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Abstract

Muscadet is a knowledge-based theorem prover based on natural deduction. The
results obtained during the CASC competitions of theorem provers show its comple-
mentarity with regard to resolution-based provers. This paper presents some Mus-

cadet proofs of theorems proposed at the last two competitions (2005 and 2006)
and points out some of the characteristics which may account for its successes.
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1 Introduction

Bledsoe (1971) attempted to speed up automated theorem proving by us-
ing natural-deduction-like heuristics. His first prover (named “PROVER”)
applied these natural-deduction-like heuristic techniques before sending the
(sub)theorems being proved to a resolution-based program. The proofs were
shorter and obtained more quickly and more frequently than by resolution
alone. Often it was not even necessary to call on resolution. Then, in (Bled-
soe, 1972, 1974) and after, resolution was no longer used at all.

Since then, many strategies have been used to improve resolution-based theo-
rem provers. They have become powerful and few provers have been based on
natural deduction.

In 2005, we observed that at least one theorem could be proved by Mus-

cadet
1 (Pastre, 1989, 1993, 2001b) a theorem prover based on natural de-

1 available from http://www.math-info.univ-paris5.fr/∼pastre/muscadet
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duction, whereas it could not be proved by any of the participating resolution-
based theorem provers, within the time limit imposed by the CASC competi-
tions (Pelletier, Sutcliffe, Suttner, 2002; Sutcliffe, Suttner, 2006). In 2006, this
occurred for three new problems.

This does not mean that Muscadet is better than other provers. Several
theorems were proved by all the entrant systems except Muscadet. This
only tends to show that Muscadet may be complementary to other provers.
Muscadet still needs to be improved. The improvements will be obtained
by new good heuristics and know-how, not by greater computer speed. The
analysis of the results of the competitions also shows that Muscadet is faster
than other provers on the problems it can solve. In case of success, the proof
is obtained at least as quickly 2 as with other provers, and much more quickly
in many cases. If the system fails to obtain the proof it often quickly stops
itself. The cases of “timeout” are generally due to infinite creations of objects,
or to too many sub-theorems.

For a long time, many theoretical results regarding resolution were published
but the new strategies were not very satisfying from a practical point of view.
Moreover, theorems were generally given to provers as sets of clauses instead
of first-order formulas. There may be one reason for this : although translating
sets of first-order formulas into sets of clauses is easily automatizable, writing
a good set of clauses was not so easy. There may be several possibilities and
some of them may fit for the resolution based provers better. This is why it
was better to do the transformation by hand.

In the TPTP Library (Sutcliffe, Suttner, 1998), created in 1993, all problems
were expressed as sets of clauses up to 1997. Nowadays, more than two thirds
of the problems are still given as sets of clauses 3 . In the CASC competitions
(Sutcliffe, Suttner, 2006), there are five divisions. For four of them, compris-
ing nine categories, problems are given as sets of clauses. In only one division,
divided into two categories, problems are given as sets of first order formulas.
The consequence is that resolution-based provers may compete in all the divi-
sions, or be specialized in one or another, while provers that do not work with
clauses can compete only in the FOF (First Order Formula) division, which
is the most general division of them all 4 .

Moreover, the library keeps growing with the contributions of researchers. As
more researchers work with resolution-based provers, more new TPTP prob-
lems are better adapted to resolution-based provers than to natural deduction
ones, even if they are expressed as first order formulas.

2 with only one exception (example of section 4.1)
3 Although TPTP incorporated more new FOF (First Order Formulas) problems
than CNF (Clause Normal Form) problems in 2004 and 2005 (but not in 2006)
4 and has been promoted to the primary place in CASC in 2006
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2 Main characteristics of Muscadet

2.1 Facts, rules and metarules

Muscadet is a knowledge-based system. It works with facts to which it ap-
plies rules.

Facts are the conclusion to be proved, the hypotheses, the objects of a the-
orem or a sub-theorem to be proved, links to concepts that appeared in the
initial conjecture or in the definitions of the preceding concepts, sub-theorems,
definitions, axioms and lemmas, and all the properties which give relevant in-
formation during the proof searching process. At the beginning, there is no
hypothesis and the conclusion to be proved is the first-order formula of the
initial conjecture.

Rules are written in the form
rule <name> : if <list of conditions> then <list of actions>

By applying rules, hypotheses are added, objects may be created, the conclu-
sion may be replaced by another one, the theorem to be proved may be split
into one or more, independent or not, sub-theorems to be proved.

Some rules are general and express logical or mathematical knowledge and
usual mathematical know-how. Here are some examples of such rules. 5

rule ∀ : if the conclusion is ∀XP (X)
then create a new object X1 and the new conclusion is P (X1)

rule → : if the conclusion is H → C

then add the hypothesis H and the new conclusion is C

rule stop1 : if the conclusion is one of the hypotheses
then the new conclusion is true

rule ∧ : if the conclusion is a conjunction
then successively prove all the elements of the conjunction

rule defconcl : if the predicate of the conclusion has a definition
then replace the conclusion by its definition

5 Prolog conventions are used : variables start with upper-case letters whereas con-
stants start with low-case letters. Moreover, in this paper, to make it more readable,
I also use the same conventions for predicates. This is not allowed in Prolog, hence
neither in Muscadet or in TPTP which are written in Prolog.
In Muscadet, P (X) is written C and P (X1) is obtained by replacing X by X1 in
C.
In TPTP the predicate “apply” is used to write apply(P,X) instead of P (X).

3



Other rules are automatically built by metarules from the definitions, lemmas
and universal hypotheses.
For example, from the definition of inclusion

∀A ∀B(A ⊂ B ↔ ∀X(X ∈ A → X ∈ B)
the following rule is built :

rule ⊂ : if A ⊂ B and X ∈ A are hypotheses
then add the hypothesis X ∈ B if it is not yet a hypothesis.

From the definition 6 of intersection
∀A ∀B ∀X(X ∈ A ∩ B ↔ X ∈ A ∧ X ∈ B)

the following rules are built :
rule ∩1 : if A ∩ B : C and X ∈ C are hypotheses

then add the hypothesis X ∈ A if it is not yet a hypothesis
rule ∩5 : if A ∩ B : C and X ∈ C are hypotheses

then add the hypothesis X ∈ B if it is not yet a hypothesis
rule ∩3 : if A ∩ B : C, X ∈ A and X ∈ B are hypotheses

then add the hypothesis X ∈ C if it is not yet a hypothesis
where A∩B : C expresses that C is the intersection of A and B. This means
that A ∩ B has already been introduced.

Some actions are elementary, such as replacing the conclusion by its defi-
nition by the defconcl rule above. A conclusion of the form

A ⊂ B

will simply be replaced by
∀X(X ∈ A → X ∈ B)

Other actions are more sophisticated and are defined by packs of rules, such
as adding a hypothesis which is defined by the following rules :

to add a hypothesis H :
- if H is already a hypothesis or is of the form X=X then do nothing
- if H is a conjunction

then successively add all the elements of the conjunction
- if H is ∀XP (X) then create local rules for this theorem

. . . [others examples will be given in the next sections]
- in all other cases add H as a new hypothesis.

Note that the hypotheses which are added are only elementary, disjunctive and
existential hypotheses. Conjunctive hypotheses are split before being added
and universal hypotheses are treated as definitions or lemmas and replaced
by rules. Disjunctive and existential hypotheses are first stored as hypotheses

6
Muscadet also accepts the following notation A ∩ B = {X | X ∈ A ∧ X ∈ B}

but it cannot be used in the TPTP context.
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without being subjected to any particular treatment because their treatment
may be useless or even expansive. Therefore it will be done only later if nec-
essary.

