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We have performed microwave spectroscopy of sodium least-bound molecular states, improving
the precision on the knowledge of their energies at zero magnetic field by almost three orders of
magnitude. Our experimental observations give us also access to states submitted to predissocia-
tion, a phenomenon where a bound molecular state can naturally decay into the continuum. Our
findings are compared to numerical calculations based on the latest interpolation of sodium inter-
action potentials and show good agreement, with slight discrepancies in the zero-field energy of the
molecular states, suggesting a need for small adjustment of the interaction potentials.

I. INTRODUCTION

In the field of ultracold atoms, the strength of two-
body interactions is well captured by a single parameter,
the scattering length. The accurate knowledge of the lat-
ter is crucial for a proper description of the in- and out-of-
equilibrium properties of degenerate quantum gases. In
the Born-Oppenheimer approximation, scattering prop-
erties of two atoms are determined by the interaction
potential they experience at short distances. More accu-
rate measurements of the energy of the molecular bound
states associated to this potential thus set stronger con-
straints on its shape, allowing in turn for the improve-
ment of numerical models describing the interaction be-
tween atoms, and a refined determination of the scatter-
ing length. In this respect, the least-bound states are of
particular importance, since the scattering length is ex-
tremely sensitive to their energy. They also play a cen-
tral role in Feshbach resonances [1], where a pair of free
atoms is brought to resonance with a molecular bound
state, leading to the divergence of the scattering length.

Alkali atoms have a single valence electron and at short
distances their interaction depends on the spin state of
the joint electron pair, either singlet or triplet. By con-
trast, at long distances, the hyperfine splitting interac-
tion, resulting from the coupling between the valence
electron spin and the nuclear spin of each atom, is dom-
inant and sets the spin structure of a single atom in its
ground state. In the intermediate region, these two en-
ergy scales are in competition. In the case of sodium, this
has dramatic consequences on the least-bound molecu-
lar states, as hyperfine splitting interaction has similar
strength compared with the energy difference between
the last bound molecular states of the singlet and triplet
potentials. For some particular molecular states, this re-
sults in a strong mixing between the singlet and triplet
last bound states but also to nearby continuum states. It
leads to predissociation, where a bound molecular state
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is coupled to continuum states, hence strongly limiting
its lifetime [2, §90].
Numerous works have measured or computed the en-

ergies of sodium bound molecular states relying on laser-
induced fluorescence [3–6], two-photon ionization spec-
troscopy [7–10] or theoretical analysis [11–14]. Ra-
man and two-color photoassociation spectroscopy [15–19]
achieved to refine this knowledge with a typical resolu-
tion ranging from 10 to 30MHz. More recently, the pre-
cise characterization of Feshbach resonances [20–22] has
constrained even more the shape of singlet and triplet in-
teraction potentials. Taking advantage of the improved
knowledge of the energies of the least-bound molecular
states, a precise determination of the sodium scattering
length has been obtained [16, 22–25].
In this work, we probe the least-bound molecular states

of ultracold sodium atoms with microwave spectroscopy,
as also recently demonstrated with rubidium atoms [26],
improving the accuracy of previous measurements by
nearly three orders of magnitude. This allows us to ac-
cess the Zeeman structure of individual molecular state
and deduce their corresponding Landé g-factor. The wide
range of microwave field amplitudes accessible with our
experimental setup [27] gives us access to the AC Zee-
man effect for both atomic and molecular states. Such
energy displacement can be seen as the magnetic analog
of the AC Stark shift or light shift, usually introduced
in the dressed-atom approach [28]. We also determine
the energy width of the lowest molecular state undergo-
ing predissociation. Finally, we perform numerical cal-
culations taking advantage of the latest interpolation of
sodium singlet and triplet interaction potentials [22]. We
correctly reproduce our experimental findings provided
small energy offsets, whose value that could be used to
refine the interaction potentials.
The paper is organized as follows: In Sec. II, we give

the theoretical elements needed to express sodium molec-
ular state energies and wavefunctions. In Sec. III, we
present the experimental apparatus and describe mi-
crowave photoassociation spectroscopy of truly bound
molecular states and of a state submitted to predisso-
ciation. Our results are then compared to numerical
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calculations. Finally, in Sec. IV, we use a larger field
amplitude to investigate two-photon photoassociation as
well as the AC Zeeman effect affecting bound molecular
states. Additional information concerning the numerical
calculations, the compensation of the AC Zeeman shift of
the atomic states and the fit of photoassociation spectra
are given in the Appendices.

II. HYPERFINE STRUCTURE OF SODIUM
MOLECULES

In this section, we give the theoretical tools to un-
derstand the microwave photoassociation spectroscopy of
least-bound Na2 molecular states. Since we focus on ul-
tracold atoms, we only consider s-wave interactions and
we don’t take into account any rotational energy. After
detailing the possible spin states of a pair of Na atoms,
we explain their collisional properties using the center-
of-mass frame, with r the relative distance between the
two atoms of mass m.

