
 1D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

Natural Proof Search and Proof Writing

Dominique Pastre
University Paris Descartes

Workshop on Mathematically Intelligent Proof Search

10 july 2010

 2D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

Muscadet
specific
theorem
provers

 discrete geometry

 elementary geometry

topology, topological
linear spaces

set theory,
mappings, relations

TPTP library

+
 specific

m
athem

atical

know
ledge

and know
-how

+ general

mathematical

knowledge

and know-how

appplies to

is
 a

mathematical
fieds

general theorem prover

other fields

knowledge based system
general problem solver

CASC
competitions

ITS

 3D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

TPTP and CASC

Thousands of Problems for Theorem Provers

(from 1993, Geoff Sutcliffe and Christian Suttner)

~ 7000 FOF problems (first order) 6800 CNF problems (clauses)

in logic, mathematics, computer science, science and engeneering, social sciences, ...

History
version FOF CNF

1993 1.0.0 2295
1997 2.0.0 217 (dont 5 SET) 3060
1999 2.2.0 670 (... 308 ...) 3334
2010 4.0.1 6983 1374 6800

The CADE ATP System Competition are held at each CADE conference
(organized by Geoff Sutcliffe)

 4D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

About 20 "sound, fully automatic, classical logic order ATP systems" each year
attend CASC competitions

About 50 systems are regularly tested on TPTP problems

Vampire, the best system is based on the resolution principle

Results of TPTP and CASC show

- the superiority of resolution based provers (Vampire, E, iProver), accordingly to
the number of problems solved,

- but also the complementarity of resolution based provers and some other provers
(Zenon, Muscadet, Infinox), which may prove theorems which no other prover is
able to prove)

- Muscadet had in 2007 and 2008 the highest SOTA (a new ranking measure
created in 2007 in CASC competitions, which measure the systems' ability to solve
problems that few other systems can prove)

 5D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

A knowledge-based system

Facts
- hypotheses
- conclusion to be proved
- objects
- subtheorems
- definitions, axiomes, lemma
- ...
- all sort of facts which give
relevant information during the
proof searching progress

Rules
- logic and mathematics
- built from definitions and axioms
- dynamically built from hypotheses

Metarules

 6D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

Inference rules

Rule "" : to prove x P(x)

(i.e. if the conclusion of the theorem being proved is x P(x))

take any x1
(i.e. create an objet x1)

et prove P(x1)
(i.e. replace the conclusion to be proved by P(x1))

 7D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

Rule "" : to prove AB, assume A and prove B

("assume A" consists to add A as a new hypothesis,
by splitting it if it is a conjunction,

and by doing some specific treatments in some other cases)

Rule "" : to prove A1A2...An

prove all the Ai one after the other

Rule "stop" : if a new hypothesis has been added,

 which is the conclusion to be proved

then the theorem is proved

Rule "stop_" : if the conclusion is a disjunction A1A2...An

 and if one of the Ai has been added as a new hypothesis

then the theorem is proved

 8D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

Rule "hyp_" : if AB is a hypothesis among others
 and if C is to be proved

then prove (AC)(BC)

Rule "hyp_" : if x P(x) is a hypothesis
 and if there is still no hypothesis of the form P(y)

then create x1 and assume P(x1)

Rule "concl_" : to prove x P(x),
search for x such that P(x)

More precisely :

To prove x (C1(x)C2(x)...Cn(x))

search for an object y such that, with present hypotheses, for all i
between 1 and n, Ci(y) was verified (easy case) or proved (by a
recursive call to the prover)

 9D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

Rule "def_concl_1" : if P(X) is the conclusion to be proved
 and if a definition of predicate P is known

then replace P(X) by this definition

Rule "def_concl_2" : if A:F(B) is a hypothesis
where F is a functionnal symbol
which is defined as F(B) = {Y | P(Y)}

 or y R F(B) P(Y)
 and if XRA has to be proved

then replace the conclusion X R A by P(X)

 10D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

 the quantifier !
"for the only ... such that ..."

Rule "elim_func" : if the expression P(F(A)) occurs
where F is a functional symbol

then replace it by !B:f(A), P(B)

where !B:f(A), P(B) means for the only B equal to f(A), p(B) is true

!B:f(A), P(B) is equivalent to B[f(A):B p(B)]
and to B [f(A):B  P(B)]

The first expression is better for conclusions (positive position),
Rule "concl_" : to prove !B:f(A), P(B),

create B1, add the hypothesis B1:f(A) and prove P(B1)

The second one is better for hypotheses (negative position), no such
hypothesis is added, at the place we have the super-action

To add !B:f(A), P(B) create an objet B1and add the hypothesis P(B1)

 11D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

Super-actions

To add-hyp H

if H is already a hypothesis or if H is of the form X=X
then do nothing

if H is of the form AB alors add-hyp A ad add-hyp B

if H is of the form X P or AB
then create rules locale to this (sub)theorem

if H is of the form for the only Y such that Y:F(X)P(X))
and if there is not already a hypothesis of the form Y:F(X)

then crete a new object Y1 add add-hyp Y1:F(X)
else add H as a new hypothesis

...