2.2 Elimination of functional symbols

The Muscadet strategies are designed to work with predicates rather than
with functional symbols. In a formula, Muscadet “eliminates” functional
symbols by giving names to the terms. Thus they become objects that will
replace the terms in the predicative formula. Consequently, there remains no
hypothesis or conclusion such as p(f(a)) but instead the hypothesis or conclu-
sion p(b) where b is a constant defined by the hypothesis f(a) :b . The symbol
“:” is used to express that b is the object f(a), and the formula f(a) : b will
be handled as if it were a predicative formula.

These transformations cannot be done directly on the initial statement of the
theorem to be proved, since some of the functional expressions will become
hypotheses while others will become conclusions. Moreover, those expressions
may contain variables that make things more complicated since they also ap-
pear in some definitions. So the expressions are first transformed by using a
new quantifier noted “!”, which means

“for the only ... equal to ...” .
p(f(a)) is replaced by

!A:f(a), p(A)
which means

“for the only A equal to f(a) then p(A) holds”
where A is a variable.

This mechanism is recursive. In the example given in the next section, the
formula

inv(f, a ∩ b) = inv(f, a) ∩ inv(f, b)
is replaced by

!A:a∩ b, !B:inv(f, A), !C:inv(f, a), !D:inv(f, b), !E : C ∩ D, B = E .

This work is done by the (recursive) rules of the elifun action which is called
for the first conclusion to be proved (as well as for the definitions and lemmas)
by the elifun rule.

Then the expressions
!A:<term>, <property>

are handled by rules specific to hypotheses or to the conclusion, or to building
rules from definitions.

Here are examples of such rules :

5



rule ! : if the conclusion is of the form !Y :F (...), P (Y )
then if there is already a hypothesis F (...):Y 1

then the new conclusion is P (Y 1)
else create a new object

add the hypothesis F (...):<this new object>
and the new conclusion is P (<this new object>)

to add a hypothesis H :
if H is of the form !Y :F (...), P (Y )
then if there is already a hypothesis F (...):Y 1

then add the hypothesis P (Y 1)
else create a new object

and add the hypotheses F (...):<this newobject>
and P (<this new object>)

2.3 Equality handling

Because of elimination of functional symbols, equality may occur in hypotheses
only as equality of objects. Each time two objects of a (sub)theorem to be
proved are found to be equal, one of them is replaced everywhere in the sub-
theorem by the other, then it is removed, and so is the equality.

In the example given in the next section, during the proof searching process
of the second sub-theorem, the object t is in f−1(b1) and in f−1(b2), so that
t has an image u in b1 and an image v in b2.
The following hypotheses have been added :

f(t):u, f(t):v,
u ∈ b1 hence u ∈ b since b1 ⊂ b,
v ∈ b2 hence v ∈ b since b2 ⊂ b.

The uniqueness of the image of t in b implies that u = v.
Then v is replaced by u and we have the new hypothesis u ∈ b2.
Now the same object u belongs to b1 and to b2, hence to b1 ∩ b2 and it is
possible to conclude that t belongs to f−1(b1 ∩ b2).

2.4 Negation handling

Muscadet works with positive properties as much as possible. Rules built
from definitions are made to work with positive rather than with negative
properties. Not only does Muscadet not add negative properties, but it pro-
vides general rules to eliminate negations in most cases.
If the conclusion is a negation ¬A, then a new hypothesis A is added and the
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new conclusion is false. This is one of the few cases of proofs by contradic-
tion, the (sub-)theorem will be proved if a contradiction is found (hypothesis
false added) or if a new conclusion appears, for example after removing a
negative hypothesis due to the following rule :

if a hypothesis is a negation ¬A

and if the conclusion to be proved is false
then the hypothesis is removed and the new conclusion is A.

In other cases, negative hypotheses may be rewritten, for example
¬¬A := A

¬(A → B) := A ∧ ¬B which gives two hypotheses A and ¬B

¬(A ↔ B) := (A ∧ ¬B) ∨ (¬A ∧ B)
There are also some rare built rules which test negative hypotheses (see section
3.2).

There are two instances where Muscadet is required to handle negations :
- firstly if the statement of the theorem to be proved contains itself negations,
for example

(p → q) ↔ (¬q → ¬p) (TPTP problem SYN046+1),
- secondly if the handled concepts concern negations, for example complements
or differences of sets, empty or disjoint sets.

The example given in section 3.2 concerns the difference of sets, the definition
of which is

∀E ∀A(X ∈ (E − A) ↔ X ∈ E ∧ ¬(X ∈ A))
We will see the four rules which are built from these definitions. Three of
them do not contain any negation. This was obtained by moving formulas in
conditions, actions, hypotheses and conclusion parts. The fourth rule contains
only a negative hypothesis in the condition part.

2.5 Examples

Some detailed examples of simple proofs of easy theorems may be found in
(Pastre, 1993, 2001a,b). Proofs of other theorems may be found in (Pastre,
1993, 2001c, 2002). The two following sections give detailed proofs of more
difficult theorems and provide comments.

The examples of section 3 come from CASC-20 (2005) where one theorem was
solved only by Muscadet, and two theorems were proved by Muscadet and
only one other entrant system but in much more time.

TPTP problems SETxxx+4 were proposed by myself but they have been in-
corpored in the library since 1999. SET601+3 comes from (Trybulec, 1989).
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3 Examples of Muscadet proofs from CASC-20 (2005)

3.1 Handling images and inverse images : a property of inverse images

Here is an example of a theorem which was proved by Muscadet during
CASC-20 (2005), but by none of the other provers.

Theorem SET757+4. If f maps A into B and X and Y are two subsets of
B, then the inverse image by f of the intersection of X and Y is equal to the
intersection of the inverse images by f of X and of Y .

that is, in usual mathematical notation f−1(X ∩ Y ) = f−1(X) ∩ f−1(Y )

Its formal statement in first order predicate calculus is
∀F ∀A ∀B ∀X ∀Y

(maps(F, A, B) ∧ X ⊂ B ∧ Y ⊂ B

→ inv(F, X ∩ Y, A) =set inv(F, X, A) ∩ inv(F, Y, A))
with the following definitions 7

∀F ∀A ∀B(maps(F, A, B) ↔
(∀X(X ∈ A → ∃Y (Y ∈ B ∧ apply(F, X, Y )))
∧ ∀X ∀Y 1 ∀Y 2(X ∈ A ∧ Y 1 ∈ B ∧ Y 2 ∈ B →

(apply(F, X, Y 1) ∧ apply(F, X, Y 2) → Y 1 = Y 2))))
(every element in the domain A of F has an image in the range B and this
image is unique).

