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TPTP and CASC

Thousands of Problems for Theorem Provers 

(from 1993, Geoff Sutcliffe and Christian Suttner)

~ 7000  FOF problems (first order)       6800  CNF problems (clauses)

in logic, mathematics, computer science, science and engeneering, social sciences, ...

History
version         FOF CNF

1993 1.0.0 2295
1997 2.0.0  217 (dont 5 SET) 3060
1999 2.2.0  670  (...  308 ... ) 3334
2010 4.0.1 6983     1374 6800

The CADE ATP System Competition are held at each CADE conference
(organized by Geoff Sutcliffe)
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About 20 "sound, fully automatic, classical logic order ATP systems" each year 
attend  CASC competitions

About 50 systems are regularly tested on TPTP problems

Vampire, the best system is based on the resolution principle

Results of TPTP and CASC show 

- the superiority of resolution based provers (Vampire, E, iProver), accordingly to 
the number of problems solved, 

- but also the complementarity of resolution based provers and some other provers 
(Zenon, Muscadet, Infinox), which may prove theorems which no other prover is 
able to prove)  

- Muscadet had in 2007 and 2008 the highest SOTA ( a new ranking measure 
created in 2007 in CASC competitions, which measure the systems' ability to solve 
problems that few other systems can prove)
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A knowledge-based system

Facts
- hypotheses
- conclusion to be proved
- objects
- subtheorems
- definitions, axiomes, lemma
- ...
- all sort of facts which give 
relevant information during the 
proof searching progress

Rules
- logic and mathematics
- built from definitions and axioms
- dynamically built from hypotheses

Metarules
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Inference rules

Rule "" : to prove x P(x)

(i.e. if the conclusion of the theorem being proved is x P(x))

take any x1 
(i.e. create an objet x1)

et prove P(x1)
(i.e. replace the conclusion to be proved by P(x1))
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Rule "" : to prove AB, assume A and prove B

("assume A" consists to add A as a new hypothesis,          
by splitting it if it is a conjunction,            

and by doing some specific treatments in some other cases)

Rule "" : to prove A1A2...An

prove all the Ai one after the other

Rule "stop" : if a new hypothesis has been added,

       which is the conclusion to be proved

then the theorem is proved

Rule "stop_" : if the conclusion is a disjunction A1A2...An

                    and if one of the Ai has been added as a new hypothesis

then the theorem is proved 
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Rule "hyp_" : if  AB is a hypothesis among others
                     and if  C is to be proved

then prove (AC)(BC)

Rule "hyp_" : if  x P(x) is a hypothesis
                      and if there is still no hypothesis of the form P(y)

then create x1 and assume P(x1)

Rule "concl_" : to prove x P(x), 
search for x such that P(x)

More precisely :

To prove x (C1(x)C2(x)...Cn(x))

search for an object y such that, with present hypotheses, for all i 
between 1 and n, Ci(y) was verified (easy case) or proved (by a 
recursive call  to the prover)
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Rule "def_concl_1" : if  P(X) is the conclusion to be proved
                                and if a definition of predicate P is known

then replace P(X) by this definition

Rule "def_concl_2" : if  A:F(B) is a hypothesis
where F is a functionnal symbol 
which is defined as F(B) = {Y | P(Y)}

                                                                      or y R F(B) P(Y)
                                and if  XRA has to be proved

then replace the conclusion X R A by P(X) 
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 the quantifier !
"for the only ... such that ..."

Rule "elim_func" : if the expression P(F(A)) occurs
where F is a functional symbol 

then replace it by !B:f(A), P(B)

where !B:f(A), P(B) means for the only B equal to f(A), p(B) is true

!B:f(A), P(B) is  equivalent to B[f(A):B p(B)]  
and to B [f(A):B  P(B)]

The first expression is better for conclusions (positive position),
Rule "concl_" :  to prove !B:f(A), P(B), 

create B1, add the hypothesis B1:f(A) and prove P(B1)

The second one is better for hypotheses (negative position), no such 
hypothesis is added, at the place we have the super-action

To add !B:f(A), P(B) create an objet B1and add the hypothesis P(B1)
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Super-actions

To add-hyp H

if H is already a hypothesis or if H is of the form X=X
then do nothing

if H is of the form AB alors add-hyp A ad add-hyp B

if H is of the form X P or AB 
then create rules locale to this (sub)theorem

if H is of the form for the only Y such that Y:F(X)P(X))
and if there is not already a hypothesis of the form Y:F(X)

then crete a new object Y1 add add-hyp Y1:F(X)
else add H as a new hypothesis 

...