Super-actions are defined as packs of rules, they may be recursive.

Example "add a hypothesis"

 12D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

Rules relating to concepts defined by the user

The predicate P gives rules of the form :

Rule "Pi" : if P(...) is a hypothesis

alors ...

This is automatically done by metarules

example :

 formal definition :
AB x (xA  xB)

rule :

Rule "" : if AB and xA are hypotheses
alors add the hypothesis xB

 13D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

Le functional symbol F gives rules of the form :

Rule "Fi" : if Y:F(...) and XY are hypotheses

then ...

example :

formal definition :
P(A) = { X | XA }

rule :

Rule "P " : if B:P(A) and xB are hypotheses
then add the hypothesis xA

 14D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

other example

formal definition : AB = {x | xA  xB}

rules :

Rule "11" : if C:AB and xC are hypotheses
then add the hypothesis xA

Rule "12" : if C:AB and xC are hypotheses
then add the hypothesis x

Rule "" : if C:AB, xA and xB are hypotheses
then add the hypothesis xC

Remark : la rule "" is not of the form

if xA and xB are hypotheses
alors add the hypothesis xAB

which would be expansive

 15D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

Definition of intersection

AB = {X | XA XB}

Definition of power set
 P(A) = { X | XA }

Definition of set equality

A =set B AB  BA

Definition of inclusion

AB  X (XA  XB)

Power set of the intersection of two sets
Theorem to be proved AB(P(AB) =setP(A)P(B))

 16D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

rules objects hypotheses conclusion
 AB(P(AB) =setP(A)P(B))

 a, b PabsetPaP(b)
elim_func c, pc c:ab, pc:P(c)

and pa, pb pa:P(a), pb:P(b)
concl_! pd pd:papb pc =set pd

def_concl1 pc pd pd pc
 gives Theorem 1 and Theorem 2

Theorem 1 pc pd
def_concl1  X (Xpc  Xpd)

 x xpc  xpd
 xpc xpd
P x  c

def_concl2 x pa  xpb
 gives Theorem 11 and Theorem 12

 17D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

Theorem 11

rule objects hypotheses conclusion
... ... xpa

defconcl2 x  a
defconcl1 X (Xx  Xa)
 and  t tx ta

 tc
11 ta Theorem 11 proved

Theorem 12
... ... xpb

...
Theorem 12 proved

up Theorem 1 proved

 18D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

Theorem 2

rule objects hypotheses conclusion
... ... pd pc

defconcl1 X (Xpd  Xpc)
and x xpd xpc
1 and 2 xpa, xpb
P(twice) xa, xb
defconcl1 xc
(twice) X (Xx  Xc)

and t tx tc
(twice) ta, tb

 tc
stop Theorem 2 proved
up Theorem 0 proved

 19D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

 20D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

* * * theorem to be proved
![A, B]:equal_set(power_set(intersection(A, B)), intersection(power_set(A), power_set(B)))

* * * * * * theoreme 0 * * * * * *
*** newconcl(0, ..., 1)
explanation : initial theorem --- action ini
create object(s) z2 z1
*** newconcl(0, equal_set(power_set(intersection(z1, z2)), intersection(power_set(z1), power_set(z2))), 2)
*** because concl((0, ..., 1)
*** explanation : the universal variable(s) of the conclusion is(are) instantiated
--- rule !
*** newconcl(0, seul(intersection(z1, z2)::A, seul(power_set(A)::D, seul(power_set(z1)::B,
seul(power_set(z2)::C, seul(intersection(B, C)::E, equal_set(D, E)))))), 3)
*** because concl(0, ..., 2)
*** explanation : elimination of the functional symbols of the conclusion
for example, p(f(X)) is replaced by only(f(X)::Y, p(Y))
--- elifun
*** addhyp(0, intersection(z1, z2)::z3, 4), newconcl(0, ...), 4)
*** because concl(0, ..., 3)
*** explanation : creation of object z3 and of its definition
--- rule concl_only

........ newconcl(0, equal_set(z4, z7), 8)
*** explanation : creation of object z7 and of its definition

--- rule concl_only

...........................