∀A ∀B(A =set B ↔ A ⊂ B ∧ B ⊂ A)
∀F ∀A ∀B ∀X(X ∈ inv(F, B, A) ↔ X ∈ A ∧ ∃Y (Y ∈ B ∧ apply(F, X, Y ))

From these definitions the following rules were built :
rule =set0 : if A =set B is a hypothesis

then add the hypothesis A ⊂ B 8

rule =set1 : if A =set B is a hypothesis
then add the hypothesis B ⊂ A

rule maps1: if map(F, A, B), X ∈ A are hypotheses
then add the hypothesis ∃Y (Y ∈ B∧ apply(F, X, Y ))

rule maps2: if maps(F, A, B), X ∈ A, Y 1 ∈ B, Y 2 ∈ B,
apply(F, X, Y 1) and apply(F, X, Y 2) are hypotheses

then add the hypothesis Y 1 = Y 2
rule inv1: if inv(F, B, A):C and X ∈ C are hypotheses

then add the hypothesis X ∈ A

rule inv2: if inv(F, B, A):C and X ∈ C are hypotheses

7 the definitions of ⊂ and ∩ have already been given in section 2.1
8 for all rules, add “if it is not yet a hypothesis”
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then add the hypothesis ∃Y (Y ∈ B∧ apply(FX, Y ))
rule inv3: if inv(F, B, A):C, Y ∈ B and apply(F, X, Y ) are hypotheses

then add the hypothesis X ∈ C

Here is the Muscadet proof 9 . The initial theorem to be proved is numbered
0. Its conclusion is the given conjecture :
∀F ∀A ∀B ∀X ∀Y

(maps(F, A, B) ∧ X ⊂ B ∧ Y ⊂ B

→ inv(F, X ∩ Y, A) =set inv(F, X, A) ∩ inv(F, Y, A))
five applications of the ∀ rule remove the universal quantifier and create cor-
responding objects 10 f , a, b, b1, b2
and the new conclusion is
maps(f, a, b) ∧ b1 ⊂ b ∧ b2 ⊂ b) →

inv(f, b1 ∩ b2, a) =set inv(f, b1, a) ∩ inv(f, b2, a)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule ∀
elimination of functional symbols
new conclusion
maps(f, a, b) ∧ b1 ⊂ b ∧ b2 ⊂ b) →

!A:b1 ∩ b2, !B:inv(f, A, a),
!C:inv(f, b1, a), !D:inv(f, b2, a), !E:C ∩ D,

B =set E

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule elifun
separation of hypotheses and conclusion
add hypotheses maps(f, a, b), b1 ⊂ b and b2 ⊂ b

new conclusion
!A:b1 ∩ b2, !B:inv(f, A, a),

!C:inv(f, b1, a), !D:inv(f, b2, a), !E:C ∩ D,

B =set E

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule →
three applications of the ! rule create objects and their definitions
add objects : b3, a0, a1, a2 and a3
add hypotheses b1 ∩ b2:b3, inv(f, b3, a) :a0,

inv(f, b1, a):a1, inv(f, b2, a) :a2, a1 ∩ a2:a3
new conclusion a0 =set a3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule !
definition of the conclusion
new conclusion a0 ⊂ a3 ∧ a3 ⊂ a0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule defconcl

9 Some useless actions have been removed.
10 the system names the objects o, o1, o2, o3, and so on, but I give here the
names f , a, b, b1 and so on, which makes the proof more easily readable by a
human reader.
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as the conclusion is now a conjunction, the theorem 0 is split into two sub-
theorems 1 and 2 which will be proved one after the other

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .sub-theorem 1

the conclusion of the first sub-theorem is the first sub-formula of the conjunc-
tion ; hypotheses and other facts are copied from theorem 0 to sub-theorem 1
new conclusion a0 ⊂ a3 . . . . . . . . . . . . . . . . . . . . . . . . . . . creation of sub-theorem 1
definition of the conclusion
new conclusion ∀A(A ∈ a0 → A ∈ a3) . . . . . . . . . . . . . . . . . . . . . . . . . rule defconcl
add object x

new conclusion x ∈ a0 → x ∈ a3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule ∀
add hypothesis x ∈ a0
new conclusion x ∈ a3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule →
add hypothesis x ∈ a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule inv1
add hypothesis ∃A(A ∈ b3 ∧ apply(f, x, A))
x has an image in b1 ∩ b2 because it belongs to f−1(b1 ∩ b2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule inv2
treatment of the existential hypothesis : creation of an object y in b1∩b2 which
is the image of x

add object y

add hypotheses y ∈ b3 and apply(f, x, y)
add treated-hypothesis ∃A(A ∈ b3 ∧ apply(f, x, A))
this fact is used to memorize the fact that the hypothesis has been treated (it
cannot be removed because the rule which has added it would add it again, and
infinitely loop)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule ∃
add hypothesis y ∈ b1 (since y ∈ b1 ∩ b2) . . . . . . . . . . . . . . . . . . . . . rule ∩1
add hypothesis y ∈ b (since b1 ⊂ b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule ⊂
add hypothesis y ∈ b2 (since y ∈ b1 ∩ b2) . . . . . . . . . . . . . . . . . . . . . rule ∩2
add hypothesis x ∈ a1
(x belongs to f−1(b1) since its image y belongs to b1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule inv3
add hypothesis x ∈ a2
(x belongs to f−1(b2) since its image y belongs to b2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule inv3
add hypothesis x ∈ a3
(x belongs to f−1(b1) ∩ f−1(b2) since its belongs to f−1(b1) and to f−1(b2))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule ∩3
the last hypothesis added is the actual conclusion to be proved, then the sub-
theorem 1 is proved and its conclusion is put at true to memorize the fact
that it is proved
new conclusion (of theorem 1) true . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule stop1
theorem 1 proved

since sub-theorem 1 is proved, the first sub-formula of the conclusion of theo-
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rem 0 is removed
new conclusion (of theorem 0) a3 ⊂ a0
and the second sub-theorem is now being proved

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sub-theorem 2
new conclusion a3 ⊂ a0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . creation of sub-theorem 2
definition of the conclusion
new conclusion ∀A(A ∈ a3 → A ∈ a0) . . . . . . . . . . . . . . . . . . . . . . . . . rule defconcl
add object t
new conclusion t ∈ a3 → t ∈ a0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule ∀
add hypothesis t ∈ a3
new conclusion t ∈ a0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule →
add hypothesis t ∈ a1
(since t belongs to f−1(b1) ∩ f−1(b2) it belongs to f−1(b1))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule ∩1
add hypothesis t ∈ a2 (and to f−1(b2))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule ∩2
add hypothesis t ∈ a (and to the domaine a)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule inv3
add hypothesis ∃A(A ∈ b1 ∧ apply(f, t, A))
(t has an image in b1 since it belongs to f−1(b1))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule inv2
add hypothesis ∃A(A ∈ b2 ∧ apply(f, t, A))
(and an image in b2 since it belongs to f−1(b2))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule inv2
treatment of the first existential hypothesis of the sub-theorem :
creation of u, image of t in b1
add object u

add hypotheses u ∈ b1 and apply(f, t, u)
add treated-hypothesis ∃A(A ∈ b1 ∧ apply(f, t, A))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule ∃
add hypothesis u ∈ b

(u belongs to b since b1 ⊂ b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule ⊂
treatment of the second existential hypothesis of the sub-theorem :
creation of v, image of t in b2
add object v

add hypothesis v ∈ b2 and apply(f, t, v)
add treated-hypothesis ∃A(A ∈ b2 ∧ apply(f, t, A))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule ∃
add hypothesis v ∈ b

v belongs to b since b2 ⊂ b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule ⊂
add hypothesis u = v (since the image is unique) . . . . . . . . . . . . . . . rule maps2
replace v by u propagate and remove v

add hypothesis u ∈ b2 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .rule =
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add hypothesis u ∈ b3
(u belongs to b1 ∩ b2 since u belongs to b1 and to b2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule ∩3
add hypothesis t ∈ a0
(t belongs to f−1(b1 ∩ b2) since its image u belongs to b1 ∩ b2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule inv3
new conclusion (of theorem 2) true . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule stop1
theorem 2 proved

since sub-theorem 2 is proved, there is no more formula to prove in the con-
clusion of theorem 0, so it is proved
new conclusion (of theorem 0) true . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule concl∧
theorem 0 proved

3.2 Handling concepts with negation : a theorem about complements

Here is an example of a theorem which was proved by Muscadet in less than
0.01 second during the last competition (2005), and also by Vampire (Ri-
azanov,Voronkov, 2002) but in 99 seconds, and by none of the other provers.

