
MUSCADET version 4
User's Manual

http://www.normalesup.org/~pastre/muscadet/manuel-en.pdf 1

03/22//2018

Dominique PASTRE 2

pastre@phare.normalesup.org

1. Introduction..1
2. Examples..2

2.1. Transitivity of inclusion...2
2.2. Power set of the intersection of two sets...3

3. From Muscadet1 to Muscadet4..4
4. Machine representations ..7

4.1. Expression of mathematical statements...7
4.2. Expression of facts..8
4.3. Expression of rules..8
4.4. Expression of super-actions...9

5. How to use Muscadet4...10
5.1. Direct proof ...11
5.2 From files containing theorems and definitions...11
5.3. From the TPTP library...13
5.4 Modification of default options..13

6. Definitions and lemmas..14
7. Elimination of functional symbols...16
8. Building rules...17
9. Activation and order of rules..17
10. Some strategies...18

10.1. Processing of universal conclusions and of implications..18
10.2. Processing of conjunctive conclusions ...18
10.3. Processing of universal hypotheses ..19
10.4. Processing of existential conclusions ...19
10.5. Processing of existential hypotheses ..19
10.6. Processing of disjunctive conclusions ..19
10.7. Processing of disjunctive hypotheses ...19
10.8. Knowledge specific to certain domains...20

11. Second order statements ..20
12. Distribution...21
13. References..21

1. Introduction
The MUSCADET theorem prover is a knowledge-based system. It is based on natural deduction,
following the terminology of Bledsoe (Bledsoe[71, 77]), and uses methods which resemble those
used by humans. It is composed of an inference engine, which interprets and executes rules, and of
one or several bases of facts, which are the internal representations of “theorems to be proved”.

1 French version in http://www.normalesup.org/~pastre/muscadet/manuel-fr.pdf
2 LAFORIA, University Pierre et Marie Curie (Paris 6) then CRIP5/LIPADE, University Paris Descartes (Paris 5)

- 1 - last update March 22, 2018

Rules are either universal and put into the system, or built by the system itself by metarules from
data (definitions and lemmas) given by the user. They are in the form if <list of conditions>, then
<list of actions>. Conditions are normally properties that are quickly verified. Actions may be
either elementary actions which are quickly executed, or “super-actions” which are defined by
packs of rules.

The representation of a “theorem to be proved” (or a sub-theorem) is a description of its state during
the proof. It is composed of objects that were created, of hypotheses, of a conclusion to be proved,
of rules called active rules, possibly of sub-theorems, etc. At the beginning, it is only composed of a
conclusion, which is the initial statement of the theorem to be proved, and of a list of rules, which
are called active, i.e. relevant for this theorem, and which were built automatically.

Active rules, when applied, may add new hypotheses, modify the conclusion, create new elements,
create sub-theorems or build new rules which are local for a (sub-)theorem. If the conclusion was
set to true - for example, if the conclusion to be proved was added as a new hypothesis or if there
is an existential conclusion X p(X) and a hypothesis p(a) - then the theorem is proved. If it is only
a sub-theorem, this information is transmitted up to the theorem that created it.

2. Examples
In all this text, PROLOG conventions will be used to write constants (names starting with a lowercase
letter) or variables (names starting with an uppercase letter or with the symbol “_”). Moreover, in
informal parts, these conventions will be extended to predicates (which is not possible in PROLOG),
and by extension, P(X) will be used to write whatever expression which depends on X.

2.1. Transitivity of inclusion

Prove the transitivity of inclusion
ABC (AB ∧ BC  AC)

with the definition of inclusion
AB  X (XA  XB)

To prove this theorem MUSCADET creates objects a, b and c by applying three times the rule
Rule : if the conclusion is X C(X)

then create a new object x and the new conclusion is C(x)
and the new conclusion is

a  b b  c  a  c
Then the rule

Rule : if the conclusion is H  C
then add the hypothesis H and the new conclusion is C

replaces the conclusion by a  c and adds the two hypotheses a  b and b  c .
In effect, hypotheses H are analyzed before being added: a super-action addhyp(H) contains, among
others, the rule

if H is a conjunction,
then successively add all the elements of the conjunction

(This rule is of course recursively applied if necessary).
The conclusion is then replaced by its definition

X (Xa  Xc)
by applying the rule

- 2 - last update March 22, 2018

Rule def_concl_pred : if the conclusion is C
there exists a definition of the form C  D

then the new conclusion is D
By the preceding rules  and , there is then a new object x, a new hypothesis xa, and the
conclusion is now xc.
The following rule

Rule : if there are hypotheses AB and XA
then add the hypothesis XB

is a rule that was automatically built by MUSCADET from the definition of inclusion.
Here it is applied twice, adds the hypotheses xb then xc, which is the same as the conclusion to
be proved.
The proof ends by applying the rule

Rule stop_hyp_concl : if the conclusion C is also a hypothesis
then set the conclusion to true

MUSCADET is able to work in second order predicate calculus, and the preceding example may be
written in the form

transitive()
with the definition of the transitivity of a relation R

transitive(R) ABC [R(A,B) ∧ R(B,C)  R(A,C)] 3

After the conclusion transitive() is replaced by its definition, the proof is the same as above.

One may also work with the power set of a set
E transitive(, P(E))

with transitive(R,E)  ABC (AE  BE  CE  [R(A,B)  R(B,C)  R(A,C)])

 and X P(E)  X (XE  XE

Relativized4 quantifiers may be used in order to reduce writing:
transitive(R,E)  AE BE CE [R(A,B)  R(B,C)  R(A,C)]

XP(E)  XE XE

2.2. Power set of the intersection of two sets

Prove the following theorem
AB (P(AB) =set P(A)  P(B))

with the definition of the intersection
XAB  XA  XB or AB = {X ; XA  XB}

of the power set of a set
X P(E)  X (XE  XE) or P(A) = {X ; XA}

and of the equality of sets
A = set B  AB  BA

After the creation of objects a and b, as in the preceding example, by a rather complex mechanism
which will be described in section 7, MUSCADET “eliminates functional symbols”  and P. To do this

3 As predicate variables are not possible in PROLOG, we will see in section 11 how to express R(A,B)
4 XA P(X) is short for X (XA  P(X)), XA P(X) for X (XA  P(X))

- 3 - last update March 22, 2018

it creates, by means of the operator “:”, the objects ab:c, P(a):pa, P(b):pb and papb:pd. The new
conclusion is then

pc =set pd
After replacement of the equality of the conclusion by its definition, that is

pcpd  pdpc
the rule

Rule concl_ : if the conclusion is a conjunction
then successively prove all elements of the conjunction

creates two sub-theorems with numbers 1 and 2.
The conclusion of the first sub-theorem is pcpd and it is replaced by its definition

X (Xpc  Xpd)
A new object x is created, a new hypothesis xpc is added and the new conclusion is xpd.

