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A bit of history Revolution and counter-revolution
Resolution Principle vs natural deduction
* Logic Theorist : first theorem prover

Newel, Shaw, Simon (1957) « Robinson, A machine oriented logic based on
then NSS (chess playing program, 1958) and the Resolution Principle, 1965
GPS (General Problem Solver, 1961) - Skolemisation - one rule

- CNF - completude for

- clauses, literals predicate calculus

» Gelertner (geometry, 1959)
» Bledsoe, Splitting and reduction heuristics in

» Wang (logics (sequents), 1960) automatic theorem proving, 1971
. . - rewriting rules
« Slagle (integration, 1961) J ﬁsggfh“etzes o - splittingg
conclusions - reduce
SPLIT REDUCE
general rules rules for set theory
INPUT OUTPUT INPUT OUTPUT
« splitting : AA A two theorems A and B seANB s€ A seB
se AuB se Av seB
* rewriting rules se PA) scA
p—>(AAB) (p >A) A (p —B) Cc AnB Cc AACcB
pvq —>A (p =A) A (q —A) AuBcC Ac BAAC
p —>(A—B) prA—B general rules
A -Vx P(x) A —P(y) (new variable) — (A A B) -Av—-B
Ix P(x) - D P(y) - D " - (A v B) - AAr—B
X =y— P(x,y) P(y,y) if x is a variable - VXA Ix = A

— XA Vx—=A
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Theorem to be proved A first programme based on "natural deduction'
PAANPAB) = AANB) (Datte, alias Muscadet0)

AA)NAB) c PAANB) A AIANB) c AA)NPAB) General rules

(1) (2) * to prove ¥x P(x) take any x1 and prove P(x1)
PAANPB) c AANB) PANB) c PA)NAB) * to prove A =B, assume A and prove B
te T(A)NT(B) Ste ?(AmB)  to prove A1AA; A.AA prove all the A; one after the other
tcAAtcB—ostcANB proof similar * to prove C, if AvB is a hypothesis, prove (A=C)A(B=C)
tcAAtcB—=tcAAtcB * to prove — A, assume A and search for a contradiction
true true
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To assume A

hypotheses may be the conclusion may be
(only one)

« if Ais elementary, or is an existential formula,
add it as a new hypothesis

elementary (p(...)) elementary (p(...))

« if Ais a conjunction AjAA) A...AA, assume
each A,

a disjunction a disjunction

an existential formula an existential formula

« if Ais a universal hypothesis, it is not added as
a new hypothesis, new rules are built

false true
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e . Theorem to be proved
Definitions and building rules VAVB VC (AcB A BC = AcC)

» A conclusion may be replaced by its definition )
elements = hypotheses conclusion

* Hypotheses are never replaced by their definition VCVAVB VC (AcB A BcC = AC)
ab. c acb A bcc = acc
* Rules are automatically built from definitions acb
C
Example bcc acc
- VX (Xea = Xec)
Definition : VAVB (AcB < VX (Xe A= XeB)) X XE A = XEC
Rule : if AcB and Xe A are hypotheses Xe a Xe C
then add the hypothesis Xe B Xeb
XeC
true
Dominique Pastre - University Paris Descartes - SETS2014 - 3 juin 2014 13 Dominique Pastre - University Paris Descartes - SETS2014 - 3 juin 2014 14
Functional symbols definition of intersection
definitions and rules VAVB VX (XeANB < XeA A XeB)
E | rules :
Xampies « if C:AnB and xe C are hypotheses
o then add the hypothesis xe A
definition of AA) VA VBeX (Xe AA) & XcA) « if C:AnB and xe C are hypotheses
For Datte VAVB(powerset(B,A)=VX(XeB < XcA)) then add the hypothesis xe B
powerset(B,A) will be noted here B:(A) * it C:ANB, xeAand xeB are hypotheses

then add the hypothesis xeC
* to prove xe C, if C:AnB is a hypothesis

r
ules . . . then prove Xe A A XeB

* to prove XeB, if B:/AA) is a hypothesis then prove XcA

* if B:’{A) and Xe B are hypotheses, Remark : there is no rule of the form

if xe A and xeB are hypotheses
then add the hypothesis xe AnB
which would be expansive

