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We theoretically consider the quantum simulation of a spin Hamiltonian whose twelve sites are arranged

in a planar configuration with high spatial symmetry, D6ℎ. We map the system onto an effective fermionic

Hamiltonian and identify its symmetry group. Comparing different initial states evolving under the Heisenberg

or XXZ Hamiltonians, we analyze the impact of symmetry on the probability distribution for the outcomes of a

measurement in a given basis, as a function of the evolution time. The considered measurement basis resolves

only a part of the symmetries of the Hamiltonian. We show that, for suitable choices of the initial state, unresolved

symmetries make some configurations equiprobable. We identify four different regimes for the time evolution of

the probabilities: these may be constant, vary sinusoidally in time, evolve aperiodically, or collapse. We propose

an experimentally accessible scheme which exploits quantum parallelism to probe these regimes efficiently.

The evolution in time of a quantum system in a given initial

state crucially depends on their symmetries [1]. For example,

the conservation of the total spin projection makes the ferro-

magnetic state an eigenstate of the Heisenberg Hamiltonian [2,

chap. 33]. In the opposite limit, if the dynamics involves many

eigenstates with different energies, the initial state collapses,

as e.g. in the short–time dynamics of the Jaynes–Cummings

Hamiltonian [3], observed in various atomic systems [4, 5].

Symmetry has been thoroughly investigated in atoms,

molecules, and ordered condensed matter [1]. The eigenstates

of a HamiltonianH are classified in terms of their transforma-

tion properties under its symmetry group [6, chap. 11]. This

explains the degeneracies of the energy spectrum ofH . It also

yields selection rules causing the various symmetry classes

not to be coupled by the unitary quantum evolution. However,

quantum measurements are subsequently performed in a spe-

cific basis [7, Sec. 2.2.3], dictated by experimental constraints,

whose vectors may have projections along multiple symmetry

classes. Then, the measurement cannot discriminate between

these classes, and mixes them. Hence, the probabilities for the

outcomes of a measurement, performed after quantum evolu-

tion of a given duration, do not directly reflect the symmetries

of the system, but result from an interplay between these and

the properties of the measurement basis. To our knowledge,

the impact of high spatial symmetry on the time dependence

of measurements performed in a basis resolving only part of

the symmetries of the system has not yet been addressed.

This novel investigation has recently become accessible in

ongoing experiments pertaining to the quantum simulation of

spin Hamiltonians using magnetic atoms [8], Rydberg atoms

[9, 10] or polar molecules [11, 12], and the recent proposal in-

volving trapped circular Rydberg atoms [13], thanks to two es-

sential properties. Firstly, they offer well–controlled systems

with arbitrary spatial geometries [14] which may be devoid of

translational invariance. Secondly, the quantum dynamics of

these systems may be probed as a function of time by spatially–

resolved imaging [11, 14] or non–destructive read–out [15]. In

this context, we consider the quantum evolution of N trapped

qubits followed by the measurement of their spin projections,

which gives access to the projection of the total spin but nei-

A0

A1

A2

A3

A4

A5

A6

A7A8

A9

A10 A11

x

y

z
¿

FIG. 1. Considered double–ring system: 12 interacting qubits (blue

disks) trapped in the (x, y) plane in a geometry with D6ℎ symmetry.

Each site Ai, located at the position ri, contains a single particle.

ther to its modulus nor to spatial symmetries.

In this Letter, we theoretically identify the impact of unre-

solved symmetries on the measurement probabilities, as well

as signals insensitive to them. We focus on the quantum simu-

lation of a 12–qubit Heisenberg (H) or XXZ spin Hamiltonian

[16, Sec. 1.4.1] trapped in the geometry of Fig. 1 exhibiting

high spatial symmetry. We map the system onto an effective

fermionic Hamiltonian. Then, for a given initial state, we an-

alyze the probability distribution for the result of a quantum

measurement in an experimentally accessible basis as a func-

tion of the duration of the quantum evolution. We show that

symmetries unresolved by the measurement basis make some

outcomes equiprobable. Considering different initial states

and Hamiltonians, all experimentally accessible, we identify

four different regimes for the measurement probabilities: these

may be constant, vary sinusoidally in time, evolve aperiodi-

cally, or undergo a collapse. We propose a scheme exploiting

quantum parallelism, relying on the resolved symmetries, to

probe these regimes efficiently through repeated realizations

starting from the same initial state.

Figure 1 does not exhibit translational invariance. It is a

finite–sized fraction of the Kagome lattice currently investi-

gated in the different context of frustration [17]. The num-

ber N = 12 of qubits it involves is well within experimental
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range. Its essential feature is its double–ring structure: the

sites A0, . . . , A5 and A6, . . . , A11 respectively comprise the

outer and inner rings. We show in the Supplemental Mate-

rial (SM) [18, Sec. III] that it accommodates non–trivial quan-

tum states which (i) are factorized in terms of individual qubit

states and, hence, experimentally accessible [7, Sec. 1.5.2],

and (ii) transform under a specific irreducible representation

of the spatial symmetry group.

Considered system — We consider N = 12 bosonic or

fermionic identical particles, confined in the (xy) plane at the

nodes (ri)0didN−1 of the regular six–branched star of Fig. 1.

We neglect the spatial motion of the particles within the traps.

Each particle i represents a qubit with two accessible quantum

states |²z
i
ð and |´z

i
ð. The particles exhibit pairwise interaction,

whose strength depends on rij = |rj − ri| through the power

law 1∕r�
ij

with � > 0. The N–particle Hamiltonian reads:

H =
1

2

1

i�j

(
a

rij

)� [
J (�x

i
�x
j
+ �

y

i
�
y

j
) + Jz �

z
i
�z
j

]
, (1)

where a = r08 is the nearest–neighbor distance. The Pauli

operators σi = (�x
i
, �

y

i
, �z
i
) represent the qubit at ri, and J ,

Jz are constant energies. The Hamiltonian H = HH or HXXZ

depending on whether J = Jz or J � Jz. For our numerical

calculations (Figs. 2 and 3), we take � = 6, J > 0, and −3 <

Jz∕J < 3 as in Ref. [13], but these choices are not essential.