The following rule, which was automatically created from the definition of the power set,
Rule P : if there are hypotheses P(A):B and XB

then add the hypothesis XA
gives the hypothesis xc.
The following rule 5

Rule defconcl_elt : if the conclusion is AB
there is a hypothesis Term:B and a definition XTerm  P(X)

then the new conclusion is P(A)
replaces the conclusion by xpa  xpb

The rule concl_ leads to a new splitting, the conclusion of sub-theorem 11 is xpa which is
replaced by xa by the rule defconcl_elt.
By the rules def_concl_pred,  and , t is created, the hypothesis tx is added and the new
conclusion is ta, then the rule  gives the hypothesis tc.
The following rules were automatically created from the definition of the intersection

Rule 1: if there are hypotheses AB:C and XC
then add the hypothesis XA

Rule 2: if there are hypotheses AB:C and XC
then add the hypothesis XB

Rule 3: if there are hypotheses AB:C, XA and XB
then add the hypothesis XC

The rule 1 then gives the hypothesis ta which ends the proof of sub-theorem 11.
Sub-theorems 12 then 2, corresponding to other cases coming from splitting, are then proved.

3. From MUSCADET1 to MUSCADET4
Historical details of this section will be useful, in particular to users of an old version and to readers
of old papers.

3.1 MUSCADET1
A first version of MUSCADET, which is now called MUSCADET1, was described and analyzed in [Pastre
89, 89a, 93, 95].

5 This was a rule in the first versions of MUSCADET. It has been replaced by a more general rule because “belonging to a
set” could no longer be known by the system (this was a constraint of the TPTP Library, see section 3.2).

- 4 - last update March 22, 2018

MUSCADET1 came after an initial program (DATTE, written in Fortran!) [Pastre 76; 78] which was
already based on natural deduction (in the sense of Bledsoe[71, 77]), and used methods which
resemble those used by humans.

The inference engine of MUSCADET1 was written in PASCAL, and knowledge (rules, metarules and
super-actions) was written in a language that was considered simple and declarative. MUSCADET1
produced good results; it was evaluated for several years but its use was limited. In particular, the
language was not adapted to the expression of procedural strategies. Writing such strategies was
complex and it was difficult to read and understand them.

3.2 MUSCADET2
The following version, called MUSCADET2 (versions 2.0 to 2.7)[Pastre 01a, 01b, 02, 06, 07], has been
completely written in PROLOG. The reason for this is that it is possible to use the same language to
express declarative knowledge such as rules, definitions, hypotheses, etc., more procedural
knowledge such as proof strategies, and the inference engine itself. The inference engine contains
only few predicates since it is completed by the PROLOG interpreter. This leads to more flexibility,
more facilities for writing, and even more efficiency. Moreover it was possible to carry out many
improvements and to write new strategies, which were not possible in the first version. It was also
possible to use, without having to implement them, all the facilities of expression of PROLOG such as
numerical calculus (missing in MUSCADET1) or infix and partially parenthesized notations by simply
defining operators and precedences (but this is not compulsory, it is only more convenient for the
user). To indicate mathematical variables or constants, PROLOG conventions are used (variables start
with upper-case letters whereas constants start with low-case letters). So it is no longer necessary to
precise if a symbol is a variable or a constant (but this convention must imperatively be used).

MUSCADET2 was able to work on problems of the TPTP Problem Library (Thousands of Problems
for Theorem Provers, http://www.cs.miami.edu/~tptp). New strategies were added, which were
better adapted to the style and to the axiomatizations of this library.
Moreover, two convenient capabilities of MUSCADET had to be left out. The first one was the
possibility to declare that some statements are either definitions, or lemmas (or know theorems).
These two types of statements are not treated in the same manner and MUSCADET must now analyse
them to recognize them (see section 6).
The second capability was the fact that MUSCADET1 knew the set belonging symbol, and that it is not
possible in the TPTP library. Rules which used it had to be generalized. For example, the rule
defconcl_rel seen in section 2.2 has been replaced by the more general rule

Rule defconcl_rel : if the conclusion is R(A,B)
there is a hypothesis Term:B and a definition XTerm  Def

then the new conclusion is the expression obtained
by replacing X by A in Def

MUSCADET has participated to CASC competitions (http://www.cs.miami.edu/~CASC) since 1999.
MUSCADET, of course, could only compete in the “first order” divisions, that is FOF (FEQ and NEQ),
since it does not work with clauses. The results [Pastre 06, 07] show the complementarity of
MUSCADET with regard to provers based on the resolution principle.

[Pastre 99] gives an analysis of some insufficiencies of MUSCADET1, which were tackled in
MUSCADET2, and the description of some new strategies which were conceived during the work on
the TPTP library. The users of MUSCADET1 could also find in [Pastre 98] a more detailed
correspondence between some of the techniques of both versions.

In addition to unceasing enlargement of the bases of rules and improvements of proof strategies, in
the last versions of Muscadet2, for TPTP problems, the user could call, under Linux, an executable

- 5 - last update March 22, 2018

http://www.cs.miami.edu/~CASC

C file which itself called PROLOG and the prover. The interest is that it is easier to use and that it is
possible to write scripts to solve lists of problems6. On the other hand working under PROLOG allows
to look at the bases of facts after an execution or an interruption, and even to test a rule by forcing it
to be applied.

3.3 MUSCADET3

Since 2008, the syntax of MUSCADET3 [Pastre 10a, 10b] has been that of the TPTP library.
Although this was not absolutely necessary, the “:” symbol used in the expression “for the only
Y:f(X) such that p(Y)” was replaced by “::” to avoid the confusion with the “:” of TPTP used in
writing quantified formulas.

for_all(X,p(X))
exists(X,p(X))
for_all(X,for_all(Y,p(X,Y)))
exists(X,exists(Y,p(X,Y)))
A and B
A or B
not A
only(f(X):Y,PY)

are written

! [X] : p(X)
? [X] : p(X)
! [X,Y] : p(X,Y)
? [X,Y] : p(X,Y)
A & B
A | B
~ A
only(f(X)::Y,PY)

The second important modification of version 3 is the possibility of getting and displaying the
“useful” trace. For this, it was necessary to be able to go back from the final step to antecedent
steps. To this end, steps have been numbered and became new parameters for facts, rules, conditions
and super-actions. A step corresponds to the effective application of a rule. So a step may involve
several actions. Facts as hypotheses and conclusions are memorized with the number of the step
where they have been obtained. So, several facts may have the same step number. The successful
and effective application of a rule is memorized. To allow to go back and also to be able to write a
detailed justification, and not only the sequence of steps, the system also memorizes the name of the
rule, the new step, the instantiated conditions, the list of the steps of the conditions, the instantiated
and explicit actions and a text giving a justification. This text is either given for general rules
(generally a logical explication), or automatically built in the rule (for example, rule built from the
definition of such concept or such axiom with their name, or local rule built from such universal
hypothesis). This memorization is done either in the rule or in the super-action, in particular in the
case of a recursive super-action such as adding a hypothesis or proving a conjunctive conclusion.

3.4 MUSCADET4
In version 4, in addition to other small improvements, the most important changes concern the
writing of the useful trace (version 4.0 submitted to the CASC competition) and the user interface
(version 4.1). The interface is more easily used and more complete, either under Linux or under
PROLOG . Options allow to directly modify the time limit, the display level (entire trace / useful
trace / result according to the SZS ontology) and the language.
In particular, slides of [Pastre 10] contain extracts of useful traces.
The version “th” is set up again and may be used under Linux or under PROLOG. The system can
prove one or several theorems the statements of which are in one or several files, so as the
statements of definitions and lemmas.

6 There was already such an executable in CASC versions but it gave only the result (prove or not proved) and not the
proof or the search of the proof.

