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The polygenic limit

The polygenic limit describes a large population such that every
organism carries many fitness-influencing genes evolving
close-to-independently.

A polygenic trait is a measurable characteristic of an organism which is
influenced by many genes.
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Importance of the polygenic limit

Interpreting the result of genomic data (Sella Barton 2019...)

Understanding the genetic architecture of diseases (Koch et al
2025+)

Survival of a population (Charlesworth 2013)

Predicting long-term response of a population to a new environment
(Hayward et al 2022...).
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A tale of four queens
Selection (Darwin/Wallace 1859)

There is a well-defined measurable
quantity called the fitness of an
organism which measures how well
adapted an organism is to its current
environment.

The lower the fitness, the lower the
chances to have healthy offspring.
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A tale of four queens
Selection

From Sanjak et al, 2017
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A tale of four queens
Mutation (Hugo de Vries 1901)

Heritable variability spontaneously appears
within populations.

. Image from Wikipedia
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A tale of four queens
Recombination (Mendel 1865, Bateson, Saunders, Punnett 1905)

Offspring inherit some characteristics from
each of their parents.

. Image from Wikipedia
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A tale of four queens
Recombination

From bartongroup.pages.ist.ac.at
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A tale of four queens
Genetic drift (Hagedoorn, Hagedoorn-Vorstheuvel La Brand 1921, Wright 1929)

The evolution of a population is inherently
random.

. Image from Wikipedia
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A tale of four queens

We will not consider

Out-of-equilibrium dynamics (Hayward et al 2022, Höllinger et al
2023...)

Fluctuating environments, plasticity, bet-hedging, maternal effects,
environmental effects (Bertram 2025+...)

Migration, population structure, demography (Pólechova Barton
2015, Szép et al 2021 ...).

Sexual selection, homogamy (Surendranadh and Sachdeva, 2025)
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Conclusion for mathematicians

Infinitesimal
model

Individual-based
model

Ornstein-Uhlenbeck 
process

Trait normally
distributed

LD-Wright-Fisher 
diffusion

LE-Wright-Fisher
diffusion

Diffusion approximation 
Mixing
Mean-field approximation
Separation of timescales
Central limit theorem

Quantitative PDE

Proven
Discussed
Not discussed

Degree of proof Type of proof Complications

Diploidy/Dominance
Strong selection
Epistasis
Population structure/Demography

Polygenic equation
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The individual-based model
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The individual-based model
The genome of an organism

The genome is structured as a pair of chro-
mosomes with L loci.

Each locus has two alleles labelled + and −.

A diploid genome can therefore be repre-
sented as an element of ({0, 1}L)2.

+
−
−
+
−

−
−

−
−

+
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The individual-based model
Inheritance

Recombination r:
Single uniform crossover

Mutation q:
locus ℓ has mutation
probabilities (µ+

ℓ
, µ−ℓ )
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The individual-based model
Trait

Additive model: The trait of an organism with genome
G = (Gℓ,i)ℓ∈[L ],i∈[2] ∈ ({0, 1}L)2 is

Z(G) :=
∑
ℓ∈[L ]

αℓ(Gℓ,1 + Gℓ,2)

with αℓ ∈ R+ the additive effect on the trait at locus ℓ.
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The individual-based model
Trait and fitness

Stabilizing selection: The fitness of an organism with trait value z is

F(z) := exp

[
−

1
2ω2

(z − η)2
]

where ω−2 is the strength of selection and η is the selection optimum.

η z

F(z)

ω
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The individual-based model
Fitness and reproduction

Ti
m
e

Every generation, organisms pick two parents at random (♣) with
probability proportional to fitness (♠). The population size is fixed at N.
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Summary of the parameters

N Population size
L Number of loci
µ+
ℓ
, µ−ℓ Mutation probabilities at locus ℓ

αℓ Additive effect at locus ℓ
ω−2 Strength of selection
η Selection optimum

We will take (αℓ, µ
+
ℓ
, µ−ℓ )ℓ∈[L ] to be an exchangeable vector of random

variables, and assume
∑
ℓ∈[L ] αℓ = 1.

This means Z(G) is always in [0, 2].
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Three trait values

Three trait values of importance
The selection optimum is η.
The heterozygote trait is

∑
ℓ∈[L ] αℓ.

The mutational optimum is
∑
ℓ∈[L ] 2αℓ

µ+
ℓ

µ+
ℓ
+µ−
ℓ

.
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On mutational bias

From Ajie et al 2005.
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The roadmap

Individual-based
model

Ornstein-Uhlenbeck 
process

Trait normally
distributed

Polygenic limit

?????
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The polygenic limit
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Features of the polygenic limit

There are three features which are expected to arise in the polygenic limit

The trait is normally distributed (Quetelet 1835, Galton 1886, Fisher
1918), meaning if we know the population at present and sample a
genome G uniformly at random, then Z(G) is distributed as
N(z̄t , σ

2).

The trait mean evolves as an Ornstein-Uhlenbeck process (Lande
1976)

dz̄t = −ρz̄tdt + ν
√

2ρdBt

for some Brownian motion Bt and parameters ρ, ν.

The dynamics at a locus can be described with an autonomous
equation.
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Macroscopic observables

η z z

F(z)
φ(z)

σ

Δω

ν
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The roadmap

Individual-based
model

Ornstein-Uhlenbeck 
process

Trait normally
distributed

Polygenic equation
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The roadmap

Infinitesimal
model

Individual-based
model

Ornstein-Uhlenbeck 
process

Trait normally
distributed

Polygenic equation
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The infinitesimal model

If we let L → +∞ in the previous model and scale the other parameters
accordingly with N finite, we may obtain the infinitesimal model (Barton,
Etheridge, Véber 2017).

Parental traits

Offspring trait
 distribution

Inbreeding
 coefficient

Key parameter: the segregation variance.
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The roadmap

Infinitesimal
model

Individual-based
model

Ornstein-Uhlenbeck 
process

Trait normally
distributed

LE-Wright-Fisher
diffusion

Polygenic equation
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Taking the gene’s eye-view

Let Pℓt be the frequency of the + allele at locus ℓ at generation ⌊2Nt⌋.

+
−
−
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−

+
+
−
−
+

+
+
+
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+
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+
−
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Taking the gene’s eye-view
Step 0: rescaling

Let Pℓt be the frequency of the + allele at locus ℓ at generation ⌊2Nt⌋, with
Pt = (Pℓt )ℓ∈[L ].

We also define

θ±ℓ :=2Nµ±ℓ ω−2
e :=2Nω−2
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Taking the gene’s eye-view
Step 1: the diffusion approximation

First and second moment computations suggest the dynamics of (Pℓt )t≥0

can be approximated with the SDE

dPℓt = Sℓ(Xt)Pℓt (1 − Pℓt )
♠

dt +
(
(1 − Pℓt )θ

+
ℓ
− Pℓt θ

−
ℓ

)
q

dt +
√

Pℓt (1 − Pℓt )dBℓt
♣

where we have (Robertson 1966)

Sℓ(Xt) := 2N
CovXt [W(g), gℓ]

VarXt [gℓ]

where W(g) := lnF(Z(g)) is the logfitness and under Xt ,
g = (gℓ)ℓ∈[L ] ∈ {0, 1, 2}L is the unphased genome of a randomly sampled
organism at generation ⌊2Nt⌋ (this means gℓ = i if the organism has i
copies of the + allele at locus ℓ for i ∈ [2]).
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Taking the gene’s eye-view
Step 2: Hardy-Weinberg Linkage Equilibrium (HWLE)

If recombination (r) is strong then the population is close to HWLE, which
means under Xt , the (gℓ)ℓ∈[L ] are independent Binomial(2,Pℓt ) variables.

If we assume HWLE (Wright 1935) then we have

Sℓ(Xt) = −αℓ
∆t

ω2
e
+
α2
ℓ

ω2
e

(
Pℓt −

1
2

)
=: ξαℓ,∆t (P

ℓ
t ).

η z z

F(z)
φ(z)

σ

Δω

ν
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Taking the gene’s eye-view
Step 3: LE-Wright-Fisher diffusion

We have

dPℓt = ξ∆t ,αℓ(P
ℓ
t )P

ℓ
t (1 − Pℓt )
♠

dt+
(
(1 − Pℓt )θ

+ − Pℓt θ
−
)

q
dt+

√
Pℓt (1 − Pℓt )dBℓt

♣

with ∆t =
∑
ℓ∈[L ] 2αℓPℓt − η.

We call this the LE-Wright-Fisher diffusion.
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The roadmap

Infinitesimal
model

Individual-based
model

Ornstein-Uhlenbeck 
process

Trait normally
distributed

LE-Wright-Fisher
diffusion

Polygenic equation
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Taking the gene’s eye-view
Step 4: Propagation of chaos

Define the typical locus (P⃗t)t≥0 = (Pt , α, θ
±)t≥0 is defined as

(PℓUt , αℓU , θ
±
ℓU
) where ℓU is picked uniformly at random on [L ].

We have

dPt = ξ,α(Pt)Pt(1 − Pt)
♠

dt+
(
(1 − Pt)θ

+ − Ptθ
−
)

q
dt+

√
Pt(1 − Pt)dBt

♣

(1)

If L ≫ 1, we may replace ∆t with

∆∗ = E[∆t ] = 2LE[αPt ] − η.
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Taking the gene’s eye-view
Step 5: fixed-point equation

If we know ∆∗, then Pt conditional on α, θ has stationary distribution
Π∆∗,α,θ where for δ ∈ R

Πδ,α,θ(dp) ∝ p2θ+−1(1 − p)2θ−−1e
∫ p
0 ξδ,α(p

′)dp′dp

For δ ∈ R, define

I(δ) := E
[
α

∫
pΠδ,α,θ(dp)

]
where the expectation is with respect to (α, θ).
Then

∆∗ = 2LI(∆∗) − η.

(when ∆∗ ≪ 1 and θ+, θ− are constant across loci and small, this
equation was written and solved by Charlesworth 2013).
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Orders of magnitude
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Reminders

L Number of loci
θ+
ℓ
, θ−ℓ Mutation rates at locus ℓ

αℓ Additive effect at locus ℓ
ω−2

e Effective strength of selection
η Selection optimum

Define the mean mutation rate as |θ̄| = E[θ+ + θ−].
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Assumptions

A 1: Uniform boundedness
There is a C ≍ 1 such that for any ℓ ∈ [L ], |θℓ| ≤ C |θ̄| and αℓ ≤ C

L .

A 2: Mutations smaller than genetic drift |θ̄| ≲ 1.

A 3: Mutational bias not too extreme
There is a constant C ≍ 1 such that for any ℓ, θ−ℓ /C ≤ θ

+
ℓ
≤ Cθ−ℓ .

A 4: Accessibility of the selection optimum
η ∈ (0, 2) satisfies η(2 − η) ≍ 1.

A 5: Weak/moderate/strong selection L ≲ ω−2
e ≲ L2.

A 6: Distance between the selection and the mutation optimum
We have ∣∣∣2L I(0) − η

∣∣∣ ≍ 1.
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Reminders

η z z

F(z)
φ(z)

σ

Δω

ν
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Orders of magnitude

In the polygenic limit, under (A1-6), we have

|∆∗| ≍ Lω2
e

σ2 ≍
|θ̄|

L
ν2 ≍ ω2

e

ρ ≍
|θ̄|

Lω2
e
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The distance to the optimum is of the same order as its
fluctuations

0.8 0.9 1.0 1.1 1.2 1.3

2
e = 2.0E+02
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z

2
e = 1.4E+03
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2
e = 2.2E+04

F(z)
Distribution of zt

Figure: N = 100, L = 100, θ = (0.1, 0.2), η = 1.2, and (αℓ)ℓ∈[L ] were sampled
with distribution Exponential(L)
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Bias-countering selection coefficient

Recall the selection coefficient at the typical locus is

ξα,∆∗(Pt) := −α
∆∗

ω2
e
+
α2

ω2
e

(
Pt −

1
2

)

with

s∗ := −
∆t

Lω2
e
≍ 1.

When L ≪ ω−2
e ≪ L2 (moderate selection), the value of s∗ is independent

of the strength of selection ω−2
e .
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Weak/moderate stabilizing selection has the same effect
as directional selection
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Figure: Parameters: N = 500, L = 100, θ = (0.5, 0.5), η = 1.2 and αℓ is
distributed as Exponential(L).
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Macroscopic observables are well predicted by the fixed
point equation
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Figure: L = 100, θ = (0.1, 0.2), η = 1.2,T = 500N and αℓ is distributed as Exponential(L).
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Figure: L = 100, θ = (0.1, 0.2), η = 1.2,T = 500N and αℓ is distributed as Exponential(L).
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Figure: L = 100, θ = (0.1, 0.2), η = 1.2,T = 500N and αℓ is distributed as Exponential(L).
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Macroscopic observables are well predicted by the fixed
point equation
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Figure: L = 100, θ = (0.1, 0.2), η = 1.2,T = 500N and αℓ is distributed as Exponential(L).
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Breakdown of the polygenic limit
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The Bulmer effect (1971)
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Figure: L = 100, θ = (0.1, 0.2), η = 1.2,T = 500N and αℓ is distributed as
Exponential(L).
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Figure: L = 100, θ = (0.1, 0.2), η = 1.2,T = 500N and αℓ is distributed as
Exponential(L).
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Figure: L = 100, θ = (0.1, 0.2), η = 1.2,T = 500N and αℓ is distributed as
Exponential(L).
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The Hill-Robertson effect (1966)
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Figure: L = 100, θ− = 2θ+, η = 1.2, ω−2
e = 2L ,T = 500N and αℓ is distributed as

Exponential(L).
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Figure: L = 100, θ− = 2θ+, η = 1.2, ω−2
e = 2L ,T = 500N and αℓ is distributed as

Exponential(L).
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Assumptions

A 1: Uniform boundedness
There is a C ≍ 1 such that for any ℓ ∈ [L ], |θℓ| ≤ C |θ̄| and αℓ ≤ C

L .

A 2: Mutations smaller than genetic drift |θ̄| ≲ 1.

A 3: Mutational bias not too extreme
There is a constant C ≍ 1 such that for any ℓ, θ−ℓ /C ≤ θ

+
ℓ
≤ Cθ−ℓ .

A 4: Accessibility of the selection optimum
η ∈ (0, 2) satisfies η(2 − η) ≍ 1.

A 5: Weak/moderate/strong selection L ≲ ω−2
e ≲ L2.

A 6: Distance between the selection and the mutation optimum
We have ∣∣∣2L I(0) − η

∣∣∣ ≍ 1.
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HWLE breakdown

Under (A1-6), under the Quasi-Linkage Disequilibrium approach, the
breakdown occurs when the following assumption fails

N1: sufficiently large population

2N ≫ |θ̄| ln(L)
Lω2

e
+ L

√
|θ̄|
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Low mutations breakdown

-3.0 -2.4 -1.8 -1.2 -0.6 0.0
log +

-3
.0

-2
.4

-1
.8

-1
.2

-0
.6

0.
0

lo
g

|( e th)/ th|

-3.0 -2.4 -1.8 -1.2 -0.6 0.0
log +

-3
.0

-2
.4

-1
.8

-1
.2

-0
.6

0.
0

lo
g

|( 2
e

2
th)/ 2

th|

0.0

0.2

0.4

0.6

0.8

1.0

-3.0 -2.4 -1.8 -1.2 -0.6 0.0
log +

-3
.0

-2
.4

-1
.8

-1
.2

-0
.6

0.
0

lo
g

|( 2
e

2
th)/ 2

th|

-3.0 -2.4 -1.8 -1.2 -0.6 0.0
log +

-3
.0

-2
.4

-1
.8

-1
.2

-0
.6

0.
0

lo
g

|( e th)/ th|

Figure: N = 500, L = 100, η = 1.2, ω−2
e = 103,T = 500N
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Low mutations breakdown

Under (A1-6), the breakdown for ∆∗, σ2 is expected when the following
assumption fails

N2: Minimal mutational input every generation

|θ̄|L ≫ 1.
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Ornstein-Uhlenbeck breakdown

The Ornstein-Uhlenbeck process is

d∆t = ρ(∆
∗ −∆t)dt + ν

√
2ρdBt

For such a process we expect

ln(Cov[∆t ,∆t+u]) = −ρu + 2 ln(ν)
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Ornstein-Uhlenbeck breakdown
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Figure: N = 500, L = 100, θ = (0.1, 0.2), η = 1.2,T = 1000N
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Ornstein-Uhlenbeck breakdown

Under (A1-6), the breakdown for the description of (∆t)t≥0 as an
Ornstein-Uhlenbeck process is expected when the following assumption
fails

N3: Sufficient mutational input
|θ̄|

Lω2
e
≫ 1.
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A rigorous control of LD
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The LD-Wright-Fisher diffusion

We define X[L ] as the space of probability measures on {−1,+1}L .

We study a diffusion on C([0,T ],X[L ]) which includes all four forces of
interest

dXt = ρR(Xt)
r

dt + LS(Xt)
♠

dt +Θ(Xt)
q

dt +Σ(Xt)dBt
♣

.

where ρ > 0 is the recombination rate and L represents the strength of
selection.
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Operators

+
+
+
+
+

−
−
−
−
−

+
+
+
−
−

−
−
−
+
+

r Recombination

+
+
−
−
+

+
+
+
−
+

q Mutation

+
−
+
−
+

−
−
−
−
+

+
−
+
−
+

+
−
+
−
+

♠ Selection

+
−
+
−
+

−
−
−
−
+

+
−
+
−
+

+
−
+
−
+

♣ Genetic drift

P Courau Roadmap to the polygenic limit December 18th, 2025 74 / 95



Simplifications

αℓ = 1/L

θ+
ℓ

and θ−ℓ are constant across loci and of order 1.

ω−2
e is of order L
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Main theorem

Define the local harmonic recombination rate r∗ℓ at locus ℓ with

1
r∗
ℓ

:=
1

L − 1

∑
ℓ′,ℓ

1
r{ℓ,ℓ′}

where r{ℓ,ℓ′} is the probability of recombination between ℓ and ℓ′.

Define the global harmonic recombination rate r∗∗ as

1
r∗∗

:=
1
L

∑
ℓ∈[L ]

1
r∗
ℓ

Define the allelic law process as µXt :=
1
L
∑
ℓ∈[L ] δPℓt

.
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Main theorem (C Lambert Schertzer 25+)

Theorem 1 (part 1)

Assume ρr∗∗ ≫ L2 ln(ρ). Then (µXt )t∈[0,T ] converges to the law of the
McKean-Vlasov process (1) in the Skorokhod topology.

Theorem 1 (part 2)

Assume ρr∗∗ ≫ L2 ln(ρ). Consider n distinct loci ℓ1 < · · · < ℓn such that
(Pℓi0 )i∈[n] are independent and

min
i∈[n]
ρr∗ℓi ≫ L2 ln(ρ)

min
i,j∈[n]
ρr{ℓi ,ℓj } ≫ L

Then (Pℓit )i∈[n],t∈[0,T ] converge to n independent McKean-Vlasov
processes (1).
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Main theorem (C Lambert Schertzer 25+)

Theorem 2
Assume ρr∗∗ ≫ L2 ln(ρ). Set

εL :=
1
√
ρr∗∗

Define the genetic variance σ2
t := 4E[ft(1 − ft)]. Then

E

 sup
t∈[εL ,T ]

∣∣∣LVarXt [Z(g)] − σ
2
t

∣∣∣ −→ 0
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Structure of the proof

For x ∈ X[L ], let π(x) be the LE projection of x

π(x) =
⊗
ℓ∈[L ]

x{ℓ}.

We can decompose the marginal of the selector on locus ℓ, Sℓ(Xt),
into the LE term Sℓ(π(Xt)) and a sum over subsets A ⊆ [L ],#A ≤ 3
of a term dominated by XA

t − π(X
A
t ).

Using the eigenvalues of the marginal recombinator RA , we can
dominate supt∈[0,T ] ||XA

t − π(X
A
t )||2.

We can then show the convergence of the martingale problem
associated with Pℓt to the limit martingale problem.

The well-posedness of the limit martingale problem is obtained from
a Girsanov transform.
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Conclusion
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Conclusion for mathematicians

Infinitesimal
model

Individual-based
model

Ornstein-Uhlenbeck 
process

Trait normally
distributed

LD-Wright-Fisher 
diffusion

LE-Wright-Fisher
diffusion

Diffusion approximation 
Mixing
Mean-field approximation
Separation of timescales
Central limit theorem

Quantitative PDE

Proven
Discussed
Not discussed

Degree of proof Type of proof Complications

Diploidy/Dominance
Strong selection
Epistasis
Population structure/Demography

Polygenic equation

P Courau Roadmap to the polygenic limit December 18th, 2025 81 / 95



Conclusion for mathematicians

The subject deserves further study.

The distribution of αℓ should be degenerate:
The greatest task ahead is to characterize the phase transitions

Weak mutations ∗
Bulmer effect ∗ ∗ ∗ ∗
Hill-Robertson effect ∗ ∗ ∗ ∗ ∗
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Conclusion for biologists

When genetic diversity is maintained by mutations, the demographic
noise in trait mean should be of the same order as the distance of
the trait mean to the selection optimum: |∆t | ≳ ν.

We discuss how the gene’s eye-view can be extended to account for
polyploidy, pleiotropy, dominance, and some forms of epistasis. We
can also hope to extend it to spatial structure, demographic variability
and more.
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First-order Bulmer correction
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N=500 (no linkage)
Fixed point
Moderate selection
Correction (N=50)
Correction (N=500)

Figure: L = 100, θ = (0.1, 0.2), η = 1.2,T = 500N and αℓ is distributed as
Exponential(L).
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Slow/fast principle for strong selection
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Figure: N = 1000, L = 1000, θ = (0.1, 0.2), η = 1.2, ω−2
e = L2 and αℓ has law

Exponential(L)
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Breakdown for small mutations.
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Figure: N = 500, L = 100, θ = (1/(2L), 1/(2L)), ω−2
e = 2000, η = 1.2, and αℓ

has law Exponential(L).
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Scaling limit

0 1 2              3
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with b such that ω−2
e = Lb , L → +∞,N → +∞, η = 1.5, and (αℓ)ℓ∈[L ] be

exponentially distributed with parameter L .
No mutational bias (θ = (0.1, 0.1))

Strong mutational bias (θ = (0.01, 0.1))
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Trajectory view of the Hill-Robertson effect
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Figure: θ = (0.1, 0.2), η = 1.2, ω−2
e = 2L .
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Heavy tails of α
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Figure: N = 500, L = 100, θ = (0.1, 0.2), η = 1.2, ω−2
e = 103 and α has law

Pareto(k).
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An ancestral process in an infinite population

d
dt

Xt = R(Xt)
r

+ S(Xt)
♠

+Θ(Xt)
q
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An ancestral process in an infinite population

Recombination

Mutation

Selection

A

B

C
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Duality formula

For x ∈ X[L ], π ∈ S , γ ∈ □[L ] define

f(x, π, γ) :=
∏
A∈π

xA (γ|A ) ×
∏
ℓ<π

Lℓ(γ
|{ℓ}).

We have

AXt f(·, π, γ)(x) = AΠt f(x, ·, γ)(π) +AGt
x f(x, π, ·)(γ).

P Courau Roadmap to the polygenic limit December 18th, 2025 95 / 95



Duality formula

For x ∈ X[L ], π ∈ S , γ ∈ □[L ] define

f(x, π, γ) :=
∏
A∈π

xA (γ|A ) ×
∏
ℓ<π

Lℓ(γ
|{ℓ}).

We have

AXt f(·, π, γ)(x) = AΠt f(x, ·, γ)(π) +AGt
x f(x, π, ·)(γ).

P Courau Roadmap to the polygenic limit December 18th, 2025 95 / 95


	The individual-based model
	The polygenic limit
	Orders of magnitude
	Breakdown of the polygenic limit
	A rigorous control of LD
	Conclusion
	Appendix