 21D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

*** newconcl(0, subset(z4, z7)&subset(z7, z4), 9)
*** because concl(0, equal_set(z4, z7), 8)
*** explanation : the conclusion equal_set(z4, z7) is replaced by its definition(fof equal_set)
--- rule def_concl_pred

* * * * * * creation * * * * * * sub-theoreme 0-1 * * * * *
all the hypotheses of (sub)theorem 0 are hypotheses of subtheorem 0-1
*** newconcl(0-1, subset(z4, z7), 10)
*** because concl(0, subset(z4, z7)&subset(z7, z4), 9)
*** explanation : to prove a conjunction, prove all the elements of the conjunction
--- action proconj
*** newconcl(0-1, ![A]: (member(A, z4)=>member(A, z7)), 11)
*** because concl(0-1, subset(z4, z7), 10)
*** explanation : the conclusion subset(z4, z7) is replaced by its definition(fof subset)
--- rule def_concl_pred
create object(s) z8
*** newconcl(0-1, member(z8, z4)=>member(z8, z7), 12)
*** because concl((0, ![A]: (member(A, z4)=>member(A, z7))), 11)
*** explanation : the universal variable(s) of the conclusion is(are) instantiated
--- rule !
*** addhyp(0-1, member(z8, z4), 13)
*** newconcl(0-1, member(z8, z7), 13)
*** because concl(0-1, member(z8, z4)=>member(z8, z7), 12)
*** explanation : to prove H=>C, assume H and prove C
--- rule =>

 22D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

*** addhyp(0-1, subset(z8, z3), 14)
*** because hyp(0-1, power_set(z3)::z4, 5), hyp(0-1, member(z8, z4), 13), obj_ct(0-1, z8)
*** explanation : rule if (hyp(A, power_set(D)::B, _), hyp(A, member(C, B), _), obj_ct(A, C))then addhyp(A,
subset(C, D), _)
built from the definition of power_set (fof power_set)
--- rule power_set
*** newconcl(0-1, member(z8, z5)&member(z8, z6), 15)
*** because concl(0-1, member(z8, z7), 13), hyp(0-1, intersection(z5, z6)::z7, 8)
*** explanation : definition intersection
--- rule defconcl2

* * * * * * creation * * * * * * sub-theoreme 0-1-1 * * * * *

/....../

*** newconcl(0-1-1, true, 23)
*** because hyp(0-1-1, member(z9, z1), 22), concl(0-1-1, member(z9, z1), 20)
*** explanation : the conclusion member(z9, z1) to be proved is a hypothesis
--- rule stop_hyp_concl

..

..

 23D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

Systematically creating objects could be expansive.
So, the processing of existential hypotheses has a low
priority and these hypotheses are handled one after the
other, in the order when they appeared, and all the other
rules are tried again before processing the next one.

 Example : If f maps A into B, then each element of A has
an image in B.

Special case, if f maps A into A :
 a  a

1
=f(a)  a

2
=f(a

1
) a

3
=f(a

2
) ...

All that can be deduced from the l'hypothèse a
i
=f(a

i-1
) is

deduced before the creation of a
i+1

.

Processing of the existential hypotheses

x
y=f(x)

A
B

 24D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

If moreover f is surjective, each element of B has an antecedent in A.

x=f-1(y)
y

A B

Special case, if f maps A onto A :
...  a

4
=f-1(a

2
)  a

2
=f-1(a) a  a

1
=f(a)  a

3
=f(a

1
) ...

an image and an antecedent are created alternately.

Moreover, if there are several mappings, images and antecedents
are created alternately for all mappings.

 25D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

Reordering rules

The rules which may create more specific objects must have
higher priority than others
Metarule : if the rule R may create an element a such that P

the rule R' may create an element b such that Q
P is more general than Q

 then R' must be applied before R

More precisely, the metarule is the following (of which it is a
restriction) :

 if the rule R contains the action add-hyp xA C
the rule R' contains the action add-hyp x'A C'
C' is a conjunction of terms and one of them is equal to C

 modulo x and x'

 then apply R' before R

 26D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

Example

If f maps A into B, then each element in A has an image in B.

If f maps A onto A dans B, then each element in B has an
pre-image in A.