- 6 - last update March 22, 2018

4. Machine representations
Everything is expressed in PROLOG. Mathematical statements are PROLOG expressions. Facts are unit
PROLOG clauses. Rules are PROLOG clauses expressing declarative knowledge. Elementary actions and
some strategies are PROLOG clauses defining procedural actions. And super-actions are PROLOG

clauses grouping packs of rules for a given goal.

The inference engine is composed of the PROLOG interpreter and of some clauses which process the
application of rules (applyrulactiv and applyrul).

4.1. Expression of mathematical statements

The syntax is that of the TPTP library.
The logical connectives & (and), | (or), ~ (not), =>, <=> are defined as infix operators with
precedences in the order as the connectives are written down in mathematics. They are right
associative.
The universally quantified formulas are written ! [X,Y,...] : <statement function of X, Y, ...>. The
existentially quantified formulas are written ? [X,Y,...] : <statement function of X, Y, ...>. 7

 The true and false constants may also be used.

The example theorem introduced in section 2.1 is written
![A,B,C]:(subset(A,B) & subset(B,C) => subset(A,C))

The proof of the theorem T will be requested by the PROLOG call prove(T).

The definition of subset is
subset(A,B) <=> ![X]:(elt(X,A) => elt(X,B))

.
This definition is given by

definition(subset(A,B) <=> ![X]:(elt(X,A) => elt(X,B))).
where definition is a PROLOG predicate stating that the argument statement is a mathematical
definition.

The definitions of intersection and of power set are
![X]:(elt(X,inter(A,B)) <=> elt(X,A) & elt(X,B))
![X]:(elt(X,power_set(A)) <=> subset(X,A))

It is possible, as mathematicians do, to use infix operators elt, subset, inter by defining them
with their precedences by the PROLOG directives

op(200,xfy,elt)
op(200,xfy,subset)
op(150,xfy,inter)

then statements may be written
![A,B,C]:(A subset B & B subset C => A subset C)
A subset B <=> ![X]:(X elt A => X elt B)
![X]:(X elt A inter B <=> X elt A & X elt B)
![X]:(X elt power_set(A) <=> X subset A)

but PROLOG will display
 A subset B&B subset C=>A subset C

we loose more than we gain in the readability of display !

7 In MUSCADET2 (and in the corresponding publications, they were written for_all(X, <statement function of X>) and
exists(X, <statement function of X> and the connectives were written and, or, not.

- 7 - last update March 22, 2018

Mathematicians usually write set definitions in the form f(X,..) = {X ; p(X,…)}, for example AB =

{ X; XA  XB } or P(A) = {X; XA }.
This possibility 8 also exists in MUSCADET in the form

A inter B = [X,X elt A & X elt B]
power_set(A) = [X, X subset A]

but the symbol used for set belonging must be explicitly indicated by the predicate “+++”, that is
+++(elt).

In order to reduce writing mathematicians also currently use relativized quantifiers
XA YB p(X,Y) and XA YB p(X,Y)

which are abbreviations for
X Y(XA  YB  p(X, Y)) and X Y (XA  YB p(X,Y)) .

In MUSCADET2, it was possible to write
for_all(X elt A,for_all(Y elt B,p(X,Y))) and

 exists(X elt E, exists(Y elt B, p(X,Y))), (elt having been defined infix),
This possibility will be restored in the next version of Muscadet in the form

![X elt A, Y elt B]: p(X,Y) and ?[X elt A, Y elt B]: p(X,Y)
or, more generally, with any formula instead of X elt A, … .

Remark: the statements of theorems must be closed; the statements of definitions may contain
variables which are implicitly universal.

4.2. Expression of facts

The fact that the statement C is the conclusion of the (sub-)theorem to be proved with number N is
represented by the unit PROLOg clause concl(N,C,I), where I est the number of the step where
this fact was created. Some other properties are handled in the same manner, such as to be a
hypothesis (hyp(N,H,I)), an object (obj(N,O)), a sub-theorem (subth(N,N1)), etc..
For active rules exceptionally, the whole list of rules that are active for a (sub-)theorem to be proved
is memorized by the fact rulactiv(N,[R1,R2,…]); [R1,R2,…] is a list of names of rules that
were automatically activated in an order that is important.

4.3. Expression of rules

Here are the expression of some rules (simplified) used in the example of section 2.
- rules given to the system :
rule(N, =>) :- concl(N,A=>B,Step),
 addhyp(N,A,NewStep), newconcl(N,B,NewStep).
rule(N, !) :- concl(N,(!XX:C),Step),
 create_objects_and_replace(N,XX,C,C1,Objects),
 newconcl(N,C1,NewStep).
rule(N, def_concl_pred) :- concl(N,C,Step),definition(Name, C<=>D),
 newconcl(N,D,NewStep).
rule(N,stop_hyp_concl):- concl(N,C,Step1),ground(C), hyp(N,C,Step2),

not hyp(N,elt(X,B),_),
newconcl(N,true,NewStep).

- rule built by the system :
rule(N, subset) :- hyp(N, subset(A,B,Step1), hyp(N, elt(X,A,Step2),
 not hyp(N, elt(X,B),_),
 addhyp(N, elt(X,B,NewStep).

The parameter N is used to apply a rule to the (sub-)theorem numbered N.

8 which disappeared in MUSCADET3 but was restored in MUSCADET4.1

- 8 - last update March 22, 2018

Notice that if … then … is implicit. It would have been possible to define PROLOG operator symbols
if … then …, but this was not indispensable, since all is translated into PROLOG with predicates.
Conditions are generally the verification of the existence (or of the absence) of facts, which are unit
PROLOG clauses (hyp, concl, see the preceding section), or of a definition which is in a certain
form. There may also be elementary conditions.
Actions are either elementary actions, which are expressed as PROLOG predicates and express
elementary programs (create_objects_and_replace), or super-actions which are defined by
packs of rules (addhyp, newconcl, etc, see next section).

The condition not hyp(N, elt(X,B),_) avoids applying the rule if the theorem of number N
already contains the hypothesis elt(X,B). (In the example, this condition only avoids the call
addhyp, which would have no effect here, but in other cases it is essential; for example to avoid an
infinite creation of objects.)
For MUSCADET1, this condition was not necessary because a rule could not be applied twice for the
same instantiations. This had other disadvantages; for example it was not possible to force a rule to
be applied again for the same instantiations.

The elementary action create_objects_and_replace(N,XX,C,C1,Objects) returns in
Objects a list of constants z, z1, z2,… etc which have not yet been used and replaces in C the
variables of XX by these constants to give C1.

Actually operational rules are more complex, they contain additional conditions and actions, which
have been added by hand 9 for the rules given to the system, but which are automatically added for
rules built by the system. The first rules may be seen in the file muscadet-en, the last ones in the
files of built rules rul_...

Among the conditions :
- the Step number which will be used in traces (see below).

Among the actions :
- steps numbering,
- messages writing,
- traces(N,rule(Name),<condition or list of conditions>,
 <action or list of actions>, <step>, <explanation>,
 <list of the steps of the conditions>)
memorizes the informations which will be later necessary to extract the useful trace.

4.4. Expression of super-actions

Super-actions are generally expressed by packs of rules if … then … or if … then … else …
To action(X) : if … then …

if … then …
else …

is easily written in PROLOG

action(X) :- (… -> …
; … -> …
; … % by default (optional)
) .

