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Abstract : This paper presents the ideas and the choices which have been made throughout
the development of the Muscadet theorem prover. We will first see the principles and main
ideas which lead to a first prover in the context of the time, influenced by a famous paper by
Woody Bledsoe. This program used natural methods and was applied to set theory. It was
then rewritten as a knowledge based-system where an inference engine applied rules, given or
automatically built by metarules which expressed general or specific mathematical knowledge. It
has been applied to some difficult problems. In order to allow more flexibility for expressing
knowledge, it has been rewritten in Prolog, allowing the knowledge to be more or less declarative
or procedural. To work with the TPTP Library the system had to work without knowing anything
about mathematics except predicate calculus. All mathematical concepts had to be defined with
mathematical statements, and the membership relation handled as any other binary relation. To
avoid translating knowledge to TPTP syntax, TPTP syntax has been used (this unfortunately
forbade the use of some abbreviations mathematicians are comfortable with). Last but not least,
the relevant trace has been extracted to give a proof easily read by anyone, except in the case
of failure, when all steps may be displayed to understand (manually) the reasons for the failure.
Muscadet has participated to CASC competitions. The results show its complementarity with
regard to resolution-based provers.

1 Introduction

The Muscadet theorem prover is a knowledge-based system. Based on “natural deduction”,
following the terminology of Bledsoe [1, 2], it uses methods which look like those used by humans,
contrary to most provers.

This famous paper by W.Bledsoe [1] has mostly influenced the implementation of the first version
of Muscadet. The emergence of expert systems and the work on knowledge and metaknowledge
made in J.Pitrat’s team is the second event which has the most influenced the development of
Muscadet.

We will first see the main methods of Datte which are still the most important strategies of
the current version of Muscadet. Then we will see why and how Muscadet has been rewritten
or improved in its successive versions.

As a conclusion, we will see why Muscadet is an efficient system in a number of circumstances
and how theorem proving with Muscadet could progress.

∗
Muscadet (http://www.math-info.univ-paris5.fr/∼pastre/muscadet/muscadet.html) has been developed at Laforia

(University Pierre et Marie Curie, then in Crip5/Lipade (University Paris Descartes)
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2 A bit of history

2.1 First provers

I like to remind that the first Artificial Intelligence program was a theorem prover, the “Logic
Theorist” [7] by Newell, Shaw and Simon in 1957. The objective was a program to play chess, but
they found that it was necessary to first write this Logic Theorist theorem prover. Then this lead
to the chess playing program NSS [10] in 1958 which had the same structure, and to GPS (General
Problem Solver) [11] in 1961 with the notions of goals and subgoals.

Then, among the pioneers, I will quickly cite provers for geometry by Gelertner [4], for propositional
and predicate calculus by Wang [25] and for integration by Slagle [21]. These programs were
promising first steps. They used methods which look like human methods. Sequents were used
in [25].

2.2 Revolution and counter-revolution
Resolution Principle vs Natural Deduction

With the “Resolution Principle” in 1965, Robinson [20] modified research directions and those first
experiments were somewhat forgotten. The Resolution Principle works on sets of clauses. Clauses
are disjunctions of literals. The proof of a theorem T consists in finding a contradiction of a set of
clauses (that is a derivation of the empty clause) obtained from the negation of T . The conjunction
of these clauses is equivalent to the prenex skolemised conjunctive normal form (CNF) of ¬T .
Its advantages are the followings :

- it uses only one simple deduction rule which generates new clauses from preceding clauses;
- it is complete for refutation in predicate calculus.

Its disadvantages are the followings :
- the growth of the number of generated clauses is exponential, as well as the necessary time to

obtain a proof;
- the sets of clauses and the proof (derivation) are not easily readable by humans.

On the other hand, in 1971, Bledsoe [1] reintroduced natural methods. He showed that proofs
obtained by “natural deduction” 1 were shorter than those obtained by Resolution. His program
PROVERworks on first-order formulas. It puts emphasis on the notions of hypotheses and conclusions.
It uses splitting and rewriting general rules general (SPLIT) or specific for set theory (REDUCE).
Here are some examples of rules

SPLIT

A ∧B is divided into two sub-theorems A et B
A ↔ B is changed to (A → B) ∧ (B → A)
∀xP (x) ” P (x)
p → (A → B) ” p ∧ A → B
p → A ∧B ” (p → A) ∧ (p → B)
p ∨ q → A ” (p → A) ∧ (q → A)
A → ∀xP (x) ” A → P (y) où y is a new variable
∃xP (x) → D ” P (y) → D ”
x = y → P (x, y) ” P (y, y) if y is a variable

Moreover, a subroutine OR-OUT tries to convert formulas of type H → C to the types p ∨ q → A
or p → A ∧B.