then add the hypothesis XcA
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Proof of the theorem
VAVB(P(AB) c P(A)NP(B))

objects hypotheses conclusion

a,b P(anb) < P(a)NP(b)
c,pc  c:anb, pc:P(c)
pa, pb pa:P(a), pb:P(b)

pd pd:panpb pccpd
VX (Xepc = Xepd)
X xepc = xepd
XEpC xepd
XCc

X €pa A Xepb
split in Theorem 1 and Theorem 2

VAVB(2(AnB) cP(A)~2(B))

Dominique Pastre - University Paris Descartes - SETS2014 - 3 juin 2014

\ Processing of the existential hypotheses

Systematically creating objects could be expansive.
So, the processing of existential hypotheses has a low
priority and these hypotheses are handled one after the
other, in the order where they appeared, and all the other
rules are tried again before processing the next one.
Example : If f maps A into B, then each element x of A has
an image in B.

— B
A :

~ //,w i N
X '””:T'”’”"””"'””"y ( )

Special case, if f maps Ainto A:

a—a=f(a)»a=f(a)—»a=f(a)- ..
All that can be deduced from the I'hypothesis a=f(a ) is
deduced before the creation of a,,

Dominique Pastre - University Paris Descartes - SETS2014 - 3 juin 2014

objects| hypotheses conclusion
Xxca
VX (Xex = Xea)
t te x tea
v
tec

tea * Theorem 1 proved

Theorem 2 xe pb

Theorerr-]“2 proved
Theorem proved
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If moreover f is surjective, each element y of B has an antecedent in A.

ety

Special case, if f maps Aonto A :

—f1 —f£1 — —
..—a=f(a)—»>a=Ff(a) »a—a=fa)—a=fa)— ..
an image and an antecedent are created alternately.

Moreover, if there are several mappings, images and antecedents
are created alternately for all mappings.

Dominique Pastre - University Paris Descartes - SETS2014 - 3 juin 2014 20




If f maps Ainto B,
then each element x in A has an image y4 in B.

If g maps B onto C,
then each element z in C has an antecedent y, in B.

If h is the composition (from A into C) of f and g, and if z=h(x),
then there is an element y3 in B such that y=f(x) and z=g(y)

Then y1=y3 and, if g is injective, y2=ys3.
Rather than creating y1, then y2 and ys, it is better to only create
y3 which verifies the three properties.

Dominique Pastre - University Paris Descartes - SETS2014 - 3 juin 2014 21

\ Example in set theory on mappings

Theorem : Consider three mappings f, g, h from Ainto B, B into C,
C into A; if among the three mappings hogof, gofoh, fohog, two are
injective (resp. surjective) and the third is surjective (resp. injective),
then f, g and h are one-to-one.

= hogof
()
A N
For example (one case among six) : h~ )
hogof injective .
ofoh and fohog surjecti ¢/ R
g g surl Iv?ohog ‘"ﬂ C‘ - B, . fohog
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Reordering rules

The rules which may create more specific objects must have higher
priority than others
Metarule : if the rule R may create an element a such that P
the rule R' may create an element b such that Q
P is more general than Q
then R'must be applied before R
More precisely, the metarule is the following (of which it is a
restriction) :
if the rule R contains the action add-hyp Ixe A C

the rule R' contains the action add-hyp Ix'e A C'
C' is a conjunction of terms and
one of them is equal to C modulo x and x'

then apply R' before R

Dominique Pastre - University Paris Descartes - SETS2014 - 3 juin 2014 22

Case hogof injective, gofoh and fohog surjective (one case among six)

h injective h surjective
if 1 and 2 have the same image 4isa de 1 because 1

3, then they are equal

is equal to its image 5

A 5 i

surj
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Processing of disjunctive hypotheses

 rule : To prove C, if Av B is a hypothesis

prove (A= C) A (B = C))
this gives then two subtheorems with either Aor B as a
hypothesis, and C as the conclusion

* Applied too early, this rule could give two subtheorems
with the same proof.