Effective fermionic model — We assume that the spatial

wavefunctions of any two sites i � j have negligible over-

lap. Then, the bosonic or fermionic nature of the particles

plays no role [19, Sec. XIV.8]. The Hamiltonian H may be

expressed in the basis ā = (|cf ð)0dfd2N−1 comprising the 2N

configurations |r0, �0;& ; rN−1, �N−1ð = |(ri, �i)0didN−1ð
of N particles, particle i being at the site ri in the state

|�ið = |²z
i
ð or |´z

i
ð, and the ri’s being ordered with increasing

i. We have obtained all our numerical results using ā. How-

ever, a spatial symmetry operation leaving the system glob-

ally invariant exchanges the positions of the N sites, mapping

(ri)0didN−1 onto (r�(i))0didN−1 for some permutation � ofN

elements. If � � 1, |(r�(i), �i)0didN−1ð + ā: we define it

as (−)� |(ri, ��−1(i))0didN−1ð, with (−)� being the parity of �.

This mapsH onto an effective lattice model for fermionic par-

ticles, described by the spin–1/2 operators si = ℏσi∕2 trans-

forming through the usual rules [19, Secs. XIII.19 & XV.10].

Symmetry group — The unitary symmetries of H make up

a spin–point group [20, 21] G = Gspatial × Gspin, which is

the direct product of the group Gspatial acting on the positions

while leaving the spins invariant, and the group Gspin acting

on the spins while leaving the positions invariant. Due to the

lack of translational invariance, Gspatial is the point groupD6ℎ

[22, §93]. The continuous group [22, §98] Gspin is D@ℎ if

Jz∕J � 1, andKℎ, the group of complete spherical symmetry,

if Jz∕J = 1. For both D6ℎ and D@ℎ, the high–symmetry axis

ez is perpendicular to the plane of Fig. 1. To summarize:

GH = D
spatial

6ℎ
×K

spin

ℎ
and GXXZ = D

spatial

6ℎ
×D

spin

@ℎ
. (2)

M 6 5 4 3 2 1 0

d(±M) 1 12 66 220 495 792 924

�0[�
(M)] 1 2 9 24 50 76 90

�0[�
(±M)] 1 2 9 24 50 76 48

TABLE I. Dimensions of the subspaces ó (M), ö0[�
(M)], and

ö0[�
(M)] for each total spin projection M . For M < 0, �0[�

M ] = 0.

The Hamiltonian H only has matrix elements between states

transforming under the same irreducible representation � of

D
spatial

6ℎ
. The group Gspin yields conservation laws concerning

the total spin operator S =
1N−1
i=0

si. If Jz � J , only Sz is

conserved, yielding the symmetry classes s = (�,M), where

the integer M satisfies −N∕2 d M d N∕2 and sets the total

spin projection Sz = ℏM . If Jz = J , S2 is also conserved,

hence, each symmetry class is defined by s = (�, S,M), where

the integer S satisfies 0 d S d N∕2 and sets the total spin

modulus S2 = ℏ2S(S + 1). In the SM [18, Sec. II], we ana-

lytically predict, in both cases, the dimensions of the symmetry

classes and the degeneracies of the energy spectrum.

The system comprises an even number N of spins 1∕2,

hence, only single–valued representations intervene [22, §99].

The group Gspin contains the two–fold rotation C
ex,spin

2
about

ex, which simultaneously flips allN spin projections, causing

any eigenstate of H with the total spin projection M � 0 to

be twice degenerate at least (see SM [18, Sec. II]). The time–

reversal operator, which is not in G, yields no additional de-

generacy for systems with D6ℎ symmetry [23, Sec. 7.5].

Time dependence — We analyze the following protocol (þ).

The system is initially in the N–particle state | 0ð. It evolves

under H . At time t, we measure its state | (t)ð in the basis ā.

The probability of finding |cf ð is pf (t) = | ïcf | (t)ð |2, where

ïcf | (t)ð =
1

�

exp(−iE�t∕ℏ) ïcf |«�ð ï«�| 0ð . (3)

In Eq. (3), the (|«�ð)0d�dN−1 are the eigenstates of H , with

energies (E�). We choose each |«�ð in a symmetry class s [22,

§96]. However, most |cf ð’s have components along multiple

� and S, and so may | 0ð. Thus, all s along which both | 0ð
and |cf ð have non–zero projections contribute to the (pf (t))’s.

Nevertheless, symmetry has three important consequences: (i)

it makes some configurations equiprobable, (ii) it allows for

the probing of all óM ’s in parallel, and (iii) for suitably chosen

| 0ð, it reduces the number of different frequencies entering

Eq. (3). We now discuss these three consequences in turn.

Equiprobable outcomes — Let ö0[ 0] be the subspace

spanned by all |«�ð’s such that ï«�| 0ð � 0, and P0 the

projector on ö0. The |cf ð’s and the |«�ð’s are real, hence,

so is P0. According to Eq. (3), if P0 |cf1ð = ±P0 |cf2ð,
then pf1 (t) = pf2 (t) for all t. Therefore, only a subset of

üp[ 0] measurement outcomes (|cf ð) have different proba-

bilities, with üp[ 0] e �0[ 0] and �0[ 0] = dimö0.

Parallel quantum simulation — The states (|cf ð) each have

a well–defined Mf =
1N−1
i=0

�i, with �i = ±1∕2, hence,
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FIG. 2. Probabilities p
(M)

f
(t) of the d(M) outcomes |cf ð in ó (M), for the initial state | 0ð = |�ð evolving underHXXZ with � = 6 and Jz∕J = −3,

for M = (a) 5, (b) 4, and (c) 0 (gray curves), rescaled such that
1

f*ó (M) p
(M)

f
(t) = 1. Single representatives of the �0[�

(M)] different functions

p
(M)

f
(t) appear in shades of green. The probabilities for all other outcomes, each equiprobable to one of these, are shown in gray. Panels (a) and

(b) illustrate sinusoidal and aperiodic behaviors, panel (c) shows that all rescaled p
(0)

f
(t) d 0.06.

the subspaces ó (M) characterized by the total spin projec-

tions M are resolved by measurements in ā. This allows for

quantum parallelism [7, Sec. 1.4.2] as follows. We choose

| 0ð =
1N∕2

M=−N∕2
| (M)

0
ð which is a superposition of up to

(N + 1) components | (M)

0
ð * ó (M), coupled neither by the

evolution nor by the measurement. We repeat protocol (þ)

many times starting from the same initial state | 0ð. We sort

the measurement probabilities into (N +1) families (p
(M)

f
) re-

lated to the same ó (M), each comprising d(M) =
( N

N∕2+M

)
out-

comes. The rescaled probabilities [(p
(M)

f
∕(
1
f 2 p

(M)

f 2 )] of each

family are equal to those obtained for the initial state | (M)

0
ð.

