)
k, gℓ] for

k ≥ 1 and EPt [(W (Z(g)) − W̄t)
k] for k ≥ 3. Such estimates can be obtained if we assume

that Z(g) is normally distributed under EPt conditioned on gℓ. The trait’s eye-view, which
will be presented in Section 4.G, yields an alternative derivation of the diffusion equation
(4.26) which relies precisely on this assumption.

4.F.2 Discussion of HWLE (H1)

HWLE (H1) is undoubtedly the most delicate assumption above. We will discuss it by
referring to the rich literature on the subject.

Hypothesis (H1) was discussed in Chapter 2. There, the recombination rate ρ was defined
as the number of recombination events for a given lineage over 2N generations. In our setting,
in which recombination occurs every generation, this corresponds to ρ = 2N . The effect of
recombination is to force the population close to the Wright manifold, on which the population
is at LE. Theorem 2.1.1 of Chapter 2 adapted to our setting is that if

2N ≫ ω−4
e ln(L)2 (4.61)

then we can effectively assume LE when computing the dynamics of P ℓt . That is, we may
neglect the effect of linked selection on P ℓt . (4.61) is admittedly biologically unrealistic, and
it is likely not optimal, but it is derived entirely a priori. In our simulations (Fig. 4.1), 2N =
1, 000, L = 100 and ω−4

e ∈ [L2, L4], and the criterion (4.61) reads 1, 000 ≫ [2× 105, 2× 109].
In particular, (4.61) is assuredly not optimal. We can try and get a better idea of the
conditions for the breakdown of (H1) using the Quasi-Linkage Equilibrium approach from
statistical genetics [101], which is presented in the global Appendix A.1 of this PhD. This
approach assumes a priori that the first-order effect of LD on gene dynamics and macroscopic
observables can be described exclusively with two-loci correlations (neglecting cumulants of
order 3 or greater).

Bulmer effect

When selection is sufficiently strong, we have ∆∗ ≪ σ. Bulmer suggested in [106] that for an

additive trait under stabilizing selection, LD can be neglected as long as ln(L)
σ2
t
ω2 ≪ 1 where

the ln(L) factor comes from the choice of single-point uniform crossover as a recombination
mechanism (see (10) of [106], rederived in (A.4) in Appendix A.1). This criterion is derived
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4.F. Breakdown of the polygenic limit

from the by considering that LD only appears through selection picking advantageous com-
binations of genes, which when the population is close to the optimum results in negative LD
(for stabilizing selection). The criterion can be rewritten

2N ≫ σ2t ln(L)ω
−2
e . (4.62)

In light of (4.56), this can be rewritten

2N ≫ |θ̄| ln(L)
Lω2

e

which is satisfied under (N1). If this equation is not satisfied, then we expect to enter the
Quasi-Linkage Equilibrium regime [101], in which LD appears between loci. This would
mainly manifest itself in the decrease of the genetic variance in the trait σ2 relative to the
theoretical prediction due to negative LD [105].

In Fig. 4.1 bottom left, we see this effect appear around ω−2
e ∼ 200 and ω−2

e ∼ 2000,
respectively for 2N = 100 and 2N = 1000. Translating this in terms of (4.62), we get that
the critical value of ω−2

e at which LD ceases to be negligible satisfies

|θ̄| ln(L)

2NLω2
e

∼ 0.03.

The Hill-Robertson effect

When selection is sufficiently weak that ∆∗ ≫ σ, the population remains far from the op-
timum and can be described using a linear selection model, in which the logfitness of an
organism is approximated by linear selection

W̃ (z) := −∆∗

ω2
(z − z̄)

where z̄ = 2LE [αPt] = ∆∗ + η.

In such a setting, the appearance of negative LD for small population sizes is known as
Hill-Robertson effect [203]. The rationale is as follows: LD leads the genetic variance σ2t to
oscillates randomly and quickly with respect to the genic variance σ2G,t defined with

σ2G,t :=
∑
ℓ∈[L]

2α2
ℓP

ℓ
t (2− P ℓt ).

We illustrate this oscillation in Fig. 4.8 in an extreme scenario in which L = 1, 000 and
N = 20, for weak stabilising selection and directional selection of equivalent magnitude.
When LD is positive, then there is a lot of genetic variance, in which case selection will act
efficiently to decrease the genetic variance (and in particular LD). This explains why positive
LD only manifests itself in very short excursions. On the other hand, when LD is negative,
then the genetic variance σ2t is reduced with respect to the genic variance σ2G,t, and selection
is inefficient. In this setting, only recombination will, on a longer timescale, bring LD back
to zero.

We illustrate the Hill-Robertson effect and the corresponding breakdown of the polygenic
limit of (4.28-4.29) in Fig. 4.9. We see that this breakdown is quite limited, since even with
as few as N = 10 organisms with L = 100 loci each, LD only decreases the genetic variance
by about 5%.

Using the theory of Quasi-Linkage Equilibrium, we can try and obtain a quantitative
criterion for the appearance of the Hill-Robertson effect. In (44) of Section VI.B of [101] (see
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Figure 4.8: The Hill-Robertson effect. The population was evolved for T = 500N generations
either under stabilizing selection (η = 1.2, ω−2

e = 2/L) or on the corresponding directional
selection regime. The mutation rate is θ = (0.1, 0.2) (weak selection) and the (αℓ)ℓ∈[L] have
law Exponential(L). The genetic trait variance is σ2t := VarXt [Z(g)], whereas the genic
trait variance σ2G,t corresponds to the variance the population would have if it was in
HWLE. When blue is on top of orange, the population displays negative LD, whereas when
orange is on top of blue, the population displays positive LD.
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Figure 4.9: The Hill-Robertson effect: the population is evolves with ω−2
e = 2/L (weak

selection) with L = 100, θ− = 2θ+, η = 1.2, for a time of T = 4, 000N at various population
sizes, half of which were used as burn-in. Below, the plot distinguishes between genetic
variance (the variance in the trait) and the genic variance, corresponding to the label ”no
linkage”. The genic variance is the variance of the trait if the allele frequencies were kept
unchanged but linkage equilibrium was enforced. The difference between the genetic and the
genic variance is a measure of LD.

(A.5) in Appendix A.1), it is claimed that the Hill-Robertson effect at a locus ℓ ∈ [L] can be
neglected as soon as ∑

ℓ′ ̸=ℓ
P ℓ

′
t (1− P ℓ

′
t )

(
1

rℓ,ℓ′
ξ∆∗,αℓ′ (P

ℓ′
t )

)2

≪ 1

where rℓ1ℓ2 is the rate of recombination between ℓ1 and ℓ2, in our system rℓ1ℓ2 = |ℓ1−ℓ2|
L 2N .

This criterion was originally obtained in [204] assuming |θ̄| ≪ 1.
Taking the expectation, and using from (4.59) that ξ∆∗,αℓ′ is typically of order 1, we

obtain the criterion ∑
ℓ′∈[L]∖{ℓ}

E [Pt(1− Pt)]×
(

L

|ℓ− ℓ′|2N

)2

≪ 1

which yields from (4.56)

|θ̄| L2

(2N)2
≪ 1

which we rewrite

2N ≫ L
√

|θ̄|.

This is satisfied under (N1).

4.F.3 Discussion of the mean-field hypothesis (H3)

We will now show that our mean field approximation breaks down when mutation rates are
small. As is usual with mean-field approximations [157], let us consider that the error of the
mean-field hypothesis (H3) has variance of order 1

L , that is

Var

 1

L

∑
ℓ∈[L]

f(P⃗ ℓt )

 ∼ Var[f(P⃗t)]
L

(4.63)
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We consider the mean-field approximation (H3) to be valid as long as this error is much
smaller than the mean of f(P⃗t) √

Var[f(P⃗t)]
L

≪ E
[
f(P⃗t)

]
Let us now check the validity of the mean-field approximations of (4.44-4.47). From (4.56),
we find

E∗ [(Lα)2Pt(1− Pt)
]
∼|θ̄|

E∗
[
L2α3

(
1

2
− Pt

)
Pt(1− Pt)

]
≲
|θ̄|
L

E∗ [2Lα(θ+(1− Pt)− θ−Pt)
]
∼|θ̄|

In Section 4.F.3 we argue

Var∗
[
(Lα)2Pt(1− Pt)

]
∼|θ̄| (4.64)

Var∗
[
L2α3

(
1

2
− Pt

)
Pt(1− Pt)

]
≲
|θ̄|
L2

(4.65)

Var∗
[
2Lα(θ+(1− Pt)− θ−Pt)

]
∼|θ̄|2 (4.66)

It follows that the mean-field approximations (4.44-4.47) are valid iff√
|θ̄|
L

≪|θ̄|
√

|θ̄|
L2

≪|θ̄|
L

√
|θ̄|2
L

≪|θ̄|

This is equivalent to (N2). In Fig. 4.10, we illustrate the breakdown of the polygenic limit if
(N2) is not satisfied.

Computing the errors on the mean-field approximationss

We start with (4.64). Recall from (4.34) that conditional on (α, θ), Pt has distribution Π∆∗,α,θ

which is equivalent to a Beta(2θ+, 2θ−) distribution when ∆∗ ∼ Lω2
e and α ∼ 1/L. If P̂t has

law Beta(2θ+, 2θ−) for some θ, standard properties of the Beta distribution yield

E
[
P̂ 2
t (1− P̂t)

2
]
=

2θ+(2θ+ + 1)θ−(2θ− + 1)

(θ+ + θ−)(2θ+ + 2θ− + 1)(2θ+ + 2θ− + 2)
∼ |θ|

E
[
P̂t(1− P̂t)

]2
=

(
2θ+θ−

θ+ + θ−

)2

∼ |θ|2

Var[P̂t(1− P̂t)] =E
[
P̂ 2
t (1− P̂t)

2
]
− E

[
P̂t(1− P̂t)

]2
∼ |θ|

if θ+ ∼ θ− ≲ 1. Similarly, conditional on (α, θ), we have

Var∗[Pt(1− Pt) | (α, θ)] ∼ |θ|

Using the decomposition

Var∗
[
(Lα)2Pt(1− Pt)

]
= E∗ [Var∗ [(Lα)2Pt(1− Pt)

∣∣(α, θ)]]+ Var∗
[
E∗ [(Lα)2Pt(1− Pt)

∣∣(α, θ)]]
we get under (A1-3)

Var∗
[
(Lα)2Pt(1− Pt)

]
∼ |θ̄|.
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as requested.
(4.65) is obtained similarly. Let us turn to (4.66). As above, if P̂t has law Beta(2θ+, 2θ−)

for some θ with θ+ ∼ θ− ≲ 1 then

Var[P̂t] =
θ+θ−

|θ̄|2(2|θ̄|+ 1)
∼ 1.

Consider P̃t with law Π∆∗,α,θ with α ∼ 1/L. Let us show that we also have Var[P̃t] ∼ 1.
Because Π∆∗,α,θ is equivalent to a Beta(2θ+, 2θ−) distribution, we have

Var[P̃t] =E
[(
P̃t − E

[
P̃t

])2]
∼E

[(
P̂t − E

[
P̃t

])2]
=Var[P̂t] +

(
E
[
P̂t

]
− E

[
P̃t

])2
∼1

From this, we may conclude that conditional on (α, θ) we have

Var∗ [Pt | (α, θ)] ∼ 1

Writing the decomposition

Var∗
[
2α(θ+(1− Pt)− θ−Pt)

]
= E∗ [Var∗ [2α(θ+(1− Pt)− θ−Pt)

∣∣(α, θ)]]+ Var∗
[
2E∗ [α(θ+(1− Pt)− θ−Pt)

∣∣(α, θ)]]
we get under (A1-3)

Var∗
[
2Lα(θ+(1− Pt)− θ−Pt)

]
∼ |θ̄|2

as requested.
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Breakdown of the mean-field hypothesis under small mutation rates
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Figure 4.10: Breakdown of our approximation when hypotheses (N2) and (A3) fail. The
population was evolved with ω−2

e = 103 (strong selection), N = 500, L = 100, η = 1.2 under
different mutation rates for T = 500N generations, including a burn-in of 250N generations.
We took the same (αℓ)ℓ∈[L] as in Fig. 4.1. We plot the empirical value of ∆ from simula-
tions (∆e) vs our theoretical prediction (∆th), and similarly for ν, σ, ρ. As in Fig. 4.1, the
predictions were obtained conditional on the values of (αℓ)ℓ∈[L]. In this parameterization,
assumption (N2) reads θ+ + θ− ≫ 10−2 (non-hashed zone) and (A3) reads θ+ ∼ θ− (blue
dashed line).
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Breakdown of the mean-field hypothesis when the allele effects have heavy tails.
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Figure 4.11: Breakdown of the approximation when (αℓ)ℓ∈[L] has heavy tails. We simulated
the system at stationarity for N = 500, L = 100, η = 1.2, ω−2

e = 103, θ = (0.1, 0.2). We
sampled α̂ℓ using the Pareto(k) distribution for k between 1 and 4, and set the allelic effect as
αℓ := α̂ℓ/(

∑
ℓ α̂ℓ) = 1. In particular, the smaller k, the heavier the tail of α. The prediction

was obtained using the same method as in Fig. 4.10, using the empirical distribution of
(αℓ)ℓ∈[L] as the distribution L. When k = 1, a single locus can have a very large effect,
αℓ ∼ 1, and the mean-field approximation cannot be expected to hold. The prediction seems
to hold quite well for k > 1.5. This is particularly surprising because the theoretical prediction
for σ2 and ρ are obtained using the expectation E∗[α2Pt(1− Pt)] and equation (4.29) for ∆∗

involves E∗[α3Pt(1 − Pt)(1 − 2Pt)], whereas E
[
α2
]
and E

[
α3
]
are ill-behaved when k ≤ 2.

We defer to future work a theoretical characterization of this breakdown.
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4.F.4 Discussion of (H4-4’)

In Section 4.D.2, (H4-4’) were used to argue that ξ∆t,αℓ
can be replaced with ξ∆∗,αℓ

in (4.26).
Let us check that under (A5) and (N2), (H4) or (H4’) are satisfied.

Under (A5), we have either ω−2
e ≪ L2 or ω−2

e ∼ L2 (strong selection). The former
situation corresponds to (H4), while the latter corresponds to (H4’a). Furthermore, (H4’b)
is satisfied from (4.56), and (H4’c) is satisfied under (H4’a) and (N2).

4.F.5 Breakdown of the equation for the dynamics of the trait mean

It can be seen from Fig. 4.1 that the theoretical predictions for (ν, ρ) from (4.57) fail for
weak selection (ω−2

e ∼ L), whereas those for σ2,∆∗ still hold. This stems from the fact
that the domain of validity of (4.30) is smaller than that of (4.28-4.30). Here we discuss the
breakdown of (4.30) for the fluctuations of the trait mean (εt)t≥0 when (N3) is not satisfied,
and suggest a proxy equation when mutation rates are constant across loci.