« If the hypothesis A v B is useless, this rule may be
expansive,

* Disjunctive hypotheses are handled after existential ones.
No real reason, only experiments.
It is easy to modify the priority to choose the opposite

Dominique Pastre - University Paris Descartes - SETS2014 - 3 juin 2014

High-order formulas

One may define properties of relations, then applies to
specific relations.

e transitive(R) & VX VY VZ (R(X,Y) A R(Y,Z) = R(X,Z))
* transitive(c)
* transitive(<)

For Datte, it is only a pseudo--high-order

* transitive(R) © VXVYVZ (. RXYA.RYZ)=.RX2))
For Muscadet1, it will be really high-order

Dominique Pastre - University Paris Descartes - SETS2014 - 3 juin 2014
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Negation — positive and negative properties

Negations are removed as much as possible.
exceptions (mathematical notations and/or natural language)

o different xzy for —(x=y) frequently useful

* not-in xgy for —(xey) useful for complements of sets
* non-empty(A) < Ix (xe A)

* non-disjoint(A,B) & 3x (xe A A xeB)

In following versions, Muscadet receives the definitions
empty(A) & —3Ix (xeA)
disjoint(A,B) & —3x (xe A A xeB)

and replaces them by
non-empty(A) < 3Ix (xe A)
empty(A) & — non-empty(A)
non-disjoint(A,B) < 3x (xe A A xe B)
disjoint(A,B) < — non-disjoint(A,B)

Dominique Pastre - University Paris Descartes - SETS2014 - 3 juin 2014 26

Results

Datte has proved about 150 theorems in set theory,
mappings, orderings, congruence relations,
ordinal numbers.

Some of them are difficult and were not proved by
other provers until a few years ago.

Dominique Pastre - University Paris Descartes - SETS2014 - 3 juin 2014 28



A knowledge-based prover using ]

knowledge and metaknowledge
(Muscadet1)

The facts are the internal representation of the theorem during the proof

e Facts * Rules

- conclusion to be proved - logic and mathematics

- hypotheses - built from definitions and axioms
- objects - dynamically built from hypotheses
- subtheorems « Metarules

- active rules

« definitions, axioms, lemmas

- all sort of facts which give

relevant information during the * inference engine (PL1 then Pascal)

proof searching progress

Dominique Pastre - University Paris Descartes - SETS2014 - 3 juin 2014 29

the quantifier !
"for the only ... such that ..."
Rule : if the expression P(F(A)) occurs where F is a functional symbol
then replace it by IB:f(A), P(B)
where !B:f(A), P(B) means for the only B equal to f(A), p(B) is true

IB:f(A), P(B) is equivalentto VB(f(A):B = p(B))
and to 3B [f(A):B A P(B)]

The first expression is better for conclusions (positive position),
to prove |B:f(A), P(B),
create B1, add the hypothesis B1:f(A) and prove P(B1)

The second one is better for hypotheses (negative position), no such
hypothesis is added, at the place we have the super-action

to add 'B:f(A), P(B)

create an objet B1and add the hypothesis P(B1)

Dominique Pastre - University Paris Descartes - SETS2014 - 3 juin 2014 31

All strategies which were programmed in Datte are written
by rules and metarules

-+

* readability, modularity
 second order, variable arity
» writing knowlege bases, especially know-how is easier

Some specific efficient representations loose their
efficiency (Ex : graphes de Datte et de Merialdo)
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Applications to difficult domains

* Topological Linear Spaces *concepts

» Kuratowski theorem * splittings

« formalisation
symbolic manipulation

e Cellular Automata

» Auto-observations

» Observation of mathematicians thinking aloud
while solving some problems
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Topological Linear Spaces

ThA. If U is a neighbourhood of the origin O in a
TLS (Topological Linear Space), then there exists
a neighbourhood V of O, included in U, star-
shaped and symmetric relative to O

ThB. If U is a neighbourhood of the origin O in a
TLS, then there exists a neighbourhood V of O,
included in U, star-shaped and symmetric relative

to O, such that xeV, yeV implies [x,y] < U.