Maximum number of frequencies entering the p
(M)

f
(t)’s —

To select a single � in Eq. (3), we choose | 0ð transforming

under it. The projector P (M) on ó (M) is a polynomial function

of Sz [24, chap. VII], which commutes with the projector onto

� [22, §94]. Thus, each | (M)

0
ð transforms under �. Then, all

|«�ð entering Eq. (3) for | (M)(t)ð belong to the class (�,M),

so that �0[�
(M)] d d

(M)
� , with d

(M)
� = dim(�,M). Hence, the

number ü�[ 
(M)

0
] = �0[ 

(M)

0
](�0[ 

(M)

0
] − 1)∕2 of different

frequencies entering the p
(M)

f
(t)’s is at most d

(M)
� (d

(M)
� −1)∕2.

Initial states — The ones most readily accessed in current

experiments are products of single–particle states. In the SM

[18, Sec. III], we identify a family of such states transforming

under A2g . We focus on two of these: |�ð = |(ri, ²xi )0didN−1ð
and |�ð = |(rj , ²xj )0djdN∕2−1; (rk, ²

z
k
)N∕2dkdN−1ð, where

|²x
i
ð = (|²z

i
ð+|´z

i
ð)∕21∕2 is the eigenstate of sx

i
with the eigen-

value +ℏ∕2. They may be prepared from the fully polarized

state |(²z
i
)0didN−1ð by applying electromagnetic �∕2–pulses

to the individual qubits to be prepared in |²xð [7, Sec. 1.5.2].

We now illustrate the preceding considerations on |�ð and |�ð.

Different regimes for the time dependence of the pf ’s. We

first describe a situation with maximal symmetry: the initial

state |�ð evolving under HH, for which all pf ’s are constant.

Then, we consider two less symmetrical situations: either we

replaceHH byHXXZ, or we replace |�ð by |�ð. Four different

regimes for the time dependence of the p
(M)

f
’s are encountered,

depending on the considered | 0ð and óM : constant probabil-

ities, sinusoidal oscillation, aperiodicity, and collapse.

Symmetry achieves its maximal impact e.g. for the ini-

tial state |�ð evolving under HH. The state |�ð =
12N−1
f=0

|cf ð ∕2N∕2, hence, |�(M)ð � 0 for all −N∕2 d M d

N∕2. It is the ferromagnetic state with all spins pointing along

|²xð, which is an eigenstate of Sx, S2 and HH. Hence, the

p
(M)

f
’s are constant and equal, pf = | ïcf |�ð |2 = 1∕2N .

The impact of symmetry may be weakened in two different

ways. Firstly, we keep the same initial state | 0ð = |�ð, but

turn to the Hamiltonian HXXZ. The state |�ð is invariant un-

der C
ex,spin

2
, hence, p

(M)

f
(t) = p

(−M)

f
(t). We find üp[�

(M)] =

�0[�
(M)] for each M . Hence, the behavior of the p

(M)

f
(t)’s de-

pends on �0[�
(M)] (see Table I), which determines ü�[�

(M)]

andüp[�
(M)]. The integer �0[�

(6)] = 1, so that the single p
(±6)

f

is constant. Figure 2, calculated for Jz∕J = −3, illustrates the

p
(M)

f
(t)’s for M = 5, 4, and 0. In stark contrast to the case

of the preceding paragraph, they are not constant. The integer

�0[�
(5)] = 2: two energies E1, E2 enter Eq. (3), yielding a si-

nusoidal oscillation at the same frequency (E1 −E2)∕ℎ for all

d(5) = 12 p
(5)

f
(t)’s, among which üp[�

(5)] = 2 are different.

This sinusoidal regime reflects the Rabi oscillation between

the two eigenstates in the class (A2g ,M = 5), and the mul-

tipe outcomes in Fig. 2a signal that the measurement is not

performed in a basis of states transforming under A2g . We

fully describe this regime analytically in the SM [18, Sec. V].
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FIG. 3. Probabilities p
(M)

f
(t) of the d(M) outcomes |cf ð in óM , for the initial state | 0ð = |�ð evolving under HH with � = 6, for M = (a) 5,

(b) 4, and (c) 0 (gray lines), rescaled such that
1

f*ó (M) p
(M)

f
(t) = 1. Single representatives of the �0[�

(M)] different functions p
(M)

f
(t) appear

in shades of blue. The probabilities for all other outcomes, each equiprobable to one of these, are shown in gray. Panels (a) and (b) illustrate

sinusoidal and aperiodic behaviors, panel (c) shows a collapse of the initial quantum state |� (0)ð.

For M = 4, the d(4) = 66 aperiodic p
(4)

f
(t)’s, among which

üp[�
(4)] = 9 are different, involve ü�[�

(4)] = 36 frequencies.

For M = 0, the p
(0)

f
’s involve ü�[�

(0)] = 1128 frequencies

(E�−E�2 )∕ℎ. TheE�’s, which all relate to the symmetry class

(M = 0, A2g), are independent. Accordingly, all probabilities

p
(0)

f
(t) < 0.06 at all times (see Fig. 2c), and no revival occurs,

unlike for the Jaynes–Cummings Hamiltonian [25]. Concern-

ing the short–term dynamics, all initial probabilities are equal,

pf (t = 0) = 1∕2N as in the preceding paragraph, preventing

the observation of a collapse of |�(0)ð. We shall now overcome

this difficulty by considering a different initial state.

Secondly, we turn to the initial state |�ð. It is the product

of single–particle states which are the same on the six sites of

each ring of Fig. 1, but different on the outer and inner rings,

thus fully exploiting the double–ring structure. Its components

|� (M)ð � 0 for 0 d M d N∕2. We let |�ð evolve under

HH. The state |�ð is not an eigenstate of S2, and accordingly,

the p
(M)

f
’s exhibit no clear signature of the fact that HH con-

serves S2. In particular, for each M e 0, �0[�
(M)] exceeds

�0[�
(M)] (see Table I) and actually achieves its maximum al-

lowed value d
(M)

A2
. We again find üp[�

(M)] = �0[�
(M)].

As previously, p
(6)

f
is constant. Figure 2 illustrates the time–

dependent p
(M)

f
(t)’s forM = 5, 4, and 0. The sinusoidal oscil-

lation of Fig. 3a involves two eigenstates of HH having S = 6

and 5, respectively (see SM [18, Table S4]), despite the conser-

vation ofS during the unitary evolution. The specificity of |�ð
appears for M = 0 (Fig. 3c), involving ü�[�

(0)] = 4005 fre-

quencies. Unlike |�(0)ð, |� (0)ð reduces to the single configura-

tion |c(0)
0
ð = |(rj , ´zj )0djdN∕2−1; (rk, ²

z
k
)N∕2dkdN−1ð, whose

initial rescaled probability is 1. However, |� (0)ð quickly col-

lapses, and p
(0)

0
(t) drops to very small values over a time <

0.05ℎ∕J . Subsequently, two configurations dominate: |c(0)
0
ð

and its spin–flipped configuration |c(0)
923

ð. Their probabili-

ties evolve aperiodically, reaching values ≲ 0.15. All other

p
(0)

f
(t) d 0.035. The dominance of |c(0)

0
ð and |c(0)

923
ð is itself a

signature of symmetry, as they are the only two M = 0 con-

figurations in ā exactly transforming under A2g . As above, we

expect no revival of the initial state |� (0)ð for long times. Val-

ues of Jz∕J � 1 are expected to yield qualitatively similar

behaviors for the p
(M)

f
(t)’s (see SM [18, Fig. S2]).