Breakdown of (4.30) for weak selection

Here, we show why (N3) is necessary for the Ornstein-Uhlenbeck SDE (4.30) to hold.
Let us start by rewriting (4.42) as follows

d∆t =
1

τ

(
−∆t ×

1

|θ̄|
× E∗ [2(Lα)2Pt(1− Pt)

]
+

1

|θ̄|
× E∗

[
2L2α3

(
Pt −

1

2

)
Pt(1− Pt)

]

+
Lω2

e

|θ̄|
×E∗ [2Lα (θ+(1− Pt)− θ−Pt

)])
dt +

1√
τ
×

√
ω2
e

|θ̄|
E∗ [(2Lα)2Pt(1− Pt)]dB

∆
t +dEt

where we added the term Et, which is the error term of the mean-field approximations
(4.44-4.47). Specifically, we define Et := E1

t + E2
t + E3

t + E4
t where

dE1
t :=− 1

τ
×∆t ×

1

|θ̄|
×

 1

L

∑
ℓ∈[L]

2(Lαℓ)
2P ℓt (1− P ℓt ) − E∗ [2(Lα)2Pt(1− Pt)

] dt

dE2
t :=

1

τ |θ̄|
×

 1

L

∑
ℓ∈[L]

2L2α3
ℓ

(
P ℓt −

1

2

)
P ℓt (1− P ℓt ) − E∗

[
2L2α3

(
Pt −

1

2

)
Pt(1− Pt)

] dt

dE3
t :=

Lω2
e

τ |θ̄|
×

 1

L

∑
ℓ∈[L]

2Lαℓ

(
θ+ℓ (1− P ℓt )− θ−ℓ P

ℓ
t

)
− E∗ [2Lα (θ+(1− Pt)− θ−Pt

)]dt

dE4
t :=

√
ω2
e

τ |θ̄|

√√√√ 1

L

∑
ℓ∈[L]

(2Lαℓ)2P
ℓ
t (1− P ℓt )−

√
E∗ [(2Lα)2Pt(1− Pt)]

dB∆
t

Using εt := ∆t −∆∗ and Section 4.D.3, (4.42) can be rewritten

dεt = −ρεt + ωe
√
2ρdB∆

t + dEt

We consider (4.30) for the description of (εt)t≥0 to be valid as long as the error term Et is
negligible with respect to the other terms. Since (4.30) is an Ornstein-Uhlenbeck process with
variance ω2

e and autocorrelation parameter ρ ∼ 1
τ (see (4.57)), this the contribution of the

terms of (4.30) is of order ω over a timescale of order τ . Therefore, (4.30) is valid provided

ωe ≫
∣∣∣∣τ d

dt
E1
t

∣∣∣∣+ ∣∣∣∣τ d

dt
E2
t

∣∣∣∣+ ∣∣∣∣τ d

dt
E3
t

∣∣∣∣+
√
τ
d

dt
⟨E4⟩t
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which, in light of (4.63) we rewrite

ωe ≫ ∆t ×
1

|θ̄|
×
√

Var∗ [2(Lα)2Pt(1− Pt)]

L
+

1

|θ̄|

√
Var∗

[
2L2α3

(
Pt − 1

2

)
Pt(1− Pt)

]
L

+
Lω2

e

|θ̄|
×
√

Var∗ [2Lα (θ+(1− Pt)− θ−Pt)]

L
+

√
ω2
e

|θ̄|
×
√

Var∗ [(2Lα)2Pt(1− Pt)]

L

In light of (4.64-4.66), this becomes

ωe ≫
∆t

|θ̄|
×
√

|θ̄|
L

+
1

|θ̄|
×
√

|θ̄|
L3

+
Lω2

e

|θ̄|
×
√

|θ̄|2
L

+

√
ω2
e

|θ̄|
×
√

|θ̄|
L

which yields

ωe ≫
∆t√
|θ̄|L

+
1√
|θ̄|L3

+ ω2
e

√
L+

ωe√
L
.

We can ignore the second term using (A5)+(N2) and the fourth term on the right-hand side
using L≫ 1, and use that ∆t ∼ Lω2

e from (4.56) to get

ωe ≫ ω2
e

√
L

|θ̄|
+ ω2

e

√
L.

Because |θ̄| ≲ 1 (A2), the second term is smaller than the first one and we get

ωe ≫ ω2
e

√
L

|θ̄|

which can be rewritten

1 ≫ Lω2
e

|θ̄|
.

This is precisely (N3).

A proxy equation for the fluctuations under weak selection

Assumption (N3) is not satisfied in many circumstances, for instance under weak selection
(ω−2
e ∼ L). From the previous section, this means the Ornstein-Uhlenbeck equation (4.30)

cannot give a good description of the fluctuations of (∆t)t≥0 for weak selection. Here, we
suggest a proxy equation for this regime. We will derive the proxy equation under the
assumption

|θℓ| = θ+ℓ + θ−ℓ = |θ̄| is constant across loci.

We will obtain the following proxy SDE for (εt)t≥0

dεt = −ρ̃εt dt+ ν̃
√

2ρ̃ dB∆
t (4.67)

with

ρ̃ :=
1

τ

(
Lσ2

|θ̄|
+ Lω2

e

)
(4.68)

1

ν̃2
:=

1

ω2
e

+
|θ̄|
σ2

(4.69)
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By proxy equation, we mean that (4.67) is not the correct mathematical object to describe
the limit, but can nevertheless yield a sufficient approximation for practical purposes (see
Fig. 4.12). In particular, this approximation is used to compute the theoretical predictions
under weak selection for ν2 and ρ in Fig. 4.1. Notice how under moderate/strong selection

(L ≪ ω−2
e ≲ L2), we have from (4.56) ω2

e ≪ σ2

|θ̄| and therefore ρ̃ ≃ ρ, ν̃ ≃ ω2
e , thus recovering

(4.57). On the other hand, if ω−2
e ≪ L (ultra-weak selection), then we recover an Ornstein-

Uhlenbeck process dominated by mutations.

Derivation of (4.67). Our proxy equation will account for the term E3
t from Section 4.F.5,

but not for the term E1
t . The missing term E1

t is precisely why this equation is not exact.
In practice, this term slightly inflates the variance ν2 = Var[∆t] in Fig. 4.1, and leads the
log-autocorrelation function (ρu)u≥0 to depart from linearity (Fig. 4.12).

Using that |θℓ| is constant across loci, we write∑
ℓ∈[L]

2Lαℓ(θ
+
ℓ (1− P ℓt )− θ−ℓ P

ℓ
t ) =

∑
ℓ∈[L]

2Lαℓθ
+
ℓ − |θ̄|L

∑
ℓ∈[L]

2αℓP
ℓ
t

=
∑
ℓ∈[L]

2Lαℓθ
+
ℓ − |θ̄|L(∆t + η)

from the definition of ∆t in (4.25). Using a mean-field approximation we get∑
ℓ∈[L]

2Lαℓ(θ
+
ℓ (1− P ℓt )− θ−ℓ P

ℓ
t ) ≃ LE∗[2Lαθ+]− |θ̄|L(∆t + η).

It can be checked that the error of this mean-field approximation is always negligible under
(A1). It follows

dE3
t =

Lω2
e

τ |θ̄|
(
E∗[2Lαθ+]− |θ̄|∆t + |θ̄|η − E∗ [2Lα (θ+(1− Pt)− θ−Pt

)])
dt

=
Lω2

e

τ |θ̄|
(
−|θ̄|∆t + |θ̄|η − E∗ [2Lα|θ|Pt]

)
dt

Therefore, accounting for E3
t , (4.42) becomes

d∆t =
1

τ

(
−∆t ×

1

|θ̄|
× E∗ [2(Lα)2Pt(1− Pt)

]
+

1

|θ̄|
× E∗

[
2L2α3

(
Pt −

1

2

)
Pt(1− Pt)

]

+
Lω2

e

|θ̄|
× E∗ [2Lα (θ+(1− Pt)− θ−Pt

)])
dt +

1√
τ
×

√
ω2
e

|θ̄|
E∗ [(2Lα)2Pt(1− Pt)]dB

∆
t

+
Lω2

e

τ |θ̄|
(
−|θ̄|∆t + |θ̄|η − E∗ [2Lα|θ|Pt]

)
dt

This can be rewritten

d∆t =
1

τ

(
−

(
E∗ [2(Lα)2Pt(1− Pt)

]
|θ̄|

+ Lω2
e

)
∆t +

1

|θ̄|
×E∗

[
2L2α3

(
Pt −

1

2

)
Pt(1− Pt)

]

+ Lω2
e

(
−η + E∗ [2Lαθ+]

|θ̄|

))
dt +

1√
τ
×

√
ω2
e

|θ̄|
E∗ [(2Lα)2Pt(1− Pt)]dB

∆
t (4.70)

This yields

d∆t = −ρ̃(∆̃∗ −∆t)dt+ ν̃
√

2ρ̃dB∆
t
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where

∆̃∗ :=
1

τ ρ̃
×

(
1

|θ̄|
× E∗

[
2L2α3

(
Pt −

1

2

)
Pt(1− Pt)

]
+ Lω2

e

(
−η + E∗ [2Lαθ+]

|θ̄|

))

ρ̃ :=
1

τ

(
E∗ [2(Lα)2Pt(1− Pt)

]
|θ̄|

+ Lω2
e

)

ν̃2 =

ω2
e

|θ̄|E
∗ [(2Lα)2Pt(1− Pt)

]
2
(
E∗[2(Lα)2Pt(1−Pt)]

|θ̄| + Lω2
e

)
To obtain (4.67-4.69), it remains to show that ∆̃∗ = ∆∗.

From (4.49) we know

∆∗ =
1

τ |θ̄|ρ

(
E∗
[
2L2α3

(
Pt −

1

2

)
Pt(1− Pt)

]
+ Lω2

eE∗ [2Lα (θ+(1− Pt)− θ−Pt
)])

.

It follows

∆̃∗ =
1

τ ρ̃

(
τρ∆∗ − Lω2

e

|θ̄|
E∗ [2Lα (θ+(1− Pt)− θ−Pt

)]
+ Lω2

e

(
−η + E∗ [2Lαθ+]

|θ̄|

))
which we rewrite using the definition of τ = Lω2

e

|θ̄|

∆̃∗ =
1

ρ̃

(
ρ∆∗ − E∗ [2Lα (θ+(1− Pt)− θ−Pt

)]
− |θ̄|η + E∗ [2Lαθ+]) .

This can be rewritten

∆̃∗ =
1

ρ̃

(
ρ∆∗ + |θ̄|E∗ [2LαPt]− |θ̄|η

)
.

Using ∆∗ = E∗[2LαPt]− η, we get

∆̃∗ =
1

ρ̃

(
ρ∆∗ + |θ̄|∆∗) .

Because ρ̃ = ρ+ |θ̄|, we obtain as claimed

∆̃∗ = ∆∗.
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Figure 4.12: Here we plot the square of Pearson’s correlation coefficient r2 for the log-
autocorrelation function (ρu)u≤u0 defined in (4.51) as a function of the selection strength
ω−2
e . For each value of ω−2

e , ρu is computed for times u ≤ u0 with u0 = ln(2)/ρ1/(2N), and r
2

was computed on (ρu)u≤u0 . The time u0 was chosen such that we may expect e−ρu0 ≃ 1/2
for an Ornstein-Uhlenbeck process.
For an Ornstein-Uhlenbeck process, we expect r2 = 1. As expected, the deviation from the
expectation of an Ornstein-Uhlenbeck process appears for weak selection.
The simulations were carried out with L = 100, N = 500, the same mutation probabilities for
all loci θ = (0.1, 0.2), and additive effects (αℓ)ℓ∈[L] exponentially distributed with parameter
L (in particular ᾱ = 1/L). The selection optimum is η = 1.2. The same (αℓ)ℓ∈[L] were used
in all simulations. The simulations were run for T = 1000N generations, and each observable
was measured as an average over the last 500N generations.
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4.G Equivalence with the trait’s eye-view

Here we recover ξ∆t,αℓ
the selection coefficient of the diffusion equation (4.26) from the trait’s

eye-view, as originally proposed by Wright in [96]. This method has seen much use since (see
for instance the supplementary data of [116, 118]). We will show that

s0ℓ (Pt) := 2N
CovPt [F (Z(g)), gℓ]

Varp[gℓ]

satisfies
s0ℓ (Pt) ≃ ξ∆t,αℓ

(P ℓt )

under the following hypotheses

(T1) We may write Z(g) ≃ Zℓ,t + αℓgℓ − 2αℓP
ℓ
t where under EPt , the law of Zℓ,t is well

approximated by a normal distribution N (z̄t, σ
2
ℓ,t) for some parameters z̄t, σ

2
ℓ,t.

(T2) We have σℓ,t ≪ ω |∆t|
L ≪ ω2

Discussion of the hypotheses. (T1) is interpreted as a consequence of the central limit theo-
rem under HWLE (H1), meaning that if (αℓ′gℓ′)ℓ′∈[L] are independent under EPt , then

Zℓ,t := 2αℓP
ℓ
t +

∑
ℓ′∈[L]∖{ℓ}

αℓ′gℓ′

suitably rescaled converges to a normally distributed variable. This use of the central limit
theorem should be interpreted with caution, because the error on the central limit the-
orem is of order

σℓ,t√
L
(see the Berry-Esseem inequality, for instance Theorem 3, Chapter V

of [91], see also the discussion in Appendix C of [11]), which is precisely the order of αℓgℓ.
Furthermore, the Central Limit Theorem cannot be expected to hold if the genetic variance
is too small, that is, σ2ℓ,t ≲ 1/L2. This last point is compatible with the scaling obtained in
(4.56) when (N2) is satisfied.

Similarly, (T2) is compatible with (4.56) when (N1) is satisfied.

Alternative derivation of (4.40). Let us define

∀i ∈ {0, 1, 2}, wℓ,i(Pt) := EPt

[
eW (Zℓ,t+αℓgℓ−2αℓP

ℓ
t )
∣∣∣ gℓ = i

]
Standard computations from population genetics yield

s0ℓ (Pt) = 2N
(wℓ,2(Pt)− wℓ,1(Pt))P

ℓ
t + (wℓ,1(Pt)− wℓ,0(Pt))(1− P ℓt )

wℓ,2(Pt)(P ℓt )
2 + wℓ,1(Pt)2P ℓt (1− P ℓt ) + wℓ,0(Pt)(1− P ℓt )

2
(4.71)

Furthermore, the Gaussian approximation (T1) allows us to compute for i ∈ {0, 1, 2}

wℓ,i(Pt) ∝ exp

[
− 1

2(σ2ℓ,t + ω2)
(αℓi− 2αℓP

ℓ
t +∆t)

2

]
where ∆t := z̄t − η.

We then use (T2) to write σ2ℓ,t + ω2 ≃ ω2 and αℓ|∆t| ≪ ω2. These two approximations
yield

wℓ,i(Pt) ∝ e
− ∆2

t
2(σ2

ℓ,t
+ω2)

(
1− 1

2ω2

(
(αℓi− 2αℓP

ℓ
t )

2 + 2∆t(αℓi− 2αℓP
ℓ
t )
))

∝ 1− (i− 2P ℓt )
αℓ
ω2

∆t −
α2
ℓ

2ω2
(i− 2P ℓt )

2
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Carrying this in (4.71) we find

s0ℓ (Pt) ≃ −αℓ
ω2
e

∆t −
α2
ℓ

ω2
e

(
1

2
− P ℓt

)
We thus recover (4.27).

Remark 13. This alternative derivation of the selection coefficient is much more computa-
tionally cumbersome, which is why we will use our first approach when discussing extensions
of the model in Section 4.I.

4.H Derivation of the criterion for selection to increase ge-
netic variance.