The super-action newconcl, which contains only one rule, replaces the conclusion of the
(sub-)theorem of number N by C if the conclusion is not already equal to C.
newconcl(N,C,Step) :- not concl(N,C,_),

9 because gradually added during experimentations, but they could have been automatically added from simplified rules

- 9 - last update March 22, 2018

step_action(Step),
assign(concl(N,C,Step)).

with
step_action(E1) :- (var(E1),step(E) -> E1 is E+1,assign(step(E1))
 ; true).
If E1 has not yet been instantiated, which is the case in the rule “!”, the step number is incremented
by 1.
If E1 has been instantiated, which is the case in the rule =>, where E1 has been instantiated by the
first action addhyp (described hereafter), it is the same step.
assign updates the conclusion and the number step.

The super-action addhyp handles the hypotheses that have to be “added” in order to finally add
only hypotheses that are elementary and not universal.
Conjunctions are split. Universal hypotheses are not added. Rather, in the place of universal
hypotheses, new rules, which are local for the (sub-)theorem, are created.

Here are some of the rules that define this super-action
addhyp(N,H,E) :- step_action(E),

(% to add a conjunction, the elements of the conjunction
 % are successively (and recursively) added

 H = A & B -> addhyp(N,A,E), addhyp(N,B,E)
; if H is already a hypothesis, nothing is done
; hyp(N,H,_) -> true
; % the same for a trivial equality
 H = (X = X) -> true
; % lexicographic order except for created objects z<number>
 % which are in the order of their creation (numerical)
 H = (Y=X), atom(X), atom(Y), before(X,Y), addhyp(N,(X=Y),E2)
; % if H is universal or is a implication, rule(s) are
 % created, which are local for the theorem of number N
 H = (!_: _) -> create_name_rule(rulehyp,Name),

 buildrules(H,_,N,Name,[])
; H = A => B -> create_name_rule(rulehyp,Name),

 buildrules(H,_,N,Name,[])
...
; % else H is added
 assert(hyp(N,H,E)),
) .

5. How to use MUSCADET4
The package contains a PROLOG source file muscadet-en, a script musca-en which allows to work
under PROLOG and two small C files th-en.c and tptp-en.c 10 which can be compiled and which
allow to work under Linux. The obtained executables will be named later in this paper th and
tptp.

It is also possible to work under PROLOG, this allows in particular to have access, at the end of the
proof (or more important in case of failure or crash !) to all facts representing the state of the
theorem to be proved : hyp, concl, sousth, rules (in particular built rules), etc ; and even to
directly test the application of a rule on the current state.

10 muscadet-fr, musca-fr, th-fr.c and tptp-fr.c for the French version

- 10 - last update March 22, 2018

It is possible to work from a file containing a list of definitions and one or several theorems to be
proved.

It is also possible to directly work on the problems of the TPTP library, after having defined an
environment shell variable TPTP to the TPTP library (setenv TPTP <directory of the library>).
Under PROLOG, it is also possible to call directly the predicate prove with as a parameter the
statement of the theorem to be proved, after having given the definitions of the mathematical
concepts eventually used.

The PROLOG used is SWI-Prolog, which is freeware downloaded at the following address
http://www.swi.psy.uva.nl/projects/SWI-Prolog/download.html, and which is
called by the command swipl.
Be careful : from SWI-Prolog 7 version, a version of Muscadet from 4.6.2 must be used.11

In all cases you have to be in a directory that contains the PROLOG file muscadet-en12 (or a same-
name link to this file).

5.1. Direct proof

(only under PROLOG)

Call the Unix command musca-en13. This invokes SWI-Prolog and loads the file muscadet-en.

To prove p∧q  (p⇔q) simply type prove(p & q => (p <=> q)).
Do not forget the dot at the end. No space before the bracket.

Let us come back to the first example.
Introduce the definition of the inclusion by the PROLOG command

assert(definition(subset(A,B) <=> ![X]:(elt(X,A) => elt(X,B)))).

Then call for the proof
prove(![A,B,C]:(subset(A,B) & subset(B,C) => subset(A,C))).

Do not forget dots.

The proof will be displayed on the standard output.

If you prefer use infix operators, type
op(200,xfy,elt).
op(200,xfy,subset).
assert(definition(A subset B) <=> ![X]:(X elt A => X elt B))).

then prove(![A,B,C] : A subset B & B subset C => A subset C).

5.2 From files containing theorems and definitions

 Data must be written as below :
:­ op(<precedence>, <type>, <name>). (eventually)
theorem(<name>,<theorem to be proved>).

11 because of the modification of the type of the empty list [] (which was an atom in previous versions)
12 muscadet-fr for the French version
13 musca-fr for the French version

- 11 - last update March 22, 2018

http://www.swi.psy.uva.nl/projects/SWI-Prolog/download.html

definition(<definition>).
lemme(<name>,<lemma>).
include(<data file>).
% <PROLOG comment>

Do not forget the dots ! (They are PROLOG terms.)
All this data may be written in whatever order.
There may be several theorems which will be proved one after the other.
include allows to write data in one or several other file(s) .

Files examples :

example1 :

definition(subset(A,B) <=> ! [X]:(elt(X,A) => elt(X,B))).
theorem(thI03,![A,B,C]:(subset(A,B) & subset(B,C) => subset(A,C))).

example1bis :
:- op(200,xfy,elt).
:- op(200,xfy,subset).
theorem(thI03,![A,B,C]:(A subset B & B subset C => A subset C)).
definition(A subset B <=> ! [X]: X elt A => X elt B)).

example2 :
include(example2_definitions).
% transitivity of subset
theorem(thI03,![A,B,C]:(subset(A,B) & subset(B,C) => subset(A,C))).
% the power set of an intersection is equal to the intersection of the

power sets
theorem(thI21,![A,B]:subset(powerset(inter(A,B),

 inter(powerset(A),powerset(B))))).
with exemple2_definitions :

definition(subset(A,B) <=> ! [X]:(elt(X,A) => elt(X,B))).
definition(elt(X,powerset(A))<=> subset(X,A)).
definition(elt(X,inter(A,B)) <=> elt(X,A) & elt(X,B)).

example2bis :
include(example2bis-definitions).
:- op(200, xfy, elt).
:- op(200, xfy, subset).
:- op(150,xfx,inter).
% transitivity of subset
theorem(thI03,![A,B,C]:(A subset B & B subset C => A subset C)).
% the power set of an intersection is equal to the intersection of

the power sets
theorem(thI21,![A,B]:(powerset(A inter B) subset powerset(A) inter

powerset(B))).
with example2bis_definitions :

:- op(200, xfy, elt).
:- op(200, xfy, subset).
:- op(150,xfx,inter).
definition(A subset B <=> ! [X]:(X elt A => X elt B)).
definition((X elt powerset(A))<=> X subset A).
definition(X elt A inter B <=> X elt A & X elt B).

Remark :defining infix operators must be done in all files where they occur.

- 12 - last update March 22, 2018

Under Linux (resp. PROLOG), call the executable (resp. predicate) th with as an argument a file (or a
path to a file). Under PROLOG this argument must be an atom. It must be written between quotes if
necessary according to PROLOG conventions.
Examples

th example1 (resp. th(example1).)

Under PROLOG it is also possible to call th with a file containing only definitions which will be read
and memorized. In this case do not put the corresponding include in the file of theorems, this
would duplicate the definitions (then also the rules).14

The proof will be saved in a file named res_<name of the theorem to be proved> (for example
res_th1). Moreover some messages are displayed on the terminal to follow the prover's work.