Outlook — The two following points warrant further inves-

tigation. (i) The spatial motion of the trapped particles will

also exhibit D6ℎ symmetry, allowing for the investigation of

the impact of point–group symmetry on the coupling between

spin and spatial dynamics [26]. (ii) In the Ising limit (J = 0),

within the nearest–neighbor approximation (� ³ @), H has

highly–degenerate eigenvalues. For Jz > 0, its ground state is

730–fold degenerate, signalling a strongly increased symme-

try in this limit, which approximately survives for � = 6.
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In this Supplemental Material, we further investigate the as-

sembly of N = 12 interacting particles analyzed in the main

text. It is organized as follows. In Sec. I, we define the basis ā

comprising 2N configurations of N particles, and the related

bases ā(M) spanning the subspaces ó (M) characterized by the

total spin projection M , with −N∕2 dM d N∕2. In Sec. II,

we discuss the impact of the spin point group symmetry on

the eigenstates of the Hamiltonian, considering first the XXZ

HamiltonianHXXZ, and then the Heisenberg HamiltonianHH.

In particular, we discuss the symmetries of the ground state,

and highlight a parameter range in which it is entangled. In

Sec. III, we identify a family of factorized N–particle states

transforming under the irreducible representation A2g of the

spatial symmetry group D6ℎ. The initial states |�ð and |�ð
considered in the main text belong to this family of experi-

mentally accessible states. In Sec. IV, we discuss the return

probabilities for the initial states |�ð and |�ð, as a function of

the ratio Jz∕J and the time t. Finally, in Sec. V, we present

a full analytical description for the protocol (þ) of the main

text, involving both time evolution and measurement, in the

specific case of an initial state | 0ð with the well–defined total

spin projection M = 5.

Brief summary of the essential notation — The particle i,
which has two accessible quantum states |²z

i
ð and |´z

i
ð, is con-

fined at the position ri, the N traps being arranged in the

(x, y) plane as in Fig. 1 in the main text. The N–particle

Hamiltonian, accounting for pairwise interactions decaying

like 1∕|ri − rj|� , is given by Eq. 1 in the main text, and reads:

H =
1

2

1

i�j

(
a

rij

)� [
J (�xi �

x
j + �

y
i
�
y
j
) + Jz �

z
i �

z
j

]
. (S1)

where a = r08 is the nearest–neighbor distance. The Pauli

operators σi = (�x
i
, �

y
i
, �z
i
) represent the qubit at ri, and J ,

Jz are constant energies. The Hamiltonian H = HH or HXXZ

depending on whether J = Jz or J � Jz.

I. ORDERING OF THE N–PARTICLE

CONFIGURATIONS IN THE BASIS ā

We have obtained all of our numerical results (most im-

portantly, Figs. 2 and 3 of the main text) using the basis ā =
(|cf ð)0dfd2N−1 containing 2N configurations of N particles.

∗ Electronic address: david.papoular@cyu.fr

A given configuration |cf ð = |r0, �0;& ; rN−1, �N−1ð =
|(ri, �i)0didN−1ð is defined by specifying the single–particle

internal states |�ið = |²z
i
ð or |´z

i
ð for the particles trapped in

each of the sites located at the positions ri, which appear in

the ket in order of increasing i.
We first order the single–particle states by ascribing the in-

dices 0 to |²zð and 1 to |´zð. Then, to the N–particle config-

uration |(ri, �i)0didN−1ð with �i = ±1∕2 as in the main text,

we ascribe the index f =
1N−1
i=0 (1∕2 − �i) 2

i. Hence,

|c0ð = |²0, ²1, ²2, ²3, ²4, ²5, ²6, ²7, ²8, ²9, ²10, ²11ð ,
|c1ð = |´0, ²1, ²2, ²3, ²4, ²5, ²6, ²7, ²8, ²9, ²10, ²11ð ,

ð

|c4094ð = |²0, ´1, ´2, ´3, ´4, ´5, ´6, ´7, ´8, ´9, ´10, ´11ð ,
|c4095ð = |´0, ´1, ´2, ´3, ´4, ´5, ´6, ´7, ´8, ´9, ´10, ´11ð .

(S2)

In Eq. (S2), the positions r0, . . . , rN−1 implicitly appear in

this order in each of the kets.

The configuration |cf ð = |(ri, �i)0didN−1ð has the well–

defined total spin projection ℏM , withM =
1N−1
i=0 �i. Hence,

the full basis ā may be reorganized into (N + 1) bases ā
(M)

for the subspaces ó (M), with −N∕2 d M d N∕2. Within

each ā
(M), the configurations are labeled from 0 to d(M) =

dim ó (M) in the same order as in ā. For example, the d(0) =
924 configurations with M = 0 are labeled as follows:

|c(0)
0
ð = |´0, ´1, ´2, ´3, ´4, ´5, ²6, ²7, ²8, ²9, ²10, ²11ð ,

|c(0)
1
ð = |´0, ´1, ´2, ´3, ´4, ²5, ´6, ²7, ²8, ²9, ²10, ²11ð ,
ð

|c(0)
922

ð = |²0, ²1, ²2, ²3, ²4, ´5, ²6, ´7, ´8, ´9, ´10, ´11ð ,

|c(0)
923

ð = |²0, ²1, ²2, ²3, ²4, ²5, ´6, ´7, ´8, ´9, ´10, ´11ð ,

(S3)

where the positions r0, . . . , rN−1 are implicit as in Eq. (S2).

This is the ordering used in Figs. 2 and 3 of the main text.

II. IMPACT OF THE SPIN POINT GROUP SYMMETRY

ON THE EIGENSTATES OF H

As discussed in the main text, any spatial symmetry opera-

tion (i.e. an element of Gspatial) may be represented as a per-

mutation � of the N positions (ri). Under this operation, the

N–particle configurations in ā transform as:

|(r�(i), �i)0didN−1ð = (−)� |(ri, ��−1(i))0didN−1ð , (S4)

mailto:david.papoular@cyu.fr
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D6ℎ E 2C6 2C3 C2 3C 2
2

3C 22
2

I 2S3 2S6 �ℎ 3�d 3�v

A1g 1 1 1 1 1 1 1 1 1 1 1 1

A2g 1 1 1 1 -1 -1 1 1 1 1 -1 -1

B1g 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1

B2g 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1

E1g 2 1 -1 -2 0 0 2 1 -1 -2 0 0

E2g 2 -1 -1 2 0 0 2 -1 -1 2 0 0

A1u 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1

A2u 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1

B1u 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1

B2u 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1

E1u 2 1 -1 -2 0 0 -2 -1 1 2 0 0

E2u 2 -1 -1 2 0 0 -2 1 1 -2 0 0

TABLE S1. Character table for the point group D6ℎ (see e.g. Ref. [S1, Appendix II.A]). Each column corresponds to a conjugacy class, and

each row to an irreducible representation. Those inapplicable to the considered system are shown in gray.

with (−)� being the parity of� and |�ið the state of the particle

originally at position ri.

A1g A2g E2g B1u B2u E1u Total

M = ±6 0 1 0 0 0 0
(
12

0

)
= 1

M = ±5 0 2 2 × 2 1 1 2 × 2
(
12

1

)
= 12

M = ±4 3 9 2 × 12 5 5 2 × 10
(
12

2

)
= 66

M = ±3 14 24 2 × 36 19 19 2 × 36
(
12

3

)
= 220

M = ±2 35 50 2 × 85 40 40 2 × 80
(
12

4

)
= 495

M = ±1 56 76 2 × 132 66 66 2 × 132
(
12

5

)
= 792

M = 0 70 90 2 × 156 76 76 2 × 150
(
12

6

)
= 924

Total 286 414 2 × 690 338 338 2 × 670 212 = 4096

TABLE S2. Analytical prediction for the number of eigenstates of

H simultaneously belonging to (i) the irreducible representation � of

D6ℎ and (ii) the eigenspace ofSz with eigenvalue ℏM . The integerM
satisfies −N∕2 d M d N∕2. For any � and M � 0, the symmetry

classes (�,M) and (�,−M) contain the same number of states.

A. Relevant representations of D6ℎ

Regardless of whether J � Jz or J = Jz, the point group

Gspatial, acting on the site positions while leaving the spins un-

affected, is D6ℎ [S2, §93]. This group has 12 inequivalent ir-

reducible representations [S1, Appendix II.A.6], and Table S1

gives its character table. Only some representations are rele-

vant to the description of the considered system. Indeed, let

us consider the mirror �ℎ, which leaves invariant each point

in the horizontal plane within which all atoms lie ((x, y) plane

of Fig. 1 in the main text). By definition of the symmetry el-

ements in Gspatial, it also leaves the spins invariant. Hence, it

should act as the identity. Therefore, its character in any ir-

Dimension 1 2 4

# Eigenspaces 312 838 527

TABLE S3. Degeneracies of the XXZ model (geometry of Fig. 1

in the main text). The bottom line gives the number of eigenspaces

whose dimensions appear on the first line.

reducible representation applicable to the considered system

should be the dimension of this representation. The charac-

ter table of D6ℎ (see Table S1) shows that six representations

satisfy this criterion: A1g ,A2g , B1u, B2u (which are unidimen-

sional) and E2g , E1u (which are bidimensional).

B. Dimensions of the blocks representing the various

symmetry classes

The group D6ℎ acts on the full Hilbert space ö as a re-

ducible representation. We calculate the array of the char-

acters of the 24 group elements for this representation. Its

scalar product with the corresponding arrays for each of the

irreducible representations � ofD6ℎ yields the total number of

eigenstates of the HamiltonianH (Eq. 1 of the main text) trans-

forming under � [S2, §94], given in the last line of Table S2.

Similarly, for any integer M such that −N∕2 d M d N∕2,

the subspace óM of ö characterized by the total spin projec-

tion Sz = M is stable under the action of D6ℎ, and we obtain

the number of eigenstates of the Hamiltonian in this subspace

transforming under each � in the same way (remainder of Ta-

ble S2). For the XXZ Hamiltonian, this is the dimension of

the block labeled (�,M) in the main text.

The symmetry groupGXXZ yields degeneracies through two

different mechanisms. Firstly, the irreducible representations

E2g and E1u of D6ℎ are bidimensional. Secondly, Gspin con-

tains the rotation C
ex,spin

2
about the axis ex through the angle

�, simultaneously acting on the spins of all N = 12 particles.
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It transforms the quantum state of each spin–1∕2 according to

|²ð ³ −i |´ð and |´ð ³ −i |²ð. Using (−i)12 = 1, we find that

C
ex,spin

2
acts as the spin–flip operator. Therefore, any eigen-

state |«ð of H with total spin projection M � 0 is degenerate

with C
ex

2
|«ð, which is an eigenstate of H with total spin pro-

jection −M . Combining these two properties, the eigenspaces

of H have dimension 1, 2, and 4: the corresponding numbers

of eigenspaces are given in Table S3.

C. Specific case of the Heisenberg model

We now consider the specific case of Jz = J . This has

two consequences. First, the total spin S2 is conserved, and

the blocks are now labeled by (�, S,M), where the integer

S satisfies |M| d S d N∕2 and sets the spin modulus

S2 = ℏ2S(S + 1). Second, an additional mechanism yielding

degeneracies is active. The operator S+ = Sx+iSy commutes

with H , so that the spectrum of H is comprised of multiplets

of (2S + 1) degenerate states with total spin S. The number

of spin–S multiplets in each representation �, obtained from

Table S2 as the difference between the numbers of eigenstates

with M = S and M = (S + 1) [S2, §63, Problem 1], is given

in Table S4. The degeneracies resulting from the three mech-

anisms at play are summarized in Table S5.

A1g A2g E2g B1u B2u E1u Total

S = 6 0 1 0 0 0 0
(
12

0

)
= 1

S = 5 0 1 2 × 2 1 1 2 × 2
(
12

1

)
−
(
12

0

)
= 11

S = 4 3 7 2 × 10 4 4 2 × 8
(
12

2

)
−
(
12

1

)
= 54

S = 3 11 15 2 × 24 14 14 2 × 26
(
12

3

)
−
(
12

2

)
= 154

S = 2 21 26 2 × 49 21 21 2 × 44
(
12

4

)
−
(
12

3

)
= 275

S = 1 21 26 2 × 47 26 26 2 × 52
(
12

5

)
−
(
12

4

)
= 297

S = 0 14 14 2 × 24 10 10 2 × 18
(
12

6

)
−
(
12

5

)
= 132

TABLE S4. Heisenberg model: analytical prediction for the number

of multiplets with total spin S in each irreducible representation �
of D6ℎ. The integer S satisfies 0 d S d N∕2. Each multiplet is

comprised of (2S + 1) degenerate eigenstates.

Dimension 1 2 3 5 6 7 9 10 11 13 14 18 22

# Eigenspaces 48 42 99 89 99 54 18 93 3 1 50 18 4

TABLE S5. Degeneracies of the Heisenberg model (geometry

of Fig. 1 in the main text). The bottom line gives the number of

eigenspaces whose dimensions appear on the first line.

Numerical calculations — For a given value of Jz∕J ,

we express H in the basis ā comprised of the 2N states

|r0, �0;& ; rN−1, �N−1ð, with |�ið = |²z
i
ð or |´z

i
ð for each

particle i, and numerically diagonalize the resulting real sym-

metric 4096× 4096 matrix. We have checked numerically, for

interactions decaying like 1∕d� with d being the interparticle

distance, with � = 3 and 6, and for −3 d Jz∕J d 3, that the

FIG. S1. Ground state energyE∕J as a function of Jz∕J , calculated

for interactions decaying like 1∕d6. The change in the symmetry of

the ground state wavefunction occurs for Jz∕J H −0.485 (dashed

vertical line).

degeneracies of the energy spectrum of H are those predicted

in Tables S3 and S5.

The time–dependent measurement probabilities, illustrated

on Figs. 2 and 3 of the main text and calculated from Eq. 3

there, are obtained by projecting the initial state | 0ð onto

the eigenstates of H , and accounting for the time–dependent

phase resulting from their evolution in time.

We have performed all these calculations using NumPy

[S3]. Figures 2 and 3 of the main text were obtained within a

few minutes on a recent desktop computer (128GB of RAM;

Intel Xeon CPU with the speed 3.50 GHz and 24 threads).

D. Ground state energy, symmetry, and entanglement

In this subsection, we focus on the ground state of H . Fig-

ure S1 represents the dependence of the ground state energy

EGS∕J on the ratio Jz∕J . It behaves linearly for Jz < J cz ,

where J cz∕J H −0.486, and nearly linearly for Jz > J cz . The

slope dEGS∕dJz is positive in the first region and negative

in the second one, signaling a change in the symmetry of the

ground–state wavefunction.

For Jz < J cz , the ground state is exactly ferromag-

netic and twice degenerate. The ground–state eigenspace is

spanned by the N–particle wavefunctions |²0 & ²N−1ð and

|´0 & ´N−1ð. The total spin projection satisfies |M| = N∕2,

hence, the total spin modulus is also well defined, S = N∕2.

All states in the ground–state eigenspace transform under

Gspatial according to the irreducible representation A2g (see

Table S1). The minus sign entering the character of some

group elements in this representation stems from Eq. (S4).

For Jz > J
c
z , we numerically find that the ground state is an-

tiferromagnetic and belongs to the symmetry class (A1g ,M =
0). Hence, it is non–degenerate. In the specific Heisenberg

case Jz = J , the ground–state wavefunction |«H
GS

ð belongs to
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the block labeled (A1g , S = 0,M = 0)which, according to Ta-

ble S4, has dimension 14. For Jz � J , the ground–state wave-

function |«GSð no longer has a well–defined value of S, and

acquires small components along S = 2 and S = 4. However,

it remains very close to |«H
GS

ð: for � = 6 and J cz < Jz < 3,

the squared overlap | ï«H
GS

|«GSð |2 > 0.995.

Finally, we discuss the presence or not of entanglement

in the ground state. In the ferromagnetic case (Jz < J cz ),

the system may be prepared in a ground–state wavefunction

with well–defined spin projection M = +6 or −6. Then,

the ground–state wavefunction is a tensor product of single–

particle wavefunctions, so that it is not entangled. The situa-

tion is different in the antiferromagnetic case (Jz > J cz ). For

a given value of Jz∕J , we numerically calculate the Schmidt

number [S4, §2.5] of the ground state with respect to each of

the bipartite partitions of theN qubits. For all considered val-

ues J cz∕J < Jz∕J < 3, this number is e 2 for all partitions,

so that the ground state is entangled.

Numerical calculation of the Schmidt number — For any in-

teger p such that 0 d p d 2N − 1, with the binary decomposi-

tion
1N−1
i=0 pi 2

i, the bipartite partition with index p is defined

as follows: the qubit on site i is of type A if pi = 0 and of

type B if pi = 1. This generates all 2N bipartite partitions

of the N qubits. However, only 2N−1 − 1 partitions need be

tested, because of the following two reasons. (i) The partitions

with extremal indices p = 0 and 2N−1 correspond to all qubits

being of the same typeA or B and, hence, do not probe for en-

tanglement. (ii) Simultaneously exchanging all qubits of type

A with all qubits of type B leads to the same Schmidt rank.

For a given bipartite partition with Na qubits of type A and

Nb qubits of type B, such that Na + Nb = N , we reshape

the vector with 2N components representing the ground state

of the system into a matrix with 2Na lines and 2Nb columns,

labeled by the basis states for the particles of type A and B,

respectively. This is achieved using bit rearrangement tech-

niques presented in [S5, chap. 7]. The Schmidt number is the

number of non–vanishing singular values of this matrix [S4,

Sec. 2.5], which we calculate using Numpy [S3].

III. A FAMILY OF FACTORIZED N–PARTICLE STATES

TRANSFORMING ACCORDING TO A2g

In this section, we identify a family ofN–particle states |�ð
which are products of single–particle states and which tran-

form under spatial symmetry operations according to the ir-

reducible representation A2g . Their definition exploits the

double–ring structure of Fig. 1 in the main text, detailed in

Fig. S2 of the present document.

A. Definition of the states |�ð

We choose two single–particle internal states |�outerð and

|�innerð, each of which is an arbitrary superposition of |²zð and

|´zð. We define the N–particle state |�ð such that all particles

on the outer ring (red sites in Fig. S2) are in the state |�outerð

A0

A1

A2

A3

A4

A5

A6

A7A8

A9

A10 A11

x

y

z
¿

inner

outer

FIG. S2. The considered system: twelve interacting particles trapped

in the (x, y) plane in a regular double–ring geometry. The six sites of

the outer ring appear in red, and those of the inner ring in green.

and all those on in the inner ring (green sites in Fig. S2) are in

the state |�innerð:

|�ð = |(rj , �outer)0djdN∕2−1 ; (rk, �inner)N∕2dkdN−1ð .
(S5)

The states |�ð and |�ð considered in the main text belong

to this family. Indeed, the choice |�outerð = |�innerð = |²xð
yields |�ð, while |�outerð = |²xð, |�innerð = |²zð yields |�ð.

B. Behavior under spatial symmetry operations

We act on the state |�ð with a spatial symmetry operation

g represented by the permutation �. This operation leaves

both the outer ring and the inner ring globally invariant, hence,

Eq. (S4) yields g |�ð = (−)� |�ð. Therefore, all elements in a

given conjugacy class ofD6ℎ act in the same way. We examine

these twelve classes in turn.

The identity E satisfies E |�ð = + |�ð.
The rotation shifting the atoms on each ring counterclock-

wise by one site, which belongs to class C6, is represented by

the permutation

(
0 1 2 3 4 5
1 2 3 4 5 0

)(
6 7 8 9 10 11
7 8 9 10 11 6

)
, (S6)

whose parity is [(−1)5]2 = +1. Hence, C6 |�ð = |�ð. This

also entails C3 |�ð = |�ð and C2 |�ð = |�ð.
The rotation about the axis (Ox), which belongs to class C 2

2
,

is represented by the permutation

(
0 1 2 3 4 5
3 2 1 0 5 4

)(
6 7 8 9 10 11
6 11 10 9 8 7

)
, (S7)

whose parity is (−1)5 = −1. Hence, C 2
2
|�ð = − |�ð. Simi-

larly, C2
22 |�ð = − |�ð.

Spatial inversion I is represented by the permutation

(
0 1 2 3 4 5
3 4 5 0 1 2

)(
6 7 8 9 10 11
9 10 11 6 7 8

)
, (S8)

whose parity is (−1)6 = +1. Hence, I |�ð = + |�ð.
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FIG. S3. Return probability p
(M=0)

R
(t) for the initial states | 0ð = |�(M=0)ð (green) and |� (M=0)ð (blue), evolving under the Hamiltonian of Eq. 1

in the main text with � = 6 and Jz∕J = (a) −3, (b) 0, and (c) +3, normalized such that p
(M=0)

R
(0) = 1.

The classes S3 and S6, comprised of rotary–reflections, and

the reflection �ℎ through the horizontal plane (Oxy), satisfy

the relations S3 = IC6, S6 = IC3, and �ℎ = IC2. These

yield S3 |�ð = S6 |�ð = �ℎ |�ð. Similarly, the classes �d and

�ℎ, comprised of reflections through planes containing the axis

(Oz), satisfy the relations �d = IC 2
2
, and �v = IC2

22. These

yield �d |�ð = �v |�ð = − |�ð.
Confronting these twelve transformation laws to the charac-

ter table of D6ℎ (Table S1), we conclude that |�ð transforms

according to the representation A2g .

IV. RETURN PROBABILITY

We assume that the system is prepared in the initial state

| 0ð, and let it evolve under the Hamiltonian of Eq. 1 in the

main text. Then, the probability that the quantum state at time

t return to | 0ð is pR(t) = | ï 0| (t)ð |2, where:

ï 0| (t)ð =
1

�

exp(−iE�t∕ℏ) | ï«�| 0ð |2 . (S9)

In Eq. (S9), the (|«�ð)0d�dN−1 are the eigenstates of H , with

energies (E�), just like in Eq. 3 of the main text. We illus-

trate these return probabilities in Fig. S3 for the components

|�(M=0)ð and |� (M=0)ð of the states |�ð and |�ð defined in

Sec. III A above, for � = 6 and three different values of Jz∕J .

In the case of |�(M=0)ð, the return probability p
|�ð
R

is constant

if Jz = J , in accordance with the fact that the initial state is an

eigenstate ofHH. However, if Jz∕J � 1, p
|�ð
R
(t) oscillates ape-

riodically as a function of time, with comparable amplitudes

for Jz∕J = 3 and −3. In the case of |� (M=0)ð, the return prob-

ability p
|�ð
R

(t) collapses to very small values for t ≲ 0.05ℎ∕J ,

and subsequently oscillates aperiodically. The amplitude of

this second regime is the smallest for Jz∕J = 1, in which case

p
|�ð
R

(t) ≲ 0.1. This justifies the choice of Jz∕J = 1 for Fig. 3

in the main text.

V. ANALYTICAL SOLUTION WITHIN ó (M=5)

In this section, we assume as in the main text that the ini-

tial state | 0ð transforms according to the irreducible represen-

tation A2g , and focus on the subspace ó (M=5) comprising all

configurations with total spin projection M = 5. In this con-

text, we present a fully analytical description of the protocol

þ analyzed in the main text. This solution exists because the

block (A2g ,M = 5) has dimension 2 (see Table S2), so that

the Hamiltonian governing the evolution within this block is a

2 × 2 matrix. Our analytical results are in perfect agreement

with Figs. 2a and 3a of the main text, obtained numerically.

A. Configurations in ó (M=5)

The subspace ó (M=5) has dimension d(5) =
(12
1

)
, which is

the number of ways to flip a single spin among 12. It is spanned

by the basis ā(M=5) comprising the following 12 configurations

|c(5)
f
ð, with 0 d f d 11:

|c(5)
f
ð = |r0, �0; r1, �1;& ; r11, �11ð , (S10)

where |�ið = |´z
i
ð for i = f and |²z

i
ð for i � f . This is the

ordering used in Figs. 2a and 3a of the main text.

The block (A2g ,M = 5), which is a symmetry class of

HXXZ, has dimension d
(5)

A2g
= 2 (see Table S2). It is spanned by

the basis comprising the N–particle kets |e(5)
outer

ð and |e(5)
inner

ð:

|e(5)
outer

ð = 1√
6

51

f=0

|c(5)
f
ð and |e(5)

inner
ð = 1√

6

111

f=6

|c(5)
f
ð .

(S11)

In Eq. (S11), |e(5)
outer

ð is the symmetric sum of all six configu-

rations comprising a single particle in the state |´zð positioned

on the outer ring (i.e. on one of the red sites of Fig. S2), and
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|e(5)
inner

ð is the equivalent state for the inner ring (green sites of

Fig. S2). Neither |e(5)
outer

ð nor |e(5)
inner

ð belongs to the basis ā(5).

We follow the protocol (þ) of the main text. We start from

the initial state | 0ð, which in the present section is chosen in

ó (M=5). We let the system evolve under the Hamiltonian H
which may be eitherHH orHXXZ: theN–particle state | (t)ð
remains within ó (M=5) at all times. Finally, we measure it at

time t in the basis ā(M=5).

The probability p
(5)

f
(t) of finding the configuration |c(5)

f
ð

is given by Eq. 3 of the main text. The configurations en-

ter this equation only through the overlaps ïc(5)
f
|e(5)

outer
ð and

ïc(5)
f
|e(5)

inner
ð. Hence, at any given time t, the six configurations

|c(5)
f
ð for 0 d f d 5 are equiprobable, their shared probabil-

ity being p
(5)

inner
(t) = | ïc(5)

f
| (t)ð |2. Similarly, the |c(5)

f
ð’s for

6 d f d 11 are equiprobable, with probability p
(5)
outer

(t).

B. Heisenberg Hamiltonian HH

For the Heisenberg Hamiltonian, the block (A2g ,M = 5)
comprises the two symmetry classes (A2g , S = 6,M = 5)
and (A2g , S = 5,M = 5), each of which is unidimensional

(see Table S4). The basis vector |A2g , S = 6,M = 5ð is ob-

tained by applying the spin lowering operator S− =
1N−1
i=0 s−

i
to the fully polarized state |(ri, ²zi )0didN−1ð with all N spins

pointing along |²zð:

|A2g , S = 6,M = 5ð = (|e(5)
outer

ð + |e(5)
inner

ð)∕
√
2 . (S12)

As for (A2g , S = 5,M = 5), we may choose as a basis vector

any linear combination of |e(5)
outer

ð and |e(5)
inner

ð which is orthog-

onal to |S = 6,M = 5ð, say:

|A2g , S = 5,M = 5ð = (− |e(5)
outer

ð + |e(5)
inner

ð)∕
√
2 . (S13)

All N–particle states with the quantum numbers S = 6, M =
5 are proportional to |A2g , S = 6,M = 5ð, whereas there are

11 orthogonal states with the quantum numbers S = 5, M =
5, transforming under various representations (see Table S4).

The blocks (A2g , S,M = 5) for S = 6 and 5 both have

dimension 1, hence, theN–particle states |S = 6,M = 5ð and

|A2g , S = 5,M = 5ð are eigenstates of HH regardless of the

value of �. The difference �E = ES=6 − EA2g ,S=5
of the two

corresponding eigenvalues satisfies:

�E∕J = 8 (1 + 2−� + 7−�∕2) . (S14)

We choose | 0ð = |� (5)ð ∕‖� (5)‖ = |e(5)
outer

ð like for Fig. 3a

of the main text. Then, Eq. 3 of the main text leads to:

p
(5)
outer(t) =

1

6
cos2[�E t∕(2ℏ)] ,

p
(5)

inner
(t) =

1

6
sin2[�E t∕(2ℏ)] .

(S15)

For � = 6, Eq. (S14) yields the exact result �E∕J =
22359∕2744 H 8.2, and the analytical Eq. (S15) perfectly

matches the numerical results of Fig. 3a of the main text.

C. XXZ Hamiltonian HXXZ

The (A2g ,M = 5) block may be solved analytically even if

Jz � J . Then, the total spin modulus S is not conserved, and

the two eigenstates of HXXZ within this block depend on both

J∕Jz and �. We first consider the specific values Jz∕J = −3
and � = 6, corresponding to Fig. 2a of the main text, then

generalize our results to arbitrary values of Jz∕J and �.

1. Results for Jz∕J = −3 and � = 6

First, we focus on the specific values Jz∕J = −3 and � = 6,

as in Fig. 2a of the main text. Expressing the restriction H̃XXZ

of HXXZ in the basis ā(5), we find the exact result:

H̃XXZ

J
=

(
−173351219∕4000752 22359∕5488

22359∕5488 −12105047∕444528

)

H

(
−43.3 4.1
4.1 −27.2

)
.

(S16)

The probabilities p
(5)
outer

(t) and p
(5)

inner
(t) obtained from the ini-

tial state |�(5)ð ∕‖�(5)‖ = (|e(5)
outer

ð+|e(5)
inner

ð)∕
√
2 undergo sinu-

soidal oscillations at the same frequency, set by the difference

�EXXZ of the two eigenvalues of H̃XXZ, exactly given by:

�EXXZ

J
= −5

√
52108288731277

2000376
H −18.0 . (S17)

The probabilities p
(5)
outer

(t) and p
(5)

inner
(t) obtained from the ana-

lytical Eqs. (S16) and (S17) are in perfect agreement with the

numerical results of Fig. 2a in the main text.

2. General analytical description of the (A2g ,M = 5) block

We now turn to the general case, where Jz∕J and � may

take arbitrary values. Eq. (S16) generalizes to:

H̃XXZ

J
=

(
ℎ
(0)

11
ℎ
(0)

12

ℎ
(0)

21
ℎ
(0)

22

)
+
Jz
J

(
ℎ
(1)

11
0

0 ℎ
(1)

22

)
, (S18)

where the matrix elements ℎ
(0)
ij

read:

ℎ
(0)

11
= 4 × 3−� + 4 × 3−�∕2 + 21−� × 3−�∕2 ,

ℎ
(0)

12
= ℎ

(0)

21
= 4

(
1 + 2−� + 7−�∕2

)
,

ℎ
(0)

22
= 4 + 4 × 3−�∕2 + 21−� ,

(S19)

and the diagonal coefficients ℎ
(1)
ii

are given by:

ℎ
(1)

11
= 14 + 11 × 2−� + 2 × 3−� + 8 × 3−�∕2

+ 2−� × 3−�∕2 + 8 × 7−�∕2 ,

ℎ
(1)

22
= 10 + 9 × 2−� + 6 × 3−� + 8 × 3−�∕2

+ 3 × 2−� × 3−�∕2 + 8 × 7−�∕2 .

(S20)



7

Finally, the energy difference of Eq. (S17), which deter-

mines the shared frequency at which the probabilities p
(5)
outer(t)

and p
(5)

inner
(t) oscillate sinusoidally, becomes:

�EXXZ

J
=

√

�(0) + �(1)
Jz
J

(
Jz
J

− 2

)
, (S21)

where the coefficients �(0) and �(1) read:

�(0) = 80

+ 24−�(9 + 3−3�∕2 − 3−� − 3−�∕2 + 8 × 7−�∕2)

+ 41−�(17 + 3−� − 2 × 3−�∕2) − 32 × 3−�

+ 64 × 7−� + 128 × 7−�∕2 + 16 × 9−� ,

�(1) = 41−� × 9−�
(
21+� + 3�∕2 − 3�(1 + 21+�)

)2
.

(S22)
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