Fix the values of L, η of the model. Assume θℓ = θ and αℓ = 1/L for some fixed θ ∈ (0,+∞)2.
In this section, we will alleviate notation by writing Es for the expectation of a typical locus
Pt with distribution

Cs,θp
2θ+−1(1− p)2θ

−−1e2spdp

where Cs,θ is a normalization constant.
Define the mutational optimum

zM :=2LE0 [Pt]

Here we prove the following: assume

(1− zM )(η − zM ) > 0 (4.72)

Then there exists an interval I = (0, ε] such that for any s ∈ I

Es[Pt(1− Pt)] > E0[Pt(1− Pt)]

The derivation is as follows. By symmetry, it is enough to treat the case where 1 > zM ,
which is equivalent to

2θ+ < |θ| (4.73)

In this case, the criterion 4.72 translates to η > zM . This implies ∆∗ < 0, and therefore from
(4.59) s∗ > 0. We therefore only need to show

d

ds

∣∣∣
s=0

Es[Pt(1− Pt)] > 0

Simple computations show

d

ds

∣∣∣
s=0

Es[Pt(1− Pt)] =2
(
E0[P

2
t (1− Pt)]− E0[Pt(1− Pt)]E0[Pt]

)
. (4.74)

Under E0, Pt has distribution Beta(2θ
+, 2θ−). In particular this yields for any a, b > 0

E0[P
a
t (1− Pt)

b] =
2θ+(2θ+ + 1) . . . (2θ+ + a)2θ−(2θ− + 1) . . . (2θ− + b)

2|θ|(2|θ|+ 1) . . . (2|θ|+ a+ b)

where |θ| = θ+ + θ−. In particular

E0[Pt] =
θ+

|θ|

E0[Pt(1− Pt)] =
2θ+2θ−

2|θ|(2|θ|+ 1)

E0[P
2
t (1− Pt)] =

2θ+(2θ+ + 1)2θ−

2|θ|(2|θ|+ 1)(2|θ|+ 2)
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It follows from (4.73)

E0[P
2
t (1− Pt)]− E0[Pt(1− Pt)]E0[Pt] =2

θ+θ− (|θ|(2θ+ + 1)− θ+(2|θ|+ 2))

|θ|2(2|θ|+ 1)(2|θ|+ 2)

=2
θ+θ−

|θ|2(2|θ|+ 1)(2|θ|+ 2)

(
|θ| − 2θ+

)
>0

where we used (4.73). The result follows, carrying this in (4.74).

4.I Some extensions

Here we show how our computations can be extended to handle special cases. In Section 4.I.1
we mention polyploidy, in Section 4.I.2 pleiotropy, in Section 4.I.3 dominance, and in Section
4.I.4 epistasis. We always start from an analog of the diffusion approximation (4.26), with
selection coefficient given by (4.40). In each extension, the analog of assumptions (A1-6) and
(N1-3) is assumed to hold.

4.I.1 Polyploidy

For a polyploid (or haploid) population in which each organism has k haploid genomes with
k ≥ 1, the following alterations need to be made to the diffusion equation (4.26)

• For p ∈ [0, 1]L, gℓ under Ep has law Binomial(k, pℓ).

• In (4.26), the definition of ωe is ω
−2
e := (kN)ω−2, and the definition of θℓ is θℓ := kNµℓ.

In this case the computations of (4.27) yield

sℓ(p) =
αℓ
ω2

η − k
∑
ℓ′∈[L]

αℓ′pℓ′

+
α2
ℓ

ω2

(
pℓ −

1

2

)
All of the previous results can be obtained from this, defining

∆t = k
∑
ℓ′∈[L]

αℓ′P
ℓ′
t − η

4.I.2 Pleiotropy

We give here an outlook as to how the theory can be adapted to account for pleiotropy,
deferring to future work a rigorous treatment of edge cases.

We now assume that αℓ = (αiℓ)i∈[d] takes values in Rd with d fixed. In particular, we allow

αiℓ < 0. This is because when d = 1, up to replacing (αℓ, (θ
+
ℓ , θ

−
ℓ ), P

ℓ
t ) with (−αℓ, (θ−ℓ , θ

+
ℓ ), 1−

P ℓt ), we may always assume αℓ > 0, but that is no longer true when αℓ has dimension d.
In this setting, Z(g) =

∑
ℓ αℓgℓ is a d−dimensional vector encoding d traits. The fitness

function is given by

∀z ∈ Rd, W (z) = −1

2
(z − η)⊤ω−2(z − η)

where ⊤ denotes transposition, ω2 is a positive definite matrix and η ∈ Rd. The same
computations as in Section 4.C.2 show that the selection coefficient at locus ℓ is ξ∆t,αℓ

(P ℓt )
where ∆t is as in (4.25) and for a, δ ∈ Rd we define

ξδ,a :

{
[0, 1] −→ R
p 7−→ −a⊤ω−2

e δ + a⊤ω−2
e a

(
p− 1

2

) (4.75)
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with ω−2
e := 2Nω−2.

Using the same kind of reasoning as in Section 4.D.1, we argue that we may write

ξ∆t,αℓ
(P ℓt ) ≃ ξ∆∗,αℓ

(P ℓt ) (4.76)

where ∆∗ := E∗[∆t].

It follows that P ℓt is evolves according to a frequency-dependent Wright-Fisher diffusion
(4.24) with selection coefficient ξ∆∗,αℓ

. In particular, P ℓt has stationary distribution Π∆∗,αℓ,θℓ

where Π is defined as in (4.34) replacing the priginal definition of ξ by its multi-dimensional
counterpart (4.75). We can then find the d-dimensional fixed point equation for ∆∗ as

∆∗ = 2LE
[∫

αpΠ∆∗,α,θ(p)dp

]
− η (4.77)

Global observables such as the genetic variance-covariance matrix σ2 = 2LE∗[αα⊤Pt(1−Pt)]
can be obtained from this as in Section 4.E.3.

Future work could tackle the analysis of this system when d ≫ 1 as as was explored in
[116]. We could also investiagte the effect of the variance-covariance matrix of the (αi)i∈[d],
in particular when some traits are very correlated. We also note that proving existence and
uniqueness of solutions to (4.77) will require more work than what we did in the single-trait
case in Section 4.B.1.

4.I.3 Dominance

We introduce the model in Section 4.I.3, compute the selection coefficient in Section 4.I.3,
the evolution of the trait under moderate/strong selection (ω−2

e ≫ L) in Section 4.I.3, and
obtain the fixed point equation for ∆∗ and the stationary distribution of the typical locus in
Section 4.I.3.

Model

We now account for dominance. Locus ℓ is now characterized by additive effect αℓ, dominance
effect Dℓ and mutation rate θℓ. We assume |D| is of order 1

L as α. The trait value and
logfitness of a genotype g = (gℓ)ℓ∈[L] is then

Z(g) =
∑
ℓ∈[L]

αℓgℓ +Dℓ1[gℓ=1] W (z) =− 1

2ω2
(z − η)2

For a pair (a,D) ∈ R+×R we define the corresponding average effect of gene substitution
as

βa,D(p) := a+D(1− 2p) (4.78)

Selection coefficient

Here we show the selection coefficient sℓ(p) defined from (4.40) can be rewritten sℓ(Pt) =
ξ∆t,αℓ,Dℓ

(P ℓt ) where for δ ∈ R, a ∈ R+, D ∈ R we define

ξδ,a,D(p) :=−
βa,D(p)

ω2
e

δ + ω−2
e

(
βa,D(p)

2

(
p− 1

2

)
+ 2aDp(1− p)

)
(4.79)

∆t := EPt [Z(g)]− η = 2
∑
ℓ∈[L]

(
αℓP

ℓ
t +DℓP

ℓ
t (1− P ℓt )

)
− η. (4.80)
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Derivation. For a general p ∈ [0, 1]L we write

Covp[(Z(g)− η)2, gℓ] =Covp[Ep[(Z(g)− η)2
∣∣gℓ], gℓ]

=Covp[Ep[Z(g)− η
∣∣gℓ]2, gℓ] +Covp[Varp[Z(g)− η

∣∣gℓ], gℓ]
We can write

Varp[Z(g)− η
∣∣gℓ] = ∑

ℓ′∈[L]∖{ℓ}

Varp[αℓ′gℓ′ +Dℓ′1[gℓ′=1]]

In particular
Covp[Varp[Z(g)− η

∣∣gℓ], gℓ] = 0.

We are then left with

Covp[(Z(g)− η)2, gℓ] = Covp[Ep[Z(g)− η
∣∣gℓ]2, gℓ].

Appyling this to Pt, we get

EPt [Z(g)− η
∣∣gℓ] = ∆t + αℓ(gℓ − 2P ℓt ) +Dℓ(1[gℓ=1] − 2P ℓt (1− P ℓt ))

using the definition of ∆t in (4.80). It follows

CovPt [(Z(g)− η)2, gℓ] = CovPt

[
α2
ℓ (gℓ − 2P ℓt )

2 +D2
ℓ (1[gℓ=1] − 2P ℓt (1− P ℓt ))

2

+ 2αℓ(gℓ − 2P ℓt )Dℓ(1[gℓ=1] − 2P ℓt (1− P ℓt ))

+ 2∆t

(
αℓ(gℓ − 2P ℓt ) +Dℓ(1[gℓ=1] − 2P ℓt (1− P ℓt ))

)
, gℓ

]
.

We compute

CovPt [(gℓ − 2P ℓt )
2, gℓ] =(1− 2P ℓt )2P

ℓ
t (1− P ℓt )

CovPt [1[gℓ=1], gℓ] =(1− 2P ℓt )2P
ℓ
t (1− P ℓt )

CovPt [1[gℓ=1]gℓ, gℓ] =CovPt [1[gℓ=1], gℓ]

In particular

CovPt [(gℓ − 2P ℓt )(1[gℓ=1] − 2P ℓt (1− P ℓt )), gℓ] =CovPt [(1− 2P ℓt )1[gℓ=1] − 2P ℓt (1− P ℓt )gℓ, gℓ]

=(1− 2P ℓt )
22P ℓt (1− P ℓt )−

(
2P ℓt (1− P ℓt )

)2
.

It follows

CovPt [(Z(g)− η)2, gℓ] = α2
ℓ (1− 2P ℓt )2P

ℓ
t (1− P ℓt ) +D2

ℓ (1− 2P ℓt )
32P ℓt (1− P ℓt )

+ 2αℓDℓ

(
(1− 2P ℓt )

22P ℓt (1− P ℓt )− (2P ℓt (1− P ℓt ))
2
)

+ 2∆t

(
αℓ +Dℓ(1− 2P ℓt )

)
2P ℓt (1− P ℓt ).

This lets us obtain

CovPt [(Z(g)− η)2, gℓ]

2P ℓt (1− P ℓt )

=
(
αℓ +Dℓ(1− 2P ℓt )

)2
(1− 2P ℓt )− 4αℓDℓP

ℓ
t (1− P ℓt ) + 2(αℓ +Dℓ(1− 2P ℓt ))∆t

We get from (4.78)

sℓ(Pt) = ω−2
e

(
βαℓ,Dℓ

(P ℓt )
2

(
P ℓt −

1

2

)
+ 2αℓDℓP

ℓ
t (1− P ℓt )− βαℓ,Dℓ

(P ℓt )∆t

)
The result follows.
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Genetic architecture

The same argument as in Section 4.D.2 lets us write

ξ∆t,αℓ,Dℓ
(P ℓt ) ≃ ξ∆∗,αℓ,Dℓ

(P ℓt )

where ∆∗ = E∗[∆t]. Then P ℓt follows a frequency-dependent Wright-Fisher diffusion (4.24)
with selection coefficient ξ∆∗,αℓ,Dℓ

. It follows that P ℓt has stationary distribution Π∆∗,aℓ,Dℓ,θℓ

where we define for δ ∈ R, a ∈ R+, D ∈ R, θ ∈ (0,+∞)2

Πδ,a,D,θ(p) := Cδ,a,D,θp
2θ+−1(1− p)2θ

−−1e2
∫ p
0 ξδ,a,D(u) du

with Cδ,a,D,θ a normalization constant.
On the other hand we can compute from (4.80)

∆∗ ≃ 2LE∗[αPt +DPt(1− Pt)]− η

From there we obtain the fixed point equation

∆∗ ≃ 2I(∆∗)− η (4.81)

where

I(δ) := E∗
[∫

L(αp+Dp(1− p))Πδ,α,D,θ(p)dp

]
.

The macroscopic observables can be computed from this as in Section 4.E.3, in particular the
genetic variance

σ2 = 2LE∗ [βα,D(Pt)2Pt(1− Pt)
]
+ 2LE∗

[
2D2 (Pt(1− Pt))

2
]
.

The first term is the additive genetic variance, the second term is the dominance vari-
ance.

Evolution of the trait under moderate/strong selection

Here obtain the following stationary system analog to (4.28-4.17)

dPt =ξ∆∗,α,D(Pt)Pt(1− Pt) dt+
(
θ+(1− Pt)− θ−Pt

)
dt+

√
Pt(1− Pt) dB

P
t

∆∗ =2LE∗[αPt +DPt(1− Pt)]− η

dεt =− ρεt dt+ ωe
√

2ρ dB∆
t

where BP , B∆ are Brownian motions, εt := ∆t −∆∗ and

ρ :=
1

τ
×

E∗ [2(Lβα,D(Pt))2Pt(1− Pt)
]

|θ̄|

Derivation. Applying Itô’s formula yields

d∆t =2
∑
ℓ∈[L]

(
αℓ +Dℓ(1− 2P ℓt )

)
dP ℓt −

∑
ℓ∈[L]

2DℓP
ℓ
t (1− P ℓt )dt

=2
∑
ℓ∈[L]

βαℓ,Dℓ
(P ℓt )dP

ℓ
t −

∑
ℓ∈[L]

2DℓP
ℓ
t (1− P ℓt )dt

We define as before

τ :=
Lω2

e

|θ̄|
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We can then proceed just as in Section 4.D, using mean-field approximations and time-
averaging to write

d∆t =
1

τ

(
−∆t ×

1

|θ̄|
× E∗ [2(Lβα,D(Pt))2Pt(1− Pt)

]
+

Lω2
e

|θ̄|
× E∗ [2Lβα,D(Pt) (θ+(1− Pt)− θ−Pt

)]
+

1

|θ̄|
× E∗

[
2L2βα,D(Pt)

3

(
Pt −

1

2

)
Pt(1− Pt) + 4L2αDβα,D(Pt)P

2
t (1− Pt)

2

]
− Lω2

e

|θ̄|
E∗[2LDPt(1− Pt)]

)
dt

+
1√
τ
×

√
ω2
e

|θ̄|
E∗ [(2Lβα,D(Pt))2Pt(1− Pt)]dB

∆
t (4.82)

The result follows.

4.I.4 Epistasis

Adding epistasis to the model means the trait Z(g) involves interactions between loci. Much
work has been done on the subject, for instance [86]. There are many ways such interactions
can go, depending on assumptions about gene regulatory networks (the typical model for
such networks is the LK fitness landscape [205]). We briefly mention two extreme figures.

Epistasis between small clumps of loci

Under the assumption of small clumps of loci, we assume there exists a partition of [L] into
small subsets (Ik)k∈[n] with size at most imax ∼ 1 such that the trait value Z(g) is the sum
from contributions from each subset

Z(g) = z0 +

n∑
k=1

Zk(gIk).

where gIk := (gℓ)ℓ∈Ik and Zk is a function on {0, 1, 2}Ik . We assume that there are many
clumps of loci (n≫ 1), and that for each k, Zk is independently sampled as a random function
on {0, 1, 2}Ik with a distribution that only depends on #Ik. In this subsection we derive the
fixed-point equation for ∆∗ in this system.

We can write the selection coefficient at locus ℓ ∈ Ik as in (4.40)

sℓ(p) =− 1

2ω2
e

×
Covp

[
(Z(g)− η)2, gℓ

]
2pℓ(1− pℓ)

Using the independence of gIk and (gIk′ )k′ ̸=k, this can be rewritten

sℓ(p) = −
Covp

[
(Zk(gIk)−Ep [Zk(gIk)])

2 , gℓ

]
+ 2Covp [Zk(gIk), gℓ]Ep [Z(g) − η]

4ω2
epℓ(1− pℓ)

.

Then a mean-field approximation or a time-averaging principle lets us write as in Section
4.D.2

Ep [Z(g) − η] ≃ ∆∗ (4.83)
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for some stationary value ∆∗. We are left with

sℓ(p) ≃ −
Covp

[
(Zk(gIk)−Ep [Zk(gIk)])

2 , gℓ

]
+ 2Covp [Zk(gIk), gℓ] ∆

∗

4ω2
epℓ(1− pℓ)

Let us define

Wk(pIk ,∆
∗) := − 1

2ω2
e

(
(Zk(gIk)−Ep [Zk(gIk) − η])2 + 2Zk(gIk)∆

∗
)

where pIk = (pℓ)ℓ∈Ik . Then we find

sℓ(p) ≃
Covp[Wk(g), gℓ]

2pℓ(1− pℓ)

Carrying this into our base SDE (4.26), we find that the system (P ℓt )ℓ∈Ik is an autonomous
multiloci Wright-Fisher diffusion, similar to that studied in [72]. In particular, the stationary
density of (P ℓt )ℓ∈Ik can be obtained as

∀p ∈ [0, 1]Ik , Π∆∗,Wk,θIk
(p) = C∆∗,Wk,θIk

∏
ℓ∈Ik

p
2θ+ℓ −1

ℓ (1− pℓ)
2θ−ℓ −1 exp [Ep[Wk(gIk ,∆

∗)]]

where C∆∗,Wk,θIk
is a normalization constant. Finally, we may obtain a fixed point equation

for ∆∗ from (4.83) ∑
k

∫
Ep[Zk(g)]Π∆∗,Wk,θIk

(dp) − η = ∆∗

where, for p ∈ [0, 1]Ik , Ep is the expectation of a {0, 1, 2}Ik -valued vector g of independent
random variables such that gℓ has law Binomial(2, pℓ).

General diffuse epistasis

We now take Z to be some unspecified function on {0, 1, 2}L. We start by decomposing the
selection coefficient at locus ℓ into an additive/dominant component and an epistatic com-
ponent. Then we illustrate with an example from spin-glass theory how to obtain and solve
the fixed-point equation. Finally, we compute the magnitude of the stochastic fluctuations
of the additive/dominant components.

Decomposition of the selection coefficient. Let us define the following coefficients

α̂ℓ(t) :=
1

2
(EPt [Z(g) |gℓ = 2]−EPt [Z(g) |gℓ = 0]) (4.84)

D̂ℓ(t) :=
1

2
(EPt [Z(g) |gℓ = 2] +EPt [Z(g) |gℓ = 0]− 2EPt [Z(g) |gℓ = 1]) (4.85)

β̂ℓ(t) :=α̂ℓ(t) + D̂ℓ(t)(1− 2P ℓt ) (4.86)

ϵℓ(t) :=CovPt [VarPt [Z |gℓ] , gℓ] (4.87)

∆t :=EPt [Z(g)] − η (4.88)

We derive the following decomposition

Claim 4.I.1. We have

sℓ(Pt)P
ℓ
t (1− P ℓt ) ≃ sDomℓ (t)P ℓt (1− P ℓt )−

ϵℓ(t)

4ω2
e

(4.89)

where, by analogy with (4.79) we define

sDomℓ (t) :=ω−2
e

(
β̂ℓ(t)

2

(
P ℓt −

1

2

)
+ 2α̂ℓD̂ℓP

ℓ
t (1− P ℓt )− β̂ℓ(P

ℓ
t )∆t

)
.
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Remark 14. If we neglect εℓ(t), then we recover the same coefficient as for dominance
(Section 4.I.3), with the difficulty that α̂ℓ and D̂ℓ are functions of time. Looking at (4.84-
4.87), we see neglecting εℓ(t) is acceptable if gℓ has more impact on the mean trait through
Ep[Z(g)|gℓ] than on the variance of the trait through Varp[Z(g)|gℓ].

Derivation of Claim 4.I.1. Let us compute the selection coefficient at locus ℓ. We have

sℓ(Pt)P
ℓ
t (1− P ℓt ) =2N

CovPt [W (Z(g)), gℓ]

VarPt [gℓ]
P ℓt (1− P ℓt )

=2N
CovPt [W (Z(g)), gℓ]

2

=− 1

4ω2
e

CovPt

[
(Z(g)− η)2 , gℓ

]
We can write the decomposition as in Section 4.I.3

Covp

[
(Z(g)− η)2, gℓ

]
= Covp

[
(Z(g)−Ep [Z(g)|gℓ])2 , gℓ

]
+Covp

[
(Ep [Z(g)|gℓ]− η)2 , gℓ

]
(4.90)

The first term is ϵℓ(t). We thus obtain

sℓ(Pt)P
ℓ
t (1− P ℓt ) =− 1

4ω2
e

(
ϵℓ(t) +Covp

[
(Ep [Z(g)|gℓ]− η)2 , gℓ

])
=− ϵℓ(t)

4ω2
e

+Covp [W (Ep [Z(g)|gℓ]) , gℓ]

Note that with the notation (4.84-4.85), we have

Ep [Z(g)|gℓ] = Ep [Z(g)|gℓ = 0] + gℓα̂ℓ(t) + 1[gℓ=1]D̂ℓ(t) (4.91)

From there, the same computations as in Section 4.I.3 yield

Covp [W (Ep [Z(g)|gℓ]) , gℓ] = sDomℓ (t)P ℓt (1− P ℓt ).

Example from spin-glass theory. As an illustrative example, we take pairwise epistasis
as in Sherrington-Kirkpatrick theory [103]

Z(g) =
∑

ℓ,ℓ′∈[L]
ℓ̸=ℓ′

fℓℓ′gℓgℓ′

where (fℓℓ′)ℓ,ℓ′∈[L] are i.i.d with uniform bounds of order 1/L2 and mean of order 1/L2. It

can be checked that D̂ℓ = 0, because for any ℓ′ ̸= ℓ

EPt [gℓgℓ′ |gℓ = 2] +EPt [gℓgℓ′ |gℓ = 0]− 2EPt [gℓgℓ′ |gℓ = 1] = 2EPt [gℓ′ ]− 2EPt [gℓ′ ] = 0.

We prove the following claim at the end of this section.

Claim 4.I.2. In the equation for P ℓt , we may neglect ϵℓ(t) if ω
−2
e |θ̄| ≪ L2.

Let us comment this result. The fact that we may neglect εℓ(t) if ω−2
e |θ̄| ≪ L2 tells us

that in weak and moderate selection (ω−2
e ≪ L2), or when mutation rates are small (|θ̄| ≪ 1),

modelling the trait as being determined by α̂, D̂ is a good approximation.
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Let us now compute the effective selection coefficient α̂ℓ(t). We have from (4.84)

α̂ℓ(t) =
∑

ℓ′∈[L]∖{ℓ}

fℓℓ′EPt [gℓ′ ]

=2
∑

ℓ′∈[L]∖{ℓ}

fℓℓ′P
ℓ′
t .

Using a mean-field approximation (H3) we find

α̂ℓ(t) ≃ 2LE [f ]E [Pt] (4.92)

where Pt is P
ℓ
t for a randomly sampled locus and f is independently sampled with the same

law as f1,2. In particular, we expect the effective additive coefficient α̂ℓ(t) to be approximately
the same at all loci.

We now consider the system at statistical equilibrium (as before denoted E∗). Let us
assume that conditional on α̂ℓ(t), θℓ, P

ℓ
t has distribution Π∆∗,α̂ℓ(t),θℓ with

∆∗ := E∗ [EPt [Z(g)]]− η.

From (4.92), we expect α̂ℓ(t) to be a constant α̂∗. We rewrite this

∆∗ = 2LE∗[α̂∗Pt]− η.

It follows from (4.92)

∆∗ ≃ (2L)2E [f ]E [Pt]
2 − η.

We thus obtain the fixed-point system

∆∗ =(2L)2E [f ]E∗[Pt]
2 − η.

α̂∗ =2LE [f ]E∗[Pt]

E∗[Pt] =E
[∫ 1

0
pΠ∆∗,α̂∗,θ(p)dp

]
Derivation of Claim 4.I.2. We write

VarPt [Z(g)|gℓ] = g2ℓ
∑
ℓ′ ̸=ℓ

VarPt [gℓ′ ]f
2
ℓℓ′ + 2gℓ

∑
ℓ′1,ℓ

′
2∈[L]∖{ℓ}
ℓ′1 ̸=ℓ′2

CovPt [gℓ′1 , gℓ′1gℓ′2 ]fℓℓ′1fℓ′1ℓ′2 + R

where R is independent of gℓ. Taking the variance of gℓ′ to be of order |θ̄| as in (4.56), this
yields

ϵℓ(t) = CovPt [VarPt [Z(g)|gℓ], gℓ] ∼ (LE
[
f2
]
|θ̄|+L2E [f ]2 |θ̄|)P ℓt (1−P ℓt ) ∼ |θ̄|/L2P ℓt (1−P ℓt )

where we used a mean-field approximation and that f is typically of order 1/L2. This yields
the result

Fluctuations of the effective additive and dominance effect. Here, we assume we
can neglect the term εℓ(t) in the selection coefficient sℓ(Pt) from (4.89). We make no other
assumption on Z, and we compute the quadratic variation of α̂ℓ(t) and D̂ℓ(t).

We need to introduce a notation. Recall that under Ep, gℓ has law Binomial(2, pℓ). We
extend this probability space by writing gℓ = Gℓ,(1) +Gℓ,(2) where Gℓ,(1), Gℓ,(2) under Ep are
two independent Bernoulli(pℓ) variables.

We will show
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Claim 4.I.3. The quadratic variation of α̂ℓ and D̂ℓ are given by

d ⟨α̂ℓ⟩t =
∑
ℓ′ ̸=ℓ

VarPt

[
EPt

[
Z(g) | gℓ = 2, Gℓ′,(1)

]
−EPt

[
Z(g) | gℓ = 0, Gℓ′,(1)

]]
dt (4.93)

d ⟨D̂ℓ⟩t =
∑
ℓ′ ̸=ℓ

VarPt

[
2EPt

[
Z(g) | gℓ = 1, Gℓ′,(1)

]
−EPt

[
Z(g) | gℓ = 2, Gℓ′,(1)

]
−EPt

[
Z(g) | gℓ = 0, Gℓ′,(1)

]]
dt (4.94)

This equation is interesting because, for a given ℓ, the right-hand side is computed from
the distribution of (Z(g), gℓ), which can be obtained directly from data. If the right-hand
side is small with respect to 1

2Ne
, where Ne is the effective size of the population (∼ 104

for humans, see Discussion in Section 4.4), then we claim the stationary distribution of P ℓt
conditional on α̂ℓ(t) is well approximated by Π∆∗,α̂ℓ(t),θℓ .

The ℓ′ term of the right-hand side of (4.93) quantifies how much knowing the value of
Gℓ′,(1) gives us information about the way Z(g) responds to gℓ. So (4.93) tells us we can

neglect the fluctuations of α̂ℓ and D̂ℓ provided the effect of each locus is broadly consistent
against distinct genetic backgrounds. This is typically the same kind of condition which is
required for the infinitesimal model to hold [11].

Derivation of Claim 4.I.3 We now derive Claim 4.I.3. We will proceed through two
claims.

Claim 4.I.4. For any function f on {0, 1, 2}, the quadratic variation of EPt [f(gℓ)] is given
by

d ⟨EP[f(gℓ)]⟩t = 4VarPt

[
EPt

[
f(gℓ)

∣∣ Gℓ,(1)]]dt
Remark 15. In classical quantitative genetics terminology, the right-hand side is called the
variance contributed to f(gℓ) by an allelic substitution at locus ℓ.

Derivation. We write

EPt [f(gℓ)] = (P ℓt )
2f(2) + 2P ℓt (1− P ℓt )f(1) + (1− P ℓt )

2f(0)

From there, we compute with Itô’s formula that the martingale part of d ⟨EPt [f(gℓ)]⟩t is(
2P ℓt f(2) + 2(1− P ℓt )f(1)− 2(1− P ℓt )f(0))

)√
P ℓt (1− P ℓt )dB

ℓ
t

It follows

d ⟨EP[f(gℓ)]⟩t =
(
2P ℓt f(2) + 2(1− P ℓt )f(1)− 2(1− P ℓt )f(0))

)2
P ℓt (1− P ℓt )dt

This can be rewritten

d ⟨EP[f(gℓ)]⟩t =4
((
P ℓt f(2) + (1− P ℓt )f(1)

)
−
(
P ℓt f(1) + (1− P ℓt )f(0)

))2
P ℓt (1− P ℓt )dt

=4
(
EPt [f(gℓ) | Gℓ,(1) = 1]−EPt [f(gℓ) | Gℓ,(1) = 0]

)2
P ℓt (1− P ℓt )dt

On the other hand, the variance of EPt [f(gℓ) |Gℓ,(1)] is the variance of the random variable(
EPt [f(gℓ) | Gℓ,(1) = 1]−EPt [f(gℓ) | Gℓ,(1) = 0]

)
Gℓ,(1) +EPt [f(gℓ) | Gℓ,(1) = 0]

which is equal to(
EPt [f(gℓ) |Gℓ,(1) = 1]−EPt [f(gℓ) |Gℓ,(1) = 0]

)2
P ℓt (1− P ℓt ).

This yields the result.
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We extend the previous result to the situation where f is a function of (gℓ)ℓ∈A for some
subset A ⊆ [L].

Claim 4.I.5. Consider a subset A ⊆ [L]. Write gA = (gℓ)ℓ∈A ∈ {0, 1, 2}A. For any function
f on {0, 1, 2}A, the quadratic variation of EPt [f(gA)] is given by

d ⟨EP[f(gA)]⟩t =
∑
ℓ∈A

4VarPt

[
EPt

[
f(g)

∣∣ Gℓ,(1)]]dt
Proof. We write

EPt [f(gA)] =
∑

ĝ∈{0,1,2}A
f(ĝ)

∏
ℓ∈A

(
(P ℓt )

2
1[ĝℓ=2] + 2P ℓt (1− P ℓt )1[ĝℓ=1] + (1− P ℓt )

2
1[ĝℓ=0]

)
Because the (Bℓ)ℓ∈[L] are independent, the martingale part of dEPt [f(gA)] is given by∑

ℓ∈A

∑
ĝ∈{0,1,2}A

f(ĝ)
∏

ℓ′∈A∖{ℓ}

(
(P ℓ

′
t )

2
1[ĝℓ′=2] + 2P ℓ

′
t (1− P ℓ

′
t )1[ĝℓ′=1] + (1− P ℓ

′
t )

2
1[ĝℓ′=0]

)
×
(
2P ℓt 1[ĝℓ=2] + 2(1− P ℓt )1[ĝℓ=1] − 2(1− P ℓt )1[ĝℓ=0]

)√
P ℓt (1− P ℓt )dB

ℓ
t

This can be rewritten∑
ℓ∈A

EPt

[
f(gA)

(
2P ℓt 1[gℓ=2] + 2(1− P ℓt )1[gℓ=1] − 2(1− P ℓt )1[gℓ=0]

)]√
P ℓt (1− P ℓt )dB

ℓ
t

The same computations as in the previous derivation yield the result.

Derivation of Claim 4.I.3. We write

αℓ(t) =
1

2
EPt

[
Z(g1, . . . , gℓ−1, 2, gℓ+1, . . . , gL)− Z(g1, . . . , gℓ−1, 0, gℓ+1, . . . , gL)

]
Dℓ(t) =

1

2
EPt

[
2Z(g1, . . . , gℓ−1, 1, gℓ+1, . . . , gL)− Z(g1, . . . , gℓ−1, 2, gℓ+1, . . . , gL)

− Z(g1, . . . , gℓ−1, 0, gℓ+1, . . . , gL)
]

Applying claim 4.I.5 with A = [L]∖ {ℓ} we get the result.

