Université René Descartes UFR de mathématiques et informatique

Chapitre 6

Méthodes itératives 3

Equations différentielles

Méthodes numériques 2003/2004 – D.Pastre licence de mathématiques et licence MASS

Problème de Cauchy

Si f est une fonction continue d'un domaine D

R² dans R, le problème de Cauchy consiste à trouver les fonctions y(x) telles que y' = f(x,y)

$$y - I(x,y)$$

 $v(x) = v$

$$y(x_0) = y_0$$

Définition

On dit que f(x,y) satisfait une condition de Lipschitz dans un domaine $D \subset R^2$ s'il existe une constante L telle que

 $\forall x \in [a,b] \forall y,z \in R \mid f(x,y)-f(x,z) \mid \leq L \mid y-z \mid$

Théorème

Si dans le domaine $D \subset R^2$ la fonction f(x,y)est définie continue et vérifie une condition de Lipschitz, alors, pour tous $(x_0, y_0) \in D$ il existe un voisinage dans lequel le problème de Cauchy a une solution unique

Exemples

$$y'=y-x$$
; $y'=y/x$; $y'=y^2$; $y'=\sqrt{1-y^2}$

Méthodes d'intégration à pas séparés

Méthode d'Euler

On définit un maillage d'un intervalle [a,b] c'est-à-dire une suite $\{x_0, x_1, ..., x_N\}$ telle que

$$x_0 = a$$

 $x_N = b$
 $h = (b-a)/N$

$$x = x + h$$

 $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{h}$ puis, si $\mathbf{y}(\mathbf{x})$ est une solution du problème de Cauchy passant par (x_0, y_0) , on calcule des valeurs approchées y₀, y₁, ..., y_N en les points du maillage par la suite récurrente suivante

$$y_{k+1} = y_k + h f(x_k, y_k)$$

Cela revient à remplacer, entre x_k et x_{k+1} , la courbe passant par (x, y,) par la tangente en $(x_{\iota}, y_{\iota}).$

Bien sûr, des erreurs vont s'accumuler de (x_0,y_0) à (x_k,y_k) .

Généralisation

A f(x,y) on associe o(x,y,h) et on définit la suite des valeurs approchées

$$y_{k+1} = y_k + h \varphi(x_k, y_k, h)$$

La méthode d'Euler correspond o(x,y,h)=f(x,y)

Autre exemple : méthode de la tangente améliorée avec $\varphi(x,y,h)=f(x+\frac{h}{2},y+\frac{h}{2}f(x,y))$

3

Définition 1

Une méthode à pas séparés h est **consistante** avec l'équation y'=f(x,y) si

$$\max_{k} \left| \begin{array}{c} \underline{y(x_{k+l})} - \underline{y(x_{k})} \\ h \end{array} - \left. \phi(x_{k}, y_{k}, h) \right| \underset{h \to 0}{\longrightarrow} 0$$

où y(x) est la solution de y'=f(x,y) qui vérifie $y_o = y(x_o)$

Définition 2

Une méthode à pas séparés est **d'ordre r** s'il existe une constante K indépendante de h telle que

$$\max_{k} \left| \frac{y(x_{k+1}) - y(x_{k})}{h} - \phi(x_{k}, y_{k}, h) \right| \leq Kh^{r}$$

où y(x) est la solution de y'=f(x,y) qui vérifie $y_0 = y(x_0)$

Propriétés

- Toute méthode d'ordre ≥ 1 est consistante
- La méthode d'Euler est d'ordre 1 (donc consistante) dans tout intervalle où y" est bomée.

5

Définition 3

L'erreur de méthode ou erreur de discrétisation est égale à $e_k = y_k - y(x_k)$

Propriété

Si une méthode à pas séparés est d'ordre r, soit

$$\max_{k} \left| \frac{y(x_{k+l}) - y(x_k)}{h} - \phi(x_k, y_k, h) \right| \le Kh^r$$

et si φ vérifie une condition de Lipschitz

$$\forall x \in [a,b] \ \forall y,z \in R \ |\varphi(x,y,h) - \varphi(x,z,h)| \le L|y-z|$$

alors l'erreur de méthode est majorée par

$$|e_k| < \frac{k}{M} \left(e^{M(x_k - x_0)} - 1 \right) h^r$$

6

Définition 4

On considère les deux méthodes d'intégration

$$|y_{k+1} = y_k + h \varphi(x_k, y_k, h), y_o donné$$

et

$$|z_{k+1}| = z_k + h \left[\varphi(x_k, z_k, h) + \varepsilon_k\right], z_o \text{ donné}$$