Dominique Pastre - University Paris Descartes - SETS2014 - 3 juin 2014 33
Kuratowski theorem (a,b)=(c,d) = a=c A c=d

Definitions : ordered pair : (a,b)={{a},{a,b}},
singleton : {a}={x | x=a}
unordered pair : {a,b}={x | x=a v x=b}

"The definition of (a,b) does not have any intrinsic intuitive
meaning. It is just a convenient way (discovered by
Kuratowski) to define ordered pairs so than one can prove the
characteristic property of ordered pairs expressed in the
proposition". (Mendelson)

Proofs by

* Mendelson
* Resolution
* Brown (new method, 1996), very long

* Muscadet 8 splittings, 13 subtheorems

* Muscadet + know-how knowledge 1 splitting, 2 subtheorems

4 splittings, 6 subtheorems
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Knowledge bases

definition of a TLS
* linear space, operations + and x
« topological space : + and x are continuous

properties of + and x, topological space (continuity, open
sets and/or neighborhoods)

specific but general and
used by mathematicians

know-how knowledge

* bases of neighborhoods

* product sets

* usual bases of neighborhoods for elements (x,x) of the
diagonal

» symbolic manipulation of + and x

* reasons to choose to first apply the continuity of + or x.
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Notations
If 7<m<n, we let DD be the set {(m-i,m+i), (m-i,m+i+1) | i € {-1,0,....m-1}}

If 7<m<n and 1<k<j<m+1, we let DD, be the set
DD, M A(L) | k<I<j} = {(m-i,m+i), (m-i,m+i+1) | i e {m-},0,....m-1}}})

Definitions
Suppose j>k and k>1; we say that DD,k is basic in state x if

all sites (i, 2m-i),(i,2m-i+1) with i € {m-j+1,...,m-k-1} have state x

A first easy result to be proved (fact)
Every site(K,t) with K>t has state L

A simplification of the first lemma to be proved (among 11)

Let 1<m, 1<k, j<k and jsm+1. If DDy, is basic in A and if site (k-1,2m-k+1)

has state Athen the first diagonal of DDy, jk is also basic in A

Dominique Pastre - University Paris Descartes - SETS2014 - 3 juin 2014

A Prolog prover using declarative as well as
procedural knowledge (Muscadet2)

Muscadet has been rewritten in Prolog

* know-how knowkedge easier to write

* expression of procedural strategies

» more flexibility (declarative/procedural/mixing both)
* more readability

Prolog interpreter
(unification, manipulation of

_ _ expressions)
inference engine

small inference engine written

with few Prolog clauses

Dominique Pastre - University Paris Descartes - SETS2014 - 3 juin 2014

Difficulties

« two order relations (large and strict)

* X<y& X<Y v x=y leads to many splittings

* too much time on them, instead of iportant properties (state and site)
* symbolic manipulation

To help Muscadet
* introduce the concept of successor suc(x) for x+1
* and the following properties
X<y = SUc(x)<y
X<y = X<y
* introduce a special function f(m,i) for 2m-i
» and its following properties
f(m,i+1)= f(m,i)-1
f(m+1,i)= f(m,i)+1+1

Needs to combine theorem proving and symbolic manipulation

Dominique Pastre - University Paris Descartes - SETS2014 - 3 juin 2014 38

syntax for formulas

* Prolog conventions are used for variables and
constants

 formulas are writen in infix and partially
parenthesized notations, almost as matheticians do.