Super-actions are defined as packs of rules, they may be recursive.

Example "add a hypothesis"
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Rules relating to concepts defined by the user

The predicate P gives rules of the form :

Rule "Pi" : if  P(...) is a hypothesis

alors ...

This is  automatically done by metarules

example : 

 formal definition :
AB x ( xA  xB)

rule :

Rule "" : if  AB and  xA are hypotheses
alors add the hypothesis xB 
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Le functional symbol  F gives rules of the form :

Rule "Fi" : if   Y:F(...) and XY are hypotheses

then ...

example : 

formal definition  :
P(A) = { X | XA }

rule :

Rule "P  " : if  B:P(A) and xB are hypotheses
then add the hypothesis xA
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other example

formal definition  : AB = {x | xA  xB}

rules :

Rule "11" : if   C:AB and xC are hypotheses
then add  the hypothesis xA

Rule "12" : if   C:AB and xC are hypotheses
then add the hypothesis x

Rule "" : if   C:AB,  xA and xB are hypotheses
then add the hypothesis xC

Remark : la rule "" is not of the form

if  xA and xB are hypotheses
alors add the hypothesis xAB

which would be expansive
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Definition of intersection

AB = {X | XA XB}

Definition of power set
                                 P(A) = { X | XA }

Definition of set equality 

A =set B AB  BA

Definition of inclusion 

AB  X (XA  XB)

Power set of the intersection of two sets
Theorem to be proved AB(P(AB) =setP(A)P(B))
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rules objects hypotheses conclusion
                             AB(P(AB) =setP(A)P(B))

 a, b PabsetPaP(b)
elim_func c, pc c:ab, pc:P(c)

and pa, pb pa:P(a), pb:P(b)
concl_! pd pd:papb pc =set pd

def_concl1 pc pd pd pc
 gives Theorem 1 and Theorem 2

Theorem 1 pc pd
def_concl1  X (Xpc  Xpd)

 x xpc  xpd
 xpc xpd
P x  c

def_concl2 x pa  xpb
 gives Theorem 11 and Theorem 12
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Theorem 11

rule objects hypotheses conclusion
... ... xpa

defconcl2 x  a
defconcl1                 X (Xx  Xa)
 and  t tx ta

 tc
11 ta Theorem 11 proved

Theorem 12
... ... xpb

...
Theorem 12 proved

up Theorem 1 proved
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Theorem 2

rule objects hypotheses conclusion
... ... pd pc

defconcl1 X (Xpd  Xpc)
and x xpd xpc     
1 and 2 xpa, xpb
P(twice) xa, xb
defconcl1 xc
(twice) X (Xx  Xc)

and t tx tc
(twice) ta, tb

 tc
stop Theorem 2 proved
up        Theorem 0 proved
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* * * theorem to be proved
![A, B]:equal_set(power_set(intersection(A, B)), intersection(power_set(A), power_set(B)))

* * * * * * theoreme 0 * * * * * *
*** newconcl(0, ..., 1)
explanation : initial theorem ------------------------------------------------------- action ini
create object(s) z2 z1
*** newconcl(0, equal_set(power_set(intersection(z1, z2)), intersection(power_set(z1), power_set(z2))), 2)
*** because concl((0, ..., 1)
*** explanation : the universal variable(s) of the conclusion is(are) instantiated
------------------------------------------------------- rule !
*** newconcl(0, seul(intersection(z1, z2)::A, seul(power_set(A)::D, seul(power_set(z1)::B, 
seul(power_set(z2)::C, seul(intersection(B, C)::E, equal_set(D, E)))))), 3)
*** because concl(0, ..., 2)
*** explanation : elimination of the functional symbols of the conclusion
for example, p(f(X)) is replaced by only(f(X)::Y, p(Y))
------------------------------------------------------- elifun
*** addhyp(0, intersection(z1, z2)::z3, 4), newconcl(0, ...), 4)
*** because concl(0, ..., 3)
*** explanation : creation of object z3 and of its definition
------------------------------------------------------- rule concl_only

........ newconcl(0, equal_set(z4, z7), 8)
*** explanation : creation of object z7 and of its definition

------------------------------------------------------- rule concl_only

...........................
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*** newconcl(0, subset(z4, z7)&subset(z7, z4), 9)
*** because concl(0, equal_set(z4, z7), 8)
*** explanation : the conclusion  equal_set(z4, z7) is replaced by its definition(fof equal_set )
------------------------------------------------------- rule def_concl_pred