If h is the composition (from A into C) of f, mapping A into
B, and of g, mapping B into C, and if z=h(x), then there is an
element y in B such that y=f(x) and z=g(y)

Then y1=y3 and, if g is injective, y2=y3.
Rather than creating y1, then y2 and y3, it is better to only create
y3 which verifies the three properties.

x
A

By1

y2

y3

z
C

f
h

g

 27D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

Example in set theory

Theorem : Consider three mappings f, g, h from A into B, B into
C, C into A; if among the three mappings hogof, gofoh, fohog, two are
injective (resp. surjective) and the third is surjective (resp.
injective), then f, g and h are one-to-one.

For example (one case among six) :
 hogof injective

 gofoh and fohog surjective

A

BC

f

g

h

hogof

fohog fohog

 28D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

Case hogof injective, gofoh and fohog surjective (one case among six)

h injective
if 1 and 2 have the same image 3,

then they are equal

h surjective
4 is a pre-image de 1 because 1

is equal to its image 5

3

5

8

4 7
1 2

9

6

A

B
C

inj

surj surj

1

2

34

5

6

7

inj A

B C

surjsurj

 29D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

Proof of theorem X Y (YX  YY)
(X = { Y | YY} is not a set)

by the resolution principle : clauses Ya  YY
YY  Ya

□

by Muscadet : concl : X Y (YX  YY)
hyp : X Y (YX  YY) concl : false
object : a
local rules : r0 : if Ya and YY then false

r1 : if YY then Ya
r2 : for all object Y, YY  Ya

hyp : aa  aa(rule r2)
 aa (rule "")

false (rule r0) theorem proved (by contradiction)

 30D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

* * * theorem to be proved
~ ?[B]:![A]: (element(A, B)<=> ~element(A, A))

* * * proof :

* * * * * * theoreme 0 * * * * * *
*** newconcl(0, ~ ?[B]:![A]: (element(A, B)<=> ~element(A, A)), 1)
*** explanation : initial theorem
--- action ini
*** addhyp(0, ?[B]:![A]: (element(A, B)<=> ~element(A, A)), 2), newconcl(0, false, 2)
*** because concl(0, ~ ?[B]:![A]: (element(A, B)<=> ~element(A, A)), 1)
*** explanation : assume ?[B]:![A]: (element(A, B)<=> ~element(A, A)) and search
 for a contradiction
--- rule concl_not
create object(s) z1
*** addhyp(0, ![A]: (element(A, z1)<=> ~element(A, A)), 3)
*** because hyp(0, ?[B]:![A]: (element(A, B)<=> ~element(A, A)), 2)
*** explanation : treatment of the existential hypothesis
--- rule hyp_exi
*** addhyp(0, element(z1, z1)|element(z1, z1), 4)
*** because obj_ct(0, z1)

 31D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

*** explanation : the rule r_hyp__3__2or : if obj_ct(A, B) then
 addhyp(A, element(B, B)|element(B, z1), _)
is a local rule built from the universal hypothesis
 ![A]: (element(A, z1)<=> ~element(A, A))
--- rule r_hyp__3__2or
*** addhyp(0, element(z1, z1), 5)
*** because hyp(0, element(z1, z1)|element(z1, z1), 4)
*** explanation : E|E = E
--- rule hyp_or1
*** addhyp(0, false, 6)
*** because hyp(0, element(z1, z1), 5), hyp(0, element(z1, z1), 5), obj_ct(0,z1)
*** explanation : the rule r_hyp__3__ : if (hyp(A, element(B, z1), _),
 hyp(A, element(B, B), _), obj_ct(A, B))then addhyp(A, false, _)
is a local rule built from the universal hypothesis
 ![A]: (element(A, z1)<=> ~element(A, A))
--- rule r_hyp__3__
*** newconcl(0, true, 7)
*** because hyp(0, false, 6), concl(0, false, 2)
*** explanation : the conclusion false to be proved is a hypothesis
--- rule stop_hyp_concl
then the initial theorem is proved
* *

 32D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

pseudo second order

mathematical definition :

R (transitive(R)  X Y Z (R(X,Y)  R(Y,Z)) R(X,Z)

Muscadet definitions :

R (transitive(R) X Y Z (..[R,X,Y]  ..[R,Y,Z] [R,X,Z]))
X Y (..[subset,X,Y]  subset(X,Y))

theorem to be proved : transitive(subset)

 33D.Pastre - LIPADE - University Paris Descartes - MIPS 2010

mathematical definition :
R (transitive(R,E) 

X Y Z (XE YZR(X,Y)  R(Y,Z)) R(X,Z))

Muscadet definitions :
R (transitive(R,E)

 X Y Z (XE YZ..[R,X,Y]  ..[R,Y,Z] R,X,Z]))
X Y (..[subset,X,Y]  subset(X,Y))

theorem to be proved : transitive(subset, P (E))

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33