For example, it converts A ∧ (B ∨ C) → D to (A ∧ B) ∨ (A ∧ C) → D and (A → B) → C) to
(¬A ∨B) → C which are then split.

Here are some examples of rules for set theory

1 For Bledsoe, the meaning of the terms “natural deduction” differs from what it is in Gentzen’s rules; it is both
larger and less formal
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REDUCE

s ∈ A ∩B is changed to s ∈ A ∧ s ∈ B
s ∈ A ∪B ” s ∈ A ∨ s ∈ B
s ∈ P(A) ” s ⊂ A
C ⊂ A ∩B ” C ⊂ A ∧ C ⊂ B
A ∪B ⊂ C ” A ⊂ C ∧B ⊂ C

and some other general rules

¬(A ∧B) is changed to ¬A ∨ ¬B
¬(A ∨B) ” ¬A ∧ ¬B
¬ ∀xA ” ∃x¬A
¬ ∃xA ” ∀x¬A

Other major parts of the program are its heuristic handling of equality and equivalence and the
use of induction. If a subtheorem is not proved, Resolution is then called for this subtheorem.

An example of a proof

Theorem to be proved P(A) ∩ P(B) = P(A ∩B)

Proof : Since the main connective is “=”, it is changed to
P(A) ∩ P(B) ⊂ P(A ∩B) ∧ P(A ∩B) ⊂ P(A) ∩ P(B)

Splitting
(1) (2)

P(A) ∩ P(B) ⊂ P(A ∩B) P(A ∩B) ⊂ P(A) ∩ P(B)
t ∈ P(A) ∩ P(B) → t ∈ P(A ∩B)
t ∈ P(A) ∧ t ∈ P(B) → t ∈ P(A ∩B) proof
t ⊂ A ∧ t ⊂ B → t ⊂ A ∩B similar
t ⊂ A ∧ t ⊂ B → t ⊂ A ∧ t ⊂ B
true because each part of the conclusion true

is contained in the hypotheses

A proof obtained by Resolution is long and tedious (11 clauses at the beginning).

3 A first program based on “natural deduction”
(Datte, alias muscadet0)

We will see in this section the main principles and ideas which lead to Datte, a first prover written
in Fortran (!). They are still the same in Muscadet. Datte may be seen as the version 0 of
Muscadet.

Datte used “natural” methods, as Bledsoe’s program [1], and some other still more efficient
human-like methods. The representations were really ugly from a modern point of view and the
programming style obsolete. For these reasons, I will not give details about them but only describe
the methods and the results in an informal manner.

Rather than rewriting rules, conditional actions are used. Some of them are general for logics
and general mathematics, other ones are automatically built from the definitions.

3.1 General rules

Here are some general high-priority rules.

To prove ∀xP (x) take any x1 and prove P (x1)
To prove A ⇒ B, assume A and prove B
To prove A1 ∧ A2 ∧ . . . ∧ An prove all the Ai one after the other
To prove C if A ∨B is a hypothesis, prove (A ⇒ C) ∧ (B ⇒ C)
To prove ¬A assume A and search for a contradiction (i.e. prove false)
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To assume A :
- if A is elementary (of the form p(. . .)), or is an existential formula assume it as a new hypothesis;
- if A is a conjunction A1 ∧ A2 ∧ . . . ∧An, assume each Ai ;
- if A is an universal hypothesis, it is not added as a hypothesis; in the place, new rules are built, as
explained in sections and 3.2 and 3.4.

Then, hypotheses are :
- either elementary (of the form p(. . .); )
- either a disjunction;
- either an existential formula;
- either the constant false (a contradiction has been found).

The conclusion (only one) is :
- either elementary;
- either an existential formula;
- either a disjunction;
- either the constant true (the (sub)theorem has been proved) or false (search for a contradiction)

A (sub)theorem is proved if the conclusion is true, or if a hypothesis is false, or if the conclusion is
the same as one of the hypotheses.

Some other rules handle some special cases of disjunctive or existential hypotheses, or conclusion.

More over, here is an other example of a general rule which has a lower priority
• if there is, among the given definitions, a definition of the predicate of the conclusion,

the conclusion may be replaced by its definition.
Notice that this is not the case for the hypotheses. For example, a conclusion A ⊂ B may be replaced
by its definition ∀X(X ∈ A ⇒ X ∈ B) but a hypothesis A ⊂ B is never replaced.

3.2 Built rules

By some transformations analogous to preceding ones, other rules are automatically built from the
definitions, lemmas and universal hypotheses. The idea is to split and to simplify the statements as
much as possible.

