
AI Communications 15 (2002) 147–160 147
IOS Press

Strong and weak points of the MUSCADET

theorem prover – examples from CASC-JC

Dominique Pastre
Crip5, Université René Descartes – Paris 5, 45 rue des Saints Pères, F-75270 Paris Cedex, France
E-mail: pastre@math-info.univ-paris5.fr

Abstract. MUSCADETis a knowledge-based theorem prover based on natural deduction. It has participated in CADE Automated
theorem proving System Competitions. The results show its complementarity with regard to resolution-based provers. This paper
presents some of its crucial methods and gives some examples of MUSCADET proofs from the last competition (CASC-JC in
IJCAR 2001).

Keywords: Theorem proving, knowledge bases, natural deduction

1. Introduction

Most theorem provers nowadays are based on the
resolution principle [16]. The properties of such
provers have been studied from a theoretical point of
view and much progress has also been made from a
practical point of view. However, it is also useful to
continue to improve theorem provers based on nat-
ural deduction, following the terminology of Bledsoe
[2–4]. MUSCADET [12–14] is such a natural deduc-
tion type system. As for the UT interactive theorem
prover implemented by Bledsoe [5], MUSCADET does
not contain a standard set of Gentzen natural deduc-
tion rules but implements natural-deduction-like tech-
niques and uses heuristics. Bledsoe also calls such sys-
tems ‘natural’ systems or goal oriented systems [4].
Moreover, MUSCADET is built as a knowledge-based
system; theorems (and sub-theorems) to be proved are
decomposed and represented as sets of facts and all
methods are expressed as rules which are either given
to the system or automatically built by metarules.

MUSCADEThas participated in the last three CADE
Automated theorem proving System Competitions
(CASC-16/17/JC). It was the only prover based on nat-
ural deduction and the results show its complemen-
tarity with regard to resolution-based provers. For ex-
ample, at CASC-JC, MUSCADET was the only prover
which was able to prove five problems out of the fifty
in the FEQ category (First order with EQuality) and it
was also the only prover which was unable to prove
two other problems. The FEQ and FNE categories con-
stitute the FOF division (First Order Formula) which is

the only division in which MUSCADET could compete
since, in all other divisions (except SEM in CASC-17
only), the problems are not stated by first order formu-
las but by clauses.

Section 2 quickly presents the main characteristics
of MUSCADET and especially its main strategy which
is the use of rules automatically built from axioms.
Section 3 illustrates this strategy with a theorem from
CASC-JC which was proved only by MUSCADET and
one other entrant. Sections 4 and 5 present two of the
crucial strategies, the processing of existential prop-
erties and the processing of negation, and illustrate
them by two theorems which were proved only by
MUSCADET. The construction of rules is explained in
Section 6. Section 7 provides a commentary on for-
ward and backward chaining, and Section 8 exposes
problems for which MUSCADET is not adapted or has
to be improved. Section 9 mentions some other provers
which work with knowledge bases, and Section 10
concludes on the complementarity of MUSCADETwith
regard to resolution-based provers.

2. Main characteristics of MUSCADET

MUSCADET is composed of rules and metarules. It
works with facts and (mathematical) objects to which
it applies rules. Consequently, the main structure of
MUSCADET is not an algorithm previously studied
from a theoretical point of view. If it contains some al-
gorithms, they are only small algorithms which have
been written for technical and minor reasons.

0921-7126/02/$8.00 2002 – IOS Press. All rights reserved



148 D. Pastre / Strong and weak points of theMUSCADET theorem prover

Some of the rules are automatically built by
metarules.

Examples of facts are

‘p(a) is a hypothesis of Theorem 1’,
‘a is a mathematical object which has been introduced
in Theorem 1’,
‘q(b) is the conclusion of Theorem 2.1 which has to be
proved’,
‘Theorem 2.1 is a sub-theorem of Theorem 2’,
‘∃Xp(X)’ is a hypothesis of Theorem 2.2’,
‘the existential hypothesis∃Xp(X) of Theorem 2.2 has
been treated’(i.e., a mathematical object which veri-
fiesp already existed or had been created),
‘conceptp is pertinent for theorem 0’,
‘active rules (i.e., rules which are pertinent for the
(sub-)theorem to be proved) arer1,r2, . . .’.

Facts result from the initial theorem to be proved or
are added by rules.

Rules are either logical rules or rules which have
been built from definitions, lemmas or universal hy-
potheses.

Examples of logical rules are

‘If the conclusion to be proved isH ⇒ C, then add the
new hypothesisH and the new conclusion isC ’,
‘If the conclusion to be proved is a conjunction, then
successively prove all elements of this conjunction’.

Several other rules are given in Fig. 1. Some of the
automatically built rules are given in Fig. 2.

Rules contain a list of conditions which are easily
verified, for example

‘p(X) is a hypothesis’,
‘∃Xp(X) is a hypothesis’,
‘there is no hypothesis of the formp(X)’,

and a list of actions which may be elementary, for ex-
ample

‘set the new conclusion to C’
‘replace all occurrences ofX byY in expressionE’,

or more complicated actions which are called super-
actions and are defined by packs of rules, for example

‘To add a hypothesis H,
if H is already a hypothesis, then do nothing
if H is a conjunction,
then successively add all the elements

of the conjunction,
if H is ∀Xp(X),
then create local rules for this theorem
. . .

rule∀: if the conclusion is∀XP (X)
then create a new objectX1

and the new conclusion isP (X1)
rule⇒: if the conclusion isH ⇒ C

then add the hypothesisH
and the new conclusion isC

rule∨: if A ∨ B is a hypothesis
and the conclusion isC

then the new conclusion is
(A ⇒ C) ∧ (B ⇒ C)

rule stop: if the conclusion is one of the hypotheses
then the new conclusion istrue

rule∧: if the conclusion is a conjunction
then successively prove

all elements of the conjunction
rule exists: if ∃XP (X) is the first

existential hypothesis
which has not been treated
and there is no object satisfyingP

then create an objectX satisfyingP
rule concl_exist: if the conclusion is∃P (X)

then search for an objectX satisfyingP

Elimination of functional symbols:
rule elifun: for each subformulaP (. . . ,F (. . .), . . .)

of the conclusion where the term
F (. . .) is totally instantiated,

then create a new objectY ,
add the hypothesisF (. . .) : Y
and the new conclusion isP (. . . ,Y , . . .)

Definition of the conclusion:
rule defconcl1: if the conclusion isC(A1,. . . , An)

and there is a definition of the form
C(X1, . . . ,Xn) ↔ D(X1, . . . ,Xn)

then the new conclusion isD(A1,. . . ,An)
rule defconcl2: if the conclusion isR(A, B),

there is a hypothesis of the form
F (A1,. . . ,An) : B
and there is a definition of the form
R(X, F (X1,. . . , Xn) ↔ D(X,X1, . . . , Xn)

then the new conclusion isD(A,A1,. . . , An)

Fig. 1. Some universal and logical rules.

in all other cases, addH as a new hypothesis
(this concerns elementary hypotheses and

existential hypotheses)’

There is no backtracking. Adding useless facts such
as useless hypotheses does not matter because their
number grows only in a linear manner. Some actions
may lead to failure or to the creation of infinitely many
objects or of a very large number of sub-theorems. Pri-
orities and heuristics are used but there is no backtrack-
ing because it would be more difficult to decide when
the system should backtrack than to search for heuris-
tics to avoid these problems. Mostly, in the case of



D. Pastre / Strong and weak points of theMUSCADET theorem prover 149

∀A∀B(A ⊂ B ⇔ ∀X(X ∈ A ⇒ X ∈ B))
∀A∀B∀X(X ∈ A ∪ B ⇔ X ∈ A ∨ X ∈ B)
∀A∀X(X ∈ P(A) ⇔ X ⊂ A)
rule⊂: if A ⊂ B andX ∈ A are hypotheses,

andX ∈ B is not a hypothesis
then add the hypothesisX ∈ B

rule∪1: if A ∪ B : C andX ∈ C are hypotheses,
andX ∈ A ∨ X ∈ B is not a hypothesis

then add the hypothesisX ∈ A ∨ X ∈ B
rule∪21: if A ∪ B : C andX ∈ A are hypotheses,

andX ∈ C is not a hypothesis
then add the hypothesisX ∈ C

rule∪22: if A ∪ B : C andX ∈ B are hypotheses,
andX ∈ C is not a hypothesis

then add the hypothesisX ∈ C
ruleP : if P (A) : B andX ∈ B are hypotheses,

andX ⊂ A is not a hypothesis
then add the hypothesisX ⊂ A

Fig. 2. Definitions occurring in problem SET694+4 and rules built
from these definitions.

too many objects or too many splittings, MUSCADET

would not be able anyway to prove the theorem.
Metarules are used to build rules from definitions.

We will see such rules in Sections 3 and 4 and exam-
ples of constructions in Section 6.

Metarules are also used to activate rules, i.e., to se-
lect rules which concern the concepts that occur in the
theorem to be proved, and to order rules.

At the beginning of the proof, there is only one fact:
the conclusion of theorem numbered 0 is the statement
of the initial theorem to be proved.

A theorem is proved if its conclusion becomestrue.
If it is only a sub-theorem, the fact that it has been
proved is returned to the theorem which created it.

A conclusion is set totrue for example, if the con-
clusion to be proved is also a hypothesis, or if the con-
clusion is an existential property which is verified by
the objects and their properties.

The system gives a trace of all the successful ap-
plications of rules, i.e., the objects which are intro-
duced, the hypotheses which are added, the new con-
clusions which replace the old ones, the splitting of
theorems into two or more sub-theorems, the sub-
theorems which are proved, etc. As all rules express
natural properties, the traces are easily comprehensible
to the human reader. They may however be a little te-
dious on occasion because all the details are given and
repeated even if they look like preceding steps.

Examples of such traces are given in [15].

3. Applying rules

We have seen that MUSCADET works with objects,
hypotheses, a conclusion and rules. It has to prove the
conclusion by applying rules which may, for exam-
ple, add new hypotheses, modify the conclusion, create
new objects, split the theorem into two or more sub-
theorems.

To illustrate this mechanism, in this section, I will
give the proof of TPTP problem SET694+4 and com-
ment on it.
The union of the power set of two sets A and B is in-
cluded in the power set of the union of A and B

I chose this theorem as the first example because it
was one of the CASC-JC problems and, although it is
rather easy, it was proved only by MUSCADET and by
one other entrant. I was surprised that all resolution-
based provers (except this one) ran over the time. The
reasons why MUSCADET is successful is that the rules
perform actions which are restricted to actions which
would be carried out by a mathematician. This is the
case for logical rules and also for rules which are built
from definitions. Here, these rules quickly lead to the
proof. These actions often resemble actions which are
carried out by resolution, but only an effective subset
of these actions is considered.

Notice that the first example given by Bledsoe in
[2] to show the efficiency of his natural-deduction-like
prover also concerned power sets. (This example in-
volved intersection which is easier that union because
it leads to less splitting.)

MUSCADETreceives the first order statement of this
conjecture

∀A∀B(P(A) ∪ P(B) ⊂ P(A ∪B)).

It first builds rules from the definitions in the
SET006+0.ax file which is included in the problem
statement. Figure 2 shows the definitions which are
used in this problem and the rules which have been au-
tomatically built from these definitions. I will show in
section 6 how these rules are built. Once rules are built,
they may be stored in order to be used for another prob-
lem without being built again. This possibility is not
used in the TPTP context.

Then MUSCADET considers the conjecture and ac-
tivates the rules that are pertinent for the conjecture.
This means that, later, it does not have to try to apply
many rules that have nothing to do with the context
of the conjecture. To decide which rules are pertinent,
MUSCADET first links the conjecture to the concepts
(predicate and functional symbols other than logical



150 D. Pastre / Strong and weak points of theMUSCADET theorem prover

rules objects hypotheses conclusion

∀A∀B(A ∪B ⊂ P(A ∪B))
∀ a, b P(a) ∪ P(b) ⊂ P(a ∪ b)

elifun pa,pb P(a) : pa,P(b) : pb
pab pa ∪ pb : pab
c,pc a ∪ b : c,P(c) : pc pab ⊂ pc

defconcl1 ∀X(X ∈ pab ⇒ X ∈ pc)
∀ d d ∈ pab ⇒ d ∈ pc
⇒ d ∈ pab d ∈ pc
∪1 d ∈ pa ∨ d ∈ pb
∨ (d ∈ pa ⇒ d ∈ pc) ∧ (d ∈ pb ⇒ d ∈ pc)
∧ split into two sub-theorems

sub-theorem 1
d ∈ pa ⇒ d ∈ pc

⇒ d ∈ pa d ∈ pc
P d ⊂ a

defconcl1 d ⊂ c
defconcl1 ∀X(X ∈ d ⇒ X ∈ c)

∀ x x ∈ d x ∈ c
⊂ x ∈ a
∪21 x ∈ c
stop true

sub-theorem 1 proved

sub-theorem 2
d ∈ pb ⇒ d ∈ pc

is proved in a analogous manner sub-theorem 2 proved
initial theorem proved

Fig. 3. MUSCADETproof of theorem SET694+4.

symbols) that occur in the conjecture, and recursively
to the concepts which occur in the definitions of the
preceding concepts. Pertinent rules are universal rules
and rules which have been built from the definitions
of the concepts linked to the conjecture. Here the rules
in Fig. 2 are active because they involveinclusion,
union andpower set.

At the beginning, there is no hypothesis and no ob-
ject, and the first conclusion to be proved is the first
order statement of the conjecture

∀A∀B(P(A) ∪ P(B) ⊂ P(A ∪B)).

Figure 3 presents an outline of the proof. One can
see in the first line the first conclusion to be proved,
which is the given conjecture. Then each line shows the
name of the rule which is applied, the objects which
are introduced, the hypotheses which are added and the
new conclusion.

Prolog conventions are used for mathematical vari-
ables and constants. Variables start with upper-case let-
ters whereas constants start with lower-case letters.

Here follows a commentary on this proof.
Rule ∀ is a classic rule in natural deduction. It is

applied twice. It instantiates the variablesX1 by a new
constanta (then byb), it creates objectsa andb and the
new conclusion is

P(a) ∪ P(b) ⇔ P(a ∪ b).

MUSCADET accepts statements with functional
symbols but works as if there were predicate symbols.
Rule elifun calls a super-action which creates objects
pa, pb, pab, c andpc,1 adds the hypotheses

P(a) : pa, P(b) : pb, pa ∪ pb : pab, a ∪ b : c

1The naming conventions have been simplified to make the paper
more readable.



D. Pastre / Strong and weak points of theMUSCADET theorem prover 151

and

P(c) : pc

and the conclusion is

pab ⊂ pc

The formulaa∪b : c, for example, will be manipulated
as if it was a predicatep(a, b, c). The symbol ‘:’ means
thatc is the name of the union ofa andb.

Then ruledefconcl1 replaces the conclusion by its
definition

∀X(X ∈ pab ⇒ X ∈ pc).

In MUSCADET there are no axioms or hypotheses –
following the terminology of TPTP – but definitions
and lemmas. The building of rules is slightly differ-
ent for definitions and for lemmas. The replacement
of the conclusion only occurs for definitions. In a
standard use of MUSCADET, the user defines prop-
erties as definitions or lemmas. In the TPTP con-
text, MUSCADET has to recognize definitions among
the axioms. Roughly, definitions are formulas contain-
ing an equivalence in which one argument is of the
form P (X1, . . . ,Xn) or Q(X1, . . . ,F (X1, . . . ,Xn),
. . . ,Xn) whereP or F has no other occurrence in the
formula.

Rule ∀ is applied again and creates the objectd in
pab and the new conclusion is

d ∈ pab ⇒ d ∈ pc.

Rule⇒ is also a classic rule in natural deduction. It
decomposes the statement into a hypothesisd ∈ pab
and a conclusiond ∈ pc.

Then rule∪1 adds the hypothesis

d ∈ pab ∨ d ∈ pb

and rule∨ replaces the conclusion by

(d ∈ pa ⇒ d ∈ pc) ∧ (d ∈ pb ⇒ d ∈ pc).

Rule∨ has a low priority. It is applied here because
no other rule can be applied. Otherwise, rules with
higher priority would be applied first in order to avoid
useless splittings.

Then rule∧ splits the theorem into two sub-theo-
rems. The conclusion of the first sub-theorem is

(d ∈ pa ⇒ d ∈ pc).

Rule⇒ is applied again and adds the hypothesisd ∈
pa, and the new conclusion isd ∈ pc.

RuleP adds the hypothesisd ⊂ a.
Rule defconcl1 is applied twice and replaces the

conclusion by

d ⊂ c

then by

∀X(X ∈ d ⇒ X ∈ c).

Then rules∀ and⇒ are applied again as previously
described. A new objectx is created ind and the con-
clusion isx ∈ c.

Then rule⊂ adds the hypothesisx ∈ a, and rule∪21
addsx ∈ c which is the conclusion to be proved. So,
rulestop sets the conclusion totrue and ends the proof
by stating that the sub-theorem is proved. This infor-
mation is returned to the initial theorem and rule∧ con-
tinues the proof with the second sub-theorem which is
proved in an analogous manner.

As both sub-theorems are proved, the initial theorem
is proved.

4. Processing of existential properties

In this section I will comment on MUSCADET

proofs of some problems that have been proved only
by MUSCADET in CASC-JC.

While commenting on the proofs I will explain some
crucial MUSCADET strategies that enabled it to prove
theorems that other CASC entrants failed to prove.

In particular, the creation of objects verifying exis-
tential hypotheses may be expansive.

The reasons for the efficiency of MUSCADETare the
following.

First, as before, the rules which are automatically
built only execute actions which would have been car-
ried out by humans.

Secondly, the processing of existential hypotheses is
delayed until no other rule with a higher priority may
be applied.

Thirdly, after the creation of the object(s) verifying
an existential hypothesis, all the other rules are tried
again before the next existential hypothesis is treated.
So all elementary properties of the objects which have
just been introduced will be used before new objects
are created.

Fourthly, existential hypotheses are treated in the or-
der in which they appear. This allows, iff mapsA



152 D. Pastre / Strong and weak points of theMUSCADET theorem prover

onto itself, images and pre-images to be created al-
ternatively instead of creating only images for exam-
ple and missing the right element if it is a pre-image.
Moreover, if there are several sets and many mappings,
it allows all sets and all mappings to be considered.

Lastly, another reason for the efficiency of MUS-
CADET in this type of problem is that MUSCADETdoes
not skolemize the formulas. It does not handle the term
A ∪ B where the functional symbol∪ corresponds to
a concept in the same manner as an object which is
created because of the existential property. When it is
treated this object is a constant because all other vari-
ables have necessarily been instantiated before. If the
formulas had been skolemized, this object would have
been written as a term with a Skolem function and the
difference of nature would have disappeared.

4.1. Proof and comments on problemSET722+4

The English statement of problem SET722+4 is

Consider two mappingsf : A → B andg : B → C.
If gof is surjective theng is surjective.

Its first order statement is

∀F∀G∀A∀B∀C(maps(F ,A,B)
∧ maps(G,B,C)
∧ surjective(compose(G,F ,A,B,C),A,C)

⇒ surjective(G,B,C))

and its MUSCADET proof is given in Fig 6.
MUSCADETfirst builds rules from the axioms of the

files SET006+0.ax and SET006+1.ax which are in-
cluded in the problem statement. Figure 4 shows some
definitions about mappings. Figure 5 shows some of
the rules which were automatically built from these de-
finitions.

Then MUSCADET activates rules that are perti-
nent for the conjecture, i.e., universal rules, and also
rules maps1, maps2, surjective, compose1 andcom-
pose2 which involvemappings, surjective mappings
andcomposition of mappings.

The first conclusion to be proved is the first order
statement of the conjecture. At the beginning, there is
no hypothesis and no object.

Notice that the first order formulas are not skolem-
ized. They are not in prenex form either; on the con-
trary, quantifiers remain the most interior possible.
Only the most exterior and universal quantifier is re-
moved. For the axioms, all free variables are then im-
plicitly universal.

For the conjecture, rule∀ creates objects, i.e., con-
stants. This corresponds to the skolemization of the
most exterior and existential quantifier of the negation
of the conjecture. In the example, the objectsa, b, c, f ,
g are added and the conclusion is

maps(f ,a, b) ∧ maps(g, b, c)
∧ surjective(compose(g,f ,a, b, c),a, c)

⇒ surjective(g, b, c)).

Ruleelifun creates an objecth, adds the hypothesis
compose(g,f ,a, b, c) : h, and the conclusion is

maps(f ,a, b) ∧ maps(g, b, c) ∧ surjective(h,a, c)
⇒ surjective(g, b, c).

Rule⇒ decomposes the statement into hypotheses
and a conclusion. The new conclusion is

surjective(g, b, c).

MUSCADETdoes not add a conjunctive hypothesis but
as many hypotheses as there are arguments in the con-
junction

maps(f ,a, b), maps(g, b, c)
andsurjective(h,a, c).

Adding hypotheses is a super-action which is de-
fined by a pack of rules; it involves performing spe-
cific actions depending on the formula which has to
be added. For conjunctions, as here, this super-action
adds elements of the conjunction (and it is recursive).
To give another example, for universal properties and
implications, it creates rules which are local for the
(sub-)theorem being proved.

Ruledefconcl1 replaces the conclusion by its defin-
ition

∀Y (Y ∈ c ⇒ ∃X(X ∈ b ∧ apply(g,X ,Y )).

Then rules∀ and⇒ are applied again as described
before. A new objecty is introduced inc and the con-
clusion to be proved is

∃X(X ∈ b ∧ apply(g,X ,y)),

i.e., the prover has to search for a elementX in b such
thatapply(g,X ,y).

Then rulesurjectiveadds the hypothesis

∃X(X ∈ a ∧ apply(h,X ,y)).

As no other rule can be applied, ruleexiststreats this
one existential hypothesis and createsx in a such that
apply(h,x,y).



D. Pastre / Strong and weak points of theMUSCADET theorem prover 153

∀F∀A∀B(maps(F ,A,B) ⇔ ∀X(X ∈ A ⇒ ∃Y (Y ∈ B ∧ apply(F ,X ,Y ))
∧∀X∀Y 1∀Y 2(X ∈ A ∧ Y 1 ∈ B ∧ Y 2 ∈ B ∧ apply(F ,X ,Y 1)∧ apply(F ,X ,Y 2) ⇒ Y 1 = Y 2))))

∀F∀A∀B(surjective(F ,A,B) ⇔ ∀Y (Y ∈ B ⇒ ∃X(X ∈ A ∧ apply(F ,X ,Y ))))
∀F∀G∀A∀B∀C∀X∀Y (maps(F ,A,B) ∧ maps(G,B,C) ∧X ∈ A ∧ Y ∈ C ⇒

(apply(compose(G,F ,A,B,C),X ,Y ) ⇔ ∃Z(Z ∈ B ∧ apply(F ,X ,Z)∧ apply(G,Z,Y ))))

Fig. 4. Some definitions.

rulemaps1: if maps(F ,A,B) andX ∈ A are hypotheses,
and∃Y (Y ∈ B ∧ apply(F ,X ,Y )) is not a hypothesis

then add the hypothesis∃Y (Y ∈ B ∧ apply(F ,X ,Y ))
rulemaps2: if maps(F ,A,B), X ∈ A, Y 1 ∈ B, Y 2 ∈ B,

apply(F ,X ,Y 1) andapply(F ,X ,Y 2) are hypotheses
then add the hypothesisY 1 = Y 2

rulesurjective: if surjective(F ,A,B) andY ∈ B are hypotheses
and (X (X ∈ A ( apply(F,X,Y)) is not a hypothesis

then add the hypothesis∃X(X ∈ A ∧ apply(F ,X ,Y ))
rulecompose1: if maps(F ,A,B), maps(G,B,C), compose(G,F ,A,B,C) : H , X ∈ A, Y ∈ C

andapply(H ,X ,Y ) are hypotheses
and∃Z(Z ∈ B ∧ apply(F ,X ,Z) ∧ apply(G,Z,Y ) is not a hypothesis

then add the hypothesis∃Z(Z ∈ B ∧ apply(F ,X ,Z) ∧ apply(G,Z,Y )

Fig. 5. Some of the rules built from definitions outlined in Fig. 4.

Because of this new elementx in a, rulesmaps1
andcompose1 can now be applied again and they add
the hypotheses

∃Y (Y ∈ b ∧ apply(f ,x,Y ))

and

∃Z(Z ∈ b ∧ apply(f ,x,Z) ∧ apply(g,Z,y)).

Again, no other rule can be applied and ruleexists
treats the first existential hypothesis which has not yet
been treated

∃Y (Y ∈ b ∧ apply(f ,x,Y )).

The first rule to be applied depends on the order of the
rules, which is the order in which the definitions are
given. We will see that the useful existential hypothe-
sis is the second one but this does not matter.2 This ex-
istential hypothesis∃Y (Y ∈ b ∧ apply(f ,x,Y )) gives
y1 in b such thatapply(f ,x,y1).

Because of this new elementy1 in b, rulemaps1 can
now be applied again and it adds the hypothesis

2There is in MUSCADETa metarule which can reorder rules. Here
rulecompose1 is moved before rulemaps1 because it is recognized
as more specific, the proof is then shorter and nicer. But this metarule
must know themember relation(which I consider as a universal
symbol). Thus, this possibility is not used in the TPTP context.

∃Y (Y ∈ c ∧ apply(g,y1,Y )).

Again, no other rule can be applied and ruleexists
treats the first existential hypothesis which has not yet
been treated. This is now

∃Z(Z ∈ b ∧ apply(f ,x,Z) ∧ apply(g,Z,y))

which gives the objecty2 in b such that

apply(f ,x,y2) andapply(g,y2,y).

Lastly, ruleconcl_existverifies that the conclusion
is satisfied withy2 as an instantiation forX . So the
conclusion is nowtrue and rulestopends the proof by
stating that the theorem is proved.

If, at this stage, the theorem was not proved, rule
maps2 would have added the hypothesis

y1 = y2

and all occurrences ofy2 would have been replaced
by y1. In fact, MUSCADET removes hypotheses which
are equalities between two objects and replaces all oc-
currences of one object by the other one. So the use-
less elementy1 would have disappeared as it would be
now the same asy2, andy2 would satisfy all the prop-
erties thaty1 satisfied. This illustrates the way MUS-
CADET handles the equality predicate in hypotheses.
In the conclusions, the equality predicate is handled in
the same way as other predicates.



154 D. Pastre / Strong and weak points of theMUSCADET theorem prover

rules objects hypotheses conclusion
∀F∀G∀A∀B∀C∀X∀Y maps(F ,A,B)

∧maps(G,B,C)
∧surjective(compose(G,F ,A,B,C),A,C)

⇒ surjective(G,B,C))
∀ a, b, c,f , g maps(f ,a, b)∧ maps(g, b, c)

∧surjective(compose(g,f ,a, b, c),a, c))
⇒ surjective(g, b, c)

elifun h compose(g,f ,a, b, c) : h maps(f ,a, b)∧ maps(g, b, c)
∧surjective(h,a, c) ⇒ surjective(g, b, c)

⇒ maps(f ,a, b)
maps(g, b, c)

surjective(h,a, c) surjective(g, b, c)
defconcl1 ∀Y (Y ∈ c ⇒ ∃X(X ∈ b ∧ apply(g,X ,Y ))

∀ y y ∈ c ⇒ ∃X(X ∈ b ∧ apply(g,X ,y))
⇒ y ∈ c ∃X(X ∈ b ∧ apply(g,X ,y))

surjective ∃X(X ∈ a ∧ apply(h,X ,y))
exists x x ∈ a

apply(h,x,y)
maps1 ∃Y (Y ∈ b ∧ apply(f ,x,Y ))

compose1 ∃Z(Z ∈ b ∧ apply(f ,x,Z))
∧apply(g,Z,y)

exists y1 y1 ∈ b
apply(f ,x,y1)

maps1 ∃Y (Y ∈ c ∧ apply(g,y1,Y ))
exists y2 y2 ∈ b

apply(f ,x,y2)
apply(g,y2,y)

concl_exist true
theorem proved

Fig. 6. MUSCADETproof of theorem SET722+4.

4.2. ProblemSET737+4

This problem is not conceptually more difficult than
problem SET722+4 but it is much more complicated
and deserves to be given as another example. There
are more mappings and more elements to be created:
images, pre-images and intermediary elements. As this
process may be expansive, it is important not to de-
velop one direction to the detriment of the others. The
creation of elements is delayed to ensure that the ele-
ments necessary for the proof are created.

Here is the English statement of the theorem:3

3This theorem is one of the six theorems obtained by replacingf
by g or h and by invertinginjective andsurjective. There is no
symmetry among them and they are more or less difficult. Theorem
SET737+4 is one of the easiest.

Consider three mappingsf : A → B, g : B → C
andh : C → A. If hogof andfohog are injective and
gofoh is surjective thenh is one-to-one.

Here is the outline of the MUSCADET proof. In ad-
dition to the definitions and rules in Fig. 4 and 5, the
definitions and rules in Fig. 7 are used.

By rules∀, elifun, ⇒ anddefconcl1 it first creates
sets and mappings stated in the theorem with their
properties as hypotheses. It then has to prove that h is
one-to-one, that is thath is injective(first sub-theorem)
andsurjective(second sub-theorem).

For the first sub-theorem, by rulesdefconcl1, ∀ and
⇒, it creates two elementsb1 andb2 in B with the
same imagec1 byg and it has to prove thatb1 = b2.

Then rulesmaps1, injective, surjective, compose1,
compose2 and existsadd successively the following
hypotheses:



D. Pastre / Strong and weak points of theMUSCADET theorem prover 155

∀F∀A∀B(injective(F ,A,B) ⇔
∀X1∀X2∀Y (X1 ∈ A(X2 ∈ A(Y ∈ B(apply(f ,X1,Y )(apply(f ,X2,Y ) => X1 = X2))

∀F∀A∀B(one-to-one(F ,A,B) ⇔
injective(F ,A,B) and surjective(F ,A,B)

rule injective: if injective(F ,A,B), X1 ∈ A, X2 ∈ A,Y ∈ B,
apply(f ,X1,Y ) andapply(f ,X2,Y ) are hypotheses

then add the hypothesisX1 = X2
rulecompose2: if maps(F ,A,B), maps(G,B,C), compose(G,F ,A,B,C) : H ,

X ∈ A, Y ∈ B, Z ∈ C, apply(F ,X ,Y ) andapply(G,Y ,Z) are hypotheses
andapply(H ,X ,Z) is not a hypothesis

then add the hypothesisapply(H ,X ,Z)

Fig. 7. Some more definitions and rules.

∃Y (Y ∈ C ∧ apply(g, b1,Y ) (1)
∃Y (Y ∈ C ∧ apply(g, b2,Y ) (2)
∃Y (Y ∈ A ∧ apply(h, c1,Y ) (3)
∃X(X ∈ C ∧ apply(gofoh,X , c1) (4)
(1) and (2) are not treated because they are already sat-
isfied
a1 ∈ A andapply(h, c1,a1) (treatment of (3))
∃Y (Y ∈ B ∧ apply(f ,a1,Y ) (5)
apply(hog, b1,a1))
∃Z(Z ∈ C ∧ apply(g, b1,Z) ∧ apply(h,Z,a1))(6)
apply(hog, b2,a1))
∃Z(Z ∈ C ∧ apply(g, b1,Z) ∧ apply(h,Z,a1)) (6)
apply(hog, b2,a1))
∃Z(Z ∈ C ∧ apply(g, b2,Z) ∧ apply(h,Z,a1)) (7)
c2 ∈ C andapply(gofoh, c2,c1) (treatment of (4),
useless)
∃Y (Y ∈ A ∧ apply(h, c2,Y ) (8)
∃X(X ∈ C ∧ apply(gofoh,X , c2) (9)
∃Z(Z ∈ B ∧ apply(foh, c2,Z) ∧ apply(g,Z, c1)) (10)
b3 ∈ B andapply(f ,a1,b3) (treatment of (5))
∃Y (Y ∈ C ∧ apply(g, b3,Y ) (11)
apply(fohog, b1,b3)
∃Z(Z ∈ A ∧ apply(hog, b1,Z) ∧ apply(f ,Z, b3)) (12)
apply(fohog, b2,b3)
b1 = b2.

This is the conclusion of sub-theorem 1 which is then
proved.

For the second sub-theorem, by rulesdefconcl1 and
∀, it createsc1 in C and it has to prove that∃X(X ∈
B ∧ apply(g,X , c1)).

Then rulesmaps1, surjective, compose1, compose2,
existsandconcl_existsuccessively add the following
hypotheses:

∃Y (Y ∈ A ∧ apply(h, c1,Y ) (1)
∃X(X ∈ C ∧ apply(gofoh,X , c1) (2)
a1 ∈ A andapply(h, c1,a1) (treatment of (1))
∃Y (Y ∈ B ∧ apply(f ,a1,Y ) (3)

c2 ∈ C andapply(gofoh, c2,c1) (treatment of (2))
∃Y (Y ∈ A ∧ apply(h, c2,Y ) (4)
∃X(X ∈ C ∧ apply(gofoh,X , c2) (5)
∃Z(Z ∈ C ∧ apply(foh, c2,Z) ∧ apply(g,Z, c1)) (6)
b1 ∈ B andapply(f ,a1,b1) (treatment of (3))
∃Y (Y ∈ C ∧ apply(g, b1,Y ) (7)
apply(foh, c1,b1)
∃Z(Z ∈ B ∧ apply(foh, c1,Z) ∧ apply(g,Z, b1)) (8)
a2 ∈ A andapply(h, c2,a2) (treatment of (4), useless)
∃Y (Y ∈ B ∧ apply(f ,a2,Y ) (9)
c3 ∈ C andapply(gofoh, c3,c2) (treatment of (5), use-
less)
∃Y (Y ∈ A ∧ apply(h, c3,Y ) (10)
∃X(X ∈ C ∧ apply(gofoh,X , c3) (11)
∃Z(Z ∈ C ∧ apply(foh, c3,Z) ∧ apply(g,Z, c2)) (12)
b2 ∈ B, apply(foh, c2,b2) andapply(g, b2,c1) (treat-
ment of (6)).

The conclusion

∃X(X ∈ B ∧ apply(g,X , c1))

is now satisfied, so sub-theorem 2 is proved.
As both sub-theorems are proved, the initial theorem

is proved.

5. Processing of negation – positive and negative
properties

MUSCADET works as much as possible without
negations. Not only does it work with hypotheses and
conclusions instead of negative literals but it eliminates
negations whenever it is possible.

If the conclusion to be proved is a negation¬C, it
addsC as a new hypothesis and the new conclusion is
false. This means that it will have to find a contradic-
tion, i.e., to deduce the hypothesisfalse. If the conclu-



156 D. Pastre / Strong and weak points of theMUSCADET theorem prover

sion is¬C1 ∨ C2, it addsC1 and the new conclusion
is C2.

From definitions in which a negation¬P occurs,
MUSCADET builds several rules which are logically
equivalent. Some rules contain the negative literal¬P
in the places where it appeared in the definition. Other
rules contain the positive literalP as a condition (resp.
conclusion) if¬P was on the right (resp. left) or an
implication.

For example, from the definition

∀A∀B∀X(X ∈ compl(E,A) ⇔ X ∈ E ∧ ¬X ∈ A))

it builds the following rules

rulecompl1: if compl(E,A) : B andX ∈ B
are hypotheses

then add the hypothesisX ∈ E

rulecompl2: if compl(E,A) : B, X ∈ B
andX ∈ A are hypotheses

then add the hypothesisfalse

rulecompl3: if compl(E,A) : B, X ∈ E
and¬X ∈ A are hypotheses

then add the hypothesisX ∈ B

rulecompl4: if compl(E,A) : B andX ∈ E
are hypotheses

then add the hypothesisX ∈ A ∨X ∈ B.

Negations occur every time a problem contains the
empty setφ or complements or set differences. In
these cases, proofs are often proofs by contradiction
and resolution-based provers are well adapted to them.

Problems SET763+4 and SET764+4 involve the
empty setφ. In CASC-JC they were proved, respec-
tively, by three and five entrants out of seven.

To prove these theorems, MUSCADETapplies in par-
ticular the following rules

rule φ: if X ∈ φ is a hypothesis
then add the hypothesisfalse

which has been built from the definition of the empty
setφ,

∀X¬X ∈ φ

and the universal logical rule

rule stop1: if falseis a hypothesis
then the new conclusion istrue.

I will rather describe the MUSCADETproof of prob-
lem SET770+4 which involvesdisjoint sets and
which was proved only by MUSCADET in CASC-JC.
If R is an equivalence relation onE andA andB two
elements ofE then the equivalence classesA andB
are equal or disjoint.

In this problem the definition itself ofdisjoint is a
negation.

∀A∀B(disjoint(A,B) ⇔ ¬∃X(X ∈ A ∧X ∈ B)).

It is the propertynon disjointwhich is a positive
property. If the definition of a conceptC is a negation,
MUSCADET creates the conceptnonC the definition
of which is positive and definesC as¬nonC. For this
reason, it defines and uses the conceptnondisjoint.

It adds the two following definitions

∀A∀B(disjoint(A,B) ⇔ ¬nondisjoint(A,B))
∀A∀B(nondisjoint(A,B) ⇔ ∃X(X ∈ A ∧X ∈ B)

and builds the rules

ruledisjoint1: if disjoint(A,B)
andnondisjoint(A,B) are hypotheses

then add the hypothesisfalse

ruledisjoint2: if disjoint(A,B) is a hypothesis
then add the hypothesis¬nondisjoint(A,B)

rulenondisjoint:
if nondisjoint(A,B) is a hypothesis

and∃X(X ∈ A ∧X ∈ B) is not a hypothesis
then add the hypothesis
∃X(X ∈ A ∧X ∈ B).

MUSCADET introduces a sete, an equivalence re-
lation r, two elementsa and b, names the classes
class(a, e, r) : aa andclass(b, e, r) : bb which contain
respectivelya andb. The conclusion is

aa = bb ∨ disjoint(aa, bb)

which is replaced (definition de⊂) by

(aa ⊂ bb ∧ bb ⊂ aa) ∨ disjoint(aa, bb)

then (logical rule) by

(aa ⊂ bb ∨ disjoint(aa, bb))
∧ (bb ⊂ aa ∨ disjoint(aa, bb)).

The conclusion of the first sub-theorem is



D. Pastre / Strong and weak points of theMUSCADET theorem prover 157

aa ⊂ bb ∨ disjoint(aa, bb)

which is replaced by

∀X(X ∈ aa ⇒ X ∈ bb) ∨ disjoint(aa, bb)

then by

∀X(X ∈ aa ⇒ X ∈ bb) ∨ ¬nondisjoint(aa, bb).

Then the hypothesis

nondisjoint(aa, bb)

is added and the new conclusion is

∀X(X ∈ aa ⇒ X ∈ bb).

A new objectx is created inaa and the conclusion is
x ∈ bb. Then the hypothesisxra is added.

Then rulenondisjointadds the hypothesis

∃X(X ∈ aa ∧X ∈ bb)

which is treated and givesy which belongs toaa and
to bb. It is then easy to conclude, by rules built from
the definitions ofequivalence relationand ofclasses,
thatyra, yrb, ary, xry, xrb, andx ∈ bb which is the
conclusion.

The proof of the second sub-theorem is analogous.
The efficiency of MUSCADET comes from its meth-

ods which are adapted to ‘positive’ properties and
to its ability to create the intermediate ‘positive’
nondisjoint property.

6. Building rules

The construction of rules is performed by the meta-
rule buildrules which is recursive and composed of
metarules which analyze axioms. A frame is first built
which depends on the nature of the axiom (definition
of a predicate or functional symbol, or lemma) and it
is filled step by step by the recursive super-action.

The arguments of the call

buildrules(E,R)

are the statementE to analyze and the (partially) built
ruleR.

In the TPTP context, it is not possible to define
statements as definitions or lemmas, but the system
recognizes them because they are universal closures
of equivalences between an expression of the form
P (X1,X2, . . .) or Q(. . . ,F (X1,X2, . . .), . . .) and an-
other expression which does not contain occurrences
of P orF . The names of the built rules are formed with
the nameP orF and a number if several rules are built.

6.1. First case: building rules from definitions of
predicates

From the definition of the concept⊂,

∀A∀B(A ⊂ B ⇔ ∀X(X ∈ A ⇒ X ∈ B))

the first call tobuildrulesis

buildrules(A ⊂ B ⇒ ∀X(X ∈ A ⇒ X ∈ B)),
rule ⊂:).

Then the left part of⇒ gives the first condition, the
right part gives a new expression to analyze, and the
next calls are

buildrules(∀X(X ∈ A ⇒ X ∈ B),
rule ⊂: if A ⊂ B is a hypothesis)

then, because the universal variables which are now
implicit,

buildrules(X ∈ A ⇒ X ∈ B,
rule ⊂: if A ⊂ B is a hypothesis)

and, as before because of the⇒,

buildrules(X ∈ B,
rule⊂: if A ⊂ B andX ∈ A

are hypotheses)

The expression is now elementary and the last call,
with an empty expression,

buildrules((),
rule ⊂: if A ⊂ B andX ∈ A

are hypotheses
andX ∈ B is not a hypothesis,

then add the new hypothesisX ∈ B)

adds the rule

rule⊂: if A ⊂ B andX ∈ A are hypotheses
andX ∈ B is not a hypothesis

then add the new hypothesisX ∈ B

which we have seen in Section 3.
Applying such built rules amounts to the same thing

as applying resolution on clauses, but only in a re-
stricted manner. In particular, ‘positive’ properties are
favored and this is one of the reasons why MUSCADET

quickly attains its goals in many situations. Neverthe-
less, MUSCADET is able to handle negations whenever
necessary, especially if negations occur in the defined
concepts. We have seen an example of this in Section 5.



158 D. Pastre / Strong and weak points of theMUSCADET theorem prover

6.2. Second case: building rules from definitions of
functional definitions

For the definition of union,

∀A∀B∀X(X ∈ A ∪B ⇔ X ∈ A ∨X ∈ B)

the first call tobuildrulesis

buildrules(X ∈ C ⇔ X ∈ A ∨X ∈ B,
rule∪: if A ∪B : C is a hypothesis)

the existence of the union is stated in the first condition
andA ∪ B is replaced byC in the definition. Because
of the⇔, the expression is split into two sub-formulas

X ∈ C ⇔ X ∈ A ∨X ∈ B

and

X ∈ A ∨X ∈ B ⇔ X ∈ C

and there are two calls tobuildrules.
The first call

buildrules(X ∈ C ⇒ X ∈ A ∨X ∈ B,
rule ∪1: if A ∪B : C is a hypothesis)

leads to the rule

rule∪1: if A ∪B : C andX ∈ C are hypotheses,
andX ∈ A ∨X ∈ B is not a hypothesis

then add the hypothesisX ∈ A ∨X ∈ B.

The second call

buildrules(X ∈ A ∨X ∈ B ⇒ X ∈ C,
rule ∪2: if A ∪B : C is a hypothesis)

splits the expression because of the∨ and there are
again two calls tobuildrules.

buildrules(X ∈ A ⇒ X ∈ C,
rule ∪21: if A ∪B : C is a hypothesis)

leads to the rule

rule∪21: if A ∪B : C andX ∈ A are hypotheses,
andX ∈ C is not a hypothesis

then add the hypothesisX ∈ C.

buildrules(X ∈ B ⇒ X ∈ C,
rule ∪22: if A ∪B : C is a hypothesis)

leads to the rule

rule∪22: if A ∪B : C andX ∈ B are hypotheses,
andX ∈ C is not a hypothesis

then add the hypothesisX ∈ C.

This example shows the importance of eliminating
functional symbols by flattening the terms. If the sys-
tem worked with terms, the construction of rules would
have led to rules such as the rule

if X ∈ A is a hypothesis
then add the hypothesisX ∈ A ∪B

which is expansive and could introduce infinitely many
unions. Instead of this, unions are considered only if
they have already been introduced for another reason.

6.3. Other cases: building rules from axioms and
universal hypotheses

From axioms which are not recognized as defini-
tions and are considered as lemmas and from universal
hypotheses, the first call tobuildrules is simply the
following

buildrules(E,
rule ri: )

Rules built from universal hypotheses are only local
to the (sub-)theorem in which they were built because
they could contain objects which were created in this
(sub-)theorem.

7. Forward-chaining and backward-chaining

Most strategies are forward-chaining. But there are
two exceptions.

The first exception concerns the rulesdefconcl1
and 2 seen in Section 3 which replace the conclusion
by a definition (direct or indirect in the case of func-
tional symbols).

The second backward strategy is used in the case
where a universal condition would be generated in a
rule. This arises with some rather complicated axioms
such as the axiom

∀E∀To (environment(E)
∧ (growth_rate(efficient_producers,To)

> growth_rate(first_movers,To))
∧ in_environment(E,To)
∧ ∀T (subpopulations(first_movers,

efficient_producers,E,T)
∧ T > To

⇒ growth_rate(efficient_producers,T)
> growth_rate(first_movers,T))

⇒ To = critical_point(E))



D. Pastre / Strong and weak points of theMUSCADET theorem prover 159

of TPTP problem MGT023+1 (which was proved by
MUSCADET and all CASC-JC entrants except one).

From this axiom (a lemma for MUSCADET), the fol-
lowing rule is automatically built.

if environment(E),
growth_rate(efficient_producers,To):A,
growth_rate(first_movers,To):B,
¬A > B

are hypotheses,
the conclusion isC = P (X1, . . . ,Xn)

and there is a hypothesis
H = P (Y 1, . . . ,Y n)

then the new conclusion is
∀T (subpopulations(first_movers,

efficient_producers,E,T)
∧ T > To
⇒ growth_rate(efficient_producers,T)

> growth_rate(first_movers,T))
∧ To = critical_point(E) ⇒ C)

This means that, after having verified that there is a hy-
pothesisH which involves the same propertyP as the
conclusion, the prover will have to verify all the con-
ditions of the axiom exceptH and the universal condi-
tion and to prove two properties. The first property is
the instantiated universal condition. The second prop-
erty is the fact that the conclusion of the axiom implies
the conclusion of the theorem to be proved.

This backward strategy still needs to be improved
and generalized.

8. Weaknesses of MUSCADET

MUSCADET has very poor results in the FNE cate-
gory. It proved only two theorems of this category at
CASC-JC. The reason is not the presence or absence
of equality in FEQ or FNE. The crucial difference is
the following. FEQ contains problems which are real
problems (mathematical or not) with many axioms, de-
finitions or lemmas. These problems are more or less
expressed as human beings express them. This is the
case for the problems in Sections 4 and 5. The more de-
finitions there are, the more rules are built and the more
MUSCADET strategies are efficient. The MUSCADET

strategies, in particular the construction of rules from
the axioms and the processing of existential proper-
ties, are rather well adapted to these domains. By con-
trast, FNE contains logical problems which are some-
times expressed in a non-natural manner. They often

contain only one very large formula, the conjecture,
and no axioms or intermediate definitions. There are
also very large conjectures which probably result from
and were automatically generated from problems ex-
pressed in non-classical logics. In these circumstances,
MUSCADET cannot build enough rules. Humanlike
methods are not useful and MUSCADET performs so
many splittings that it cannot prove the theorems.

Even in FEQ the performances of MUSCADET de-
pend on the domains. MUSCADETis efficient for math-
ematical everyday problems which are expressed in a
natural manner, for example naive set theory. It is less
efficient for problems which are defined axiomatically,
from a logician’s point of view (e.g., in axiomatic set
theory, or axiomatic geometry). In everyday mathe-
matical problems, we may usemappings, consider that
they are primitive concepts and only use their proper-
ties (cf. examples in Section 4). In axiomatic set theory,
mappingsare particularrelationswhich are subsets of
cross-products of sets.

In axiomatic theories, MUSCADET has difficulty
with some axioms that state the existence of objects
and generate infinitely many objects. Improvements
will be made for the handling of such axioms.

MUSCADET only proves about half of the MGT
problems, although low priority rules – as described in
Section 7 – are efficient for some of them.

MUSCADET does not prove any theorem about
groups. The ‘elimination’ of functional symbols is not
adapted to this field in which the terms may be deep
and in which it is often useful to consider them as a
whole.

9. Related work

MUSCADET is not the only prover which uses nat-
ural deduction or knowledge bases.

The theorem prover Isabelle has been used in set the-
ory with natural deduction [11].

TheΩ-MKRP system has been developed over the
years [7–9] and uses knowledge of the particular math-
ematical fields and knowledge about its potential use.

The study of tactics is another related field. They
are applications of calculus rules, abbreviations for se-
quences of calculus rules [6], operationalization of a
reformulation [10], programs that construct proofs [1]
and may perhaps be compared to metarules.

These provers use types to express theorems and
higher order logic. They may also give specific knowl-
edge in their own language and representations for spe-



160 D. Pastre / Strong and weak points of theMUSCADET theorem prover

cific mathematical knowledge. This is not possible in
the TPTP context and especially in the CASC compe-
titions.

Although MUSCADETis also able to receive specific
knowledge expressed by rules and to work in specific
mathematical domains, its strength in the TPTP con-
text is that it is able to receive first order formulas and
to build efficient rules from axioms without knowing
anything about the particular symbols used.

10. Conclusion

MUSCADET works in a manner which is quite dif-
ferent from resolution-based provers. It uses methods
based on natural deduction and knowledge-based sys-
tems. We have seen some of these methods which are
crucial and which explain why MUSCADET is able to
prove some theorems that resolution-based provers are
not able to prove. However, it is not able to prove some
theorems that all resolution-based provers are able to
prove. Why can’t we make them cooperate? We, hu-
man beings, do not use the same methods for all prob-
lems that we have to solve. We can choose one method
or another to solve a problem. In some cases, we be-
gin with a method, then try another, and perhaps even
another and sometimes we come back to the first one
and succeed with it. For some problems, we reason at
a metalevel or in higher order logic. To veritably im-
prove theorem provers, it would be interesting to have
several provers working together, in sequence, as we
do when we successively try several methods or, in par-
allel, as computers are able to do, or better still to have
a top-level mechanism which analyses the problem and
chooses one of the provers. This analysis was begun in
Section 8, and should be continued. MUSCADET itself
should be able to select the most appropriate prover If
it was provided with the necessary knowledge.

Acknowledgements

I would like to thank Geoff Sutcliffe and Christian
Suttner for creating and updating the TPTP Problem

Library, and the referees for providing numerous sug-
gestions for improving this paper.

References

[1] D.A. Basin and R.L. Constable, Metalogical frameworks, in:
Logical Environments, G. Huet and G. Plotkin, eds, Cambridge
University Press, 1993, pp. 1–29.

[2] W.W. Bledsoe, Splitting and reduction heuristics in automatic
theorem proving,Journal of Artificial Intelligence2 (1971),
55–77.

[3] W.W. Bledsoe and P. Bruell, A man-machine theorem-proving
system,Journal of Artificial Intelligence5 (1974), 51–72.

[4] W.W. Bledsoe, Non-resolution theorem proving,Journal of Ar-
tificial Intelligence9 (1977), 1–35.

[5] W.W. Bledsoe and M. Tyson, The UT interactive theorem
prover, The University of Texas at Austin, Dept. Memo ATP-
17, 1978.

[6] R.L. Constable et al.,Implementing Mathematics with the
Nuprl Proof Development System, Prentice-Hall, Englewood
Cliffs, 1986.

[7] N. Eisinger, J. Siekmann and G. Smolka, The Markgraf Karl
refutation procedure,IJCAI (1981), 511–518.

[8] N. Eisinger and H.J. Ohlbach, The Markgraf Karl Refutation
Procedure (MKRP), in:Procedings of the 8th CADE, J.H. Siek-
mann, ed., Springer Verlag, Berlin, 1986.

[9] X. Huang, M. Kerber, M. Kohlhase, E. Melis, D. Nesmith,
J. Richts and J. Siekmann, TheΩ-MKRP proof development
environment, in:ECAI 94 Wokshop From Theorem Provers to
Mathematical Assistants: Issues and Possible Solutions.

[10] M. Kerber and A. Pracklein, Using tactics to reformulate for-
mulae for resolution theorem proving,Annals of Mathematics
and Artificial Intelligence18(2) (1996).

[11] P.A.J. Noel, Experimenting with Isabelle in ZF set theory,Jour-
nal of Automating Reasoning10 (1993), 15–58.

[12] D. Pastre, MUSCADET: an automatic theorem proving system
using knowledge and metaknowledge in mathematics,Journal
of Artificial Intelligence38(3) (1989).

[13] D. Pastre, Automated Theorem Proving in Mathematics,An-
nals on Artificial Intelligence and Mathematics8(3-4) (1993),
425–447.

[14] D. Pastre, MUSCADET version 2.3, User’s manual, 2001,
http://www.math-info.univ-paris5.fr/˜pastre/muscadet/manual-
en.ps.

[15] D. Pastre, MUSCADET version 2.3, Examples, 2001,
http://www.math-info.univ-paris5.fr/˜pastre/muscadet/
examples.

[16] J.A. Robinson, A machine oriented logic based on the resolu-
tion principle,J. ACM12 (1965), 23–41.

[17] G. Sutcliffe and C. Suttner, The TPTP Problem Library for au-
tomated theorem proving, http://www.cs.miami.edu/t̃ptp.


