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Abstract : Muscadet is a knowledge-based theorem prover based on natural deduction. Its
results show its complementarity with regard to resolution-based provers. This paper presents
some Muscadet results and points out some of its characteristics.
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1 Introduction

The first theorem provers used natural methods [Newel al 1957, Wang 1960]. Then most theorem
provers were based on the resolution principle [Robinson 1965], which is a simple and very efficient
method from a theoretical point of view.

For a long time, many theoretical results regarding resolution were published but the new
strategies were not very satisfying from an practical perspective. Moreover, theorems were gener-
ally given to the provers as sets of clauses instead of first-order formulas. The language of clauses
even became for some the language of automated proving.

On the other hand, other methods were also developed [Bledsoe 1977]. In particular the
natural-deduction-like heuristic techniques of Bledsoe had some better results than the resolution
techniques [Bledsoe 1971].

Since then, several theorem provers based on resolution were improved by many strategies
and became powerful. At present few provers are based on natural deduction. One of them in
particular, Muscadet [Pastre 1989, Pastre 1993] which is a natural deduction knowledge-based
system proved theorems that resolution-based provers could not prove, but failed to prove some
other theorems easily proved by resolution-based provers.

Nowadays, the best generalist theorem provers are based on the resolution principle, as shown
by the results of the CASC competitions [Sutcliffe 2006]. The winner of the FOF1 division has
been the resolution-based prover Vampire [Riazanov & Voronkov 2002] since several years.

It is however useful to continue to develop other systems for several reasons:
• If a prover has to communicate with humans, for example as a proof assistant in a mathematical
research context or as a part of a tutoring system in education, proofs must be easily read by
humans, which is not the case of a resolution proof.
• We can see that different provers based on different techniques may have complementary abilities
even if some are in general better than others.

1First Order Formula
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2 TPTP, CASC and Muscadet

The TPTP (Thousands of Problems for Theorem Provers [Sutcliffe 2009a]) Problem Library is a
library of test problems for automated theorem proving (ATP) systems.

The CADE ATP System Competition (CASC [Sutcliffe 2006]) “is an annual evaluation of fully
automatic, classical logic Automated Theorem Proving systems.”

Muscadet [Pastre 1989, Pastre 1993, Pastre 2001] is a natural deduction knowledge-based
prover. It is available under the new BSD license from

http://www.math-info.univ-paris5.fr/∼pastre/muscadet/muscadet.html

Although resolution-based provers are those which prove the largest number of the theorems
of the TPTP library and of the theorems of the last CASC competitions, they are not able to
prove some theorems which are proved by other provers, like Muscadet.

In 2007, the CASC organizers added a new contribution evaluation measure. “In addition to the
ranking measures, the state-of-the-art (SOTA) contribution quantifies the unique abilities of the
systems. For each problem solved by a system, its SOTA contribution for the problem is the inverse
of the number of systems that solved the problem, and a systems overall SOTA contribution is the
average SOTA contribution over the problems it solves.” Muscadet had the highest SOTA (three
problems were solved by only Muscadet in 2007, two in 2008)2[Sutcliffe 2008, Sutcliffe 2009].

Some proofs of theorems which were also proved by only Muscadet in 2005 and 2006 may be
found in [Pastre 2007]. Sutcliffe [Sutcliffe 2007] noticed the complementarity of the best prover
Vampire and of Muscadet, lower ranked, and more recently [Sutcliffe 2009] the complementar-
ity of Muscadet and Zenon [Bonichon & al 2007] which is a theorem prover based on a proof-
confluent version of analytic tableaux.

As all provers are continually improved and the TPTP problems are regularly tested on all
registered provers, one can see that the theorems which are cited above are now (2010) proved
by Vampire or Infinox. Infinox [Claessen & Lillieström 2009] is an automated reasoning tool that
can disprove the existence of finite models. It searches for function or predicate symbols with
particular properties that imply the infinity, and subsequently uses an automated theorem prover
to check if these properties hold. The prover used is E-prover [Schulz 2002] which is the second
best prover participating to CASC.

Nevertheless, there are still some theorems that are proved by only Muscadet.
Here are some of them.
Mappings

f(f−1(Y ) ⊂ Y (SET758+4)
Ordered and unordered pairs and cartesian products

{A} × {B, C} = {(A, B) , (A, C)} ∧ {A, B} × {C} = {(A, C) , (B, C)} (SET895+1)
A × B ⊂ P(P(A ∪ B)) (SET952+1)
(A \ B) × C) = (A × C) \ (B × C) ∧ C × (A \ B) = (C × A) \ (C × B) (SET972+1)

Ordinal numbers

The product of a nonempty set of ordinal numbers is an ordinal number (SET817+4).

We also see, looking at the results of the competition, that Muscadet is faster than other
provers on the problems it is able to solve. In case of a success, the proof is obtained at least as
quickly as with the others, and much more quickly in many cases. If it fails it often quickly stops
itself. The cases of “timeout” are generally due to infinite creations of objects, or to too many
sub-theorems.

2If gof and hog are one-to-one, then f is one-to-one (SET742+4).
f(A ∪ f−1(B) = f(A) ∪ B (SEU069+1)
P(A ∩ B) = P(A) ∩ P(B) (SET372+4)
f(A ∪ B) = f(A) ∪ f(B) (SET752+4)

where f and g are functions and P(A) the power set of A.

2



3 Main characteristics of Muscadet

3.1 Facts, rules and metarules

Muscadet is a knowledge-based system. It works with facts to which it applies rules.
Facts are the conclusion to be proved, the hypotheses, the objects of a theorem or a sub-theorem

to be proved, links to concepts which appeared in the initial conjecture or in the definitions of the
preceding concepts, sub-theorems, definitions, axioms and lemmas, and all sorts of facts which give
relevant information during the proof searching process. At the beginning, there is no hypothesis
and the conclusion to be proved is the first-order formula of the initial conjecture.

Rules are written in the form
rule <name> : if <list of conditions> then <list of actions>

By applying rules, hypotheses are added, objects may be created, the conclusion may be
replaced by another one, the theorem to be proved may be split into one or more sub-theorems to
be proved, independent or not.

Some rules are general and express logical or mathematical knowledge and usual mathematical
know-how.

Other rules are automatically built by metarules from the definitions and lemmas at the be-
ginning of the proof. During the proof of a (sub)theorem, new rules may be dynamically built
from universal hypotheses, they are local for this (sub)theorem.

Some actions are elementary, some other actions are more sophisticated and are defined by
packs of rules,

3.2 Elimination of functional symbols

Strategies of Muscadet are designed to work with predicates rather than with functional symbols.
In a formula with functional symbols, it “eliminates” them by giving names to the terms. These
objects will replace these terms in the predicative formula. So, there remains no hypothesis or
conclusion such as p(f(a)) but instead the hypothesis or conclusion p(b) where b is a constant
defined by the hypothesis f(a) :: b .

The symbol “::” is used to express that b is the object f(a), and the formula f(a) :: b will be
handled as if it were a predicative formula.

The expressions are first transformed by using a new quantifier noted “!”, which means
“for the only ... equal to ...”.

p(f(a)) is replaced by !A::f(a), p(A) which means
“for the only A equal to f(a) then p(A) holds”

where A is a variable.
This mechanism is recursive.
Then the expressions !A::<term>, <property> are handled by rules specific to hypotheses or

to the conclusion, or to building rules from definitions.

3.3 Equality handling

Because of elimination of functional symbols, equality may occur in hypotheses only as equality
of objects. Each time two objects of a (sub)theorem to be proved are found to be equal, one of
them is replaced everywhere in the sub-theorem by the other, then it is removed, and so is the
equality.

3.4 Negation handling

Muscadet works with positive properties as much as possible. Rules built from definition are
made to work with positive properties rather than negative properties. Muscadet usually does
not add negative properties, on the contrary there are general rules to eliminate negations in most
cases.
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3.5 Natural writing

With the first versions of Muscadet, the user had to extract the useful steps of the proof by hand.
This is now done automatically. All the proof search steps are memorized as facts including all
the elements which will be necessary to extract later the useful steps (the name of the executed
action or applied rule, the new facts added and the antecedents, but also the rules which have
been dynamically built and a brief explanation).

4 Why Muscadet is an efficient system in a number of cir-

cumstances

The reasons for the efficiency of Muscadet have been analysed in details with many examples in
[Pastre 2007]. This includes
• the fact that the growth of the bases of facts in linear, not exponential ;
• the importance and efficiency of the chosen representations of the problem ;
• the splitting of a (sub)theorem in many subtheorems easier to prove, independent or not ;
• the treatment of functional symbols which flattens the handled expressions ;
• the replacement of definitions and universal hypotheses by natural and efficient rules ;
• the treatment of equalities and negations which removes them as far as possible.

5 Conclusion

Muscadet functions in a manner which is quite different from resolution-based provers. It uses
methods based on natural deduction and is a knowledge-based system. Some of these methods
are crucial and this explain why Muscadet is able to prove some theorems that resolution-based
provers are not yet able to prove. Moreover, in cases where theorems are also proved by other
provers, Muscadet proof can be obtained at least as fast as with the other provers and much
faster in many cases.

However, Muscadet cannot prove some theorems that resolution-based provers can easily
prove.

Muscadet is efficient for everyday mathematical problems which are expressed in a natural
manner, for example in naive set theory. It is not efficient for problems which are defined axiomat-
ically, from a logician’s point of view, for instance in the fields of axiomatic geometry or axiomatic
set theory.

Muscadet is efficient to solve problems which involve many axioms, definitions or lemmas. It
is not efficient at all to solve problems which involve only one large conjecture and no intermediary
definitions.

Improvements of Muscadet will not come from the increase of computer speed, but from the
improvement of the heuristics which are still to be refined to enlarge the scope of situations that
Muscadet could handle efficiently.

Another way to improve theorem proving is to have provers cooperate. Muscadet could
first analyze the given problem and choose between searching itself for a proof or calling for a
resolution-based prover or at least add some resolution-based techniques for subtheorems that it
is not able to prove currently.
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