A. Singlet and triplet interaction potentials

Sodium atoms in their ground state are characterized
by their electronic spin ŝ with s = 1/2 and their nuclear

spin î with i = 3/2. Hyperfine interaction ℏωhfs î · ŝ/2ℏ2,
with ℏ the reduced Planck constant and ωhfs ≃ 2π ×
1771.6MHz, lifts degeneracy between the 8 possible spin
states which organize into two groups characterized by

their total spin f̂ = ŝ + î, with f = 1 or f = 2 and split
in energy by ℏωhfs.

The spin of a pair of Na atoms involves 8 × 8 = 64
different states but, in case of s-wave collisions, only the
36 states symmetric in the exchange of the two atoms
are relevant due to the symmetrization rules for indistin-
guishable bosons. Considering the total hyperfine inter-
action of both atoms

Ĥhfs =
ℏωhfs

2

(
î1 · ŝ1
ℏ2

+
î2 · ŝ2
ℏ2

)
, (1)

the corresponding eigenstates |{f1, f2};F,mF ⟩ can be la-

belled by the total spin of the pair F̂ = f̂1+ f̂2 where F =
0, 1, 2, 3, 4 and mF = −F . . . F . They are split into three
different manifolds {f1 = 1, f2 = 1}, {f1 = 1, f2 = 2}
and {f1 = 2, f2 = 2} separated in energy by ℏωhfs.
At short relative distance r, the interaction between

two Na atoms depends on their total electronic spin
Ŝ = ŝ1 + ŝ2. S can take the two values S = 0 or S = 1.
For singlet states S = 0, the atoms interact through the
X1Σ+

g potential VS(r), while triplet states S = 1 inter-

act through the a3Σ+
u potential VT(r). Previous molec-

ular spectroscopy measurements have allowed to refine
the knowledge of these potentials and in particular the
energies of their bound states [15–19, 22, 23, 25]. The

X1Σ+
g and a3Σ+

u potentials include the vibrational lev-
els νS = 0 . . . 65 and νT = 0 . . . 15, respectively. Above
the last bound state lies a continuum of free states which
are de facto dissociated. In the following, ψS

ξ (r) (ψ
T
ξ (r))

refers to the spatial wave function of an eigenstate of the
X1Σ+

g (a3Σ+
u ) potential with energy ES

ξ (ET
ξ ). The sub-

script ξ is equal to νS = 0 . . . 65 (ξ = νT = 0 . . . 15) for
bound states. For continuum states, ξ = k, where the
momentum k characterizes the asymptotic part of the

wave function for r → ∞, which behaves as ψS,T
k (r) ∝

sin(kr + δS,Tk ))/r. The phase shift δS,Tk depends on the
inner part of the spatial wave function and the scatter-

ing length aS,Tk is set by the limit at vanishing momenta

[tan δS,Tk ]/k → −aS,Tk .
Singlet and triplet states can be conveniently repre-

sented by the spin states |S, I, F,mF ⟩, eigenstates of the
operators Ŝ2, Î2 =

(̂
i1 + î2

)2
, F̂2 and F̂z, projection of

F̂ along the quantization axis z. It is interesting to note
that the states F = 1, 3 and 4 are pure triplet states
hence |S = 1, I, F,mF ⟩ = |{f1, f2};F,mF ⟩. In the fol-
lowing, they will be referred to as |F,mF ⟩ since there
is no ambiguity. In contrast, the F = 0 subspace has
dimension 2 and each hyperfine splitting eigenstate is a
linear combination of the singlet state |0, 0, 0, 0⟩ and the
triplet state |1, 1, 0, 0⟩. Similarly, for each mF = −2 . . . 2
the F = 2 subspace has dimension 3, and each hyperfine
splitting eigenstate is a linear combination of the singlet
state |0, 2, 2,mF ⟩ and the two triplet states |1, 1, 2,mF ⟩
and |1, 3, 2,mF ⟩.

B. Effect of the hyperfine coupling

Taking into account the interaction between the two
atoms, the Hamiltonian of the system in the center-of-
mass frame can be written as

Ĥ1 = T̂ + VS(r̂)P̂S + VT(r̂)P̂T + αhfs(r̂)Ĥhfs (2)

where P̂S,T are projectors onto singlet and triplet states,
αhfs(r → ∞) = 1 accounts for electronic distortions
of the hyperfine interaction for each atom at short dis-
tances [22] and the kinetic energy of the relative motion

T̂ can be split into a radial and an angular part

T̂ = − ℏ2

mr2
∂

∂r

(
r2
∂

∂r

)
+

L̂2

mr2
. (3)

L̂ is the total orbital angular momentum of the atom
pair. Here, we only consider s-wave collisions such that
we restrict ourselves to L = 0 states.
The Hamiltonian Ĥ1 is diagonal in the subspace

spanned by the F = 1, F = 3 and F = 4 spin states.
As mentioned in Sec. IIA, these states are pure triplet
states, obeying the Hamiltonian T̂ +VT(r̂)+αhfs(r̂)Ĥhfs.