For example, from the definition of inclusion
∀A ∀B (A ⊂ B ⇔ ∀X (X ∈ A ⇒ X ∈ B)

the following rule is built :
• if A ⊂ B and X ∈ A are hypotheses

then add the hypothesis X ∈ B
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A first example of a proof

Theorem to be proved ∀A ∀B ∀C (A ⊂ B ∧B ⊂ C ⇒ A ⊂ C)

Proof (remember that new hypotheses are added, but a conclusion is replaced) by a new one.

introduce hypotheses conclusion
∀A ∀B ∀C (A ⊂ B ∧B ⊂ C ⇒ A ⊂ C)

a, b, c a ⊂ b ∧ b ⊂ c ⇒ a ⊂ c
a ⊂ b
b ⊂ c a ⊂ c

∀X(X ∈ a ⇒ X ∈ c)
x x ∈ a ⇒ x ∈ c

x ∈ a x ∈ c
x ∈ b
x ∈ c true

3.3 Functional symbols

Strategies are designed to work with predicates rather than with functional symbols. Datte worked
only with predicates.

For example inter(C,A,B) was used to mean that C is the intersection of A and B.
In following versions (see section 4), functional symbols have been authorized, but they are automatically
“eliminated” in the following sense, C : A ∩ B is the same as inter(C,A,B) and is handled as a
predicate formula.

Easily done if arguments are constants (the prover has just to create a new constant), it is more
complicated if there are variables. In particular, it depends if the functional symbol appears in a
hypothesis or in a conclusion, as we will see in the next section.

3.4 Rules for functional symbols

From the definition of powerset ∀A ∀X(X ∈ P(A) ⇔ X ⊂ A)
(for Datte ∀A ∀B (powerset(B,A) ⇒ ∀X(X ∈ B ⇔ X ⊂ A))
the following rule is built :
• if P(A) : B and X ∈ B are hypothesis

then add the hypothesis X ⊂ A

From the definition of intersection ∀A ∀B ∀X(X ∈ A ∩B ⇔ X ∈ A ∧X ∈ B)
(for Datte ∀A ∀B ∀C (inter(C,A,B) ⇒ ∀X(X ∈ C ⇔ X ∈ A ∧X ∈ B))
the following rules are built :
• if A ∩B : C and X ∈ C are hypotheses

then add the hypothesis X ∈ A if it is not yet a hypothesis.
• if A ∩B : C and X ∈ C are hypotheses

then add the hypothesis X ∈ B if it is not yet a hypothesis.
• if A ∩B : C, X ∈ A and X ∈ B are hypotheses

then add the hypothesis X ∈ C if it is not yet a hypothesis.

Notice that the condition “C : A ∩ B” [resp. “B : P(A)”] is a hypothesis which is verified only
if the intersection of A and B [resp. the powerset of A] has already been introduced.

Moreover, the replacement of the conclusion by its definition is expressed by the following rule
:
• if the conclusion to be proved is X ∈ B

and if there is a hypothesis b : f(a, . . .)
and a definition ∀A∀B(B : f(A) ⇒ ∀X(X ∈ B ⇒< definition >))

then replace the conclusion by its definition
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Another example of a proof

Theorem to be proved ∀A∀B∀C(P(A ∩B) ⊂ P(A) ∩ P(B)

introduce hypotheses conclusion
∀A∀B∀C P(A ∩B) ⊂ P(A) ∩ P(B)

a, b P(a ∩ b) ⊂ P(a) ∩ P(b)
c c : a ∩ b
pc pc : P(c)
pa, pb pa : P(a), pb : P(b)
pd pd : pa ∩ pb pc ⊂ pd

∀X(X ∈ pc ⇒ X ∈ pd)
x x ∈ pc ⇒ x ∈ pd

x ∈ pc x ∈ pd
x ⊂ c

x ∈ pa ∧ x ∈ pb
subtheorem (1) subtheorem (2)

x ∈ pa x ∈ pb
x ⊂ a
∀X(X ∈ x ⇒ X ∈ a)

t t ∈ x ⇒ t ∈ a) analogous
t ∈ x t ∈ a
t ∈ c
t ∈ a

true true

3.5 Processing of existential hypotheses

An existential hypothesis ∃Xp(X) may lead to the creation of a new element a verifying the property
p. This treatment is not systematically done because it could be expansive.

For example, if f is a mapping from E to E and there is an element a in E, a rule (built from
the definition of mappings) states that ∃Y (Y ∈ E ∧ Y : f(a)). Its treatment leads to the creation
of an element y1 such that y1 ∈ E and y1 : f(a). This could lead to an infinite sequence of elements
a → y1 → y2 → . . . . More over, if f is a surjection, each element in A could lead to an infinite
sequence of antecedents . . . → x2 → x1 → a. So, this treatment has a low priority and new elements
are created one by one, and successively for all existential properties in the order where they have
been added. The high-priority rules are applied again between two creations.