* * * * * * creation * * * * * * sub-theoreme 0-1 * * * * *
all the hypotheses of (sub)theorem 0 are hypotheses of subtheorem 0-1
*** newconcl(0-1, subset(z4, z7), 10)
*** because concl(0, subset(z4, z7)&subset(z7, z4), 9)
*** explanation : to prove a conjunction, prove all the elements of the conjunction
------------------------------------------------------- action proconj
*** newconcl(0-1, ![A]: (member(A, z4)=>member(A, z7)), 11)
*** because concl(0-1, subset(z4, z7), 10)
*** explanation : the conclusion  subset(z4, z7) is replaced by its definition(fof subset )
------------------------------------------------------- rule def_concl_pred
create object(s) z8
*** newconcl(0-1, member(z8, z4)=>member(z8, z7), 12)
*** because concl((0, ![A]: (member(A, z4)=>member(A, z7))), 11)
*** explanation : the universal variable(s) of the conclusion is(are) instantiated
------------------------------------------------------- rule !
*** addhyp(0-1, member(z8, z4), 13)
*** newconcl(0-1, member(z8, z7), 13)
*** because concl(0-1, member(z8, z4)=>member(z8, z7), 12)
*** explanation : to prove H=>C, assume H and prove C
------------------------------------------------------- rule =>
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*** addhyp(0-1, subset(z8, z3), 14)
*** because hyp(0-1, power_set(z3)::z4, 5), hyp(0-1, member(z8, z4), 13), obj_ct(0-1, z8)
*** explanation : rule if (hyp(A, power_set(D)::B, _), hyp(A, member(C, B), _), obj_ct(A, C))then addhyp(A,
subset(C, D), _)
built from the definition of power_set (fof power_set )
------------------------------------------------------- rule power_set
*** newconcl(0-1, member(z8, z5)&member(z8, z6), 15)
*** because concl(0-1, member(z8, z7), 13), hyp(0-1, intersection(z5, z6)::z7, 8)
*** explanation : definition intersection
------------------------------------------------------- rule defconcl2

* * * * * * creation * * * * * * sub-theoreme 0-1-1 * * * * *

/....../

*** newconcl(0-1-1, true, 23)
*** because hyp(0-1-1, member(z9, z1), 22), concl(0-1-1, member(z9, z1), 20)
*** explanation : the conclusion member(z9, z1) to be proved is a hypothesis
------------------------------------------------------- rule stop_hyp_concl

..........................................................................

..........................................................................
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Systematically creating objects could be expansive.   
So, the processing  of existential hypotheses has a low  
priority and these hypotheses are handled one after the 
other, in the order  when they appeared, and all the other 
rules are tried again before processing the next one.

 Example : If f maps A into B, then each element of A has 
an image in B.

Special case,  if f maps A into A :
           a  a

1
=f(a)  a

2
=f(a

1
) a

3
=f(a

2
) ...

All that can be deduced from the l'hypothèse a
i
=f(a

i-1
) is 

deduced before the creation of a
i+1

.

Processing of the existential hypotheses 

x
y=f(x)

A
B
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If moreover f is surjective, each element of B has an antecedent in A. 

x=f-1(y)
y

A B

Special case, if f maps A onto A :
...  a

4
=f-1(a

2
)  a

2
=f-1(a) a  a

1
=f(a)  a

3
=f(a

1
) ...

an image and an antecedent are created alternately.

Moreover, if there are several mappings, images and antecedents
are created alternately for all mappings.
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Reordering rules

The rules which may create more specific objects must have 
higher priority than others
Metarule : if the rule R may create an element a such that P

the rule R' may create an element b such that Q
P is more general than Q

   then R' must be applied before R

More precisely, the metarule is the following (of which it is a 
restriction) :

        if the rule R contains the action  add-hyp xA C
the rule R' contains the action  add-hyp x'A C'
C' is a conjunction of terms and one of them is equal to C    

                            modulo x and x'

   then apply R' before R
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Example

If f maps A into B, then each element in A has an image in B. 

If  f maps A onto A dans B, then each element in  B has an 
pre-image in A.

If h is the composition (from A into C) of f, mapping A into 
B, and of g, mapping B into C, and if z=h(x), then there is an 
element y in B such that y=f(x) and z=g(y)

Then y1=y3 and, if g is injective, y2=y3.
Rather than creating y1, then y2 and y3, it is better to only create
y3 which verifies the three properties.

x
A

By1

y2

y3

z
C

f
h

g
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Example in set theory

Theorem : Consider three mappings f, g, h from A into B, B into 
C, C into A; if among the three mappings hogof, gofoh, fohog, two are 
injective (resp. surjective) and the third is surjective (resp. 
injective), then f, g and h are one-to-one.