Theorem SET012+4. If A is a subset of E then the complement in E of its
complement is equal to itself,

Its formal statement in first order predicate calculus is
∀E ∀A(A ⊂ E → (E − (E − A)) =set A)

The definition of complement in a set (or difference) is
∀E ∀A(X ∈ (E − A) ↔ X ∈ E ∧ ¬(X ∈ A)

The rules built from this definition are the following :
rule diff1 : if (E − A) : B and X ∈ B are hypotheses

then add the hypothesis X ∈ E 11

rule diff2 : if (E − A) : B, X ∈ B and X ∈ A are hypotheses
then add the hypothesis false

The hypothesis false means that there is a contradiction in the hypotheses,
hence the sub-theorem to which such a rule may be applied is proved.
rule diff3 : if (E − A) : B, X ∈ E and ¬(X ∈ A) are hypotheses

then add the hypothesis X ∈ B

11 for all rules, add “if it is not yet a hypothesis”
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rule diff4 : if (E − A) : B and X ∈ E are hypotheses
then add the hypothesis X ∈ A ∨ X ∈ B.

By manipulations analogous to those executed in the preceding example, Mus-

cadet creates objects e, a, b and c with their properties stored as hypotheses :
a ⊂ e

(e − a) : b

(e − b) : c

and the conclusion to be proved is
c =set a

which is replaced by its definition
c ⊂ a ∧ a ⊂ c.

Two sub-theorems are to be proved.

Proof of sub-theorem 1

The conclusion
c ⊂ a

is replaced by its definition
∀X(X ∈ c → X ∈ a)

an object x is created such that
x ∈ c

and the conclusion is
x ∈ a.

The rules diff1 and diff4 add the hypotheses
x ∈ e and x ∈ a ∨ x ∈ b.

After this splitting of this disjunctive hypothesis, two sub-theorems have to
be proved

sub-theorem 11 with the hypothesis x ∈ a, which is the conclusion to be
proved, and

sub-theorem 12 with the hypothesis x ∈ b, and the diff2 rule brings the
contradiction

Proof of sub-theorem 2

The conclusion
a ⊂ c

is replaced by its definition. Then an object y is created such that
y ∈ a

and the conclusion is
y ∈ c.

The diff1 and diff4 rules the hypotheses
y ∈ e and y ∈ b ∨ y ∈ c.

then two sub-theorems 21 and 22 are proved as before.
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3.3 Handling intersections and unions

The following theorem

Theorem SET601+3.p.
∀A ∀B ∀C ((A ∩ B) ∪ (B ∩ C) ∪ (C ∩ A) =set (A ∪ B) ∩ (B ∪ C) ∩ (C ∪ A))

was proved by Muscadet in less than 0.01 second at CASC-20 (2005). It
was also proved by Prover9 (McCune, 2005) in less than 0.01 second. Three
other provers also proved it, but in at least 146 seconds.

Muscadet splits this theorem into five final sub-theorems. We can see that
Prover9 also splits this theorem since, as the author wrote in his CASC system
description, “a preprocessing step attempts to reduce the problem to indepen-
dent subproblems”.

Here, these splittings are particularly efficient.

The proof of Muscadet looks like an elementary proof given by an unex-
perienced mathematician. More advanced mathematicians would give a more
direct and smarter proof by using their knowledge about the distributivity of
intersections and unions.

The rules applied by Muscadet are both those which were described in pre-
vious sections and other rules built from the definition of union.

definition : ∀A ∀B ∀X(X ∈ A ∪ B ↔ X ∈ A ∨ X ∈ B)

built rules :
rule ∪1 : if A ∪ B : C and X ∈ C are hypotheses

then add the hypothesis X ∈ A ∨ X ∈ B 12

rule ∪2 : if A ∪ B : C and X ∈ A are hypotheses
then add the hypothesis X ∈ C

rule ∪3 : if A ∪ B : C and X ∈ B are hypotheses
then add the hypothesis X ∈ C

Note that the last two rules directly lead to elementary belongings whereas the
first rule leads to disjunctive hypotheses which, in turn, will lead to splittings.

12 for all rules, add “if it is not yet a hypothesis”

14



The initial theorem is split into two sub-theorems by splitting the equality of
sets into two inclusions.

sub-theorem 1

to prove the conclusion
(a ∩ b) ∪ (b ∩ c) ∪ (c ∩ a) ⊂ (a ∪ b) ∩ (b ∪ c) ∩ (c ∪ a)

where a, b, c are objects and all the intersections and unions such as a ∩ b

have been created as new objects with their own names, an object x is taken
in (a ∩ b) ∪ (b ∩ c) ∪ (c ∩ a) and it must be proved that x belongs to (a ∪ b) ∩
(b ∪ c) ∩ (c ∪ a)

Belonging to the union leads, in two steps, to three sub-theorems which are
easily proved.
- split of x ∈ (a ∩ b) ∪ (b ∩ c) ∪ (c ∩ a)
- sub-theorem 11 : x ∈ (a ∩ b) ∪ (b ∩ c)

-split
-sub-theorem 111 : x belongs to a ∩ b hence to a and to b

hence to a ∪ b, c ∪ a, b ∪ c and to their intersection
-sub-theorem 112 : x belongs to b ∩ c hence to b and to c

hence to (b ∪ c), (a ∪ b), c ∪ a) and to their intersection
- sub-theorem 12 : x belongs to c ∩ a hence to c and to a,

hence to c ∪ a, b ∪ c, a ∪ b and to their intersection

sub-theorem 2

to prove the conclusion
(a ∪ b) ∩ (b ∪ c) ∩ (c ∪ a) ⊂ (a ∩ b) ∪ (b ∩ c) ∪ (c ∩ a)

an object y is taken in (a ∪ b) ∩ (b ∪ c) ∩ (c ∪ a),
y belongs to a ∪ b, b ∪ c and c ∪ a,
and the belonging to these unions leads to four final sub-theorems :
- split of y ∈ a ∪ b

- sub-theorem 21 : y belongs to a

- split of y ∈ b ∪ c

- sub-theorem 211 : y belongs to b hence to a ∩ b

and to (a ∩ b) ∪ (b ∩ c) ∪ (c ∩ a)
- sub-theorem 212 : y belongs to c hence to c ∩ a

and to (a ∩ b) ∪ (b ∩ c) ∪ (c ∩ a)
- sub-theorem 22 : y belongs to b

- y ∈ b ∪ c does not have to be split
- split of y ∈ c ∪ a

- sub-theorem 221 : y belongs to c hence to (b ∩ c)
and to (a ∩ b) ∪ (b ∩ c) ∪ (c ∩ a)

- sub-theorem 222 : y belongs to a hence to (c ∩ a)
and to (a ∩ b) ∪ (b ∩ c) ∪ (c ∩ a)
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3.4 Handling singletons and pairs

Here is another example of a theorem which was proved by Muscadet in
less than 0.01 second during CASC-20 (2005), and also by Vampire (Ri-
azanov,Voronkov, 2002) but in 240 seconds, and by none of the other provers.