* Examples :

A subset B <=> forall(X, X in A=> X in B)
e and also

Ainter B=[X, Xin Aand X in B]

forall(X in A, exists(Y in B, p(X, Y, A, B)))

forall(X in real, forall(Y in real, forall(Z in real,

X<YandY <Z=>X<Z)))
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rules and actions

rule(N,=>) :- concl(N , A => B), addhyp(N, A), newconcl(N,B)
rule(N, forall) :- concl(N,forall(X,C)), create_object(x,X1)
addobj(N, X1), replace(C, X, X1, C1),
newconcl(N, C1).
newconcl(N, C) :- retractall(concl(N, _)), assert(concl(N, C))
ajhyp(N, H) :-
(H=Aand B -> addhyp(N, A), addhyp(N,B)
; H=(X=X)->true

H = forall(_, _) -> buildrule(H,N)

-;"assert(hyp(N, H))
)

these examples have been slightly simplified for readability
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rules and actions (continued)

addhyp(N, H) :-
(

“H=_[R X, Y] ->H1=_[R, X, Y], addhyp(N, H1)
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Functional symbols

cannot be variables in Prolog
pseudo-second-order as in Datte

[R,X,Y] means R(X,Y)

the symbol ".." and the list notation were chosen by analogy
with the Prolog operator "=.." since in Prolog we have

r(a,b) =.. [r,a,b]

and E =.. [r,a,b] gives E=r(a,b) :-)

r(a,b) and ..[r,a,b] cannot be unified but ..[r,X,Y] is always
replaced by r(X,Y) if R is instanciated by r in ..[R,X,Y]
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procedural rules

A [resp. v] cannot have an arity > 2
AABACADAEiIsinfactAA (B A (CA (D AE)))

Scanning all elements of a conjunction or a disjunction is
now done by a specific Prolog predicate which returns
successively all the elements of the conjunction [resp.
disjunction].

This leads to a gain of time

Each time that a developper discovers that a task takes

more time that it should do, he/she may define a Prolog
predicate to speed up.
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A prover knowing nothing about
mathematics apart logics,
application to TPTP problems
(Muscadet3)

In particular, this new version does not know
S
* keywords "definition" and "lemma"

Modifications

« statements which are definitions have to be recognized

* methods using € has been rewritten in a more general manner
(for example, methods about handling functional symbols)
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A TPTP prover
(Muscadet3)

TPTP syntax

* input and output formulas
* internal representations

* results display and trace
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Thousands of Problems for Thorem Provers
(TPTP)

since 1993
FOF since 1997 : 217 FOF problems (5 SET) / 3330
nows ~8000 FOF (~1400 SET-SEU / ~20000

| proposed 120 problems in 1999

CADE ATP System Competition (CASC)

Since 1999, Muscadet participated and proved some
theorems that no other prover could prove.
This shows its complementarity with other provers.
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Relevant proofs (Muscadet4)

Extraction of relevant steps
« difficult because of the calls of procedural actions in the rules
(in particular handling subtheorems and return)

many modifications of the program
 step numbers as new parameters, in facts and rules
 the number of the current step in the actions
» the preceding step numbers of each fact in the conditions
 add an explanation for each step
* these parameters have to be passed in many predicates
* memorisation of all steps with these informations
» extraction of the path from the success step up to the first
step
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Utilities and tools (Muscadet4)

* The prover may be simply called by executable C
program, with the address or the name of a thorem to
be proved (+ options if needed).

It may also be called under Prolog. In this case it is
possible to display all the facts, and also all the
memorized steps and examine them, with the help of
Prolog commands.

* There are also some shell scripts to analyse the proofs.
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*** proof

*** theorem to be proved
I[A,B,C]: (subset(A,B)&subset(B,C)=>subset(A,C))

******theoremeoi*****

*** newconcl(0,![A,B,C]: (subset(A,B)&subset(B,C)=>subset(A,C)),1)
*** explanation : initial theorem

action ini

create object(s) z3 z2 z1

*** newconcl(0,subset(z1,z2)&subset(z2,z3)=>subset(z1,23),2)

*** because concl((0,![A,B,C]: (subset(A,B)&subset(B,C)=>subset(A,C))),1)
*** explanation : the universal variable(s) of the conclusion is(are) instantiated
rule !

*** addhyp(0,subset(z1,22),3)

*** addhyp(0,subset(z2,z3),3)

*** newconcl(0,subset(z1,z3),3)

*** because concl(0,subset(z1,z2)&subset(z2,z3)=>subset(z1,23),2)

*** explanation : to prove H=>C, assume H and prove C

rule =>

*** newconcl(0,![A]: (member(A,z1)=>member(A,z3)),4)

*** because concl(0,subset(z1,z3),3)

*** explanation : the conclusion subset(z1,z3) is replaced by its definition(fof axiom:subset )
rule def_concl_pred
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cc tptp-en.c -o tptp
tptp SET027+4.p

cat res_SET027+4.p

theorem to be proved
I[A,B,C]: (subset(A,B)&subset(B,C)=>subset(A,C))

theorem 0 proved (conjecture:thl03) in 0.009 seconds
in the following, N is the number of a (sub)theorem

E is the current step

or the step when a hypothesis or conclusion has been added or modified
hyp(N,H,E) means that H is an hypothesis of (sub)theorem N
concl(N,C,E) means that C is the conclusion of (sub)theorem N
obj_ct(N,C) means that C is a created object or a given constant
addhyp(N,H,E) means add H as a new hypothesis for N
newconcl(N,C,E) means that the new conclusion of N is C

(C replaces the precedent conclusion)
a subtheorem N-i or N+i is a subtheorem of the (sub)theorem N

N is proved if all N-i have been proved (&-node)

or if one N+i have been proved (|-node)

the initial theorem is numbered 0
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create object(s) z4

*** newconcl(0,member(z4,z1)=>member(z4,z3),5)

*** pecause cocncl((0,![A]: (member(A,z1)=>member(A,z3))),4)

*** explanation : the universal variable(s) of the conclusion is(are) instantiated
rule "** addhyp(0,member(z4,z1),6)

*** newconcl(0,member(z4,z3),6)

*** because concl(0,member(z4,z1)=>member(z4,z3),5)
*** explanation : to prove H=>C, assume H and prove C
rule =>

*** addhyp(0,member(z4,z2),7)

*** because hyp(0,subset(z1,z2),3),hyp(0,member(z4,z1),6),0bj_ct(0,z4)

*** explanation : rule if (hyp(A,subset(B,D),_),hyp(A,member(C,B),_),obj_ct(A,C))then
addhyp(A,member(C,D),_)

built from the definition of subset (fof axiom:subset )

rule subset

*** addhyp(0,member(z4,z3),8)

*** pecause hyp(0,subset(z2,z3),3),hyp(0,member(z4,z2),7),0bj_ct(0,z4)

*** explanation : rule if (hyp(A,subset(B,D),_),hyp(A,member(C,B),_),obj_ct(A,C))then
addhyp(A,member(C,D), )

built from the definition of subset (fof axiom:subset )

rule subset

*** newconcl(0,true,9)

*** because hyp(0,member(z4,z3),8),concl(0,member(z4,z3),6)

*** explanation : the conclusion member(z4,z3) to be proved is a hypothesis
rule stop_hyp_concl

then the initial theorem is proved

* ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
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Why Muscadet is an efficient system in a
number of circumstances

+ the fact that the growth of the bases of facts in linear, not
exponential ;

 the importance and efficiency of the chosen representations of
the problem ;

* the splitting of a (sub)theorem in many subtheorems easier to
prove, independent or not ;

* the treatment of functional symbols which flattens the handled
expressions ;

* the replacement of definitions and universal hypotheses by
natural and efficient rules ;

* the treatment of equalities and negations which removes them
as far as possible.
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And now ?

Nowadays, Muscadet is no longer being actively
improved, except the interface to let it more and
more easy to use.

Nevertheless, the analyses of failures (obtained
during CASC or by users) often lead to the
correction of bugs or to some improvements of
some rules ou metarules.
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Muscadet is

efficient for
« every day mathematical problems wich are
expressed in a natural manne
 problems which involve many definitions,
axioms or lemmas

not efficient for
* problems defined axiomatically, from a
logician's point of view
 problems which involve only one large
conjecture and no intermediary definitions
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Conclusion

For all these reasons,

how theorem proving with Muscadet could
progress ?

» to some extend by the improvements of its
heuristics

« certainly not by the increase of computer
power

* but surely by having it cooperate with other
provers
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