5.3. From the TPTP library

 (http://www.cs.miami.edu/~tptp)
Under Linux (resp. PROLOG) call the executable (resp. predicate) tptp with as an argument a path to a
TPTP problem file or a TPTP problem name. In this last case, it is necessary to have defined an
environment shell variable TPTP to the TPTP library (setenv TPTP <directory of the library>).
Examples

tptp /home/dominique/$TPTP/Problems/SET/SET002+4.p
tptp SET027+4.p

Under PROLOG, the argument must be an PROLOG atom, then quotes are necessary (occurrences of -, +, ., /,
capital letters)

tptp('/home/dominique/$TPTP/Problems/SET/SET0 02+4.p').
tptp('SET027+4.p').

The proof will be saved in a file named res_<problem name> (for example res_SET002+4.p).
Moreover some messages are displayed on the terminal to follow the prover's work.

5.4 Modification of default options

5.4.1 Default options
Default options (file muscadet-en) are :

- time limit (timelimit) : 10 seconds
- display of the trace of the complete search of the proof (tr) : no
- display of the useful proof (pr) : yes
- result according to the SZS ontology (szs) : no

They may be modified.
To display them type

listing(timelimit). or l(timelimit). or timelimit(T).
listing(display). or l(display). or display(A).

14 Until version 2.6, it was possible to read definitions alone, build and memorize the built rules in a file which could be
read in a later execution. This was because building rules was relatively long comparatively to proving theorems This
possibility was removed in version 2.7. Because of the improvements in execution time of modern machines, restoring it
seems to me unnecessary. For very large date bases (as for the very large TPTP problems), it would be necessary to
select definitions and axioms in function of the given problems, before building rules, not only select rules after having
building them.

- 13 - last update March 22, 2018

5.4.2 Modifications in a proof call
Additional arguments may be given, in whatever order : a new time limit and new display options in
the form ± <option>

+ to add,
- to remove
<option> ::= tr for the complete trace

pr for the useful proof
szs for the result according to the SZS ontology

Examples
(Linux) th example_th 50 +tr or (Prolog) th(example_th,50,+tr).

sets the time limit to 50 seconds and displays the complete trace followed by the useful proof,
(Linux) th example_th -pr or (Prolog) th(example_th,-pr).

displays only the result (theorem proved or not proved) and the time used,
(Linux) tptp SET027+4.p -pr +szs or (Prolog) tptp('SET027+4.p',-pr,+szs).

displays only the result according to the SZS ontology.

5.4.3 Modifications under PROLOG
The following commands modify the options until next change

assign(timelimit(< time>)). or modifytimelimit(<time>)).
assert(display(<option>)).
retract(display(<option>)).

5.4.4 Modifications of PROLOG code (file muscadet-en)
Finally, default values can be modified in the file muscadet-fr by modifying the line
timelimit(...). or by removing or adding lines display(...) .

5.4.5 Instructions for on line use
Instructions for use may be found again by typing th or tptp under Linux, or th. or tptp. under
PROLOG.

5.4.6 Modification of the language choice.
It is possible to modify the default choice for the language used to display the traces (complete trace
and/or useful trace), and other comments by giving fr (or en) as an additional argument in the
command or the predicate th or tptp.
Examples : th example1 fr or th(example1,fr).

Under PROLOG it can also be directly modified par
assign(lang(fr)).

or simply fr.

Nevertheless the names of the rules and actions will not be modified. For this the French version
must be used (files *-fr.*)

5.4.7 Deletion
Under PROLOG, to delete all the data relative to the last problem and solve a new problem without
restarting PROLOG, type :

deleteall.
To delete only the facts which represent the state of the last proved (or not proved ...) theorem,
type :

deleteth.
which deletes all the facts which represent the state of the last theorem, but the definitions and the
built rules are not deleted.

- 14 - last update March 22, 2018

6. Definitions and lemmas
Definitions are not the only mathematical knowledge that are used by the system. It may also have
lemmas which are registered by means of a PROLOG predicate lemma(<name>, <statement>).
These lemmas may be given to the system (version th).
On the other hand, while reading TPTP statements (except conjectures) Muscadet decides if it
registers them as lemmas15 or as definitions16.
For example,

A B (AB  X (XA  XB))
will be a definition, but

A B C (AB  BC  C)
which is a result (very) known, eventually proved elsewhere by the system, will be a lemma.

Definitions and lemmas both lead to building rules, but not exactly in the same manner. For
example, in a conclusion, AC will be replaced par its definition X (XA  XC) but not by the
sufficient property AB BC (lemma above).

From a lemma containing the sub-formula p(X)  q(f(X)), the following rule is built
if p(X) and f(X):Y then q(Y)

so as, under some conditions, the rule
if p(X) then create Y and add the hypotheses f(X):Y and q(Y)

But, from the definition of the power set for example
X P(A)  XA

the system only creates the rule
if XA and P(A):PA then add XA

it does not create the rule
if XA then create the power set of A

which could lead to too may creations of objects.

Lastly, MUSCADET sometimes builds news definitions, which are better adapted to its strategies. This
is the case, for example, for the property being disjoint for two sets of. Two sets are disjoint if they
have no common element. The mathematician uses the adjective non-disjoint: he/she does not say
that two sets are not disjoint, but that these two sets are non-disjoint. This clearly shows that it is the
property non-disjoint that is mentally the most important property. This is also the case for
MUSCADET, which is better able to handle positive properties than negative properties. In the first
MUSCADET version, moreover, the definition of non-disjoint was given, and the fact that two sets
were disjoint was expressed by the property  non-disjoint. MUSCADET2 was able to perform
automatically the transformation from the definition of disjoint

disjoint(A,B)    X (XA  XB)

15 for example in domain MGT (Management)
%---MP. If a time point belongs to the environment, then the end-point of
%---the environment cannot precede it.
input_formula(mp_environment_end_point,axiom,(
 ! [E,T] : ((environment(E) & in_environment(E,T))

=> greater_or_equal(end_time(E),T)))).
16 as %----Definition of greater_or_equal (i.t.o. greater and equal).
input_formula(definition_greater_or_equal, axiom, (
! [X,Y] : (greater_or_equal(X,Y) <=> (greater(X,Y) | equal(X,Y))))).

- 15 - last update March 22, 2018

It notices that the definition begins with a negation, it then replaces this definition by both of the
following definitions

not-disjoint(A,B)   X (XA  XB)
and disjoint(A,B)   not-disjoint(A,B)

In the TPTP library, the statements are given together with there nature: hypothesis, axiom or
conjecture 17. Their name (even if it contains the word definition or defn) must not be used
by the system. The conjectures in TPTP are the theorems to be proved in MUSCADET. In TPTP there
is then a difference between hypothesis and axiom, which is useless for MUSCADET. On the contrary,
in TPTP no distinction can be made between definition and lemma, although it is important for
MUSCADET.
For this reason, all TPTP hypotheses and axioms are analyzed and are classified, either as lemmas
or as definitions. Definitions are, roughly, universal properties that are equivalences between a
predicative and simple expression and a more complex statement, or equalities between a functional
and simple expression and a more complex expression. The matching does not have to be very
precise, because if the classification as a lemma or as a definition is crucial for some statements, it
is unimportant for most of them.