An example on mappings

Theorem to be proved

Consider three mappings f : A → B, g : B → C, h : A → C; if any two of the
three mappings hogof , fohog, gofoh are injections (resp. surjections) and the third is a
surjection (resp. injection), then f , g and h are bijections [one-to-one].

There are six different independent theorems to be proved. Each of them is split into two subtheorems
(one for injection and one for surjection). Each of these 12 subtheorems needs to introduce several
elements (5 for the easiest, 9 for the most difficult).

For example, for one of the easiest subtheorem, with hogof injective, gofoh and fohog surjective,
to prove that h is injective, let c1 and c2 in C with the same image a3 = h(c1) = h(c2) in A, the
conclusion to be proved is c1 = c2.

The following elements must be created :
c4 = (gofoh)

−1(c1) (surjectivity of gofoh), a5 = h(c4), b6 = f(a5), c1 = g(b6) (surjectivity of h),
c7 = (gofoh)

−1(c2) (surjectivity of gofoh), a8 = h(c7), b9 = f(a8), c2 = g(b9) (surjectivity of h),
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then hogof(a5) = a3 = hogof(a8)
a5 = a8 (injectivity of hogof)
b6 = b9 and c1 = c2 (definition of mapping), QED

Datte proved theses theorems. It introduced some more useless elements (1 for the easiest, 11
for the most difficult).

Detailed proofs may be found in [12, 14].

3.6 Processing of disjunctive hypotheses

An existential property A ∨ B leads to splitting into two subtheorems, one of them has hypothesis
A, the second one has hypothesis B. As existential hypotheses, they are not systematically treated.
If an existential hypothesis had be treated too early, some parts of the proof which do not depend
on it would be done in each subtheorem. Worse, if it is useless for the proof, both subtheorem proofs
would be repeated identically. And the worst, if it is useless and its application may be expansive it
would lead to infinite splitting.

There are really no reason to process disjunctive hypotheses before or after existential hypotheses.
Only experiments showed that it was better to begin with existential hypotheses. It is easy to modify
the priority to choose the opposite.

3.7 Negation

Negations are removed as much as possible. In my opinion, “positive” properties are more important
than “negative” ones because they give more information and are easier to handle. Rules built from
definitions are made to work with positive properties rather than negative ones. There are some
exceptions where negative properties must be considered as positive.
Here are two usual relations for which mathematicians have a special notation :

x 6= y for ¬(x = y) and x /∈ y for ¬(x ∈ y)
x 6= y is frequently useful. x /∈ y is useful for problems on complements of sets.
In natural language there are also specific words for these relations : different and non-membership
(at least in French).
It is also the case when we speak of non-empty sets. This property is positive (there exists as least
an element) and being empty is negative (there does not exist any element). So the defined property
is

∀A(nonempty(A) ⇔ ∃x(x ∈ A))
It is the same for non-disjoint sets

∀A∀B(nondisjoint(A,B) ⇔ ∃x(x ∈ A) ∧ x ∈ B))
We will see later (section 4) that, if the prover receives definitions

∀A(empty(A) ⇔ ¬∃x(x ∈ A))
∀A∀B(disjoint(A,B) ⇔ ¬∃x(x ∈ A) ∧ x ∈ B))

it replaces them by
∀A (nonempty(A) ⇔ ∃x(x ∈ A))
∀A (empty(A) ⇔ ¬ nonempty(A))
∀A∀C(nondisjoint(A,B) ⇔ ∃x (x ∈ A ∧ x ∈ B))
∀A (disjoint(A,B) ⇔ ¬ disjoint(A,B))

it is able to define disjoint(A,B) as above.

3.8 High-order

Datte was able to work in second-order 2. For example, it is possible to define properties of a

2 More exactly in “pseudo second order”; as formulas are written in Polish prefix notation, R cannot have an arity
0 and 2. A ternary symbol “.” has been introduced, we write the prefix formula “. R x y” instead of R(x,y). It is
the same for mappings which are handled as relations. “. f x y” means “f(x)=y”. In the following version (see next
section) it is really second order.
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relation (variable R), such as transitivity, order, congruence, etc., and then express that a particular
relation verifies theses properties.

For example, a relation may be transitive, an order relation, a congruence relation, ... . Inclusion
and inequality ≤ are order relations, equality of sets is a congruence. This was particularly useful
in axiomatic set theory where the membership relation is a strict order on ordinal numbers.

It is the same for mappings. A particular mapping may be injective, surjective or one-to-one,
etc.

These properties are defined for a relation as a variable.
For example, the definition

∀R (transitive(R) ⇔ ∀X ∀Y ∀Z (R(X,Y ) ∧R(Y, Z) ⇒ R(X,Z))) 3

may be applied to the inclusion of sets or to any other defined binary relation.