The corresponding eigenstates |χF,mF

ξ ⟩ are then easily
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expressed as

⟨r|χF,mF

ξ ⟩ = ϕF,mF

ξ (r)|F,mF ⟩, (4)

where ϕF,mF

ξ (r) ≃ ψT
ξ (r), the correction due to αhfs being

very small. Here, ξ is equal to νT = 0 . . . 15 for bound
states and k for continuum states. The last bound state
νT = 15 is represented in Fig. 1 for the two manifolds
{f = 1, f = 2}, with F = 1, 3 and {f = 2, f = 2}, with
F = 4.

Within the F = 0 subspace, singlet and triplet com-
ponents are coupled through the hyperfine hamiltonian
Ĥhfs. Below the dissociation limit, this coupling can be
treated perturbatively for νS = 0 . . . 64 and νT = 0 . . . 14.
Close to dissociation, hyperfine coupling dominates over
all other energy scales, so that νS = 65 and νT = 15 vi-
brational states get strongly mixed. Restricting the prob-
lem to these two states only, the resulting eigenstates of
the Hamiltonian Ĥ1, |χ0,0

{1,1}⟩ and |χ0,0
{2,2}⟩ have thus a non

negligible spin component along both |{1, 1}, 0, 0⟩ and
|{2, 2}, 0, 0⟩ and their respective spatial wavefunctions
are close to a linear combination of ψS

65(r) and ψT
15(r)

with similar weights.

The strong mixing imposed by the hyperfine interac-
tion also applies to all continuum states of VS and VT
in the F = 0 subspace, labelled by their momentum k.
While |χ0,0

{1,1}⟩ is an isolated state in the energy spec-

trum (thin magenta line in Fig. 1), |χ0,0
{2,2}⟩ lies within

mixed continuum states. This gives rise to predissocia-
tion where |χ0,0

{2,2}⟩ may easily leak out to the continuum.

Subsequently its lifetime gets strongly reduced, as illus-
trated by the wide blurred magenta line in Fig. 1.

In the F = 2 subspace, a similar treatment can be
made for each mF = −2 . . . 2. Below the dissociation
limit, the singlet component |0, 2, 2,mF ⟩ and the two
triplet components |1, 1, 2,mF ⟩ and |1, 3, 2,mF ⟩ are per-

turbatively coupled through Ĥhfs. Close to dissociation,
hyperfine coupling dominates over all other energy scales.
Eigenstates of Ĥ1, |χ2,mF

{1,1}⟩, |χ
2,mF

{1,2}⟩ and |χ2,mF

{2,2}⟩ are thus
superpositions of the three |{f1, f2}, 2,mF ⟩ spin states,
{f1, f2} = {1, 1}, {1, 2} or {2, 2}, with respective spatial
wavefunctions which are linear combinations of ψS

65(r)
and ψT

15(r) with similar weights. Similarly to the F = 0

subspace, while |χ2,mF

{1,1}⟩ is an isolated state in the en-

ergy spectrum (thin orange line in Fig. 1), |χ2,mF

{1,2}⟩ and

|χ2,mF

{2,2}⟩ lie within mixed continuum states, resulting in

predissociation and short lifetime, as illustrated by the
wide blurred orange lines in Fig. 1.

Figure 1 summarizes all the results concerning Na2
least-bound states. The origin for the energy scale is
set to the {1, 1} manifold dissociation limit which corre-
sponds to the energy of two f = 1 atoms with vanishing
relative momentum as in the experiment. As just ex-
plained, predissociated states are depicted with a large
energy width to account for their limited lifetime.

FIG. 1. Na2 least-bound states energies (colored lines). Hy-
perfine interaction distributes these levels between three dif-
ferent manifolds whose dissociation limit is indicated by a
black dotted line. The black dashed and yellow solid lines
show the triplet interaction potential VT(r) and singlet in-
teraction potential VS(r) respectively. F = 1, 3, 4 states are
pure triplet states. F = 0 and F = 2 spin states are mixed
singlet and triplet states. Within the {f = 1, f = 2} and
{f = 2, f = 2} manifolds this leads to predissociation where
the F = 0 and F = 2 molecular states can easily leak out to
continuum states. The relative distance r is scaled with a0,
the Bohr radius.

C. Effect of static and microwave magnetic field

In the presence of a static magnetic field Bs or a mi-
crowave field Bmw(t) of frequency ω, the Hamiltonian of

a pair of Na atoms becomes Ĥ(t) = