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Abstract. MUSCADETIs a knowledge-based theorem prover based on natural deduction. It has participated in CADE Automated
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1. Introduction the only division in which MUSCADET could compete
since, in all other divisions (except SEM in CASC-17

Most theorem provers nowadays are based on the only), the problems are not stated by first order formu-
resolution principle [16]. The properties of such las but by clauses.
provers have been studied from a theoretical point of ~ Section 2 quickly presents the main characteristics
view and much progress has also been made from a of MuscaADET and especially its main strategy which
practical point of view. However, it is also useful to is the use of rules automatically built from axioms.
continue to improve theorem provers based on nat- Section 3 illustrates this strategy with a theorem from
ural deduction, following the terminology of Bledsoe CASC-JC which was proved only by cADET and
[2-4]. MUSCADET [12-14] is such a natural deduc- one other entrant. Sections 4 and 5 present two of the
tion type system. As for the UT interactive theorem crucial strategies, the processing of existential prop-
prover implemented by Bledsoe [5], WCADET does erties and the processing of negation, and illustrate
not contain a standard set of Gentzen natural deduc- them by two theorems which were proved only by
tion rules but implements natural-deduction-like tech- MuscaADET. The construction of rules is explained in
niques and uses heuristics. Bledsoe also calls such sys-Section 6. Section 7 provides a commentary on for-
tems ‘natural’ systems or goal oriented systems [4]. ward and backward chaining, and Section 8 exposes
Moreover, MUSCADET is built as a knowledge-based problems for which MiSCADET is not adapted or has
system; theorems (and sub-theorems) to be proved areto be improved. Section 9 mentions some other provers
decomposed and represented as sets of facts and allwhich work with knowledge bases, and Section 10
methods are expressed as rules which are either givenconcludes on the complementarity of/dcADETwith
to the system or automatically built by metarules. regard to resolution-based provers.

MuUSCADET has participated in the last three CADE
Automated theorem proving System Competitions
(CASC-16/17/3C). It was the only prover based on nat- 2. Main characteristicsof MUSCADET
ural deduction and the results show its complemen-
tarity with regard to resolution-based provers. For ex- MUSCADET is composed of rules and metarules. It
ample, at CASC-JC, MscADETwas the only prover  works with facts and (mathematical) objects to which
which was able to prove five problems out of the fifty it applies rules. Consequently, the main structure of
in the FEQ category (First order with EQuality) and it MUSCADET is not an algorithm previously studied
was also the only prover which was unable to prove from a theoretical point of view. If it contains some al-
two other problems. The FEQ and FNE categories con- gorithms, they are only small algorithms which have
stitute the FOF division (First Order Formula) whichis  been written for technical and minor reasons.
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Some of the rules are automatically built by
metarules.
Examples of facts are

‘p(a) is a hypothesis of Theorem 1’,

‘a is @ mathematical object which has been introduced
in Theorem 1’,

‘q(b) is the conclusion of Theorem 2.1 which has to be
proved’,

‘Theorem 2.1 is a sub-theorem of Theorem 2’,

‘X p(X)’ is a hypothesis of Theorem 2.2’,

‘the existential hypothesi&X p(X) of Theorem 2.2 has
been treated(i.e., a mathematical object which veri-
fiesp already existed or had been creajed

‘conceptyp is pertinent for theorem 0,

‘active rules(i.e., rules which are pertinent for the
(subJjtheorem to be provgdarer1,r2,... .

Facts result from the initial theorem to be proved or
are added by rules.

Rules are either logical rules or rules which have
been built from definitions, lemmas or universal hy-
potheses.

Examples of logical rules are

‘If the conclusion to be proved § = C, then add the
new hypothesi& and the new conclusion &’,

‘If the conclusion to be proved is a conjunction, then
successively prove all elements of this conjunction’.

Several other rules are given in Fig. 1. Some of the
automatically built rules are given in Fig. 2.

Rules contain a list of conditions which are easily
verified, for example

‘p(X) is a hypothesis’,
‘X p(X) is a hypothesis’,
‘there is no hypothesis of the forpX)’,

and a list of actions which may be elementary, for ex-
ample

‘set the new conclusionto C’
‘replace all occurrences oK by Y in expressiorF’,

or more complicated actions which are called super-
actions and are defined by packs of rules, for example

‘To add a hypothesis H,
if H is already a hypothesis, then do nothing
if H is a conjunction,
then successively add all the elements
of the conjunction,
if HisVXp(X),
then create local rules for this theorem
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rule V: if the conclusion is/ X P(X)
then create a new objedf1
and the new conclusion B(X1)
rule =: if the conclusion isH = C
then add the hypothesid
and the new conclusion &
rule v: if AV Bis a hypothesis
and the conclusion i€’
then the new conclusion is
A=C)A(B=0)
rule stop if the conclusion is one of the hypotheses
then the new conclusion teue
rule A: if the conclusion is a conjunction
then successively prove
all elements of the conjunction
rule exists if 3X P(X) is the first
existential hypothesis
which has not been treated
and there is no object satisfyirig
then create an object satisfying P
rule concl_existif the conclusion isP(X)
then search for an objeéf satisfying P

Elimination of functional symbals
rule elifun: for each subformuld(. .., F(...),...)
of the conclusion where the term
F(...)is totally instantiated,
then create a new objett,
add the hypothesig'(...) : Y
and the new conclusion B(...,Y,...)

Definition of the conclusian
rule defconcl: if the conclusion iC(A1L,. .., An)
and there is a definition of the form
C(X1,...,Xn) < D(X1,...,Xn)
then the new conclusion B(A1l,.. ., An)
rule defconc®: if the conclusion isR(A, B),
there is a hypothesis of the form
F(Al,...,An): B
and there is a definition of the form
R(X,F(X1,...,Xn) & D(X,X1,...,Xn)
then the new conclusion B(A, Al,..., An)

Fig. 1. Some universal and logical rules.

in all other cases, add/ as a new hypothesis
(this concerns elementary hypotheses and
existential hypothesgs

There is no backtracking. Adding useless facts such
as useless hypotheses does not matter because their
number grows only in a linear manner. Some actions
may lead to failure or to the creation of infinitely many
objects or of a very large number of sub-theorems. Pri-
orities and heuristics are used but there is no backtrack-
ing because it would be more difficult to decide when
the system should backtrack than to search for heuris-
tics to avoid these problems. Mostly, in the case of
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VAVYB(AC B VX(X € A= X € B))
VAVBYVX(X € AUB& X € AV X € B)
VAVX(X €e P(A) & X C A)
rulecC:if A C BandX € A are hypotheses,
andX € B is not a hypothesis
then add the hypothesis € B
ruleul:if AU B : C'andX € C are hypotheses,
andX € AV X € B is not a hypothesis
then add the hypothesis € AV X € B
ruleu2l: if AU B : C andX € A are hypotheses
andX € C'is not a hypothesis
then add the hypothesis € C
ruleu22: if AU B : C andX € B are hypotheses|
andX € C'is not a hypothesis
then add the hypothesis € C
ruleP:if P(A): BandX € B are hypotheses,
andX C Ais not a hypothesis
then add the hypothesi§ C A

Fig. 2. Definitions occurring in problem SET694 and rules built
from these definitions.

too many objects or too many splittings,MdCADET
would not be able anyway to prove the theorem.

Metarules are used to build rules from definitions.
We will see such rules in Sections 3 and 4 and exam-
ples of constructions in Section 6.

Metarules are also used to activate rules, i.e., to se-
lect rules which concern the concepts that occur in the
theorem to be proved, and to order rules.

At the beginning of the proof, there is only one fact:
the conclusion of theorem numbered 0 is the statement
of the initial theorem to be proved.

A theorem is proved if its conclusion becontase.

If it is only a sub-theorem, the fact that it has been
proved is returned to the theorem which created it.

A conclusion is set tdrue for example, if the con-
clusion to be proved is also a hypothesis, or if the con-
clusion is an existential property which is verified by
the objects and their properties.

The system gives a trace of all the successful ap-
plications of rules, i.e., the objects which are intro-
duced, the hypotheses which are added, the new con-
clusions which replace the old ones, the splitting of
theorems into two or more sub-theorems, the sub-
theorems which are proved, etc. As all rules express
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3. Applyingrules

We have seen that WMsCADET works with objects,
hypotheses, a conclusion and rules. It has to prove the
conclusion by applying rules which may, for exam-
ple, add new hypotheses, modify the conclusion, create
new objects, split the theorem into two or more sub-
theorems.

To illustrate this mechanism, in this section, | will
give the proof of TPTP problem SET694 and com-
ment on it.

The union of the power set of two sets A and B is in-
cluded in the power set of the union of A and B

I chose this theorem as the first example because it
was one of the CASC-JC problems and, although it is
rather easy, it was proved only by cADET and by
one other entrant. | was surprised that all resolution-
based provers (except this one) ran over the time. The
reasons why MISCADETIs successful is that the rules
perform actions which are restricted to actions which
would be carried out by a mathematician. This is the
case for logical rules and also for rules which are built
from definitions. Here, these rules quickly lead to the
proof. These actions often resemble actions which are
carried out by resolution, but only an effective subset
of these actions is considered.

Notice that the first example given by Bledsoe in
[2] to show the efficiency of his natural-deduction-like
prover also concerned power sets. (This example in-
volved intersection which is easier that union because
it leads to less splitting.)

MuscADETreceives the first order statement of this
conjecture

VAVB(P(A) UP(B) C P(AU B)).

It first builds rules from the definitions in the
SETO006t+0.ax file which is included in the problem
statement. Figure 2 shows the definitions which are
used in this problem and the rules which have been au-
tomatically built from these definitions. | will show in
section 6 how these rules are built. Once rules are built,
they may be stored in order to be used for another prob-
lem without being built again. This possibility is not
used in the TPTP context.

Then MUSCADET considers the conjecture and ac-
tivates the rules that are pertinent for the conjecture.

natural properties, the traces are easily comprehensibleTnis means that, later, it does not have to try to apply
to the human reader. They may however be a little te- many rules that have nothing to do with the context
dious on occasion because all the details are given andof the conjecture. To decide which rules are pertinent,
repeated even if they look like preceding steps. MuscADET first links the conjecture to the concepts
Examples of such traces are given in [15]. (predicate and functional symbols other than logical
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| rules | objects] hypotheses | conclusion]
VAVYB(AU B C P(AU B))
v a,b P(a) UP(b) C PlaUb)
elifun pa,pb | P(a): pa,P(D): pb
pab pa Upb : pab
¢, pe aUb:c,Pe): pe pab C pc
defconcl VX(X € pab= X € pc)
N d d € pab=d € pc
= d € pab d € pc
ul depaVdenpb
v (d€epa=depc)A(depb=dEe pc)
A split into two sub-theorems

sub-theorem 1

d € pa=depc

= d € pa d € pc

P dCa
defconcl dCc
defconcl VX(Xed= X €c)
A T rE€d T EC

(- T Ea

uz21 T EC
stop true

=

sub-theorem 1 prove

sub-theorem 2

d € pb=d € pc
is proved ina analogous manne sub-theorem 2 prove
initial theorem proved

=

Fig. 3. MuscADETproof of theorem SET6944.

symbols) that occur in the conjecture, and recursively  Prolog conventions are used for mathematical vari-
to the concepts which occur in the definitions of the ables and constants. Variables start with upper-case let-
preceding concepts. Pertinent rules are universal rules ters whereas constants start with lower-case letters.
and rules which have been built from the definitions Here follows a commentary on this proof.
of the concepts linked to the conjecture. Here the rules  Rule ¥V is a classic rule in natural deduction. It is
in Fig. 2 are active because they involiseclusion, applied twice. It instantiates the variabl¥4 by a new
union andpower set constant: (then byb), it creates objects andb and the

At the beginning, there is no hypothesis and no ob- new conclusion is
ject, and the first conclusion to be proved is the first
order statement of the conjecture P(a) UP(b) < PlaUb).

VAYB(P(A) UP(B) C P(AU B)). MUSCADET accepts statements Wit_h functional
symbols but works as if there were predicate symbols.
Figure 3 presents an outline of the proof. One can Ruleelifun calls a siner-action which creates objects
see in the first line the first conclusion to be proved, P Pb,pab, c andpe,” adds the hypotheses
which is the given conjecture. Then each line shows the
name of the rule which is applied, the objects which
are introduced, the hypotheses which are added and the  1the naming conventions have been simplified to make the paper
new conclusion. more readable.

P(a) : pa, P(®): pb, paUpb: pab, aUb: c
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and
P(c) : pc

and the conclusion is
pab C pc

The formulaa Ub : ¢, for example, will be manipulated
as if it was a predicatg(a, b, ¢). The symbol " means
thatc is the name of the union efandb.

Then ruledefconcl replaces the conclusion by its
definition

VX(X € pab= X € pc).

In MUSCADET there are no axioms or hypotheses —
following the terminology of TPTP — but definitions
and lemmas. The building of rules is slightly differ-
ent for definitions and for lemmas. The replacement
of the conclusion only occurs for definitions. In a
standard use of MSCADET, the user defines prop-
erties as definitions or lemmas. In the TPTP con-
text, MUSCADET has to recognize definitions among
the axioms. Roughly, definitions are formulas contain-
ing an equivalence in which one argument is of the
form P(X1,...,Xn)or Q(X1,...,F(X1,...,Xn),
..., Xn)whereP or F' has no other occurrence in the
formula.

RuleV is applied again and creates the objédn
pab and the new conclusion is

d € pab = d € pc.

Rule=-is also a classic rule in natural deduction. It
decomposes the statement into a hypothésis pab
and a conclusiod € pc.

Then ruleUl adds the hypothesis

d € pabVd e pb
and rulev replaces the conclusion by
(de€pa=depc)n(depb=dEe pc).

RuleV has a low priority. It is applied here because
no other rule can be applied. Otherwise, rules with
higher priority would be applied first in order to avoid
useless splittings.

Then rulen splits the theorem into two sub-theo-
rems. The conclusion of the first sub-theorem is

(d € pa = d € pc).
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Rule=>is applied again and adds the hypothés&s
pa, and the new conclusion e pe.

RuleP adds the hypothesisC a.

Rule defconcl is applied twice and replaces the
conclusion by

dCec
then by
VX(X ed= X €c).

Then rulesy and=- are applied again as previously
described. A new objeat is created ind and the con-
clusionisz € c.

Then rulec adds the hypothesise «a, and rule_J21
addsz € ¢ which is the conclusion to be proved. So,
rule stop sets the conclusion teue and ends the proof
by stating that the sub-theorem is proved. This infor-
mation is returned to the initial theorem and rnleon-
tinues the proof with the second sub-theorem which is
proved in an analogous manner.

As both sub-theorems are proved, the initial theorem
is proved.

4. Processing of existential properties

In this section | will comment on MSCADET
proofs of some problems that have been proved only
by MuscADETIn CASC-JC.

While commenting on the proofs | will explain some
crucial MUSCADET strategies that enabled it to prove
theorems that other CASC entrants failed to prove.

In particular, the creation of objects verifying exis-
tential hypotheses may be expansive.

The reasons for the efficiency ofbdCADETare the
following.

First, as before, the rules which are automatically
built only execute actions which would have been car-
ried out by humans.

Secondly, the processing of existential hypotheses is
delayed until no other rule with a higher priority may
be applied.

Thirdly, after the creation of the object(s) verifying
an existential hypothesis, all the other rules are tried
again before the next existential hypothesis is treated.
So all elementary properties of the objects which have
just been introduced will be used before new objects
are created.

Fourthly, existential hypotheses are treated in the or-
der in which they appear. This allows, jf maps A
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onto itself, images and pre-images to be created al- For the conjecture, rulg creates objects, i.e., con-
ternatively instead of creating only images for exam- stants. This corresponds to the skolemization of the
ple and missing the right element if it is a pre-image. most exterior and existential quantifier of the negation
Moreover, if there are several sets and many mappings, of the conjecture. In the example, the objects, ¢, f,
it allows all sets and all mappings to be considered. g are added and the conclusion is

Lastly, another reason for the efficiency ofud
CADET in this type of problem is that MscADETdoes maps/, a, b)./\ ”?ap@’ b.c)
not skolemize the formulas. It does not handle the term /\ surjective(compogg, f, a. b, c), a, c)
A U B where the functional symbal corresponds to = surjectivég, b, )).
a concept in the same manner as an object which is  Ruleelifun creates an objedt, adds the hypothesis
created because of the existential property. When it is composéy, f, a, b, ¢) : h, and the conclusion is
treated this object is a constant because all other vari-
ables have necessarily been instantiated before. If the maps/,a,b) A mapgy, b, c) A surjectivéh, a, c)
formulas had been skolemized, this object would have = surjectivég, b, c).
been written as a term with a Skolem function and the

) ) Rule = decomposes the statement into hypotheses
difference of nature would have disappeared. P Yp

and a conclusion. The new conclusion is

4.1. Proof and comments on probl@&T722+-4 surjectivég, b, c).

MuscADETdoes not add a conjunctive hypothesis but
as many hypotheses as there are arguments in the con-

Consider two mappingg : A — Bandg : B — C. junction
If go f is surjective thery is surjective mapsf, a,b), mapsg, b,

The English statement of problem SETA2Ris

Its first order statement is andsurjectivéh, a, ¢).
VEVGYAYBYC(maps(F, A, B) Adding hypotheses is a super-action which is de-
A maps(G, B, C) fined by a pack of rules; it involves performing spe-
A surjective(compose(G, F, A, B,C), A, C) cific actions depending on the formula which has to
= surjective(G, B, C)) be added. For conjunctions, as here, this super-action
] S adds elements of the conjunction (and it is recursive).
and its MUSCADET proof is given in Fig 6. To give another example, for universal properties and

MuscaDEeTfirst builds rules from the axioms of the  jmpilications, it creates rules which are local for the
files SETOO@’O&X and SETOOG].aX which are in- (Sub-)theorem being proved_
cluded in the problem statement. Figure 4 shows some  Ruledefconcl replaces the conclusion by its defin-
definitions about mappings. Figure 5 shows some of jtion
the rules which were automatically built from these de-
finitions. VY (Y € c= 3X(X € bAapplyg, X,Y)).

Then MUSCADET activates rules that are perti-
nent for the conjecture, i.e., universal rules, and also
rules map4, map<®, surjective compos& and com-
pos€ which involve mappings surjective mappings
andcomposition of mappings JX(X € b AappiAg, X,¥)),

The first conclusion to be proved is the first order )
statement of the conjecture. At the beginning, there is 1-€-, the prover has to search for a elem&nin b such

Then rulesv and=- are applied again as described
before. A new objecy is introduced inc and the con-
clusion to be proved is

no hypothesis and no object. thatapply(g, X, ). _
Notice that the first order formulas are not skolem-  Then rulesurjectiveadds the hypothesis
ized. They are not in prenex form either; on the con- IX(X € a A applyh, X, 1)).

trary, quantifiers remain the most interior possible.

Only the most exterior and universal quantifier is re-  As no other rule can be applied, r@giststreats this
moved. For the axioms, all free variables are then im- one existential hypothesis and creates a such that
plicitly universal. apply(h, z, y).
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VEVAVB(maps(F, A, B) ©VX(X € A= JY(Y € BAappl(F, X,Y))

AVXVYIVY2(X €e ANY1le BAY2e BAappyWF, X, Y1) AapplF, X,Y2)=Y1=Y2)))
VEVAVB(surjective(F, A, B) < VY (Y € B= 3X(X € Anappl(F, X,Y))))
VEVGYAVYBYCVYXVY (mapgF, A, B) AmapsG,B,C)ANX € ANY € C =

(apply(compose(G, F, A, B,C), X,Y) & 3Z(Z € B ANappF, X, Z) A appG, Z,Y))))

Fig. 4. Some definitions.

then add the hypothesisl = Y2

rulemapd.: if mapgF, A, B) and X € A are hypotheses,
and3Y (Y € B A apply(F, X, Y)) is not a hypothesis
then add the hypothesty (Y € B A apply(F, X,Y))
rulemap®: if mapgF,A,B), X € A,Y1le B,Y2¢€ B,
apply(F, X, Y1) andapplyF', X, Y2) are hypotheses

rule surjective if surjectivéF’, A, B) andY € B are hypotheses
and (X (X € A (apply(F,X,Y)) is not a hypothesis
then add the hypothesisX (X € A A apply(F, X,Y))
rule composté: if mapgr’, A, B), mapsG, B, C), composé4, F, A,B,C): H, X € A,Y € C
andapply(H, X, Y) are hypotheses
and3Z(Z € B AN appIMF, X, Z) A app|G, Z,Y) is not a hypothesis
then add the hypothesiZ (Z € B A appl(F, X, Z) A applG, Z,Y)

Fig. 5. Some of the rules built from definitions outlined in Fig. 4.

Because of this new elementin a, rulesmapsl
andcomposel can now be applied again and they add
the hypotheses

Y (Y € b Aappf,z,Y))

and

3Z(Z € b Aappf,x, Z) N appg, Z,y)).

Again, no other rule can be applied and rebdsts
treats the first existential hypothesis which has not yet
been treated

FY (Y € b AappI(f,x,Y)).

The first rule to be applied depends on the order of the
rules, which is the order in which the definitions are
given. We will see that the useful existential hypothe-
sis is the second one but this does not matihis ex-
istential hypothesisY (Y € b A apply(f,x,Y)) gives
y1inb such thagpply(f, z, y1).

Because of this new elemeyit in b, rulemapd can
now be applied again and it adds the hypothesis

2There is in MUscADETa metarule which can reorder rules. Here
rule composg is moved before rulerapsl because it is recognized
as more specific, the proof is then shorter and nicer. But this metarule
must know themember relation(which | consider as a universal
symbol). Thus, this possibility is not used in the TPTP context.

Y (Y € cANapplyg, y1,Y)).

Again, no other rule can be applied and raebasts
treats the first existential hypothesis which has not yet
been treated. This is now

3Z(Z € b Napp(f,z, Z) A appl\(g, Z,y))
which gives the objecj2 in b such that

apply(f, z,y2) andapply(g,42,y).

Lastly, ruleconcl_existverifies that the conclusion
is satisfied withy2 as an instantiation foX. So the
conclusion is nowirue and rulestopends the proof by
stating that the theorem is proved.

If, at this stage, the theorem was not proved, rule
map<2 would have added the hypothesis

yl=1y2

and all occurrences aj2 would have been replaced
by 1. In fact, MusCADETremoves hypotheses which
are equalities between two objects and replaces all oc-
currences of one object by the other one. So the use-
less elemeni1 would have disappeared as it would be
now the same ag2, andy2 would satisfy all the prop-
erties thatyl satisfied. This illustrates the way -
CADET handles the equality predicate in hypotheses.
In the conclusions, the equality predicate is handled in
the same way as other predicates.
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rules objects hypotheses conclusion
VEVGYAYBYCVXVY mapsF, A, B)
AmapsG, B, C)
Asurjective(compogé’, F', A, B,C), A,C)
= surjectivéG, B, C))
N a,b,c, f,g mapgf, a,b) A mapgg, b, c)
Asurjective(compose, f,a, b, ¢), a, c))
= surjectivég, b, c)
elifun h composgy, f,a,b,c): h mapgf,a,b) A mapgg, b, ¢)
Asurjectivéh, a, c) = surjectivég, b, ¢)
= mapgf,a,b)
mapgg, b, ¢)
surjectivéh, a, c) surjectivég, b, c)
defconcl VY (Y € c= 3IX(X € bAappiWg, X, Y))
v Y y € c= IX(X € bAapplyg, X,y))
= yEc X (X € b Aappig, X,y))
surjective JX(X € aAapplyh, X, 1))
exists x TEa
appiyh, z, y)
mapd Y (Y € bAappf,z,Y))
composg 3Z(Z € b N appf, z, 2))
ANapplg, Z, y)
exists yl yleb
apply(f,z,y1)
mapd FY (Y € cAappiug, y1,Y))
exists y2 y2 € b
apply(f,z,y2)
apply(g, y2,y)
concl_exist true
theorem proved

Fig. 6. MuscADETproof of theorem SET7224.

4.2. ProblenSET73#-4 Consider three mappingé : A — B,g: B — C
andh : C — A. If hogof and fohog are injective and

This problem is not conceptually more difficult than Jofoh is surjective therh is one-to-one.

problem SET7224 but it is much more complicated Here is the outline of the MscADET proof. In ad-
and deserves to be given as another example. Theredition to the definitions and rules in Fig. 4 and 5, the
are more mappings and more elements to be created:definitions and rules in Fig. 7 are used.
images, pre-images and intermediary elements. As this By rulesV, elifun, = anddefconcl it first creates
process may be expansive, it is important not to de- Sets and mappings stated in the theorem with their
velop one direction to the detriment of the others. The Properties as hypotheses. It then has to prove that h is
creation of elements is delayed to ensure that the ele- One-to-onethatis that is injective(first sub-theorem)
ments necessary for the proof are created. andsurjective(second sub-theorem).

Here is the English statement of the theorgm: For the first sub-theorem, by ruldgfconcl, vV and

=, it creates two elementsl andb2 in B with the

3This theorem is one of the six theorems obtained by replaging same imagel by g ar_]d_ It h_as o p_rove_ thatl = b2.
by g or h and by invertinginjective and surjective. There is no Then rulesmapd, injective surjective composg,
symmetry among them and they are more or less difficult. Theorem COMPOS2 and existsadd successively the following
SET737+-4 is one of the easiest. hypotheses:
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VEVAVB(injective(F, 4, B) &

VEFYAVYB(one-to-one(F, A, B)
injective F', A, B) and surjectivéF', A, B)

VXIVX2VY (X1 € A(X2 € A(Y € B(apply(f, X1,Y)(apply(f, X2,Y) => X1 = X?2))

then add the hypothesi1 = X2

then add the hypothesipply(H, X, Z)

ruleinjective if injectivg(F', A, B), X1 € A, X2 € AY € B,
apply(f, X1,Y) andapply(f, X2,Y) are hypotheses

rule composg: if mapgF’, A, B), mapsG, B, C), composés, F, A, B,C) : H,
X eAYeB,ZeC,appF, X,Y) andapp(G,Y, Z) are hypotheses
andapply(H, X, Z) is not a hypothesis

Fig. 7. Some more definitions and rules.

JFY (Y € C A applyg, b1,Y) (1)
Y (Y € C Aapplyg,b2,Y) (2)
Y (Y € Anapplyh,cl,Y) (3)
AX(X € C A appMgofoh, X, 1) (4)

c2 € C andapply(gofoh, c2,cl) (treatment of (2))
Y (Y € Anapplyh,c2,Y) (4)

AX(X € C A appMgofoh, X, c2) (5)

3Z(Z € C N applyfoh,c2,Z) A appi g, Z, c1)) (6)

(1) and (2) are not treated because they are already satbl € B andapply(f, a1,b1) (treatment of (3))

isfied

al € A andapply(h, c1,al) (treatment of (3))

Y (Y € B Aappli(f,al,Y) (5)

apply(hog, b1,al))

3Z(Z € C N appl|g, b1, Z) A applyh, Z,al))(6)
applyfog, b2,al))

3Z(Z € C N applg, b1, Z) A applyh, Z,al)) (6)
apply(hog, b2,al))

3Z(Z € C N applg, b2, Z) A applyh, Z,al)) (7)

c2 € C andapplgofoh, c2,cl) (treatment of (4),
useless)

JFY (Y € A Aapplyh,c2,Y) (8)

AX(X € C A appMgofoh, X, c2) (9)

3Z(Z € B N applMfoh,c2,Z) N applg, Z, c1)) (10)
b3 € B andapply(f, al,b3) (treatment of (5))

JFY (Y € C A applyg, b3,Y) (11)

applyfohog, b1,b3)

3Z(Z € A N applyhog, b1, Z) A appf, Z,b3)) (12)
applyfohog, b2,b3)

bl = b2.

This is the conclusion of sub-theorem 1 which is then
proved.

For the second sub-theorem, by rulefancil and
v, it createsel in C and it has to prove thaX (X €
B A apply(g, X, c1)).

Then rulesmapd, surjective composé, composg,
existsand concl_existsuccessively add the following
hypotheses:

Y (Y € Anapplyh,cl,Y) (1)

X (X € C A appMgofoh, X, cl) (2)

al € A andapply(h, c1,al) (treatment of (1))
FY (Y € B Aapplf,al,Y) (3)

FY (Y € C A applyg, b1,Y) (7)

appl\(foh, cl,bl)

3Z(Z € B N appAfoh,cl,Z) N applg, Z,b1)) (8)

a2 € A andapply(h, c2,a2) (treatment of (4), useless)
FY (Y € BAappI(f,a2,Y) (9)

c3 € C andapply(go foh, ¢3,c2) (treatment of (5), use-
less)

Y (Y € Anapplyh,c3,Y) (10)

X (X € C A appMgofoh, X, c3) (11)

3Z(Z € C A applyfoh,c3,2) A appiyg, Z, c2)) (12)
b2 € B,apply(foh, c2,b2) andapply(g, b2,c1) (treat-
ment of (6)).

The conclusion
JX(X € B Aappig, X, 1))

is now satisfied, so sub-theorem 2 is proved.
As both sub-theorems are proved, the initial theorem
is proved.

5. Processing of negation — positive and negative
properties

MuscADET works as much as possible without
negations. Not only does it work with hypotheses and
conclusionsinstead of negative literals but it eliminates
negations whenever it is possible.

If the conclusion to be proved is a negatiety, it
addsC' as a new hypothesis and the new conclusion is
false This means that it will have to find a contradic-
tion, i.e., to deduce the hypothesadse If the conclu-
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sion is—C1 Vv C2, it addsC1 and the new conclusion
isC2.

From definitions in which a negationP occurs,
MuscADET builds several rules which are logically
equivalent. Some rules contain the negative liter&l

in the places where it appeared in the definition. Other

rules contain the positive literdt as a condition (resp.
conclusion) if—=P was on the right (resp. left) or an
implication.

For example, from the definition

VAVBVX(X € complE,A) & X € EN-X € A))

it builds the following rules

rulecompl: if comp(F, A) : BandX € B
are hypotheses
then add the hypothesi$ € £

rulecomp2: if comp(E,A) : B, X € B
andX € A are hypotheses
then add the hypothedialse

rulecomp3: if comp(F,A): B, X € £
and—-X € A are hypotheses
then add the hypothesi$ € B

rulecomp4: if comp(E, A) : BandX € E
are hypotheses
then add the hypothesis € AV X € B.

Negations occur every time a problem contains the

empty setp or complements or set differencesin

these cases, proofs are often proofs by contradiction
and resolution-based provers are well adapted to them.

Problems SET7684 and SET7644 involve the

empty setp. In CASC-JC they were proved, respec-

tively, by three and five entrants out of seven.
To prove these theorems,\MCADETappliesin par-
ticular the following rules

rule ¢: if X € ¢ is a hypothesis
then add the hypothedialse

which has been built from the definition of the empty

seto,
VX-X €¢
and the universal logical rule

rule stopl: if falseis a hypothesis
then the new conclusion ieue

| will rather describe the MscADET proof of prob-
lem SET776-4 which involvesdisjoint sets and
which was proved only by MsScADETiIn CASC-JC.
If R is an equivalence relation of and A and B two
elements oft then the equivalence classdsand B
are equal or disjoint.

In this problem the definition itself afisjoint is a
negation.

VAVB(disjoin(4, B) < ~3X(X € AA X € B)).

It is the propertynon disjointwhich is a positive
property. If the definition of a concept is a negation,
MUSCADET creates the conceptonC' the definition
of which is positive and defings as—nonC. For this
reason, it defines and uses the conceptdisjoint

It adds the two following definitions

VAV B(disjoint( A, B) < —nondisjoin{A, B))
VAV B(nondisjoinfA, B) < 3X(X € AN X € B)

and builds the rules

rule disjointl: if disjoint(A, B)
andnondisjoinfA, B) are hypotheses
then add the hypothedislse

rule disjoint2: if disjoint(A, B) is a hypothesis
then add the hypothesisondisjoin{A, B)

rule nondisjoint
if nondisjoinfA, B) is a hypothesis
and3X (X € AA X € B)is not a hypothesis
then add the hypothesis
IX(X € ANX € B).

MUSCADET introduces a set, an equivalence re-
lation r, two elementsa and b, hames the classes
clasga,e,r) : aa andclasgb, e, r) : bb which contain
respectively, andb. The conclusion is

aa = bb Vv disjoint(aa, bb)
which is replaced (definition de) by

(aa C bb Abb C aa) V disjoint{aa, bb)
then (logical rule) by

(aa C bb V disjoinfaa, bb))
A (bb C aa V disjoinf{(aa, bb)).

The conclusion of the first sub-theorem is
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aa C bb Vv disjoint(aa, bb)
which is replaced by
VX(X € aa = X € bb) Vv disjoinf{aa, bb)
then by
VX(X € aa = X € bb) v —nondisjoinfaa, bb).
Then the hypothesis
nondisjoin{aa, bb)
is added and the new conclusion is
VX(X € aa = X € bb).

A new objectx is created inza and the conclusion is
x € bb. Then the hypothesisra is added.
Then rulenondisjointadds the hypothesis

X (X € aa AN X € bb)

which is treated and givegwhich belongs taia and
to bb. It is then easy to conclude, by rules built from
the definitions ofequivalence relatiomnd ofclasses
thatyra, yrb, ary, xry, xrb, andx € bb which is the
conclusion.

The proof of the second sub-theorem is analogous.
The efficiency of MUSCADET comes from its meth-
ods which are adapted to ‘positive’ properties and
to its ability to create the intermediate ‘positive’

nondisjoint property.

6. Building rules

The construction of rules is performed by the meta-
rule buildrules which is recursive and composed of
metarules which analyze axioms. A frame is first built
which depends on the nature of the axiom (definition
of a predicate or functional symbol, or lemma) and it
is filled step by step by the recursive super-action.

The arguments of the call

buildruleg £, R)

are the statemerfi to analyze and the (partially) built
rule R.
In the TPTP context, it is not possible to define
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6.1. First case: building rules from definitions of
predicates

From the definition of the concept,
VAVB(AC B&VX(X € A= X € B))

the first call tobuildrulesis

buildruleA € B = VX(X € A= X € B)),
rule C:).

Then the left part o= gives the first condition, the
right part gives a new expression to analyze, and the
next calls are

buildrulegVX(X € A = X € B),
rule C:if A C Bis a hypothesis

then, because the universal variables which are now
implicit,
buildruled X € A = X € B,
rule C: if A C B is a hypothesis

and, as before because of the

buildrule X € B,
ruec:if AC BandX € A
are hypothesgs

The expression is now elementary and the last call,
with an empty expression,

buildruleq(),
ruec:if AC BandX € A
are hypotheses
and X € B is not a hypothesis,
then add the new hypothesise B)

adds the rule

rule C:if A C BandX € A are hypotheses
and X € B is not a hypothesis
then add the new hypothestse B

which we have seen in Section 3.
Applying such built rules amounts to the same thing

statements as definitions or lemmas, but the system @S applying resolution on clauses, but only in a re-
recognizes them because they are universal closuresstricted manner. In particular, ‘positive’ properties are
of equivalences between an expression of the form favored and this is one of the reasons why 8CADET
P(X1,X5,..)0orQ(...,F(X1,X>,...),...) and an- quickly attains its goals in many situations. Neverthe-
other expression which does not contain occurrences less, MUSCADETIs able to handle negations whenever
of P or F.. The names of the built rules are formed with necessary, especially if negations occur in the defined
the nameP or F' and a number if several rules are built. concepts. We have seen an example of this in Section 5.
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6.2. Second case: building rules from definitions of
functional definitions

For the definition of union,
VAVBYVX(X €e AUB& X € AVvX €B)

the first call tobuildrulesis

buildruledX e C < X € AV X € B,
ruleu: if AU B : C'is a hypothesis

the existence of the union is stated in the first condition
andA U B is replaced by in the definition. Because
of the <, the expression is split into two sub-formulas

XeCesXeAvXeB
and
XeAvXeB&sXel

and there are two calls tauildrules.
The first call

buildruled X e C = X € AV X € B,
rule Ul: if AU B : C'is a hypothesis

leads to the rule

ruleUl:if AU B : C andX € C are hypotheses,
andX € AV X € Bis nota hypothesis
then add the hypothesi$ € AV X € B.

The second call

buildrule X e Av X e B= X € C,
rule U2: if AU B : C'is a hypothesis

splits the expression because of theand there are
again two calls tduildrules

buildruledX € A = X € C,
rule U2L if AU B : Cis a hypothesis

leads to the rule

rule U2 if AU B : C andX € A are hypotheses,
and X € C is not a hypothesis
then add the hypothesi§ € C.

buildruledX € B= X € C,
rule U22: if AU B : Cis a hypothesis

leads to the rule
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rule U22: if AU B : C andX € B are hypotheses,
and X e C is not a hypothesis
then add the hypothesi§ € C.

This example shows the importance of eliminating
functional symbols by flattening the terms. If the sys-
tem worked with terms, the construction of rules would
have led to rules such as the rule

if X € Ais ahypothesis
then add the hypothesi§ € AU B

which is expansive and could introduce infinitely many
unions. Instead of this, unions are considered only if
they have already been introduced for another reason.

6.3. Other cases: building rules from axioms and
universal hypotheses

From axioms which are not recognized as defini-
tions and are considered as lemmas and from universal
hypotheses, the first call tuildrules is simply the
following

buildruleq F,
rule ri:)

Rules built from universal hypotheses are only local
to the (sub-)theorem in which they were built because
they could contain objects which were created in this
(sub-)theorem.

7. Forwar d-chaining and backwar d-chaining

Most strategies are forward-chaining. But there are
two exceptions.

The first exception concerns the ruldefoncll
and 2 seen in Section 3 which replace the conclusion
by a definition (direct or indirect in the case of func-
tional symbols).