Theorem SET703+4
The union of two singletons {A} and {B} is equal to the unordered pair {A, B}

Its formal statement is
∀A ∀B ({A} ∪ {B} =set {A, B})

The definitions of singleton {A} and unordered-pair {A, B} are
∀A ∀X(X ∈ {A} ↔ X = A)
∀A ∀B ∀X(X ∈ {A, B} ↔ X = A ∨ X = B)

The rules built from these definitions are
rule singleton1: if {A} : S and X ∈ S are hypotheses

then add the hypothesis X = A

rule singleton2: if {A} : S is a hypothesis
then add the hypothesis A ∈ S

rule pair1: if {A, B} : P and X ∈ P are hypotheses
then add the hypothesis X = A ∨ X = B

rule pair2: if {A, B} : P is a hypothesis
then add the hypothesis A ∈ P

rule pair3: if {A, B} : P is a hypothesis
then add the hypothesis B ∈ P

Proof

The conclusion of the first theorem to be proved is the statement of the con-
jecture.

add objects a and b

new conclusion {a} ∪ {b} =set {a, b} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule ∀
new conclusion
!A:{a}, !B:{b}, !C:A ∪ B, !D:{a, b}, C =set D . . . . . . . . . . . . . . . . . . . rule elifun
add object a1, b1, a1b1 and ab

add hypotheses {a} : a1, {b} : b1, a1 ∪ b1 : a1b1 and {a, b} : ab

new conclusion a1b1 =set ab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule !
add hypothesis a ∈ a1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule singleton2
add hypothesis a ∈ a1b1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule ∪2
add hypothesis b ∈ b1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule singleton2
add hypothesis b ∈ a1b1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule ∪3
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add hypothesis a ∈ ab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule pair2
add hypothesis b ∈ ab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .rule pair3
definition of the conclusion
new conclusion a1b1 ⊂ ab ∧ ab ⊂ a1b1 .. . . . . . . . . . . . . . . . . . . . . . . . .rule defconcl

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sub-theorem 1
new conclusion a1b1 ⊂ ab

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . creation of sub-theorem 1
definition of the conclusion
new conclusion ∀A(A ∈ a1b1 → A ∈ ab) . . . . . . . . . . . . . . . . . . . . . . . rule defconcl
add object x

new conclusion x ∈ a1b1 → x ∈ ab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule ∀
add hypothesis x ∈ a1b1
new conclusion x ∈ ab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .rule →
add hypothesis x ∈ a1 ∨ x ∈ b1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule ∪1
treatment of the disjunctive hypothesis x ∈ a1 ∨ x ∈ b1
new conclusion (x ∈ a1 → x ∈ ab) ∧ (x ∈ b1 → x ∈ ab)
add treated-hypothesis x ∈ a1 ∨ x ∈ b1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .rule ∨

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .sub-theorem 11
new conclusion x ∈ a1 → x ∈ ab

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . creation of sub-theorem 11
add hypothesis x ∈ a1
new conclusion x ∈ ab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule →
add hypothesis x = a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule singleton1
replace a by x propagate and remove a

add hypothesis x ∈ ab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule =
new conclusion (of theorem 11) true . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule stop1
theorem 11 proved

new conclusion (of theorem 1) x ∈ b1 → x ∈ ab

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .sub-theorem 12
new conclusion x ∈ b1 → x ∈ ab

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . creation of sub-theorem 12
proved in an analogous manner
theorem 12 proved

new conclusion (of theorem 1) true . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule concl∧
theorem 1 proved

new conclusion (of theorem 0) ab ⊂ a1b1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sub-theorem 2
new conclusion ab ⊂ a1b1
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . creation of sub-theorem 2
definition of the conclusion
new conclusion
∀A(A ∈ ab → A ∈ a1b1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule defconcl
add object y

new conclusion y ∈ ab → y ∈ a1b1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule ∀
add hypothesis y ∈ ab

new conclusion y ∈ a1b1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule →
add hypothesis y = a ∨ y = b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule pair1
treatment of the disjunctive hypothesis y = a ∨ y = b

new conclusion (y = a → y ∈ a1b1) ∧ (y = b → y ∈ a1b1)
add treated-hypothesis y = a ∨ y = b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule ∨

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .sub-theorem 21
new conclusion y = a → y ∈ a1b1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . creation of sub-theorem 21
add hypothesis y = a

new conclusion y ∈ a1b1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule →
replace a by y propagate and remove a

add hypothesis y ∈ a1b1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule =
new conclusion (of theorem 21) true . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule stop1
theorem 21 proved

new conclusion (of theorem 2) y = b → y ∈ a1b1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .sub-theorem 22
new conclusion y = b → y ∈ a1b1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . creation of sub-theorem 22
proved in an analogous manner
theorem 22 proved

new conclusion (of theorem 2) true . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule concl∧
theorem 2 proved

new conclusion (of theorem 0) true . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rule concl∧
theorem 0 proved

4 Examples of Muscadet proofs from CASC-J3 (2006)

Some problems of CASC-J3 are taken from two sets of new problems which
were new problems of the release v3.2.0 of the TPTP library.
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One set of 119 new problems (SET866to999+1 and SEUxxx+1) comes from
the Mizar Library (Mizar; Bylinsli, 1989a; Bylinski, 1989b) after they have
been translated into the TPTP format (Urban, 2003).

The other set of 29 new problems (SET789to817+4) about relations was re-
cently proposed by myself to be incorporated in the TPTP library.

4.1 A theorem from Mizar

Muscadet is rather well adapted to the problems translated from the Mizar
Library. This is not surprising since they are expressed in a rather natural
mathematical manner.

In the FNE 13 category, Muscadet, although it is not efficient in this cate-
gory, solved all of them (six, which were easy)

In the FEQ 14 category, it solved half of the problems (five out of ten). In
particular it solved problem SEU075+1 which was solved by only one other
entrant system (by the preceding version 8.0 of Vampire, winner of CASC-20
in 2005, but not by the current Vampire version 8.1).

Nevertheless, Muscadet took a lot of time to solve it. The reason is not
the difficulty of the proof itself but the fact that many of the given axioms
are useless. Only four out of the forty axioms are useful. Many of them lead
to the creation of useless objects and hypotheses which lead to other useless
objects and hypotheses. Therefore the Muscadet proof is exceptionally long.
As the growth is linear, not exponential, Muscadet finally managed to find
the proof.

Here are the statements of this problem and the useful steps of the Muscadet

proof.

Theorem SEU075+1.

If the domains of g and h are equal and equal to the range of f , and if
g

o
f = h

o
f then g = h.

Its formal statement in first order predicate calculus is

∀A ∀B(relation(B) ∧ function(B)
→ ∀C(relation(C) ∧ function(C)

13 The FOF division is divided into two categories, FNE with no equality
14 ... and FEQ with equality.
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→ ∀D(relation(D) ∧ function(D)
→ (A = range(B) ∧ dom(C) = A ∧ dom(D) = A

∧ composition(B, C) = composition(B, D)
→ C = D)))).

The following axioms are given
d5 funct 1:
∀A(relation(A) ∧ function(A)

→ ∀B(B = rng(A)
↔ ∀C(C ∈ B ↔ ∃D(D ∈ dom(A) ∧ C = apply(A, D)))))

t9 funct 1:
∀A(relation(A) ∧ function(A)

→ ∀B(relation(B) ∧ function(B)
→ (dom(A) = dom(B)

∧ ∀C(C ∈ dom(A) → apply(A, C) = apply(B, C))
→ A = B)))

t23 funct 1:
∀A, B(relation(B) ∧ function(B)

→ ∀C(relation(C) ∧ function(C)
→ (A ∈ dom(B))

→ apply(composition(B, C), A) = apply(C, apply(B, A))))).