4.J A small note on integral computations

Computing ∆∗ in the fixed-point equation (4.35) and σ2 with (4.52) requires computing
integrals of the form

Ia,b,c,d :=
1

Beta(a, b)

∫ 1

0
xa−1(1− x)b−1ecx+dx(1−x)dx

with a, b > 0 possibly small and c, d ∈ R and Beta is the beta function (added here for
mathematical convenience). For want of a better method, we compute these integrals as

Ia,b,c,d ≃
∑

k∈[kmax]

dk

k!

∫ 1

0
xa+k−1(1− x)b+k−1ecxdx

=
∑

k∈[kmax]

dk

k!

(a)k(b)k
(a+ b)2k

1F1(a+ k; a+ b+ 2k; c)

where kmax is as large as computationally possible, 1F1 is the confluent hypergeometric
function, and (a)k := a(a + 1) . . . (a + k − 1) is the rising factorial, with (a)0 = 1. We were
satisfied with the result, but would enthusiastically accept any suggestion for a more efficient
method of computation.
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Chapter 5

Open problems

I have highlighted in Figure 1.3 a number of conjectures. Yet there are three open problems
for which I cannot even conjecture what the answer should be.

5.1 A Fleming-Viot-Wright-Fisher-McKean-Vlasov system ?

In Figure 1.3, the paths to the polygenic limit involve two possible distinct diffusion processes
based on the trait’s and the gene’s eye-views, respectively. The problem with the first ap-
proach is that it summarizes the genetic architecture with a single parameter, the segregation
variance, losing much information in the process. The problem with the second approach is
that we cannot reasonably expect the diffusion approximation of the Wright-Fisher diffusion
to hold simultaneously across all loci. It would be much better to only use the diffusion
approximation on one typical locus.

There are remarkable deterministic models which jointly keep track of the evolution of a
gene in a quantitative genetics background [127, 206]. In particular, [206] considers a major-
effect biallelic locus (with alleles A and a) on a quantitative genetics background, the effect
size α of which is of the same order as the genetic variance in the trait σ2. The model is based
on two PDEs which model the evolution of na, nA, where na(t, z) is the number of organisms
carrying the a allele with trait value z. The segregation variance of the infinitesimal model
VS is a fixed parameter of the model. They describe the evolution of the system in the regime
where VS is very small, and prove in particular a separation of timescale, the dynamics of
the gene being much slower than the dynamics of the trait z. Their model even allows for
spatial structure, environmental heterogeneity and demography.

The two missing ingredients with respect to our roadmap are the stochasticity (both of
the quantitative trait and of the gene) and the feedback between the law of the frequency of
A, and the segregation variance VS . One would hope to find a model according to which

• The trait distribution evolves like a Fleming-Viot model [156]

• A typical locus evolves like a Wright-Fisher diffusion

• The evolution of the trait distribution depends on the law of the typical locus, McKean-
Vlasov style, and the evolution of the typical locus depends on the trait distribution.

Is this possible ?

5.2 What happens when LD is non-negligible from the gene’s
eye-view ?

When does LD cease to be negligible ? If we are to believe the results from the literature
in quantitative genetics and statistical genetics [106, 70], the phase transition is expected
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5.2. What happens when LD is non-negligible from the gene’s eye-view ?

when selection is of the same order as the rate of recombination. Our simulations indicate
an interaction between N,L and ω−2

e (see Figure 4.1), which we discussed in Section 4.F.2.
As discussed in Chapter 4, when LD is neglected we expect the typical locus to evolve as

dPt =

(
αLs̃∗ +

α2

ω2

(
Pt −

1

2

))
Pt(1− Pt)dt+

(
µ(+)(1− Pt)− µ(−)Pt

)
dt

+

√
1

2N
Pt(1− Pt)dBt

where µ is the mutation rates, α the additive effect, ω−2 the strength of selection, N the
effective population size and s∗ the bias-correcting selection coefficient. Here, with respect
to (4.28), we rescaled the time by 2N and defined s̃∗ := s∗/(2N) with the bias-correcting
coefficient from Section 4.E.4.

At the phase transition where LD ceases to be negligible, we discussed in Section 4.F.2 the
tools to predict the general architecture [45, 101, 70] and macroscopic observables [106, 207].
A recent preprint [105] suggests that at the phase transition, the system can be well described
by replacing the additive effect at locus ℓ with some effective coefficient α̂ℓ. This deserves
further investigation: how should the Wright-Fisher diffusion for one typical locus be modified
at the phase transition ? The pessimistic scenario would be to add on the right-hand side a
dDt term for some process (Dt)t≥0 which cannot be easily described (one could imagine an
infinite-dimensional Ornstein-Uhlenbeck process, as occurs in the fluctuations of mean-field
approximations, see [157]). An optimistic scenario would be to imagine that the parameters
α, ω, µ or N can be replaced with ”effective coefficients” α̂, ω̂, µ̂, N̂ which account for LD.
These effective coefficients would possibly be random and fluctuating, but characterizing
them would yield important insights, because of how they could be interpreted. I would like
to argue that there are reasons to expect each of these coefficients to be potentially impacted
by LD.

• α̂ could account for the effective additive value of the genetic block in which the
locus is. If the genome is segmented into many small blocks within which recombination
is very rare, for which only two haplotypes segregate at the same time, then all alleles
within a given haplotype will have the same effective additive value. Following [106],
we expect selection to create negative LD, meaning the extreme values of α would be
buffered by negative LD. We would therefore expect |α̂| ≤ |α|, as in [105].

• ω̂−2 would account for genome-wide loose LD, following Bulmer [106]. Our simulations
suggest (Figure 4.1) that LD affects the distance to the optimum ∆t and the genetic
variance σ2 differently: σ2 seems to respond more. This would suggest that the bias-
countering term α

ᾱs
∗ remains unchanged by LD while the underdominant term α2

ω2 is
decreased.

• µ̂ could be interpreted as an early hitch-hiking effect [100]. At first glance, it seems
impossible for LD to impact the mutation rate µ, because LD acts through the selection
term, which is proportional to Pt(1−Pt). In particular, selection only acts on interme-
diate allele frequencies (Pt close to 1/2) whereas the effect of mutation is felt most at
the borders {0, 1}. But when Pt is close to 1/2, we may expect that the corresponding
allele exists on many different genetic backgrounds. On the other hand, when the allele
is very rare Pt ≪ 1, this is where we could expect the fluctuations due to LD to have the
greatest importance. If a new mutation occurs on a highly advantageous background, it
will have more chances of surviving the initial branching phase [208], but this advantage
will be lost through recombination once Pt reaches intermediate frequencies. In fact,
the stationary distribution obtained in equation (43) of [101] which accounts for LD,
comprises an interaction term between mutation and selection.
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• N̂ would correspond to the phenomenon of genetic draft [209, 101]. This general term
describes randomness in the trajectory of an allele due to selection on its fluctuating
genetic background.

Can we hope to define such effective coefficients ? Could there be more than one phase
transition, corresponding to different effective coefficients entering play ? We argued in
Section 4.F.2 that the transition to genetic draft may occur when 2N ∼ L

√
|θ̄| whereas the

transition to the regime of effective additive effects α̂ from [105] is expected when 2N ∼
ln(L)(Lω2

e)
−1|θ̄|. But our simulations were computationally limited, with L and θ barely

spanning one order of magnitude: further work is needed to confirm this conjecture.

5.3 How degenerate can the joint distribution of effect sizes
and mutation rates be ?

In Chapter 4, we assumed all allelic effects and mutation rates were of the same order. But
as our simulations illustrated in Figure 4.56, the polygenic limit seems to hold even when the
distribution of α has a heavy tail. We expect some mathematical difficulties to appear under
this general assumption. For instance, recall the dynamics of ∆t from Chapter 4.

d∆t =
1

τ

(
−∆t ×

1

|θ̄|
× E∗ [2(Lα)2Pt(1− Pt)

]
+

1

|θ̄|
× E∗

[
2L2α3

(
Pt −

1

2

)
Pt(1− Pt)

]

+
Lω2

e

|θ̄|
× E∗ [2Lα (θ+(1− Pt)− θ−Pt

)])
dt +

1√
τ
×

√
ω2
e

|θ̄|
E∗ [(2Lα)2Pt(1− Pt)]dB

∆
t

The third term of this equation involves the expectation of α3, so it would require special
handling. When E

[
α3
]
= ∞, is it possible for E∗[α3Pt(1−Pt)] to be well-defined, if the large

values of α correspond to very small values of Pt(1− Pt) ?
Another important regime to explore is the regime of strong mutational bias (θ+ ≪ θ−).

What is the genetic variance of the population E∗ [α2Pt(1− Pt)
]
in this regime if η(2−η) ∼ 1

?

5.4 Personal conclusion

From my personal experience, I find there is a form of hostility in the general population
towards gene-based models of evolution, which I would impute to the insistence by science
communicators on genetic directional selection, that is, situations where there is an allele
that is ”good” on average and the alternative allele is ”bad” on average. Some people seem
to view trait-based models as a refreshing alternative vision to gene-based models: I have
heard some researchers claim that in the infinitesimal limit (L→ ∞), natural selection does
not act on gene frequencies, which would imply that the ”true” action of natural selection,
driving adaptation, cannot be captured from the gene’s eye-view.

Here, we have shown how, unless we are in the ”ultra-weak” selection regime (see Chapter
4), we do expect the gene’s eye-view to provide an accurate representation of the population.
But this vision does not quite match the one of ”good” and ”bad” alleles. The gene perceives
directional selection through the bias-correcting selection coefficient, and a eugenist trying
to maximize fitness observing genomic data would therefore strive to fix the ”good” alleles
(under positive selection). But this would lead to an overshoot of the selection optimum, and
result in a decrease of fitness.

This gene’s eye-view approach may be of particular interest in modelling the response of
the genetic variance within a population to a change of environment and/or population size,
the importance of which to the modern era need not be stated. Specifically, assuming
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5.4. Personal conclusion

• most of the current environmental changes act on organisms’ fitnesses through polygenic
traits1

• the genetic architecture of these polygenic traits can be described with rough models
of genetic architecture accomodating pleiotropy, and epistasis in these traits can be
neglected

• the population structure can be neglected, at least locally [139]

• the diffusion approximation is acceptable (in particular, the noise due to genetic drift

must be well-described by
√
P ℓt (1− P ℓt )dB

ℓ
t , which precludes situations where a sin-

gle family has so many offspring, they make up a significant proportion of the whole
population)

then the polygenic limit may provide an accurate model to determine the fate of the popu-
lation. The debate of whether the genetic load of a population is best described as purifying
selection or polygenic traits under stabilizing selection has not yet been resolved [201].

1This excludes, for instance, insecticide resistance which usually evolves through very few mutations[210]
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1.1 Example of a pedigree. Each node has two parents (grey arrows), or one parent
if it is the result of selfing (black arrow), or zero parent if it is in the founding
generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Fitness is determined by life history trait L1, L2, L3. Each of these traits
is determined by morphological traits M1, . . . ,M7. Each morphological trait
obeys the infinitesimal model, but the life history traits do not. See [16]. . . . 6

1.3 Roadmap to the polygenic limit. “Mixing” designates the situation where a
strong force maintains the population on a submanifold of low dimensional-
ity, such as strong recombination maintaining the population in LE or the
shuffling of biparental pedigrees. “Mean-field approximation” designates ap-
proximations where we consider that the mean behavior of a large system of
interacting particles is close to deterministic. “Separation of timescales” des-
ignates approximations where the fluctuations of a system are ignored when
computing the evolution of a much slower system. Chapter 2 will be concerned
in getting from the LD-Wright-Fisher diffusion to the polygenic limit, Chapter
4 will classify the required steps to get from the LE-Wright-Fisher diffusion
to the polygenic limit and Ornstein-Uhlenbeck process for the trait mean z̄t
as in (1.3), including when facing specific complications due to dominance,
epistasis, or very strong selection. The scaling from finite (L,N) to L ≫ 1
has been described in [11, 90]. The scaling from the individual-based model
to the LD-Wright-Fisher diffusion has been discussed for instance in [31]. The
scaling from the LD-Wright-Fisher diffusion to the LE-Wright-Fisher diffusion
can be proved using the same kind of arguments as in Chapter 2. The scal-
ing from the infinitesimal model to PDEs for the trait distribution using the
infinitesimal operator from Section 1.1.2 with segregation of the pedigrees is
still lacking (though see [32, 33, 35, 34]). The scaling from PDEs on the trait
distribution to a population with a normally distributed trait was discussed in
Section 1.1.3. Quantifying the deviation from normality of a finite population
is explored for instance in [45]. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1 We consider the discete population of N = 1000 individuals with L = 100
genes each for T = 1000 generations, simulated as detailed in Section 2.1.1 with
single uniform crossing-over (see below). The mutation rates are θ = (1.1, 3.3),
the strength of stabilizing in (2.7) is κ = 15 and z∗ = 0. At time t = 0,
the population is distributed according to the neutral discrete Wright-Fisher
equilibrium with mutation rate θ. The grey lines show the trajectories of
the frequency of the +1 allele at each individual locus. The green line is
the average of the grey lines. The orange line corresponds to the mean-field
approximation (2.19), computed with an Euler approximation scheme. The
code is available on https://github.com/PhCourau/Gene-s_eye_view_of_

quantitative_genetics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
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2.2 Supercritical pitchfork bifurcation in disruptive selection (2.7). For each value
of κ on the x-axis, we simulated two discrete population (as detailed in Section
2.1.1) with N = 200, L = 100 after T = 20N generations, with initial condi-
tions ”all +1” or ”all −1”. The red dots correspond to < µXT

, 2Id−1 > at the
end of the simulation. The mutation rates are fixed θ+ = θ− = 0.6, and the
selection optimum is z∗ = 0. The blue lines correspond to the possible values
of E [2ft − 1] for stationary solutions to the limit equation (2.10). Corollary
2.2.4 predicts a pitchfork-like bifurcation at κc = −1.7. . . . . . . . . . . . . . 44

3.1 The ancestral process. First, we go backwards in time under mutation and
selection. Then we pick the ancestors and the mutants. Then we go forward
in time, with possible selection events replacing a block with a different one. . 79

4.1 Phenotypic observables. The wide curve is the Gaussian fitness function
F (z) = eW (z), which has typical width ω and is centered on η. The nar-
row curve is the distribution of the trait in the population, which has mean z̄
and variance σ2. The deviation of z̄ from the optimum is ∆ = z̄− η. The bro-
ken line represents the fluctuations of z̄ through time, which have magnitude
ν. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 The histogram shows the distribution of the population mean trait z̄t and not
a snapshot of the trait distribution at a given time. For three different values
of ωe corresponding respectively to weak, moderate and strong selection, we
show a histogram of 10, 000 values of z̄t after a burn-in of 24, 000 generations.
The parameters used are N = 100, L = 100, η = 1.2, θ = (0.1, 0.2), and
the parameters (αℓ)ℓ∈[L] were sampled with distribution Exponential(L). We
superimpose in red the fitness function F (z), and the dot corresponds to η.
In particular, ∆∗ is the distance between the mean of the orange distribution
and the red dot, and ν is the width of the orange distribution. As the strength
of selection increases, both ∆∗ and ν decrease. Only in strong selection (right
panel) do we see ∆∗ and ν being of the same order of magnitude. . . . . . . . 99

4.3 Comparison of theoretical predictions with numerical simulations for the macro-
scopic observables of Fig. 4.1 for varying selection regimes, from weak selec-
tion (left) to strong selection (right). The simulations were carried out with
L = 100, the same mutation probabilities for all loci θ = (0.1, 0.2), and ad-
ditive effects (αℓ)ℓ∈[L] exponentially distributed with parameter L (in partic-
ular ᾱ = 1/L), so that zM = 2/3. The selection optimum is η = 1.2. The
same (αℓ)ℓ∈[L] were used in all simulations, and the predictions were made
conditional on the (αℓ)ℓ∈[L]. The simulations were run for T = 500N gener-
ations, and each observable was measured as an average over the last 250N
generations. For the magnitude of the fluctuations ν and the autocorrelation
parameter ρ, the predictions for weak selection use the corrections derived in
Appendix 4.F.5. The predictions of the fixed point equation are derived in
Appendix 4.E.1. The predictions for moderate selection are derived in Ap-
pendix 4.E.4. For the genetic variance, the simulation results distinguish be-
tween the genetic variance in the trait within the population (filled triangles),
and the genic variance (three-pointed stars), which is the variance in the trait
if the population was in linkage equilibrium (neglecting correlations between
pairs of loci). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
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4.4 The predicted genetic variance at equilibrium in a limit system with L →
+∞, N → +∞ with no mutational bias (A,B,C with θℓ = (0.1, 0.1)) or strong
mutational bias (D,E,F with θℓ = (0.01, 0.1)), as a function of the selection
power b (see (4.16)) and the selection-drift ratio ω−2

e . We set η = 1.5 and let
(αℓ)ℓ∈[L] be exponentially distributed with parameter L (in particular ᾱ = 1

L).
A&D We expect the rescaled genetic variance Lσ2 in the limit to converge to a
step function of the parameter b. When b < 1 the genetic variance is equivalent
to that of a neutral model (no selection), when b > 2 we expect the genetic
variance to be completely depleted, and when b ∈ (1, 2), Lσ2 converge to the
variance corresponding to moderate selection. The behavior at the critical
points b = 1 and b = 2 correspond respectively to weak selection (B and E)
and strong selection (C and F). . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 For no selection, weak, moderate and strong selection respectively, we plot the
joint distribution of (P ℓt , αℓ) after a single run. We chose symmetric mutation
rates to make the transition between the selection regimes more apparent θ =
(0.5, 0.5). The other parameters are L = 100, N = 500, η = 1.2 and αℓ is
distributed as Exponential(L). The colour plot correspond to the predicted
densities in the corresponding regimes. . . . . . . . . . . . . . . . . . . . . . . 102

4.6 A population ofN = 100 individuals with L = 100 biallelic loci, was evolved for
T = 100 generations under stabilizing selection with parameters η = 1.2, ω−2

e =
103 and θ = (0.1, 0.2). The logfitness of the organisms within the population
is plotted as a function of gℓ. The left and right figure correspond to two
different loci (ℓ = 0 and ℓ = 7 respectively). The selection coefficient sℓ(Pt) at
generation t at locus ℓ is given by the linear regression coefficient of logfitness
W (Z(g)) on gℓ (see Section 1A). This corresponds to the slope of the red line. 114

4.7 The slow/fast principle applied in strong selection. The population was evolved
with ω−2

e = L2 (strong selection) and L = 1000, N = 1000, η = 1.2, θ =
(0.1, 0.2), and αℓ has law Exponential(L). In the left figure, we see that
(∆t)t≥0 evolves with very short excursions away from its mean value before
returning there. Meanwhile, P ℓt only explores the segment [0.6, 0.9], a small
portion of the state space of Pt. On the right-hand side, we zoom in on a time
window in which P ℓt stays effectively constant, whereas ∆t evolves very quickly.
In particular, the fluctuations of ∆t do not impact Pt. The time-averaging
principle is then to consider a small time interval dt with τ ≪ dt ≪ 1, to
replace ∆t in the equation of P ℓt with its time average over [t, t + dt], and
consider that the law of P ℓt does not evolve on [t, t+ dt]. . . . . . . . . . . . . 118

4.8 The Hill-Robertson effect. The population was evolved for T = 500N gen-
erations either under stabilizing selection (η = 1.2, ω−2

e = 2/L) or on the
corresponding directional selection regime. The mutation rate is θ = (0.1, 0.2)
(weak selection) and the (αℓ)ℓ∈[L] have law Exponential(L). The genetic
trait variance is σ2t := VarXt [Z(g)], whereas the genic trait variance σ2G,t
corresponds to the variance the population would have if it was in HWLE.
When blue is on top of orange, the population displays negative LD, whereas
when orange is on top of blue, the population displays positive LD. . . . . . 127
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4.9 The Hill-Robertson effect: the population is evolves with ω−2
e = 2/L (weak

selection) with L = 100, θ− = 2θ+, η = 1.2, for a time of T = 4, 000N at
various population sizes, half of which were used as burn-in. Below, the plot
distinguishes between genetic variance (the variance in the trait) and the genic
variance, corresponding to the label ”no linkage”. The genic variance is the
variance of the trait if the allele frequencies were kept unchanged but linkage
equilibrium was enforced. The difference between the genetic and the genic
variance is a measure of LD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.10 Breakdown of our approximation when hypotheses (N2) and (A3) fail. The
population was evolved with ω−2

e = 103 (strong selection), N = 500, L =
100, η = 1.2 under different mutation rates for T = 500N generations, in-
cluding a burn-in of 250N generations. We took the same (αℓ)ℓ∈[L] as in
Fig. 4.1. We plot the empirical value of ∆ from simulations (∆e) vs our theo-
retical prediction (∆th), and similarly for ν, σ, ρ. As in Fig. 4.1, the predictions
were obtained conditional on the values of (αℓ)ℓ∈[L]. In this parameterization,
assumption (N2) reads θ+ + θ− ≫ 10−2 (non-hashed zone) and (A3) reads
θ+ ∼ θ− (blue dashed line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.11 Breakdown of the approximation when (αℓ)ℓ∈[L] has heavy tails. We simulated
the system at stationarity for N = 500, L = 100, η = 1.2, ω−2

e = 103, θ =
(0.1, 0.2). We sampled α̂ℓ using the Pareto(k) distribution for k between 1
and 4, and set the allelic effect as αℓ := α̂ℓ/(

∑
ℓ α̂ℓ) = 1. In particular, the

smaller k, the heavier the tail of α. The prediction was obtained using the
same method as in Fig. 4.10, using the empirical distribution of (αℓ)ℓ∈[L] as the
distribution L. When k = 1, a single locus can have a very large effect, αℓ ∼ 1,
and the mean-field approximation cannot be expected to hold. The prediction
seems to hold quite well for k > 1.5. This is particularly surprising because
the theoretical prediction for σ2 and ρ are obtained using the expectation
E∗[α2Pt(1−Pt)] and equation (4.29) for ∆∗ involves E∗[α3Pt(1−Pt)(1−2Pt)],
whereas E

[
α2
]
and E

[
α3
]
are ill-behaved when k ≤ 2. We defer to future

work a theoretical characterization of this breakdown. . . . . . . . . . . . . . 132
4.12 Here we plot the square of Pearson’s correlation coefficient r2 for the log-

autocorrelation function (ρu)u≤u0 defined in (4.51) as a function of the selec-
tion strength ω−2

e . For each value of ω−2
e , ρu is computed for times u ≤ u0 with

u0 = ln(2)/ρ1/(2N), and r
2 was computed on (ρu)u≤u0 . The time u0 was chosen

such that we may expect e−ρu0 ≃ 1/2 for an Ornstein-Uhlenbeck process.
For an Ornstein-Uhlenbeck process, we expect r2 = 1. As expected, the devia-
tion from the expectation of an Ornstein-Uhlenbeck process appears for weak
selection.
The simulations were carried out with L = 100, N = 500, the same mutation
probabilities for all loci θ = (0.1, 0.2), and additive effects (αℓ)ℓ∈[L] exponen-
tially distributed with parameter L (in particular ᾱ = 1/L). The selection
optimum is η = 1.2. The same (αℓ)ℓ∈[L] were used in all simulations. The
simulations were run for T = 1000N generations, and each observable was
measured as an average over the last 500N generations. . . . . . . . . . . . . 137
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4.1 Order of magnitude of macroscopic observables as a function of the number
L of loci and b ∈ [1, 2], assuming ω−2

e ∼ Lb, interpolating between the weak
regime (b = 1), the moderate regime (b ∈ (1, 2)) and the strong regime (b = 2).
This table is derived in Appendix 4.E.3 . . . . . . . . . . . . . . . . . . . . . 103
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phenotypes under stabilizing selection. Journal of Statistical Mechanics: Theory and
Experiment, 2013(01):P01012, jan 2013.
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Appendix A

More on the LD-Wright-Fisher
diffusion

In Section A.1 we explain how the Quasi-Linkage Equilibrium approach is obtained from the
LD-Wright-Fisher diffusion, and in Section A.2 we explain why we cannot LE to hold globally
unless ρ is of order 2L. We use the notations from Chapter 2.

A.1 Recovering the Quasi-Linkage Equilibrium approach

Here we discuss what approximations are necessary to recover the Quasi-Linkage Equilibrium
approach of [101] from the LD-Wright-Fisher diffusion (2.3) as used in Chapter 2, which yields
first-order corrections for the behavior ofXt to account for LD. Specifically, we want to recover
the closed system of equations (36-37) from [101] for ((pℓ(Xt))ℓ∈[L], (D

ℓ1,ℓ2(Xt))ℓ1 ̸=ℓ2). We
warn the reader that a rigorous proof is at present unattainable. We will follow [101] in
writing

LW (g) =
∑
ℓ∈[L]

fℓgℓ +
∑

1≤ℓ1<ℓ2≤L
fℓ1ℓ2gℓ1gℓ2

for some parameters (fℓ)ℓ∈[L], (fℓ1,ℓ2)ℓ1,ℓ2∈[L] with fℓ,ℓ = 0 for any ℓ ∈ [L]. The goal is to

obtain a closed equation for (Pt,Dt) ≡ ((P ℓt )ℓ∈[L], (D
ℓ1,ℓ2
t )ℓ1 ̸=ℓ2) where for ℓ, ℓ1, ℓ2 ∈ [L] with

ℓ1 ̸= ℓ2

P ℓt :=pℓ(Xt) Dℓ,ℓ
t :=P ℓt (1− P ℓt ) Dℓ1,ℓ2

t :=Dℓ1,ℓ2(Xt)

We claim

Claim A.1.1 (Equations (36-37) of [101]). Assume all terms of the form

χℓ1,ℓ2,ℓ3 := Xt[(gℓ1 −Xt[gℓ1 ])(gℓ2 −Xt[gℓ2 ])(gℓ3 −Xt[gℓ3 ])]

for ℓ1, ℓ2, ℓ3 distinct can be neglected, and that Dℓ1,ℓ2
t is small. Then we may find the following

first-order equation for the dynamics for ℓ1 ̸= ℓ2

dP ℓt ≃
(
Θ(P ℓt ) + S̃ℓ(Pt,Dt)

)
dt+

√
P ℓt (1− P ℓt )dB̂

ℓ
t (A.1)

dDℓ1,ℓ2
t ≃− hℓ1,ℓ2(P ℓ1t , P

ℓ2
t )Dℓ1,ℓ2

t dt

+ fℓ1ℓ24P
ℓ1
t (1− P ℓ1t )P ℓ2t (1− P ℓ2t )dt

+

√
P ℓ1t (1− P ℓ1t )P ℓ2t (1− P ℓ2t )dB̃ℓ1,ℓ2

t (A.2)
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where B̂ℓ, B̃ℓ1,ℓ2 are Brownian motions with quadratic variations such that

d ⟨P ℓ1 , P ℓ2⟩t =D
ℓ1,ℓ2
t dt∣∣∣∣ ddt ⟨P ℓ, Dℓ1,ℓ2⟩t

∣∣∣∣≪1

∣∣∣∣ ddt ⟨Dℓ1,ℓ2 , Dℓ3,ℓ4⟩t

∣∣∣∣≪1

for any {ℓ1, ℓ2} ̸= {ℓ3, ℓ4}. In (A.1) we defined for p ∈ [0, 1]L,d ∈ [−1, 1]L
2

S̃ℓ(p,d) :=
∑
ℓ′∈[L]

2fℓ′d
ℓ,ℓ′ +

∑
1≤ℓ1<ℓ2≤L

2fℓ1,ℓ2

(
dℓ,ℓ1(2pℓ2 − 1) + dℓ,ℓ2(2pℓ1 − 1)

)
−
∑
ℓ′ ̸=ℓ

2fℓ,ℓ′d
ℓ,ℓ′(2pℓ − 1)

hℓ1,ℓ2(p1, p2) := 1 + ρr{ℓ1,ℓ2} + |θℓ1 |+ |θℓ2 |+ fℓ12(2p1 − 1) + fℓ22(2p2 − 1)

− fℓ1ℓ2(2p1 − 1)(2p2 − 1)

Remark 16. To recover (36-37) of [101], one should additionally assume ρr{ℓ1,ℓ2} dominates

all other terms in hℓ1,ℓ2, and account for a small typo in equation (37) of [101] (χij should
be on the left of the bracket).

Remark 17. The assumption that the third cumulants are negligible cannot be proved as
straightforwardly as (2.61) from Proposition 2.3.13, for two reasons

• It requires controlling LD on subsets of size four (replacing {ℓ0} by {ℓ1, ℓ2} in (2.32)
from Proposition 2.3.2)

• If we assume that W is of order 1 (as in Chapter 2) and that all fℓ1ℓ2 have the same
order, then we necessarily have that fℓ1ℓ2 is of order L−1. Therefore the first-order effect

of selection on D
{ℓ1,ℓ2}
t is LS{ℓ1,ℓ2}(π(Xt)) = O(1/L). The Quasi-Linkage Equilibrium

approach assumes this to be larger than the error of neglecting LD. This is a much
stronger requirement than what was given in Section 2.3.4, where we wanted LD to be
negligible with respect to LSℓ(π(Xt)), which is of order 1.

In Chapter 4., we use the two following observations from (A.2) in [101] in the setting of
stabilizing selection, where the directional fitness coefficient felt by a locus satisfies fℓ ∼ 1
(Section 4.E.4) and the epistatic fitness coefficient is fℓ1ℓ2 = −αℓ1αℓ2/(2ω2

e) ∼ 1/(Lωe)
2.

Furthermore, in this chapter we have uniform cross-over rates r{ℓ1,ℓ2} = |ℓ1 − ℓ2|/L and1

ρ ≃ N .

• Let us neglect the Brownian term, and assume ρr{ℓ1,ℓ2} dominates all other terms in

(A.2). Let us assume P ℓ1t evolves more slowly than Dℓ1,ℓ2
t , then

Dℓ1,ℓ2
t ∼ fℓ1ℓ2

ρr{ℓ1,ℓ2}
P ℓ1t (1− P ℓ1t )P ℓ2t (1− P ℓ2t ). (A.3)

Considering stabilizing selection (fℓ1ℓ2 = −αℓ1αℓ2/(2ω2
e)), we define the total amount

of two-loci LD as

Dtot
t :=

∑
ℓ1 ̸=ℓ2

αℓ1αℓ2D
ℓ1,ℓ2
t

1Recall the recombination rate is related to the population size and the probability of outcrossing ρ(N)

with ρ = Nρ(N), see (1.4). In Chapter 4, outcrossing occurs with probability ρ(N) ∼ 1.
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so that the genetic variance given by

VarXt [Z(g)] =
∑
ℓ∈[L]

α2
ℓP

ℓ
t (1− P ℓt ) +Dtot

t

We find from (A.3)

|Dtot
t | ∼

∑
ℓ1 ̸=ℓ2

1

ρr{ℓ1,ℓ2}ω
2
e

(αℓ1αℓ2)
2P ℓ1t (1− P ℓ1t )P ℓ2t (1− P ℓ2t ).

If we take ρr{ℓ1,ℓ2} = (2N)|ℓ1 − ℓ2|/L we find using a mean-field approximation (see
(H3) in Chapter 4)

|Dtot
t | ∼L

2 ln(L)

2Nω2
e

E
[
α2Pt(1− Pt)

]2
.

where Pt = P ℓUt for ℓU an independent uniform variable on [L], representing the typical

locus. For LD to be negligible, we require
∑

ℓ1 ̸=ℓ2 αℓ1αℓ2D
ℓ1,ℓ2
t to be negligible with

respect to the genetic variance σ2t ≃ 2LE
[
α2Pt(1− Pt)

]
(see (4.52)). We find from

α ∼ 1/L

|Dtot
t |
σ2t

∼L
2 ln(L)

2Nω2
e

E
[
(1/L)2Pt(1− Pt)

]2
LE [(1/L)2Pt(1− Pt)]

∼ ln(L)

2NLω2
e

E [Pt(1− Pt)] .

This yields from σ2t ∼ E [Pt(1− Pt)] /L

|Dtot
t |
σ2t

∼ ln(L)

2Nω2
e

σ2t . (A.4)

• If we neglect the epistatic fitness coefficients (fℓ1,ℓ2)ℓ1,ℓ2 , assume ρr{ℓ1,ℓ2} dominates all
other terms and assume Pt evolves more slowly than Dt, then

Var[Dℓ1,ℓ2
t |P ℓ1t , P

ℓ2
t ] ∼ P ℓ1t (1− P ℓ1t )P ℓ2t (1− P ℓ2t )

(ρr{ℓ1,ℓ2})
2

Plugging this in (A.1) and neglecting the epistatic fitness terms, we see that the con-
tribution of the (fℓ′)ℓ′ ̸=ℓ in S̃

ℓ(Pt,Dt) is of order

∑
ℓ′∈[L]

f2ℓ′Var[D
ℓ,ℓ′

t |P ℓt P ℓ
′
t ] ∼

∑
ℓ′∈[L]

f2ℓ′
P ℓt (1− P ℓt )P

ℓ′
t (1− P ℓ

′
t )

(ρr{ℓ,ℓ′})2
.

This corresponds to equation (44) in [101]. For the effect of hitch-hiking randomness
on the dynamics of P ℓt to be negligible with respect to genetic drift, we require this
quantity to be negligible with respect to P ℓt (1 − P ℓt ). When fℓ is typically of order 1,
and ρr{ℓ1,ℓ2} = 2N |ℓ1 − ℓ2|/L, we find

∑
ℓ′∈[L] f

2
ℓ′Var[D

ℓ,ℓ′

t |P ℓt P ℓ
′
t ]

P ℓt (1− P ℓt )
∼

∑
ℓ′∈[L]∖{ℓ}

f2ℓ′

(
L

2N |ℓ− ℓ′|

)2

P ℓ
′
t (1− P ℓ

′
t ). (A.5)
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Derivation of Claim A.1.1. First, from Corollary 2.3.5 we have

dP ℓt =
(
Θ(P ℓt ) + LSℓ(Xt)

)
dt+

√
P ℓt (1− P ℓt )dB̂

ℓ
t

We write

LSℓ(Xt) =
∑
ℓ′∈[L]

fℓ′CovXt [1[gℓ=+1], gℓ′ ] +
∑

1≤ℓ1<ℓ2≤L
fℓ1ℓ2CovXt

[
1[gℓ=+1], gℓ1gℓ2

]
(A.6)

Using gℓ = 21[gℓ=+1] − 1 we write

CovXt [1[gℓ=+1], gℓ′ ] = 2Dℓ,ℓ′

t .

Furthermore

CovXt

[
1[gℓ=+1], gℓ1gℓ2

]
= CovXt

[
1[gℓ=+1], gℓ1

]
Xt[gℓ2 ]

+CovXt

[
1[gℓ=+1], (gℓ2 −Xt[gℓ2 ])

]
Xt[gℓ1 ]

+CovXt

[
1[gℓ=+1], (gℓ1 −Xt[gℓ1 ])(gℓ2 −Xt[gℓ2 ])

]
which can be rewritten with Xt[1[gℓ]] = 2P ℓt − 1

CovXt

[
1[gℓ=+1], gℓ1gℓ2

]
= 2Dℓ,ℓ1

t (2P ℓ2t − 1) + 2Dℓ,ℓ2
t (2P ℓ1t − 1)

+
1

2
Xt [(gℓ −Xt[gℓ])(gℓ1 −Xt[gℓ1 ])(gℓ2 −Xt[gℓ2 ])]

The last term is a third-order cumulant, which is assumed to be negligible when ℓ, ℓ1, ℓ2 are
distinct. If ℓ = ℓ1 we find from (gℓ)

2 = 1

Xt

[
(gℓ −Xt[gℓ])

2(gℓ2 −Xt[gℓ2 ])
]
=Xt

[
(1− 2Xt[gℓ]gℓ +Xt[gℓ]

2)(gℓ2 −Xt[gℓ2 ])
]

=− 4Dℓ,ℓ2
t (2P ℓt − 1)

We thus obtain from (A.6)

LSℓ(Xt) ≃
∑
ℓ′∈[L]

2fℓ′D
ℓ,ℓ′

t +
∑

1≤ℓ1<ℓ2≤L
2fℓ1,ℓ2

(
Dℓ,ℓ1
t (2P ℓ2t − 1) +Dℓ,ℓ2

t (2P ℓ1t − 1)
)

−
∑
ℓ′ ̸=ℓ

2fℓ,ℓ′D
ℓ,ℓ′

t (2P ℓt − 1)

This yields (A.1).
We now turn to (A.2). Tedious computations based on Proposition 2.3.3 yield the dy-

namics of the second-order cumulants Dℓ1,ℓ2
t

dDℓ1,ℓ2
t = −(1 + ρr{ℓ1,ℓ2} + 2|θ|)Dℓ1,ℓ2

t dt+ LSℓ1,ℓ2(Xt)dt+ dM ℓ1,ℓ2
t (A.7)

where

Sℓ1,ℓ2(Xt) :=CovXt [W (g), (gℓ1 −Xt[gℓ1 ])(gℓ2 −Xt[gℓ2 ])]

dM ℓ1,ℓ2
t :=

∑
γ(1),γ(2)∈□[L]

γ(1) ̸=γ(2)

(
Kℓ1,ℓ2
t (γ(1))−Kℓ1,ℓ2

t (γ(2))
)√

Xt(γ(1))Xt(γ(2))dBt(γ
(1), γ(2))

where
Kℓ1,ℓ2
t (γ) := 1[γℓ1=γℓ2=+1] − P ℓ1t 1[γℓ2=+1] − P ℓ2t 1[γℓ1=+1].
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Equation (A.7) is equivalent to equation (10) of [101], with genetic drift added. The first

term −Dℓ1,ℓ2
t dt comes from the quadratic variation between P ℓ1t and P ℓ2t .

Simple computations show that when the cumulants of order 3 or greater are neglected,
we have

LSℓ1,ℓ2(Xt) ≃ fℓ1CovXt [gℓ1 , (gℓ1 −Xt[gℓ1 ])(gℓ2 −Xt[gℓ2 ])]

+ fℓ2CovXt [gℓ2 , (gℓ1 −Xt[gℓ1 ])(gℓ2 −Xt[gℓ2 ])]

+ fℓ1ℓ2CovXt [gℓ1gℓ2 , (gℓ1 −Xt[gℓ1 ])(gℓ2 −Xt[gℓ2 ])]

We then compute

CovXt [gℓ1 , (gℓ1 −Xt[gℓ1 ])(gℓ2 −Xt[gℓ2 ])] = Xt

[
(gℓ1 −Xt[gℓ1 ])

2(gℓ2 −Xt[gℓ2 ])
]

= −2Xt[gℓ1 ]D
ℓ1,ℓ2
t

CovXt [gℓ1gℓ2 , (gℓ1 −Xt[gℓ1 ])(gℓ2 −Xt[gℓ2 ])]

=
(
1−Xt[gℓ1 ]

2
) (

1−Xt[gℓ2 ]
2
)
+Xt[gℓ1 ]Xt[gℓ2 ]D

ℓ1,ℓ2
t

We thus find

LSℓ1,ℓ2(Xt) ≃ (−fℓ12Xt[gℓ1 ]− fℓ22Xt[gℓ2 ] + fℓ1ℓ2Xt[gℓ1 ]Xt[gℓ2 ])D
ℓ1,ℓ2
t

+ fℓ1ℓ2(1−Xt[gℓ1 ]
2)(1−Xt[gℓ2 ]

2).

We thus find from (A.7)

dDℓ1,ℓ2
t ≃

−
(
1 + ρr{ℓ1,ℓ2} + |θℓ1 |+ |θℓ2 |+ fℓ12Xt[gℓ1 ] + fℓ22Xt[gℓ2 ]− fℓ1ℓ2Xt[gℓ1 ]Xt[gℓ2 ]

)
Dℓ1,ℓ2
t dt

+ fℓ1ℓ2(1−Xt[gℓ1 ]
2)(1−Xt[gℓ2 ]

2)dt

+

√
VarXt

[
1[gℓ1=+1]1[gℓ2=+1] − P ℓ1t 1[gℓ2=+1] − P ℓ2t 1[gℓ1=+1]

]
dB̃ℓ1,ℓ2

t

Using Xt[gℓ] = 2P ℓt − 1, we see that it only remains to handle the Brownian term. We find

d ⟨M⟩ℓ1,ℓ2t = VarXt

[
1[gℓ1=+1]1[gℓ2=+1] − P ℓ1t 1[gℓ2=+1] − P ℓ2t 1[gℓ1=+1]

]
which justifies writing

d ⟨M⟩ℓ1,ℓ2t =

√
VarXt

[
1[gℓ1=+1]1[gℓ2=+1] − P ℓ1t 1[gℓ2=+1] − P ℓ2t 1[gℓ1=+1]

]
dB̃ℓ1,ℓ2

t

for some Brownian motion B̃ℓ1,ℓ2 . We now compute

VarXt

[
1[gℓ1=+1]1[gℓ2=+1] − P ℓ1t 1[gℓ2=+1] − P ℓ2t 1[gℓ1=+1]

]
≃ VarXt

[
1[gℓ1=+1]1[gℓ2=+1]

]
+VarXt [P

ℓ1
t 1[gℓ2=+1] + P ℓ2t 1[gℓ1=+1]]

− 2CovXt

[
1[gℓ1=+1]1[gℓ2=+1], P

ℓ1
t 1[gℓ2=+1] + P ℓ2t 1[gℓ1=+1]

]
One may then compute

VarXt

[
1[gℓ1=+1]1[gℓ2=+1]

]
=(P ℓ1t P

ℓ2
t +Dℓ1,ℓ2

t )(1− P ℓ1t P
ℓ2
t −Dℓ1,ℓ2

t )

VarXt [P
ℓ1
t 1[gℓ2=+1] + P ℓ2t 1[gℓ1=+1]] =P

ℓ1
t P

ℓ2
t

(
P ℓ1t (1− P ℓ2t ) + P ℓ2t (1− P ℓ1t ) + 2Dℓ1,ℓ2

t

)
CovXt

[
1[gℓ1=+1]1[gℓ2=+1], P

ℓ1
t 1[gℓ2=+1]

]
=P ℓ1t

(
P ℓ1t P

ℓ2
t −Dℓ1,ℓ2

t

)
(1− P ℓ2t )
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We then find

VarXt

[
1[gℓ1=+1]1[gℓ2=+1] − P ℓ1t 1[gℓ2=+1] − P ℓ2t 1[gℓ1=+1]

]
= P ℓ1t P

ℓ2
t

(
1− P ℓ1t

)(
1− P ℓ2t

)
+Dℓ1,ℓ2

t

(
1 + 2(P ℓ1t + P ℓ2t )− 4P ℓ1t P

ℓ2
t −Dℓ1,ℓ2

t

)
Neglecting the terms of order Dℓ1,ℓ2

t , which are assumed to be much smaller than P ℓ1t (1−P ℓ1t )
and P ℓ2t (1− P ℓ2t ), we get the result.

To conclude, we compute the quadratic variation between P ℓ1t and Dℓ2,ℓ3
t to be

d

dt
⟨P ℓ1 , Dℓ2,ℓ3⟩t =CovXt

[
1[gℓ1=+1],1[gℓ2=+1]1[gℓ3=+1] − 1[gℓ2=+1]P

ℓ3
t − 1[gℓ3=+1]P

ℓ2
t

]
If we neglect the cumulants of order 3 or greater, this can be found to be negligible. A similar
computation yields the result for d ⟨Dℓ1,ℓ2 , Dℓ3,ℓ4⟩t when {ℓ1, ℓ2} ̸= {ℓ3, ℓ4}.

A.2 Itô’s formula applied to the relative entropy

In Chapter 2, we obtained the polygenic limit from the LD-Wright-Fisher diffusion (2.3)
under the assumption that the number of loci L and the recombination rate ρ scale as
ρr∗∗ ≫ L2 ln(L) for some parameter r∗∗ which depends on the recombination measure ν.

Here we briefly justify why when ρ ≪ 2L in (2.3), we cannot expect that Xt is glob-
ally at LE. This means that we managed to reach the polygenic limit despite the fact that
recombination cannot entirely eliminate LD, only first-order LD.

The discussion relies on the relative entropy

H(Xt) :=
∑
γ∈□[L]

Xt(γ) ln

(
Xt(γ)

π(Xt)(γ)

)
(A.8)

where π(Xt) is the LE projection of Xt, see (2.26).

The relative entropy has two remarkable features that make it particularly convenient to
study dynamical systems on probability spaces. The first is that it dominates the distance
to LE, with the famous Pinsker inequality [211, 212]

||Xt − π(Xt)||1 ≤
√

1

2
H(Xt)

where || · ||1 is the total variation norm. We have that H(Xt) = 0 iff Xt = π(Xt).

The second important feature of relative entropy is that in mixing systems, it is often
possible to define an entropy production bound. Specifically, consider Xt evolving under
the deterministic equation d

dtXt = R(Xt) for some operator R. An entropy production bound
is a constant δ > 0 such that

d

dt
H(Xt) ≤ −δH(Xt)

It is known that the recombinator R under a typical recombination measure ν such as uniform
crossing-over (see Section 2.1.2) has entropy production bound of order 1/L (see [61]).

The entropy production bound lets us claim that the strength of recombination acting to
bring the population to LE in the LD-Wright-Fisher diffusion (2.3) is of order ρ/L.

Here we will show that genetic drift has a typical contribution to H(Xt) of order 2L.
Specifically, we consider (Xt)t≥0 satisfying the pure-genetic-drift equation

dXt = Σ(Xt)dBt
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with Σ,B as in (2.3). We define the following quantities

Ht :=H(Xt)

Vt :=
∑
γ∈□[L]

Xt(γ) (ln(Xt(γ))−Ht)
2

At :=
{
γ ∈ □[L], Xt(γ) ∈ (0, 1)

}
Bt :=

{
ℓ ∈ [L], pℓ(Xt) ∈ (0, 1)

}
With words, Ht is the relative entropy, Vt is the varentropy, At is the set of segregating
genotypes and Bt is the set of segregating loci. In particular, if all genotypes are present
in the population at time t we have #At = 2L and #Bt = L. We will show

Theorem A.2.1. We have

dHt = dMt +
1

2
(#At − 2#Bt) dt

where Mt is a continuous martingale with quadratic variation

d ⟨M⟩t = 2Vtdt.

The proof is a straightforward application of the following generalized version of Itô’s
formula. Define

ψ :

{
R+ −→ R
x 7−→ x ln(x)

with the convention 0 · ∞ = 0.
We will proceed through two lemmas. The first is an extension of Itô’s formula.

Lemma A.2.2. Consider a neutral Wright-Fisher diffusion (Yt)t≥0

dYt =
√
Yt(1− Yt)dBt

with B a Brownian motion. Then for t > 0 the stochastic integral∫ 1

0
(1 + ln(Yu)) dYu

with ln(0) = −∞ is well defined and we have

ψ(Yt)− ψ(Y0) =

∫ 1

0
(1 + ln(Yu)) dYu +

1

2

∫ 1

0
1[Yu∈(0,1)](1− Yu)du (A.9)

Remark 18. This result can be extended to the case

dYt = btdt+
√
Yt(1− Yt)dBt

when (bt)t≥0 is a continuous process satisfying bt ≥ −CYt for some constant C, which would
be applicable to Xt(γ) for Xt the general LD-Wright-Fisher diffusion (1.5).

Proof. For small ε > 0 we define

ψε :

{
[0, 1] −→ R+

x 7−→ ψ(ε+(1−ε)x)
1−ε

Then ψε is C2 on [0, 1] and

ψ′
ε(x) = 1 + ln(ε+ (1− ε)x) ; ψ′′(x) =

1− ε

ε+ (1− ε)x
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Itô’s formula therefore yields

dψε(Yt) = ψ′
ε(Yt)dYt +

1

2
ψ′′
ε (Yt)d ⟨Y ⟩t

In particular

ψε(Yt)− ψε(Y0) =

∫ t

0
ψ′
ε(Yu)dYu +

1

2

∫ t

0

1− ε

ε+ (1− ε)Yu
Yu(1− Yu)du (A.10)

As ε→ 0 we have from the continuity of ψ

ψε(Yt)− ψε(Y0) −→ ψ(Yt)− ψ(Y0) (A.11)

Furthermore, since

ε 7−→ 1− ε

ε+ (1− ε)x
x(1− x) =

1− ε

ε(1− x) + x
x(1− x)

is decreasing in ε, we have by monotone convergence

1

2

∫ t

0

1− ε

ε+ (1− ε)Yu
Yu(1− Yu)du −→ 1

2

∫ t

0
1[Yu>0](1− Yu)du (A.12)

Since 1[Yu>0](1− Yu) = 1[Yu∈(0,1)](1− Yu), we get the last integral of (A.9).
The remaining term of (A.10) is∫ t

0
ψ′
ε(Yu)dYu =

∫ t

0
ψ′
ε(Yu)

√
Yu(1− Yu)dBu (A.13)

Observe that the following limit integral is well-defined∫ t

0
ψ′(Yu)

√
Yu(1− Yu)dBu =

∫ t

0
(1 + ln(Yu))

√
Yu(1− Yu)dBu (A.14)

since the integrand is bounded and continuous.
To check that the martingale part of (A.13) does converge to this, write

E

[(∫ t

0
ψ′
ε(Yu)

√
Yu(1− Yu)dBu −

∫ t

0
ψ′(Yu)

√
Yu(1− Yu)dBu

)2
]

= E
[∫ t

0

(
ψ′
ε(Yu)− ψ′(Yu)

)2
Yu(1− Yu)du

]
= E

[∫ t

0
(1 + ln(ε+ (1− ε)Yu)− 1− ln(Yu))

2 Yu(1− Yu)du

]
= E

[∫ t

0
(ln(ε+ (1− ε)Yu)− ln(Yu))

2 Yu(1− Yu)du

]
We then conclude using the following dichotomy for a small enough ε

sup
x∈[0,

√
ε]

(ln(ε+ (1− ε)x)− ln(x))2 x(1− x) ≤ sup
x∈[0,

√
ε]

2(ln(ε+ (1− ε)
√
ε)2 + ln(

√
ε)2)

√
ε

sup
x∈[

√
ε,1]

(ln(ε+ (1− ε)x)− ln(x))2 x(1− x) ≤ sup
x∈[

√
ε,1]

ln
( ε
x
+ 1− ε

)2
≤ ln

(
ε√
ε
+ 1− ε

)2

In the first line we used (a+b)2 ≤ 2a2+2b2. In the third line we used that x 7→ ln
(
ε
x + 1− ε

)2
is decreasing in x on [

√
ε, 1].
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The second Lemma connects ψ to the entropy process (Ht)t≥0.

Lemma A.2.3. We have

Ht =
∑
γ∈□[L]

ψ(Xt(γ))−
∑
ℓ∈[L]

ψ(pℓ(Xt)) + ψ(1− pℓ(Xt)) (A.15)

Proof of Lemma A.2.3. We have from (A.8)

Ht =
∑
γ∈□[L]

Xt(γ) ln(Xt(γ))−Xt(γ) ln(π(Xt)(γ))

which we rewrite
Ht =

∑
γ∈□[L]

ψ(Xt(γ))−Xt(γ) ln(π(Xt)(γ)).

Recall from the definition of π (2.26)

π(Xt) =
⊗
ℓ∈[L]

(δ−1(1− pℓ(Xt)) + δ+1p
ℓ(Xt))

This yields

ln(π(Xt)(γ)) =
∑
ℓ∈[L]

1[γℓ=−1] ln(1− pℓ(Xt)) + 1[γℓ=+1] ln(p
ℓ(Xt))

We thus find∑
γ∈□[L]

Xt(γ) ln(π(Xt)(γ)) =
∑
ℓ∈[L]

(1− pℓ(Xt)) ln(1− pℓ(Xt)) + pℓ(Xt) ln(p
ℓ(Xt))

=
∑
ℓ∈[L]

ψ(1− pℓ(Xt)) + ψ(pℓ(Xt))

This yields the result

Proof of Theorem A.2.1. Because of Corollary 2.3.5, we know that

dpℓ(Xt) =
√
pℓ(Xt)(1− pℓ(Xt))dB

ℓ
t

and this implies

d(1− pℓ(Xt)) = −
√
pℓ(Xt)(1− pℓ(Xt))dB

ℓ
t

so that we may apply Lemma A.2.2 to get

dψ(pℓ(Xt)) + dψ(1− pℓ(Xt))

=
(
ln(pℓ(Xt))− ln(1− pℓ(Xt))

)√
pℓ(Xt)(1− pℓ(Xt))dB

ℓ
t + 1[pℓ(Xt)∈(0,1)]dt (A.16)

Similarly, one can show that for any γ ∈ □[L], Xt(γ) is also a neutral Wright-Fisher diffusion

dXt(γ) =
√
Xt(γ)(1−Xt(γ))dB̃

γ
t

where

dB̃γ
t :=

∑
γ̂∈□[L]∖{γ}

√
Xt(γ̂)

1−Xt(γ)
dBt(γ, γ̂).
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It follows from Lemma A.2.2

dψ(Xt(γ)) = (1 + ln(Xt(γ)))
∑

γ′∈□[L]∖{γ}

√
Xt(γ)Xt(γ′)dBt(γ, γ

′) +
1

2
1[Xt(γ)∈(0,1)]dt

It follows

∑
γ∈□[L]

dψ(Xt(γ))

=
∑

γ,γ′∈□[L]

γ<γ′

(
ln(Xt(γ))− ln(Xt(γ

′))
)√

Xt(γ)Xt(γ′)dBt(γ, γ
′) +

1

2

∑
γ∈□[L]

1[Xt(γ)∈(0,1)]dt

=
∑

γ,γ′∈□[L]

γ<γ′

(
ln(Xt(γ))− ln(Xt(γ

′))
)√

Xt(γ)Xt(γ′)dBt(γ, γ
′) +

1

2
#Atdt

where in the first line we used B(γ, γ′) = −B(γ′, γ). Combining this with (A.16) into (A.15)
we get

dHt =
∑

γ,γ′∈□[L]

γ<γ′

((
ln(Xt(γ))− ln(Xt(γ

′))
)√

Xt(γ)Xt(γ′)dBt(γ, γ
′)

+
∑
ℓ∈[L]

(
ln(pℓ(Xt))− ln(1− pℓ(Xt))

)√
pℓ(Xt)(1− pℓ(Xt))dB

ℓ
t


+

1

2
#At −

∑
ℓ∈[L]

1[pℓ(Xt)∈(0,1)]

 dt

The final term is equal to 1
2(#At −#Bt) as claimed. It remains to check that the quadratic

variation of the martingale part Mt is indeed Vt, where

dMt :=
∑

γ,γ′∈□[L]

γ<γ′

((
ln(Xt(γ))− ln(Xt(γ

′))
)√

Xt(γ)Xt(γ′)dBt(γ, γ
′)

+
∑
ℓ∈[L]

(
ln(pℓ(Xt))− ln(1− pℓ(Xt))

)√
pℓ(Xt)(1− pℓ(Xt))dB

ℓ
t


Simple computations using the definition of Bℓ in Proposition 2.3.3 will show

∑
ℓ∈[L]

(
ln(pℓ(Xt))− ln(1− pℓ(Xt))

)√
pℓ(Xt)(1− pℓ(Xt))dB

ℓ
t

=
∑
ℓ∈[L]

∑
γ,γ′∈□[L]

γℓ=+1,γ′ℓ=−1

(
ln(pℓ(Xt))− ln(1− pℓ(Xt))

)√
Xt(γ)Xt(γ′)dBt(γ, γ

′)
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The martingale Mt can then be rewritten

dMt

=
∑

γ,γ′∈□[L]

γ<γ′

(ln(Xt(γ))− ln(Xt(γ
′))−

∑
ℓ∈[L]

γℓ − γ′ℓ
2

×
(
ln(pℓ(Xt))− ln(1− pℓ(Xt))

)

×
√
Xt(γ)Xt(γ′)dBt(γ, γ

′)

)

It can be checked∑
ℓ∈[L]

γℓ − γ′ℓ
2

×
(
ln(pℓ(Xt))− ln(1− pℓ(Xt))

)
= ln(π(Xt)(γ))− ln(π(Xt)(γ

′)).

We thus obtain

dMt =
∑

γ,γ′∈□[L]

γ<γ′

(
ln

(
Xt(γ)

π(Xt)(γ)

)
− ln

(
Xt(γ

′)

π(Xt)(γ′)

))√
Xt(γ)Xt(γ′)dBt(γ, γ

′).

It follows

d

dt
⟨M⟩t =

∑
γ,γ′∈□[L]

γ<γ′

(
ln

(
Xt(γ)

π(Xt)(γ)

)
− ln

(
Xt(γ

′)

π(Xt)(γ′)

))2

Xt(γ)Xt(γ
′)

This is the same as the expectation of (f(g(1)) − f(g(2)))2, where g(1), g(2) are independent
with law Xt and f(γ) := ln(Xt(γ)/π(Xt)(γ)). We find

E
[
f(g(1) − f(g(2)))2

]
=2E

[
f(g(1))2

]
− 2E

[
f(g(1))

]2
=2Var[f(g(1))]

which yields 2Vt as promised.
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Appendix B

The L1 law of the iterated
logarithm

Theorem B.0.1. There is a universal constant C > 0 such that for any a continuous mar-
tingale (Mt)t∈[0,T ) with 0 ≤ T ≤ +∞ we have

E

 sup
t∈[0,T )

Mt√
1 +

(
⟨M⟩QVt ln(2)

(
⟨M⟩QVt

))
 ≤ C

Proof. First, let us show that we can assume M to be a Brownian motion and T = +∞.
Indeed, the Dambis, Dubins-Schwartz theorem (Theorem 1.6, chapter V of [159]) states that
if we define τt := ⟨M⟩QVt and σu := inf{t ≥ 0, τt ≥ u}, then (Mσu)0≤u≤τT is a Brownian
motion on [0, τT ], noted (Bt)t∈[0,τT ]. Evidently

E

 sup
t∈[0,T )

Mt√
1 + (τQVt ln(2)(τ

QV
t ))

 = E

 sup
u∈[0,τT )

Bu√
1 + (u ln(2)(

√
u))


Up to increasing the probability space, we may assume B is well defined on all of R+.
Furthermore, as u goes to infinity ln(2)(

√
u) and ln(2)(u) are equivalent, so we can replace

one by the other.
We know from the global law of the iterated logarithm (see [213], p.13) that

P

lim sup
u→+∞

∣∣∣∣∣∣ Bu√
2u ln(2)(u)

∣∣∣∣∣∣ = 1

 = 1

It follows that

(
Bu√

1+(2u ln(2)(u))

)
t≥0

is a continuous Gaussian process, with mean 0 and

asymptotically bounded by 1 as u → +∞. In particular its supremum (resp. infimum) is
almost surely finite. To see that the supremum is of finite expectation, we use [214]. In
this paper, the authors show in (1.2) that for any sequence of (possibly correlated) jointly
gaussian random variables (Xn)n∈N, such that P[supn |Xn| < +∞] = 1, we necessarily have
E [supn |Xn|] < +∞ (even stronger, they show that we can find small enough ε > 0 such

that E
[
eε supn |Xn|2

]
< +∞). We can apply this to

(
Bu√

1+(2u ln(2)(u))

)
u∈Q+

and obtain the

result.
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ABSTRACT

Polygenic models describe large populations of organisms, such that every organism 
carries a large number of genes. In quantitative genetics models, the fitness of one 
organism is deter- mined by a quantitative trait, which is typically obtained by summing 
contributions from all the genes of this organism. This thesis will clarify how polygenic 
models for quantitative ge- netics can be obtained from a discrete individual-based model 
by suitable scalings. In Chapter 2, we rigorously derive the polygenic limit from a 
simplified diffusion equation accounting for genetic drift, mutation, selection and 
recombination, by letting the number of loci and the rate of recombination go to infinity. 
We characterize the stationary distribution(s) using a fixed point equation. In Chapter 3, 
we introduce a probabilistic object which provides a backwards representation of the 
deterministic dynamics of a population evolving under mutation, selection and 
recombination. This representation clarifies how selection may generate first-order LD 
when genetic drift is neglected. In Chapter 4, we use simulations and heuristics to discuss 
the full domain of validity of the polygenic limit under stabilizing selection at statistical 
equilibrium. We discuss heuristically the various difficulties that may arise due to 
epistasis, pleiotropy, and linkage disequilibrium.

MOTS CLÉS

Génétique quantitative-Génétique des populations-Limite d’échelle-Propagation du chaos

RÉSUMÉ

Les modèles polygéniques décrivent les grandes populations d’organismes, dont chacun 
porte un grand nombre de gènes. Dans les modèles de génétique quantitative, la valeur 
sélective d’un organisme est déterminée par un trait quantitatif, typiquement la somme de 
contributions de tous les gènes de l’organisme. Cette thèse clarifiera comment les 
modèles polygéniques pour la génétique quantitative peuvent être obtenus à partir d’un 
modèle individu-centré par des limites d’échelles appropriées. Dans le chapitre 2, nous 
obtiendrons rigoureusement la limite polygénique à partir d’une diffusion simplifiée qui 
modélise la dérive génétique, la mutation, la sélection et la recombinaison, en faisant 
tendre jointement vers l’infini le nombre de loci et le taux de recombinaison. Dans le 
chapitre 3, nous introduisons un objet probabiliste qui permet une représentation en 
temps renversé d’une population évoluant sous l’effet de la mutation, la sélection et la 
recombinaison. Cette représentation permet de penser les perturbations de premier ordre 
à l’équilibre de liaison, quand la dérive génétique est négligée. Dans le chapitre 4, nous 
utiliserons des simulations et des heuristiques pour discuter du domaine de validité de la 
limite polygénique sous sélection stabilisante à l’équilibre. Nous discuterons 
heuristiquement les difficultés qui peuvent émerger dues à l’épistasie, la pléiotropie, et le 
déséquilibre de liaison.
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Quantitative genetics-Population genetics-Scaling limits-Propagation of chaos