3.9 Results

About 150 theorems have been proved in set theory, mappings, congruence relations, orderings,
ordinal numbers. Most of them come from [5, 6, 17, 18]. Some of them are difficult and were not
proved by other provers until a few years ago.. Many examples of proofs may be found in [12].

4 A knowledge-based prover using knowledge and metaknowledge
(Muscadet1)

The second great influence in the development of Muscadet was the emergence of expert systems.
Datte has been rewritten as a knowledge-based system.

Muscadet1 is composed of an inference engine, which interprets and executes rules, and of one
or several bases of facts (bases of rules and metarules, internal representations of “theorems to be
proved”). The inference engine was written in PL1 and was later translated in Pascal. Mathematical
knowledge is expressed in a language close to usual mathematical language. A specific language has
been defined to express rules.

Rules are either universal and put into the system, or built by the system itself by metarules
from data (definitions and lemmas) given by the user. They are in the form

if <list of conditions> then <list of actions>.
Conditions are normally properties that are quickly verified. Actions may be either elementary
actions which are quickly executed, or super-actions which are defined by packs of rules.

The representation of a theorem to be proved (or a sub-theorem) is a description of its state
during the proof. It is composed of objects that were created, of hypotheses, of a conclusion to
be proved, of rules called active rules, possibly of sub-theorems, etc. At the beginning, it is only
composed of a conclusion, which is the initial statement of the theorem to be proved, and of a list
of rules, which are called active, i.e. relevant for this theorem, and which have been automatically
built.

Active rules, when applied, may add new hypotheses, modify the conclusion, create new elements
(“objects” in the new terminology of Muscadet1), create sub-theorems or build new rules which
are local for a (sub-)theorem.

All the strategies which were programmed in Datte are expressed as rules and metarules. They
are more easily expressed and handled.

It is possible to write formulas really in second order and also to use predicates or functions
with a flexible arity.4 This last possibility is particularly useful for conjunctions and disjunction.
For example, to prove a conjunction of n terms, instead of n-1 splitting into 2 sub-terms, we have
one splitting into n terms. It is the same for a hypothesis which is a disjunction. As splitting is
expensive in time, this is very useful. Not so important but convenient is the fact that the same
relation symbol may be binary, ternary or more.

3 for Datte . R X Y ∧ . R Y Z ⇒ . R X Z
4 Formulas are written as lists, (P X Y ) for P(X,Y), (AND C1 C2 C3) for C1 ∧ C2 ∧ C3
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Some new mechanisms have been defined. Here is a very useful one which allows the use of
functional symbols in the data.

Elimination of functional symbols

As explain in section 3.3, the prover works with predicates instead of functional symbols. If
arguments are constant, it is easy, p(f(a)) may be replaced by

b : f(a) ∧ p(b)
where b is a new object.
If X is a variable, p(f(X)) may be replaced either by

∀Y (Y : f(X) ⇒ p(Y )),
or by

∃Y (Y : f(X) ∧ p(Y )).
The better form depends on the position of p(f(X)) in a statement (positive or negative).
So, a new quantifier noted “!” has been created, which means “for the only ... equal to ...”.

!Y : f(X) p(Y ) 5 means “for the only Y equal to f(X) then p(Y ) holds”

This transformation is systematically done in the beginning of the proof for the theorem to be
proved and for definitions and lemmas. Then specific rules are applied while building rules, then
during the proof.
Sometimes “!” is handled as ∀

To prove !Y : f(X) p(Y ) create a new object Y 1 such that Y 1 : f(X) and prove p(Y 1).6

Other times, it is handled as ∃
If !Y : f(X) p(Y ) is a hypothesis,
then create a new object Y 1 and add the hypotheses Y 1 : f(X) and p(Y 1).7

This last treatment is systematically done, contrary to the same treatment for existential hypotheses.

5 Application to difficult mathematical domains

All the mechanisms described in the preceding section have been expressed as rules and metarules,
instead of being programmed. Moreover, it allowed to easily express specific mathematical know-
how, general or for specific mathematical domains. It has been applied to topological linear spaces
and to cellular automata. For these domains, it has been necessary to explicit specific know-how

For this, I observed myself while trying to prove theorems in these domains. I also observed
mathematicians trying to solve problems. The problems were chosen by myself or by them. I have
asked them to think aloud and when they paused I encouraged them to speak, or I asked them
questions on what they were thinking about. It is not sure that the reasons they gave to explain
why they did something or another one was really the right ones. But the aim was not to exactly
simulate the human reflexion (partly subconscious) but to find legitimate and general reasons to do
something useful (see [13, 14]).

After these observations I have been able to write rules expressing know-how, and Muscadet

has been able to prove some rather difficult theorems.