From these definitions the following rules were built
rule d5 funct 1 exists:

if relation(B), function(B), rng(B):E and G ∈ E are hypotheses
then add the hypothesis ∃I (!J : dom(B), I ∈ J) ∧ apply(B, I) : G)

rule t9 funct 1 sc:
if relation(B), function(B), relation(E), function(E), dom(B):H

and dom(E):H are hypotheses
and if the conclusion is B = E

then the new conclusion is
∀K((!L:dom(B), K ∈ L) → (!M :apply(B, K),apply(E, K):M))

(comment : this new conclusion is a sufficient condition for the preceding one)

rule t23 funct 1:
if relation(B), function(B), relation(E), function(E), dom(B):H,

J ∈ H , composition(B, E):L, apply(L, J):N and apply(B, J):P
are hypotheses

then add the hypothesis apply(E, P ):N

rule t23 funct 1 exists:
if relation(B), function(B), relation(E), function(E), dom(B):H , J ∈ H ,

composition(B, E):L and apply(L, J):N are hypotheses
and if apply(B, J):P is not a hypothesis
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then add the hypothesis ∃(P, apply(B, J):P ∧ apply(E, P ):N)

There are also the general rules
rule concl! :

if the conclusion is !Y :F (..), B(Y )
and if there is no hypothesis Z:F (..)
then create a new object Y 1

add the hypothesis Y 1:F (..)
and the new conclusion is B(Y 1)

rule concl: :
if the conclusion is Y :F (..)
then the new conclusion is !Z:F (..), Z = Y

Here is the Muscadet proof

As decribed in the preceding examples,
- the ∀ rule removes the universal quantifiers

and creates the corresponding objects x, f1, f2 and f3,
- the elifun rule eliminates the funtional symbols,
and
- the → rule separates hypotheses and conclusion.

So, we have the hypotheses
relation(f1)
function(f1)
relation(f2)
function(f2)
relation(f3)
function(f3)
rng(f1):x
dom(f2):x
dom(f3):x
composition(f1, f2):f4
composition(f1, f3):f4

and the new conclusion is
f2 = f3

Then the t9 funct 1 sc rule replaces the conclusion by
∀(A ((!B:dom(f2), A ∈ B) → (!C:apply(f2, A), apply(f3, A):C))
which is a sufficient condition to have f2 = f3.

Then
- the ∀ rule creates the object o5,
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- the → rule separate hypotheses and conclusion
and,
- by the rules concl! (twice) and concl:, we have the hypotheses

o5 ∈ o

apply(f2, o5):o6
apply(f3, o5):o7

and the conclusion to be proved is
o7 = o6

then the d5 funct 1 exists rule adds the hypothesis
∃A ((!B:dom(f1), A ∈ B)∧ apply(f1, A):o5)

which is treated by the ∃ rule which adds the hypotheses
dom(f1):o9
o8 ∈ o9
apply(f1, o8):o5

then the t23 funct 1 exists rule add the hypothesis
∃A (apply(f4, o8):A ∧ (!B:apply(f1, o8), apply(f2, B):A))

which is treated by the ∃ rule which adds the object o70 and the hypotheses
apply(o4, o8):o70
apply(o2, o5):o70

the egaldef rule adds the hypothesis
o7 = o6

which is the conclusion to be proved

4.2 Theorems about relations

These theorems concern properties of relations, expressed in a näıve manner,
Six of these problems, all FEQ, were proposed at the CASC-J3 (2006) com-
petition. One of them was proved only by Muscadet.

Theorem SET796+4. If R(a, b) then a is the greatest lower bound of the
unordered pair {a, b}

Formal statement :
∀R ∀E∀A∀B (order(R, E) ∧ A ∈ E ∧ B ∈ E ∧ apply(R, A, B))

→ glb(A, {A, B}, R, E)

With the help of the “apply” predicate the definition of “order” may be given
as a first order formula :
∀R ∀E (order(R, E)

↔
∀X(X ∈ E ↔ apply(R, X, Y ))
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∧ ∀X∀Y (X ∈ E ∧ Y ∈ E → (apply(R, X, Y )∧R(Y, X) → X = Y ))
∧ ∀X∀Y ∀Z(X ∈ E ∧ Y ∈ E ∧ Z ∈ E

→ (apply(R, X, Y ) ∧ apply(R, Y, Z) → apply(R, X, Z)))

Except the use of predicate “apply”, the Muscadet proof looks like the
proof that a human would have given.

4.3 Theorems about ordinal numbers

For problems about ordinal numbers, in addition to the definitions concerning
strict order, the following axiom

∀X ∀Y (apply(∈, X, Y ) ↔ X ∈ Y )
allows to handle “belonging” either as a predicate, or as a constant.
This axiom could be written

∀X ∀Y (apply(member, X, Y ) ↔ member(X, Y ))
in the TPTP format but, at G. Sutcliffe’s request, two different names were
used for the constant and the predicate

∀X ∀Y (apply(member predicate, X, Y ) ↔ member(X, Y )
In one or the other formulation, Muscadet simply builds and uses the rules :

if apply(∈, XE) is a hypothesis and X ∈ E is not a hypothesis
then add the new hypothesis X ∈ E

and
if X ∈ E is a hypothesis and apply(∈, X, E) is not a hypothesis
then add the new hypothesis apply(∈, X, E)

The definition of the ordinal numbers is the following where “on” (constant)
is the collection of ordinal numbers

∀A (A ∈ 15 on
↔ set(A) ∧ strict well order(∈ 16 , A) ∧ ∀X(X ∈ 17 A → X ⊂ A))

Six problems about ordinal numbers, all FEQ, were proposed at the CASC-J3
(2006) competition. Three of them were proved only by Muscadet.

One is theorem SET808+4.p
∀A (A ∈ on → A ⊂ on)

The two others are about the sum of respectively an ordinal number or the
successor of an ordinal number. The Muscadet proofs look like the proofs
that a human would have given.

15 “member” in TPTP format
16 “member predicate” in TPTP format
17 “member”
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5 Why Muscadet may be an efficient system

First, I will point out a major difference between the resolution principle and
the natural methods of Muscadet.

With the resolution principle, there is a very theoretically efficient deduction
rule which may generate so many clauses that the proof, even theoretically
obtainable, may not be found in a reasonable time. Strategies are written to
limit the exponential “combinatorial explosion”.

With the natural methods of Muscadet, there is a high but reasonable num-
ber of rules, given or automatically built. The conditions for their application
are strict and they usually lead to a linear growth. Some of them may be ex-
pansive (infinite creation of objects) or exponential (splittings) but they have
low priority and if time is out, this often means that a proof could not be
obtained. This may also mean that priorities are not right and prevent an effi-
cient rule to be applied. Strategies must therefore be written to define further
rules and metarules, and consequently the number of useful deduced facts.

The efficiency of some Muscadet characteristics will now be commented.

5.1 Representations

The first order formula of the conjecture to be proved is decomposed into
various facts.

First there are the hypotheses and the conclusion to be proved. The simplest
of these facts look like clauses but there are differences :

• hypotheses and conclusion are closed formulas;
• a hypothesis P (or ¬P ) is not handled as a conclusion (or as part of a

disjunctive conclusion) ¬P (or P );
• quantifiers are not systematically removed and stay as long as possible near

the scope of the quantified variable;
• there are no universal hypotheses; instead there are new local rules;
• a conclusion may be disjunctive; in this case, there are rules to handle it,

for example
– if A is found to be a new hypothesis,

then the conclusion A ∨ B is true
– if the conclusion is ¬A ∨ B,

then the new hypothesis A is added
and the new conclusion is B
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Many objects are created. They will be useful, for example, to simply verify a
conclusion of the form ∃XP (X). If such an object does not exist yet a more
complex mechanism must be used.

Objects correspond to Skolem constants, but there are no other Skolem func-
tions. We will see in subsection 5.3 the mechanism that replaces them.

Other facts are the definitions and lemmas. Metarules build rules from their
formal statements. They contain rewriting rules and build step by step the
conditions and the actions of these new rules. The formal statements of the
lemmas are thus no longer useful. For the definitions, their statements, after
the elimination of functional symbols (see 2.2), are still useful (for the defi-
nition of the conclusion). The mechanism is described in (Pastre, 1989). We
have seen several such rules in preceding sections.

Hypotheses are never removed. When an existential or disjunctive hypothesis
H is treated, a new fact is added to register that this hypothesis has been
treated and will prevent its being added again.

5.2 Splittings

As Bledsoe (1971) already pointed out, splitting is very efficient. We also saw
in section 3.3 the efficiency of splitting since Prover9 (McCune, 2005) and
Muscadet proved a theorem in less than 0.01 second whereas other provers
needed at least 146 seconds or failed.

In Muscadet, splitting is not only a preprocessing step but it may also be
done at all levels of the proof.

Vampire (Riazanov,Voronkov, 2002) uses another sort of splitting rule which
applies to clauses (Riazanov,Voronkov, 2001). But this splitting requires to in-
troduce new predicates and thus has to be limited. The authors say “Although
the use of splitting results in degradation of performance on the average, there
exist many problems which Vampire can solve in reasonable time only with
splitting”.

There are various versions of this splitting rule. This explains perhaps why
Vampire 7.0 proved theorem SET711+4 18 in less than 0.01 second, as well as
Muscadet, and Vampire 8.0 needed 170 seconds (no other prover succeded),
whereas theorem SET601+3, which we have seen in section 3.3, was proved
by Vampire 8.0 (146 seconds needed) but not by Vampire 7.0 (timeout).

18 This theorem states the uniqueness of the inverse image of a one-to-one mapping.
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5.3 Treatment of functional symbols

We have already seen in sections 2.2 and 3.1 how a formula of the form
P (F (X)) 19 is treated when it appears in a conclusion, after it has been
instantiated. But such a formula may appear as a sub-formula anywhere in a
conjecture or in a definition or lemma and it may contain variables. There is
no skolemisation.

P (F (X))
might be replaced by

∀Y (Y =F (X)) → P (Y ))
or by

∃Y (Y =F (X) ∧ P (Y ))
and one or the other of these two formulas could be more adequate, depending
on its position in relation to implications and negations when it is handled. It is
the reason why the quantifier “!” (“for the only ... equal to ...”) was introduced.

P (F (X))
is replaced by

!Y :F (X), P (Y )
which means

“for the only Y equal to F (X), P (Y )”

It is only when the sub-formula !Y :F (X), P (Y ) appears as a conclusion to be
proved or as a hypothesis to be added or as the sub-formula to be processed
during building rules that this sub-formula is dealt with.

The rule ! : if the conclusion is of the form !Y :F (...), P (Y )
then if there is already a hypothesis F (...):Y 1

then the new conclusion is P (Y 1)
else create a new object

add the hypothesis F (...):<this new object>
and the new conclusion is P (<this new object>)

treats “!” in the same manner as ∀.

The rule
to add a hypothesis H :

if H is of the form !Y :F (...), P (Y )
then if there is already a hypothesis F (...):Y 1

then add the hypothesis P (Y 1)
else create a new object

19 In this paper F (X) is used for any term containing the free variable Y , P (Y ) is
used for any formula containing the free variable X
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and add the hypotheses F (...):<this new object>
and P (<this new object>)

treats “!” in the same manner as ∃ but immediately.

Note that these treatments are done on closed formulas, the created objects
are Skolem constants, there is no need for other Skolem functions.

In metarules, building rules from definitions and lemmas, “!” is also treated
either as ∀ or as ∃ according to its position in the sub-formula which is being
treated.

We also saw in sections 2.2 and 3.1 that the mechanism is recursive.
A formula f(g(a)) leads to objects b and c and to hypotheses g(a):b and f(b):c.

The first advantage of this flattening is that all intermediary terms are created
as objects and may be considered in a rule, as seen with the rules ∩i and ∪i

The second advantage is that if f(a) and f(b) are found to be equal, this will
be memorized by the fact that there will be now only one object c to denote
both terms, with the hypotheses f(a):c and f(b):c. f(a) and f(b) will now
have the same properties thanks to the intermediary object c.

On the downside, if the succession of functional symbols is characteristic in a
term f(g(a)) then it is not easily visible. It is the reason why Muscadet is
not adapted to work in group theory, for example.

5.4 Building efficient rules

The building of rules has already been mentioned several times. It is a complex
mechanism which is described in detail in (Pastre, 1989) and it involves many
rules. I will here only develop a crucial point which is in relation with the
treatment of functional symbols.

Firstly, rules are adapted to the choice of working with positive properties.
If we have two sets such that A ⊂ B, the ⊂ rule (see section 2.1) will be
applied each time an element is found to be in A. These elementary properties
will certainly be useful. If there are no sets such as A ⊂ B, the concept ⊂ is
probably not pertinent. Surely, it must not have priority.

This set of rules is not complete, but successes largely make up for failures.

Secondly, if a definition or a lemma leads to a statement of the form
H → P (F (X))
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(for example X ∈ A → X ∈ A ∪ B)
the following rule could be built

if H is a hypothesis then add the new hypothesis P (F (X))
but this would have introduced the object F (X) which may have nothing to
do in the actual context. Moreover, this mechanism could be expansive by
introducing F (X), then F (F (X)), and so on (for example introducing unions
of unions of unions, and so on, of sets),

Instead of this, the formula
H → P (F (X))

which is rewritten
H →!Y :F (X), P (Y )

leads to the condition
!Y :F (X) is a hypothesis

and to the action
add the hypothesis P (Y )

that is to the rule
if <conditions built from H >

and !Y :f(X) is a hypothesis
then add the hypothesis P (Y ).

So the hypothesis P (Y ) is added only if F (Y ) already exists. And if F (Y )
is pertinent, it probably will be introduced by other rules. This sort of rule is
efficient and, above all, it is not dangerous, so it could have a high priority.
This explains why Muscadet is efficient in proving theorems where many
concepts F are defined by formulas of the form

∀X(P (F (X)) ↔ ...),
more especially in proving theorems about unions, intersections, mappings,
images, power sets, inverse images, etc.