7. Elimination of functional symbols
Strategies of MUSCADET are designed to work with mathematical or logical predicates rather than
with functional symbols. Nevertheless, MUSCADET accepts statements written with functions, but it
« eliminates » them by giving a name to functional expressions which will replace this expression in
the predicative formula. So, p(f(a)) will be replaced by f(a):b  p(b). The symbol “:” is used to
express that b is the object f(a), and the formula f(a):b will be handled as if it was a predicative
formula pf(a,b).
For formulas with variables it is a little more complicated. A statement of the form p(f(X)) where f is
a functional symbol is equivalent to the two following statements Y (f(X):Y  p(Y)) and
Y (f(X):Y  p(Y)). Depending on the context, one or the other of these two statements is preferable.
The reasons for this are developed in [Pastre 89].
For this a new quantifier is used, which is named for the only … equal to … .
For the only Y equal to f(X), p(Y) is true is noted (!Y:f(X) p(Y)) and represented by
only(f(X)::Y, p(Y)).
Depending on the context, this quantifier will then be handled either as a , or as an , or perhaps
in a simpler manner or in a somewhat more complicated manner.
For example we saw the treatment of universal conclusions by the rule  . The rule ! performs
almost the same treatment but creates the object only if it does not yet exist.

Rule ! :- if the conclusion is of the form !Y::F(X) P(Y)
then if there is a hypothesis of the form Z:F(X) then the new conclusion is P(Z)

else create a new object Z, add the hypothesis Z:F(X)
and the new conclusion is P(Z)

that is in the machine
rule(N, concl_only) :- concl(N,only(A::X,B),I),
 (hyp(N,A::X1,II) -> traces(...),
 ; create_object(N,z,X1), % gives names z1, z2, etc.
 addobject(N,X1), addhyp(N,A::X1,I1),
 traces(...)
),
 replace(B,X,X1,B1), newconcl(N,B1,I1)
 .

17 Since version 3, TPTP has types or “roles” definition and lemma but their use is not that which is described here.
Definitions mentioned in tis paper are declared as axioms in TPTP.

- 16 - last update March 22, 2018

where
replace(B,X,X1,B1) replaces X by X1 in B and returns B1
create_object(N,z,X1)creates and returns in X1 the first object z1, z2, etc. not yet created.

In old versions of MUSCADET the names of created objects were built from corresponding terms by
“flattening” them. This gave traces easier to read, for example
powerset(a):powerset_a, a inter b:inter_a_b,
powerset(inter_a_b):powerset_inter_a_b,
powerset_a inter powerset_b:inter_powerset_a_powerset_b
etc.
But for longer terms, the ease of reading was lost. Moreover, it became useful to know the order in
which objects have been created (to search for object verifying some properties). Then the simple
numbering has been chosen (but the predicate flat still exists as well as the trace of its call, so that
it is easy to come back to this option).

In the super-action addhyp(H), such a hypothesis !Y:F(X) P(Y) is handled as an existential
hypothesis, but more simply. In effect, in the super-action addhyp(H), if H is an existential
hypothesis X p(X), it is added as it is (default action) because creating too early the objects X such
that p(X) could be catastrophic. This hypothesis will be handled only later (see section 10.5). On the
other hand, the hypotheses !Y:F(X) P(Y) are immediately handled.
To addhyp(H):- if H is of the form !Y:F(X) P(Y)

then if there is no hypothesis F(X):Z then create a new object Z
 and add the hypothesis F(X):Z

in all cases, add the hypothesis P(Z)
that is in the machine
addhyp(N,H,E) :- (…
 …
 ; H = only(A::X,Y)
 -> (hyp(N,A::X1,_) → true
 ; create_object(N,z,X1),addhyp(N,A::X1,E)
),

 replace(Y,X,X1,Y1),addhyp(N,Y1)
 …
) .

8. Building rules
After the “elimination” of functional symbols from definitions and lemmas, rules are automatically
built from these statements. These rules are more operational than the definitions themselves.
Examples of such built rules are given in section 2.
Some rules are also built from universal hypotheses of a theorem to be proved.
The name of the rules is built from the name of the concept that is defined or from the name of the
lemma.

The super-action buildrules analyses the statements and calls the recursive PROLOG predicate
buildrules(E,N,Nomfof,Concept,Nom,Cond,Antecedents), which is a super-action
composed of metarules that perform the building of one or several rules in a procedural manner.
E is the statement that is handled, coming from a definition, a lemma or a universal hypothesis.
N is either a non-instantiated variable and the built rules will be applied to all (sub-)theorems, either
a sub-theorem number and the built rules will be applied only to this sub-theorem and its
descendants.
Nomfof is either le name of the initial statement (definitions or lemma), either a string prefixed by
r_hyp_univ (universal hypothesis). It is used only of the reader comfort.

- 17 - last update March 22, 2018

Concept is either the name of the defined concept in the case of a definition, either the symbol
lemma in the case of a lemma, or r_hyp_univ in the case of a universal hypothesis.
Nom is the name of the rule that is currently being built. It is built from Concept with a number if
several rules are built from the same Concept.
Cond is the conditions part of the rule already built (first empty).
Antecedents is the list of step numbers of the already built conditions (first empty). This
parameter was introduced to allow the extraction of the useful trace.
buildrules(E,N,Nomfof,Concept,Nom,Cond,Antecedents) analyses the expression E
and, depending on its form, may extract sub-formulas for a recursive call, split into several
expressions, add conditions then actions and memorize the built rule(s).

9. Activation and order of rules
Activate a rule consists in putting it into the list of active rules, which is memorized by means of the
predicate rulactiv. Rules will be tried in the listed order. If this order is important, it will have to
be stated by metarules.
The super-action activrul begins by creating links (acti_link) that is it adds the facts
link(0,P) for all concepts P which are in the initial statement of the theorem to be proved, for all
those that are in the definitions of the preceding ones, and recursively. The symbols that are
concepts are those that have a definition. They were memorized when rules were built.
Then the rules are activated (acti_…) in a order that depends on their type (given or built). Among
the rules that were built from definitions, only those corresponding to links that were stated before
are activated.

Until version 2.5, the list of rules was analyzed and reordered if necessary in such a way that if a
rule R is more general than another rule R’, then R’ will be tried before R. The cases only
considered concern the rules R and R' such that R may create an object such that P, R' may create a
object such that P’, and P is more general than P’; then R’ had to be before R. In spite of this
restriction, this re-ordering was long and as the number of rules of the studied problems increased
time was more lost than gained. So it has been removed. But it would nevertheless have to be
restored because the proof may also be more aesthetic. For example, to prove that the composition
of two injective mappings f et g is injective, one considers two objects ao and a1 which have their
images gof(ao) and gof(a1) equal. A rule R, built from the definition of mapping, builds the objects
bo=f(ao) and b1=f(a1). On the other hand, another rule R', c built from the definition of composition,
builds the objects co=f(ao) and c1=f(a1) such that g(co)=g(c1)=gof(ao)=gof(a1). Then bo=co=c1=b1

(uniqueness of images of ao and a1 and injectivity of g), then that ao=a1 (injectivity of f). If R' is
applied before R, co and c1 are first created and bo and b1 are not created because ao and a1 have
already an image, both objects bo and b1 are then not created.

10. Some strategies
The following strategies are rather classic ones. They come from natural deduction. Sometimes it is
necessary to avoid carrying out some treatments too early in order to avoid possible infinite
branches or too much splitting.

10.1. Processing of universal conclusions and of implications

Their treatments are simple and systematically performed by the rule  and  . These rules have
been seen in section 2, their type is universal and consequently they have priority.