The second backward strategy is used in the case
where a universal condition would be generated in a
rule. This arises with some rather complicated axioms
such as the axiom

VEVYT o (environmen(E)
A (growth_ratéefficient_producers,Jo
> growth_ratéfirst_movers, Ty
A in_environmer(g,To
A VT (subpopulations(first_movers
efficient_producers,E)T
AT >To
=- growth_ratéefficient_producers,l
> growth_ratéfirst_movers,))
= To = critical_point(E))
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of TPTP problem MGT0231 (which was proved by
MuscaADETand all CASC-JC entrants except one).

From this axiom (a lemma for MsSCADET), the fol-
lowing rule is automatically built.

if environmen(E),
growth_ratdefficient_producers,joA,
growth_ratéfirst_movers,Tp B,
-A>B
are hypotheses,
the conclusion i€ = P(X1,...,Xn)
and there is a hypothesis
H=P(Y1,...,Yn)
then the new conclusion is
VT (subpopulationdirst_movers,
efficient_producers,E)T
AT >To
= growth_ratdefficient_producers,)l
> growth_ratéfirst_movers,J)
A To = critical_point(F) = C)

This means that, after having verified that there is a hy-
pothesisH which involves the same properfyas the
conclusion, the prover will have to verify all the con-
ditions of the axiom excegt and the universal condi-
tion and to prove two properties. The first property is
the instantiated universal condition. The second prop-
erty is the fact that the conclusion of the axiom implies
the conclusion of the theorem to be proved.

This backward strategy still needs to be improved
and generalized.

8. Weaknesses of MUSCADET

MUSCADET has very poor results in the FNE cate-
gory. It proved only two theorems of this category at
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contain only one very large formula, the conjecture,
and no axioms or intermediate definitions. There are
also very large conjectures which probably result from
and were automatically generated from problems ex-
pressed in non-classical logics. In these circumstances,
MuscADET cannot build enough rules. Humanlike
methods are not useful andWMCADET performs so
many splittings that it cannot prove the theorems.

Even in FEQ the performances of MCADET de-
pend on the domains. WsCADETIs efficient for math-
ematical everyday problems which are expressed in a
natural manner, for example naive set theory. It is less
efficient for problems which are defined axiomatically,
from a logician’s point of view (e.g., in axiomatic set
theory, or axiomatic geometry). In everyday mathe-
matical problems, we may useappingsconsider that
they are primitive concepts and only use their proper-
ties (cf. examples in Section 4). In axiomatic set theory,
mappingsare particularelationswhich are subsets of
cross-products of sets

In axiomatic theories, MSCADET has difficulty
with some axioms that state the existence of objects
and generate infinitely many objects. Improvements
will be made for the handling of such axioms.

MuscADET only proves about half of the MGT
problems, although low priority rules — as described in
Section 7 — are efficient for some of them.

MUSCADET does not prove any theorem about
groups. The ‘elimination’ of functional symbols is not
adapted to this field in which the terms may be deep
and in which it is often useful to consider them as a
whole.

9. Related work

MUSCADET is not the only prover which uses nat-

CASC-JC. The reason is not the presence or absenceural deduction or knowledge bases.

of equality in FEQ or FNE. The crucial difference is
the following. FEQ contains problems which are real
problems (mathematical or not) with many axioms, de-

The theorem prover Isabelle has been used in set the-
ory with natural deduction [11].
The Q-MKRP system has been developed over the

finitions or lemmas. These problems are more or less years [7-9] and uses knowledge of the particular math-
expressed as human beings express them. This is theematical fields and knowledge about its potential use.

case for the problemsin Sections 4 and 5. The more de-

The study of tactics is another related field. They

finitions there are, the more rules are built and the more are applications of calculus rules, abbreviations for se-

MUSCADET strategies are efficient. The W8CADET
strategies, in particular the construction of rules from
the axioms and the processing of existential proper-

ties, are rather well adapted to these domains. By con-

trast, FNE contains logical problems which are some-

guences of calculus rules [6], operationalization of a
reformulation [10], programs that construct proofs [1]
and may perhaps be compared to metarules.

These provers use types to express theorems and
higher order logic. They may also give specific knowl-

times expressed in a non-natural manner. They often edge in their own language and representations for spe-
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cific mathematical knowledge. This is not possible in
the TPTP context and especially in the CASC compe-
titions.

Although MuscADETIs also able to receive specific
knowledge expressed by rules and to work in specific
mathematical domains, its strength in the TPTP con-
text is that it is able to receive first order formulas and
to build efficient rules from axioms without knowing
anything about the particular symbols used.

10. Conclusion

MuscADET works in a manner which is quite dif-
ferent from resolution-based provers. It uses methods

based on natural deduction and knowledge-based sys- [6]
tems. We have seen some of these methods which are

crucial and which explain why MSCADET is able to

prove some theorems that resolution-based provers are

not able to prove. However, it is not able to prove some
theorems that all resolution-based provers are able to
prove. Why can't we make them cooperate? We, hu-
man beings, do not use the same methods for all prob-

lems that we have to solve. We can choose one method

or another to solve a problem. In some cases, we be-

gin with a method, then try another, and perhaps even [

another and sometimes we come back to the first one
and succeed with it. For some problems, we reason at
a metalevel or in higher order logic. To veritably im-
prove theorem provers, it would be interesting to have
several provers working together, in sequence, as we
do when we successively try several methods or, in par-
allel, as computers are able to do, or better still to have
a top-level mechanism which analyses the problem and
chooses one of the provers. This analysis was begun in
Section 8, and should be continueduStADET itself
should be able to select the most appropriate prover If
it was provided with the necessary knowledge.
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