For example (one case among six) :
    hogof injective

     gofoh and fohog surjective

A

BC

f

g

h

hogof 

fohog fohog 
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Case  hogof injective, gofoh and fohog surjective (one case among six)

h injective
if 1 and 2 have the same image 3, 

then they are equal

h surjective
4 is a pre-image de 1 because 1 

is equal to its image 5

3

5

8

4 7
1 2

9

6

A

B
C

inj

surj surj

1

2

34

5

6

7

inj A

B C

surjsurj
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Proof of theorem X Y (YX  YY)
( X = { Y | YY} is not a set)

by the resolution principle :     clauses Ya  YY
YY  Ya

□

by Muscadet : concl : X Y (YX  YY)
hyp : X Y (YX  YY) concl : false
object : a
local rules  : r0 : if Ya and YY then false

r1 : if YY then Ya 
r2 : for all object Y,  YY  Ya

hyp : aa  aa(rule r2)
 aa (rule "")

false (rule r0)     theorem proved (by contradiction)
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* * * theorem to be proved
~ ?[B]:![A]: (element(A, B)<=> ~element(A, A))

* * * proof :

* * * * * * theoreme 0 * * * * * *
*** newconcl(0, ~ ?[B]:![A]: (element(A, B)<=> ~element(A, A)), 1) 
*** explanation : initial theorem
------------------------------------------------------- action ini 
*** addhyp(0, ?[B]:![A]: (element(A, B)<=> ~element(A, A)), 2), newconcl(0, false, 2) 
*** because concl(0, ~ ?[B]:![A]: (element(A, B)<=> ~element(A, A)), 1) 
*** explanation : assume ?[B]:![A]: (element(A, B)<=> ~element(A, A)) and search
 for a contradiction 
------------------------------------------------------- rule concl_not 
create object(s) z1  
*** addhyp(0, ![A]: (element(A, z1)<=> ~element(A, A)), 3) 
*** because hyp(0, ?[B]:![A]: (element(A, B)<=> ~element(A, A)), 2) 
*** explanation : treatment of the existential hypothesis
------------------------------------------------------- rule hyp_exi 
*** addhyp(0, element(z1, z1)|element(z1, z1), 4) 
*** because obj_ct(0, z1) 
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*** explanation : the rule r_hyp__3__2or : if obj_ct(A, B) then 
                                                          addhyp(A, element(B, B)|element(B, z1), _)
is a local rule built from the universal hypothesis 
            ![A]: (element(A, z1)<=> ~element(A, A))
------------------------------------------------------- rule r_hyp__3__2or 
*** addhyp(0, element(z1, z1), 5) 
*** because hyp(0, element(z1, z1)|element(z1, z1), 4) 
*** explanation : E|E = E
------------------------------------------------------- rule hyp_or1 
*** addhyp(0, false, 6) 
*** because hyp(0, element(z1, z1), 5), hyp(0, element(z1, z1), 5), obj_ct(0,z1) 
*** explanation : the rule r_hyp__3__ : if (hyp(A, element(B, z1), _),
 hyp(A, element(B, B), _), obj_ct(A, B))then addhyp(A, false, _)
is a local rule built from the universal hypothesis 
            ![A]: (element(A, z1)<=> ~element(A, A))
------------------------------------------------------- rule r_hyp__3__ 
*** newconcl(0, true, 7) 
*** because hyp(0, false, 6), concl(0, false, 2) 
*** explanation : the conclusion false to be proved is a hypothesis 
------------------------------------------------------- rule stop_hyp_concl 
then the initial theorem is proved
* * * * * * * * * * * * * * * * * * * * * * * *
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pseudo second order

mathematical definition :

R ( transitive(R)  X Y Z (R(X,Y)  R(Y,Z) ) R(X,Z)

Muscadet definitions :

R ( transitive(R) X Y Z (..[R,X,Y]  ..[R,Y,Z]  [R,X,Z] ) )     
X Y ( ..[subset,X,Y]  subset(X,Y) ) 

theorem to be proved :     transitive(subset)
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mathematical definition :
R ( transitive(R,E)  

X Y Z (XE YZR(X,Y)  R(Y,Z) ) R(X,Z) )

Muscadet definitions :
R ( transitive(R,E)

 X Y Z (XE YZ..[R,X,Y]  ..[R,Y,Z]  R,X,Z]) ) 
X Y ( ..[subset,X,Y]  subset(X,Y) ) 

theorem to be proved :     transitive(subset, P (E))
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