Rule : if the conclusion isX P(X)
then create a new object x and the new conclusion is P(x)

Rule  : if the conclusion is H  C

- 18 - last update March 22, 2018

then add the hypothesis H and the new conclusion is C
Their machine expressions are given in section 4.3

10.2. Processing of conjunctive conclusions

The rule
Rule concl_: if the conclusion is conjunctive

then successively prove all the elements of the conjunction
is expressed by
rule(N, concl_and) :- concl(N, A & B, E), proconj(N, A & B, E, Eend).
with
proconj(N,C,Econj, Eend) :-
 (C = (A & B) -> true ; (C=A,B=true) /* for the last one */),
 atom_concat(N,-,N0), gensym(N0,N1), % N1=N-1then2then...
 createsubth(N,N1,A,Ecreationsubth), % creation subth (new step)
 applyrulactiv(N1), % proof of the sub-theorem
 concl(N1,true,Edemsubth),
 newconcl(N,B,Eretourth), % remove A which has just been proved
 (B = true -> Ereturnth=Eend ; proconj(N,B,Ereturnth,Eend)
).
The conclusion is set to true if proconj succeeds, that is if all the elements of the conjunction
were proved.

proconj recursively proves all the conclusions of the conjunctive conclusion A & B by creating as
many sub-theorems as there are conclusions to be proved. The numbers of the sub-theorems are
built from the number N by adding an hyphen then successive numbers (0-1-1,0-1-2,0-1-3, …
are the sub-theorems of the (sub-)theorem numbered 0-1).
The new sub-theorem of number N1 inherits properties of the theorem of number N (super-action
createsubth) except for the conclusion, which is only the sub-formula A that is to be proved. It is
also pointed out that N has N1 as a sub-theorem.
If the sub-theorem N1 is proved (conclusion true), this information is sent to (sub-)theorem N and
A is removed from the initial conclusion of N.
At the end, the conclusion of (sub-)theorem N is equal to true if and only if all its sub-theorems
have been proved.

10.3. Processing of universal hypotheses

There are no universal hypotheses since the super-action addhyp, instead of adding them, considers
them as lemmas and creates new rules, which are local for the current (sub-)theorem.

10.4. Processing of existential conclusions

The general (and rather sophisticated) treatment of MUSCADET1 has not yet been written in
MUSCADET2 nor in the following versions. For the moment, MUSCADET only verifies that objects
which satisfy the searched property actually exist.

10.5. Processing of existential hypotheses

An existential hypothesis may lead to the creation, if one does not already exists, of an object that
satisfies the indicated property. But this object must not be created each time an existential
hypothesis is added because this could lead to generate infinitely many objects in only one direction
and to not taking into account other directions. Examples of such situations are analyzed in
[Pastre 89, 93].
For this reason, these existential hypotheses are first added without treatment. Later, a rule which
does not have high priority performs the treatment of the first existential hypothesis that has not yet
been treated, then MUSCADET again applies rules that have higher priority before treating the

- 19 - last update March 22, 2018

following existential hypothesis. This allows MUSCADET to create the new objects one by one, and
successively in all the directions.

10.6. Processing of disjunctive conclusions

Only simple and logical properties are applied.
A disjunctive conclusion is true if one of the elements of the disjunction is true.
If one of the elements of a disjunctive conclusion is a negation  A, A is added as a new hypothesis
and  A is removed from the conclusion.
Some treatments, such as replacing the conclusion by its definition, are also performed on one of
the formulas of a disjunctive conclusion.
If the disjunction contains conjunctive sub-formulas, the conjunctions are pushed to the outside in
order to obtain a conjunctive conclusion, which in turn will lead to splitting.

10.7. Processing of disjunctive hypotheses

Simple rules handle trivial cases. For example, a hypothesis AA is replaced by A.
Other example, if one of the elements of the disjunction is already a hypothesis or is of the form
X=X, this hypothesis is removed 18.

Then, splitting may be done, but, as for existential hypotheses, the disjunctive hypotheses are first
added without treatment. Later, a rule, which does not have high priority, performs the treatment of
the first disjunctive hypothesis AB that has not yet been treated and prepares splitting by replacing
the conclusion C par (AC)(BC). Splitting will then be done by the rule concl_ .
It is important not to split too early in order not to multiply splitting uselessly in the case of many
useless disjunctive hypotheses.

10.8. Knowledge specific to certain domains

Knowledge specific to topological linear spaces [Pastre 89], which were given in MUSCADET1 in the
form of operational rules, have not yet been put into the following versions. Rather than directly
translating them by PROLOG clauses, I intend to write them as mathematical statements and to write
metarules, which will be able to generate these operational methods.
On the other hand, work on discrete geometry [Pastre 93] was continued in MUSCADET2, and this
allowed us to obtain more satisfactory results while helping the system less.

11. Second order statements
We saw in section 2.1. that MUSCADET is able to work in second order predicate calculus. So, for the
example in section 2.1 (example file example-order2), the property of transitivity for a relation
may be defined by

transitive(R)  A B C [R(A,B)  R(B,C)  R(A,C)]
or transitive(R,E) AE BE CE [R(A,B)  R(B,C)  R(A,C)]
and the theorem may be

transitive()

or E transitive(, P(E))
that is, for the machine

transitive(inc)
or transitive(inc,powerset(E))
For the definition of transitive, since version MUSCADET2, there was some difficulty because the
PROLOG syntax does not allow the user to write R(X,Y) if R is a variable. I then introduced the

18 It is not physically removed, the fact that it has been treated is only memorized

- 20 - last update March 22, 2018

functional symbol “..” which allows..[R,X,Y] to be written instead of this forbidden R(X,Y).
The definition is then written
definition(transitive(R) <=>

![X,Y,Z]:(..[R,X,Y] & ..[R,Y,Z] => ..[R,X,Z]))
PROLOG does not unify r(a,b) and ..[R,X,Y]; consequently, I wrote predicates to do it and
which return R=r, X=a and Y=b.
This symbol “..” was chosen by analogy with the PROLOG operator “=..”. In effect,
r(a,b) =.. [r,a,b] is true in PROLOG if r is a constant. r(a,b) and ..[r,a,b] are unified
in MUSCADET, although not in PROLOG. On the other hand, MUSCADET replaces ..[r,a,b] by
r(a,b) as soon as r is a constant in order to produce traces which are easier to read.

Remark: It is possible for the user to really write formulas as in mathematics and to translate, for
example by a Unix script, R(X,Y) into ..[R,X,Y] before starting PROLOG.

This notation is also used for mathematical functions and applications. f(x)::y may be written
and is unified in MUSCADET with ..[F,X]::Y for the instantiations F=f, X=x and Y=y.