But there are situations where these restrictions are too severe while build-
ing rules. This is the case if the functional symbol F does not correspond to
a defined concept but to a term which appears only in axioms (for example
the functional symbol “growth rate” in axioms of MGT problems). In these
situations, the sub-formulas of the form

H → P (F (X))
leads to the building of other rules in which there is not the condition

!Y :F (X) is a hypothesis
but in which there is the action

add the hypothesis ∃Y (F (X) :Y ∧P (Y )). The hypothesis will be treated
later, like other existential hypotheses.
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5.5 Treatment of existential hypotheses

Another feature of Muscadet explains its efficiency when handling images,
inverse images, as well as non-empty or disjoint sets.
From a sub-formula of the form

H → ∃XP (F (X)))
where

P (F (X))
denotes a sub-formula involving the functional symbol F

(for example every element has an image or every element has an preimage,
(see section 3.1))
the following rule might be built :

if <conditions built from H >

then create a new object
and add the hypotheses F (X) :<this new object>

and P (<this new object>

But this rule might be expansive. Instead the built rule is just
if <conditions built from H >

then add the hypothesis ∃XP (X))

So existential hypotheses are first stored without being treated. They are
treated later, one by one, in the order in which they have been added (for ex-
ample an image, then an preimage, then an image, etc, or if there are several
mappings, images by each of them will be created successively).

This explain the successes of Muscadet in proving theorems :

• SET751+4, proved only by Muscadet in less than 0.01 second and by Vam-
pire (Riazanov,Voronkov, 2002) in more than 100 seconds during CASC-20
(2005)

• HAL002+1, proved only by Muscadet and E (Schulz, 2002) in less than
0.01 second and by Vampire in more than 50 seconds.

During the CASC-19 competition (2003), four theorems about mappings were
proved only by Muscadet and by no other provers : SET723+4, SET743+4,
SET750+4, SET752+4. In theorem SET743+4, for example, there are three
sets, five mappings, and Muscadet creates 12 elements (6 necessary ones and
6 useless ones).

There is in the TPTP library another, more difficult, theorem about mappings
(SET741+4) where there are three sets, nine mappings, injective or surjective,
and to prove it, Muscadet creates 31 elements (16 necessary ones and 15
useless ones).

29



5.6 Equality handling

We saw in section 2.3 the treatment of equality, combined with the elimination
of functional symbols. In hypotheses, equalities occur only between constants
(objects) and are quickly removed, so as one of the objects, by replacing ev-
erywhere one of the constants by the other. Consequently, there are no longer
equalities in hypotheses. The equality between two terms is only implicit :
they are named by the same constant. This simplification is successful.

A consequence of this fact is that an equality in a hypothesis must not appear
in the condition of a rule. Such a rule will not be applied, except during the
short time between the addition of this hypothesis and its removal ! So, the
treatment of equalities in the building of rules must be specific.

As seen in section 3.4, the definitions of singleton and unordered-pair does not
lead to the rules

if {A}:S and X = A are hypotheses
then add the hypothesis X ∈ S

and
if {A, B}:P and X=A are hypotheses
then add the hypothesis X ∈ P

but to the rules
if {A}:S is a hypothesis
then add the hypothesis A ∈ S

and
if {A, B}:P is a hypothesis
then add the hypothesis A ∈ P

This is successful, not only for theorem SET703+4, which is relatively easy,
but also for theorem SET707+4

∀A ∀B({{A}, {A, B}} = {{U}, {U, V }} ↔ A = U ∧ B = V )
the difficulty of which was emphasized by Brown (1986) in his paper about
his system based on the fundamental deduction principle.

This is successful also for all theorems relying on a concept which includes,
among other things, the assertion of the uniqueness of objects, for example
mapping, injection or partition.
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6 Related work

Although most theorem provers now use resolution, there are still some provers
which use natural deduction and there are even two other provers, besides
Muscadet, which participated in CASC competitions, THINKER (Pelletier,
1998) in 1997 and Dilemna (Björk, 2003) in 2004.

In CASC-14 (1997) THINKER could not prove any theorem containing equali-
ties. This is why, from then on, the organizers decided to split the FOF division
into two categories, one category for problems with no equality and one cat-
egory for problems with equality. Moreover, in THINKER, as described in
(Pelletier, 1998), ”arbitary functional symbols” are not represented, ”the only
terms are individual constants (0-place function symbols) and variables”.

Muscadet did not participate in the competition in 1997, but further exper-
iments showed that it would have been better than THINKER for semantic
problems containing functional symbols and/or equality (now category FEQ)
and not as good as THINKER for syntactic problems expressed in a rather
unnatural manner (now category FNE).

In CASC-J2 (2004) Dilemna proved two theorems in the category FEQ and
nine theorems in the category FNE.

Muscadet did not participate in the competition in 2004, but at that time it
was able to prove fifteen theorems (not proved by Dilemna) among the FEQ
theorems of the competions and only two (also proved by Dilemna) among
the FNE theorems of the competition. It is now able (version 2.6) to prove
twenty-five and three theorems of the respective categories.

Moreover one FEQ theorem (SET609+3) was already proved by Muscadet

in 2004 and was not proved by any of the entrant systems of that competition.

These results tend to show that the results of Muscadet, that is, its much
better results for FEQ 20 problems than for FNE problems, are not only due
to its using natural deduction type methods and heuristics, but also to the
fact that its strategies are implemented by rules in knowledge bases, and
that it uses metarules to automatically build new rules adapted to the chosen
representations of a “theorem to be proved”, as described in this paper and
illustrated in several examples. All this can be implemented only in a natural

20 FEQ is presented as the category with equality, but its other characteristic is that
it also contains many definitions of concepts which are used in other definitions and
axioms, as well in the conjecture and that all these statements are expressed in a
natural manner. FNE often contains few very big formulas or formulas expressed in
a rather unnatural manner.
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deduction context.

7 Conclusion

Muscadet functions in a manner which is quite different from resolution-
based provers. It uses methods based on natural deduction and is a knowledge-
based system. We have seen some of these crucial methods and explained why
Muscadet is able to prove some theorems that resolution-based provers are
not yet able to prove. We have also seen that, in cases where theorems are
also proved by other provers, the Muscadet proof can be obtained at least
as fast as with the other provers and much faster in many cases. However,
Muscadet cannot prove some theorems that resolution-based provers can
easily prove.

Muscadet is efficient for everyday mathematical problems which are ex-
pressed in a natural manner, for example in naive set theory. It is not efficient
for problems which are defined axiomatically, from a logician’s point of view,
for instance in the fields of axiomatic geometry or axiomatic set theory.

Muscadet is efficient to solve problems which involve many axioms, defini-
tions or lemmas. It is not efficient at all to solve problems which involve only
one large conjecture and no intermediary definitions.

Improvements will not be due to the increase of computer speed. Most of
the time, either Muscadet succeeds or it fails and stops quickly. The role of
heuristics is not to limit the number of deduced facts which generally increases
in a linear manner. The role of heuristics is to enlarge the scope of situations
that the system is able to handle efficiently. The analysis of the failures of
Muscadet will be pursued in order to help refine its heuristics.

Nevertheless there are two cases of time out. One is due to too many useless
splittings, the other concerns problems that contain too many existential ax-
ioms, leading to too many objects being created. Until now Muscadet does
not backtrack, as it is more difficult to decide when to backtrack than to refine
heuristics so that it chooses the right path. Two potential improvements would
lead to better results : to implement backtracking and to improve heuristics to
choose the right path, especially in the case of problems in axiomatic theories.

Another way to improve theorem proving is to have provers cooperate. Sut-
cliffe (2001) has already worked to make the best resolution-based provers
cooperate, and the overall performance was better than the performance of
each of the components.
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It would certainly be possible to make Muscadet cooperate with a resolution-
based prover. Some provers may begin with a preprocessing step, such as
attempting to split a problem into sub-problems before clausifying it (Schulz,
2002). Muscadet could first analyse the given problem and choose between
searching itself for a proof or calling on the resolution-based prover. In the
event of failure on a sub-problem or after having exceeded a time limit, it
could also call on the resolution-based prover for this sub-problem.
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