La méthode définie par φ est **s table** s'il existe deux constantes M1 et M2 telles que

$$\max_{k} \| \mathbf{y}_k - \mathbf{z}_k \| < M1 \| \mathbf{y}_0 - \mathbf{z}_0 \| + M2 \max_{k} \| \mathbf{\epsilon}_k \|$$

Définition 5

La méthode définie par φ est convergente si

$$\max_{k} \| y_k - y(x_k) \| \underset{h \to 0}{\longrightarrow} 0$$

Théorème

Si la méthode définie par φ est stable et consistante, alors elle est convergente.

7

Méthode de Runge-Kutta

On fait plusieurs calculs de f(x,y) en différents points à chaque pas.

Méthode à 1 point intermédiaire (2 évaluations)

$$\begin{aligned} a_k &= f(x_k, y_k) \\ b_k &= f(x_k + \frac{h}{2\alpha}, y_k + \frac{h}{2\alpha} a_k) \\ y_{k+1} &= y_k + h[(1-\alpha) a_k + \alpha b_k] \\ &\qquad \qquad (\text{m\'ethode d'ordre 2}) \end{aligned}$$

on prend habituellement

 $\underline{\alpha=1}$ (et on retrouve la méthode de la tangente améliorée)

$$\begin{vmatrix} a_k = f(x_k, y_k) \\ b_k = f(x_k + \frac{h}{2}, y_k + \frac{h}{2}a_k) \\ y_{k+1} = y_k + h b_k \end{vmatrix}$$

ou
$$\underline{\alpha}=1/2$$
, soit
$$\begin{vmatrix} a_k = f(x_k, y_k) \\ b_k = f(x_k + h, y_k + h a_k) = f(x_{k+1}, y_k + h a_k) \\ y_{k+1} = y_k + h (a_k + b_k)/2 \quad (\text{m\'ethode d'ordre 2})$$

ou
$$\alpha = 3/4$$

8

Méthode à 2 points intermédiaires (3 évaluations)

$$\begin{vmatrix} a_k = f(x_k, y_k) \\ b_k = f(x_k + \frac{h}{2}, y_k + \frac{h}{2}a_k) \\ c_k = f(x_k + h, y_k + h b_k) = f(x_{k+1}, y_k + h b_k) \\ y_{k+1} = y_k + \frac{h}{6}[(a_k + 4 b_k + c_k)] \\ (\text{m\'ethode d'ordre 3}) \end{vmatrix}$$

Méthode à 3 points intermédiaires (4 évaluations)

la plus classique et la plus utilisée

$$\begin{vmatrix} a_k = f(x_k, y_k) \\ b_k = f(x_k + \frac{h}{2}, y_k + \frac{h}{2}a_k) \\ c_k = f(x_k + \frac{h}{2}, y_k + \frac{h}{2}b_k) \\ d_k = f(x_k + h, y_k + hc_k) = f(x_{k+1}, y_k + hc_k) \\ y_{k+1} = y_k + \frac{h}{6}[(a_k + 2b_k + 2c_k + d_k)] \\ (\text{méthode d'ordre 4}) \end{vmatrix}$$

Généralisation - Systèmes différentiels -Equations d'ordre supérieur

Soit
$$y^{(p)} = f(x,y,y', ..., y^{(p-1)})$$

En posant $y_1 = y$, $y_2 = y'$, ..., $y_p = y^{(p-1)}$, on obtient un système différentiel

$$\begin{vmatrix}
y_1' = y_2 \\
y_2' = y_3 \\
... \\
y_{p-1}' = y_p \\
y_p' = f(x, y_1, y_2, ..., y_p)
\end{vmatrix}$$

qui peut s'écrire

Y' = F(x,Y) où Y et un vecteur.

Toutes les notions précédentes se généralisent.

9

10