The super-action addhyp handles these expressions and adds the hypotheses in the more pleasant
form r(a,b) or f(x)::y instead of ..[r,a,b] or ..[f,x]::y by the rules

- 21 - last update March 22, 2018

addhyp(N,H,E) :- (…
 …
 ; H = ..[R,X,Y] -> H1 =..[R,X,Y], addhyp(N,H1,E)
 ; H = ..[F,X]:Y -> Y1 =..[F,X], addhyp(N,Y1::Y,E)
 …
) .
Be careful with the spaces: “=..[…]” and “= ..[…]” are not the same !
This notation is not compulsory; you may prefer to choose the apply symbol for example, which is
used in several TPTP problems (or any other symbol), and write everywhere apply(R,X,Y)
instead of ..[R,X,Y] and apply(F,X,Y) instead of ..[F,X]::Y. But , as this apply symbol
may not be known by the prover, for each constant relation, the equivalence must be given, for
example

X Y (apply(, X, Y)  XY)
that is, for the machine

! [X,Y]:(apply(inc,X,Y)<=>inc(X,Y))

This has been done for some problems about relations (equivalence, (pre-)order, total order, well-
order) which have been proposed for inclusion in the TPTP library, for example the problem
SET806+4.p which states that set equality defines a pre-order relation. Moreover, upon request
from Geoff Sutcliffe, different names were used for respectively the constants and the relations of
arity greater than 0 (in the preceding example subset_predicate and subset) because other
provers could not accept the same symbol for both. Nevertheless MUSCADET, as humans (here the
matter is naive set theory), do not have difficulty in using the same symbol. The example in the file
variant_set806+4.p is the corresponding version of problem SET806+4.p.

12. Distribution
MUSCADET4 is available at the address

http://www.normalesup.org/~pastre/muscadet
muscadet.html contains short directions for use
muscadet-en is the complete PROLOG file 19

musca-en 20 is a Unix script which allows you to work under PROLOG; you must then call prove21,
th,or tptp. See section 5, or type th. or tptp. (with a dot, without any argument) to display
the instructions for use.

th-fr.c and tptp-fr.c22 are small C files which allow to work under Linux. Compile them. Let
for example th and tptp be the obtained executables23. th allows to work with data previously
saved in files (see section 5.2). tptp allows to work on the TPTP library (see section 5.3). th and
tptp without any arguments display the instructions for use.

examples24 gives a directory of examples with data files and executions.

19 in French muscadet-fr
20 in French musca-fr
21 in French demontrer
22in French th-fr.c et tptp-fr.c
23 commands cc th-en.c -o th and cc tptp-en.c -o tptp
24 in French exemples

- 22 - last update March 22, 2018

http://www.math-info.univ-paris5.fr/~pastre/muscadet

13. References
[Bledsoe 71] -Bledsoe, W.W. Splitting and reduction heuristics in automatic theorem proving,

Journal of Artificial Intelligence 2 (1971), 55-77

[Bledsoe 77] -Bledsoe, W.W., Non-resolution theorem proving, Journal of Artificial Intelligence 9
(1977), 1-35

 [Pastre 78] - Pastre D., Automatic theorem Proving in Set theory, Journal of Artificial Intelligence
10 (1978), 1-27

 [Pastre 89] - Pastre D., MUSCADET: An Automatic theorem Proving System using Knowledge and
Metaknowledge in Mathematics - Journal of Artificial Intelligence 38.3 (1989)

[Pastre 89a] - Pastre D., MUSCADET: Manuel de l'utilisateur, 1989, Rapport LAFORIA n°89/54, 62p

[Pastre 93] - Pastre D., Automated theorem Proving in Mathematics, Annals on Artificial
Intelligence and Mathematics 8.3-4 (1993), 425-447

[Pastre 95] - Pastre D., Entre le déclaratif et le procédural: l'expression des connaissances dans le
système MUSCADET, Revue d'Intelligence Artificielle 8.4 (1995), 361-381

[Pastre 98] - Pastre D., PUSCADET25: Manuel de l'utilisateur, 1998, Rapport interne, 62p

[Pastre 99] - Pastre D., Le nouveau MUSCADET et la TPTP Problem Library, colloque sur la
Métaconnaissance, Berder (1999), rapport LIP6 2000/002
http://www.lip6.fr/reports/lip6.2000.002.html, 54-98, and
http://www.normalesup.org/~pastre/berder99.ps

[Pastre 01a] - Pastre D., MUSCADET2.3 : A Knowledge-based Theorem Prover based on Natural
Deduction, International Joint Conference on Automated Reasoning IJCAR 2001
(Conference on Automated Deduction CADE-JC), 685-689

[Pastre 01b] - Pastre D., Implementation of Knowledge Bases for Natural Deduction, 8th
International Conference on Logic for Programming, Artificial Intelligence and
Reasoning, 2nd International Workshop on Implementation of Logics, Cuba, 2001,
49-68

[Pastre 02] - Pastre D., Strong and weak points of the MUSCADET theorem prover,
AI Communications, 15 (2002), 147-160,
http://www.normalesup.org/~pastre/AICom/AIC263.pdf

[Pastre 06] - Pastre D., Complementarity of natural deduction and resolution principle, in
empirically automated theorem proving, rapport interne, 2006,
http://www.normalesup.org/~pastre/compl-ND-RP.pdf

[Pastre 07] - Pastre D., Complementarity of a natural deduction knowledge-based theorem prover
and resolution-based provers in automated theorem proving, rapport interne, 2007,
http://www.normalesup.org/~pastre/compl-NDKB-RB.pdf

[Pastre 10] - Pastre D., Natural proof search and proof writing, Conferences on Intelligent
computer mathematics, Workshop on Mathematically Intelligent Proof Search,

25 PUSCADET was the name given at that time to the first PROLOG version de MUSCADET

- 23 - last update March 22, 2018

http://www.math-info.univ-paris5.fr/~pastre/compl-NDKB-RB.pdf
http://www.math-info.univ-paris5.fr/~pastre/compl-ND-RP.pdf
http://www.math-info.univ-paris5.fr/~pastre/berder99.ps

Paris, 2010, http://www.normalesup.org/~pastre/mips.pdf,
http://www.normalesup.org/~pastre/slides-mips.pdf

[Pastre 14] - Mathematical theorem proving, from Muscadet0 to Muscadet4, why and how,
Workshop about Sets and Tools, Affiliated to ABZ 2014 Conference, Toulouse,
France, 2014, http://sets2014.cnam.fr/papers/00010003.pdf,
http://www.normalesup.org/~pastre/sets.pdf,
http://www.normalesup.org/~pastre/slides-sets-par4.pdf

[Sutcliffe 09] - Sutcliffe, G., The TPTP Problem Library and Associated Infrastructure: The FOF
and CNF Parts, v3.5.0, Journal of Automated Reasoning 43 (2009), 337-362

- 24 - last update March 22, 2018

http://www.math-info.univ-paris5.fr/~pastre/transparents-mips.pdf

	1. Introduction
	2. Examples
	2.1. Transitivity of inclusion
	Rule def_concl_pred : if the conclusion is C

	2.2. Power set of the intersection of two sets

	3. From Muscadet1 to Muscadet4
	4. Machine representations
	4.1. Expression of mathematical statements
	4.2. Expression of facts
	4.3. Expression of rules
	4.4. Expression of super-actions

	5. How to use Muscadet4
	5.1. Direct proof
	5.2 From files containing theorems and definitions
	5.3. From the TPTP library
	5.4 Modification of default options

	6. Definitions and lemmas
	7. Elimination of functional symbols
	8. Building rules
	9. Activation and order of rules
	10. Some strategies
	10.1. Processing of universal conclusions and of implications
	10.2. Processing of conjunctive conclusions
	10.3. Processing of universal hypotheses
	10.4. Processing of existential conclusions
	10.5. Processing of existential hypotheses
	10.6. Processing of disjunctive conclusions
	10.7. Processing of disjunctive hypotheses
	10.8. Knowledge specific to certain domains

	11. Second order statements
	12. Distribution
	13. References