5.1 Topological Linear Spaces

Muscadet worked on some problems of [24]. After some easy theorems I worked in particular on
the two following difficult theorems.

ThA. If U is a neighbourhood of the origin O of a TLS (Topological Linear Space), then there
exists a neighbourhood V of O, included in U, star-shaped and symmetric relative to O.

5 p(f(X)) is written (p(f X)), !Y : f(X) p(Y ) is written (only (:(f X)Y)(p Y))
6 There does not remain any free variable in a conclusion to be proved, so X has already been instantiated when

this rule is applied.
7 It is the same for the hypotheses.
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ThB. If U is a neighbourhood of the origin O of a TLS (Topological Linear Space), then there
exists a neighbourhood V of O, included in U, star-shaped and symmetric relative to O, such that
x ∈ V , y ∈ V implies [x, y] ⊂ U .

The observed researchers were authorized to use, and later Muscadet received, knowledge
and know-how about linear spaces and topological spaces but only the definition of topological
linear spaces. It is interesting to remark that as one of the researchers was just about giving up, I
reminded him, and insisted, that he was supposed to know nothing excepted the definition. Then
he immediately had the good idea. Probably he was too knowledgeable about TLS to think to the
elementary definition. Then he quickly applied it to the good operation. With some difficulty he
was able to justify the fact that he did not even think to apply it to the other operation.

Muscadet proved this theorem with a specific knowledge base. This allowed handling difficult
notions, and using non-trivial knowledge and know-how about these notions. This knowledge is not
formal, but rather operational. For example, the formal definition of neighbourhoods is of little
help, it is more useful to know methods to prove that a set is a neighbourhood, and heuristics
to choose one of these methods in different situations, and also to know the particular bases of
neighbourhoods usually used in particular situations. The knowledge base also contained rules for
symbolic calculation, handling product sets and special cases of products, for example products of
two equal sets.

The knowledge base and the proofs of some theorems are given in detail and analysed in [13].

5.2 Kuratowski theorem

The Kuratowski theorem about ordered-pair (a, b) = (c, d) ⇒ a = c ∧ c = d) was known as a
difficult theorem to be automatically proved although it is trivial for mathematicians.

The definition of ordered pair (a, b) is that used in axiomatic theory :
ordered-pair (a, b) = {{a}, {a, b}}}
singleton {a} = {x | x = a}
unordered-pair {a, b} = {x | x = a ∨ x = b}

Mendelson [9] says “The definition of (a, b) does not have any intrinsic intuitive meaning. It is
just a convenient way (discovered by Kuratowski) to define ordered pairs so that one can prove the
characteristic property of ordered pairs expressed in the proposition”.

Mendelson’s proof contains 4 splittings, 6 subtheorems.
Resolution proofs are very long.
Brown’s proof [3] by the “Fundamental Deduction Principle” is also very long.
Muscadet proof is rather long : 8 splittings, 13 subtheorems.

With an additional know-how knowledge, Muscadet proved the theorem with only one splitting
and 2 subtheorems. The idea is to give knowledge about degenerate cases. In this example the hint
is to split into a = b and a 6= b, and to know that {a, a} = {a} and {a, b} is different from any unit
set if a 6= b.

Muscadet proof may be found in [14].

5.3 Cellular automata

Work on Cellular automata has been done on request of a mathematician. In this domain, researchers
create automata to solve problems. The creative part is to imagine and formalize the automata.
Although they may intuitively justify their results and verify them for many values of n. They also
must formally and rigorously verify the correctness of their automata. This is tedious for them.
Would Muscadet or a future prover be able to do it ?

As an experiment, Muscadet worked on a contribution of Mazoyer [8].
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n machines are all in the quiescent state L at time 0. The problem is to define a set of states
and transition rules so that all machines fire, i.e. enter a special distinguished state for the first time
at the very same moment in the minimal time (2n− 1).

Mazoyer found a 6-state minimal time solution. After having created the automaton, he had to
prove that it is a solution of the problem. He decomposed the proof into 11 lemmas which lead to
the final theorem.

Here are some notations and an example of definition.

Notations
If ≤ m < n, we let DDm be the set {(m− i,m+ i), (m− i,m+ i+ 1)|i ∈ {−1, 0, ...,m− 1}}
If ≤ m < n and 1 ≤ k < j ≤ m+ 1, we let DDm,j,k be the set

DDm ∩ {(l, t)|k ≤ l ≤ j} = {(m− i,m+ i), (m− i,m+ i+ 1)|i ∈ {m− j, 0, ...,m− 1}}
Definition
Suppose j ≥ k and k ≥ 1; we say that DDm,j,k is basic in state x if

all sites (i, 2m− i), (i, 2m− i+ 1) with i ∈ {m− j + 1, ...,m− k − 1} have state x.

First lemma (trivial for the researcher, easy for Muscadet)
Every site(K, t) with K > t has state L.

A simplification of the second lemma to be proved
Let 1 < m, 1 < k, ≤ k and j ≤ m+ 1. If DDm,j,k is basic in A and if site (k − 1, 2m− k + 1) has
state A, then the first diagonal of DDm+1,j,k is also basic in A.

Muscadet spent an unreasonable time while working on the order relation on natural numbers,
whereas observed researchers reflexively applied the order properties. In particular as order may be
large or strict (x ≤ y ⇔ x < y ∨ x = y), a great many splittings are done. It had to know that
properties as state or site were more important that ordering.

Moreover, Muscadet was not able to calculate, even with concrete numbers, it had to receive
some arithmetic rules.
To help Muscadet, I also gave it the following knowledge :
- introduce the concept of successor suc(x) for x+ 1 and the following properties

x < y ⇒ suc(x) ≤ y
x < y ⇒ x ≤ y

- introduce a special function f(m, i) for 2m− i and the following properties
f(m, i+ 1) = f(m, i)− 1
f(m+ 1, i) = f(m, i) + 1 + 1

details may be found in [14].

It would have been necessary to combine theorem proving Muscadet and symbolic computation.
A work has been started in this direction, then continued with Muscadet2 where Prolog made it
easier, then given up.

6 A Prolog prover using declarative as well as procedural knowledge
(Muscadet2)

To make the expression of know-how easier to write, and in particular allowing the expression of
procedural strategies, Muscadet has been rewritten in Prolog. This allowed more flexibility for
knowledge from really declarative rules to quite procedural rules, as well as more or less declarative
rules, or mixing declarative and procedural items in a rule.

It is useful for example to scan a conjunctive conclusion and prove each element instead of doing
many splittings. And it is crucial to avoid to split a disjunctive hypothesis if the nth term of the
disjunction is trivially verified.

11



Each time that a developer discovers that a task takes more time that it should do, he/she may
define a Prolog predicate to speed up.

The inference engine of Muscadet1 has been replaced by the Prolog interpreter (unification,
manipulation of expressions) completed by a small inference engine written with few Prolog clauses.

Prolog conventions are used for variables and constants. Formulas are written in infix and
partially parenthesized notations, almost as mathematicians do.
For example

A subset B <=> forall (X, X in A => X in B)

and also
A inter B = [X, X in A and X in B]

forall (X in A, exists(Y in B, p(X,Y,A,B)))

forall(X in real,(forall Y in real,(forall(Z in real,X$<$Y and Y$<$Z => X$<$Z)))

A consequence of this choice is that, as in DATTE before, second-order has to be a pseudo second-
order. A Prolog predicate is defined for this. Its name is “..” and the argument is a list the first
argument of which is the relation or the function symbol. This choice has been made for the following
reason. In Prolog we have the predefined predicate “=..” with

r(a,b) =.. [r,a,b]

r(a,b) and ..[r,a,b] are not unified by Prolog but
r(a,b) =.. H gives H = ..[r,a,b]

Here are some examples of how rules and actions are written 8.

rule(N, =>) :- concl(N, A => B), addhyp(N, A), newconcl(N, B)

rule(N, forall) :- concl(N, forall(X,C)), create_object(X1)

addobj(N, X1), replace(C, X, X1, C1),

newconcl(N, C1).

newconcl(N, C) :- retractall(concl(N, _)), assert(concl(N, C))

ajhyp(N, H) :- ( H = A and B -> addhyp(N, A), addhyp(N,B)

...

; H = ..[R, X, Y] -> H1 =.. [R, X, Y], addhyp(N, H1)

; H = forall(_, _) -> buildrule(H,N)

...

; assert(hyp(N, H))

)

7 A prover knowing nothing about mathematics apart logics
Application to TPTP problems – CASC competitions – Muscadet3

To work on problems of the TPTP 9 Library, Muscadet had to first translate the TPTP statements
intoMuscadet statements. Since they were first-order formulas, they were not very different, except
for some points.

First, some abbreviations mathematicians are comfortable with were forbidden, for example
relativized quantifiers could not be used. Formulas such as

forall(X in A, p(X))

had to be translated into
(! [X] : member(X,A) => p(X))

in TPTP syntax. On the opposite, TPTP uses the following abbreviation

8 Slightly simplified for readability
9 Thousands of Problems for Theorem Provers. Created in 1993 by Sutcliffe and Suttner, this Library first contained

only problems expressed as sets of clauses (CNF). In 1999 some problems expressed as first-order formulas (FOF)
have been introduced : 217 FOF problems among 3330, 5 of them in set theory (SET). Now (in 2014), there are about
20000 problems, about 8000 of them in FOF and about 1400 of them in SET+SEU (SET continued).
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( ! [X,Y,Z] : p(X,Y,Z))
instead of

forall(X, forall(Y, forall(Z, p(X,Y,Z))))

The most important constraint was the fact that TPTP knows logical notations but knows nothing
about mathematics. Even the membership relation, which is a primitive notion in set theory, had
to be handled as any other binary relation. This added a difficulty for Muscadet which had to
be adapted. In particular, methods using the membership relation had to be rewritten in a more
general manner (for example, methods handling functional symbols).

Still more important, in mathematical knowledge bases, each mathematical statement was labeled
as a definition or a lemma. Lemmas are axioms 10 (in an axiomatic context) or preliminary known
results necessary to prove a theorem (for example known results of a sub-domain of the studied
domain). Muscadet had to recognize statements which are definitions. If a definition is not
recognized as a definition, it will still be used but in a less efficient manner.

The Library is fed with contributions of researchers. I proposed some problems.

Since 1999, Muscadet has participated to the CADE ATP System Competition (CASC) and has
proved some theorems that no other prover could prove. This shows its complementarity with other
provers.

Then, in Muscadet3, the syntax used to express formulas is the TPTP syntax, not only for input
formulas and output, but also for internal representations, and results display. To avoid confusions,
although it was not necessary, some internal symbols have been modified, such as : which became
:: in only(f(X)::Y,p(Y)) to avoid confusion 11 with ! [X] : p(X)

This option is still available for non TPTP problems.

8 Relevant proofs – Utilities and tools (Muscadet4)

Until then, Muscadet displayed all the steps of its search or, on option, only the result (proved,
unsatisfiable, gave up or time out). It was a great weakness because to verify that the proof is correct,
or to try to understand the reasons of failure, one had to manually extract the relevant steps of the
displayed trace. It might be long and difficult. Moreover, in CASC competitions, systems that do
output solutions have been highlighted in the presentation of results.

This new version is now able to extract relevant steps. It has been difficult to implement because of
the calls to procedural actions in the rules.

Many modifications had to be done :
- step numbers are new parameters, in facts and rules (the number of the current step in the actions
and the preceding step numbers of each fact in the conditions),
- an explanation is given or automatically built for each step,
- these parameters are passed in many Prolog predicates,
- all steps are memorized with these informations,
- the path from the success step up to the first step is extracted.

Examples of Muscadet proofs may be found in
http://www.math-info.univ-paris5.fr/∼pastre/muscadet/examples (exemples for the French version).

10 TPTP uses the keyword axioms with another meaning
11 In the reader’s mind, the machine doesn’t matter
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The prover may be simply called by an executable C program, with the address or the name of
a theorem to be proved, and options if needed (see [15]).

It may also be called under Prolog. In this case it is possible to display all the facts, and also
all the memorized steps and examine them, with the help of Prolog commands.

There are also some shell scripts to analyse the proofs.

9 Conclusion

Muscadet functions in a manner which is quite different from resolution-based provers. It uses
methods based on natural deduction and is a knowledge-based system.
The reasons for its efficiency in a number of circumstances have been analysed in details with many
examples in [16]. These include
• the fact that the growth of the bases of facts in linear, not exponential ;
• the importance and efficiency of the chosen representations of the problem ;
• the splitting of a (sub)theorem in many subtheorems easier to prove, independent or not ;
• the treatment of functional symbols which flattens the handled expressions ;
• the replacement of definitions and universal hypotheses by natural and efficient rules ;
• the treatment of equalities and negations which removes them as far as possible.

Muscadet is efficient for everyday mathematical problems which are expressed in a natural manner,
for example in naive set theory. It is not efficient for problems which are defined axiomatically, from
a logician’s point of view, for instance in the fields of axiomatic geometry or axiomatic set theory.
Muscadet is efficient to solve problems which involve many axioms, definitions or lemmas. It is
not efficient at all to solve problems which involve only one large conjecture and no intermediary
definitions.

Muscadet cannot prove some theorems that resolution-based provers can easily prove. Nowadays,
the best generalist theorem provers are based on the resolution principle, as shown by the results
of the CASC competitions [22]. The winner of the FOF12 division has been the resolution-based
prover Vampire [19] for several years.
However Muscadet showed its complementarity with resolution-based provers. More ever, a great
advantage is that it displays proofs easily readable by a human reader.

Nowadays, Muscadet is no longer being actively improved, except the interface to make it more
and more easy to use.
Nevertheless, the analyses of failures (obtained from CASC or by users) often lead to the correction
of bugs or to some improvements of some rules, metarules or heuristics.

Another way to have theorem proving progress with Muscadet is to have it cooperate with other
provers.
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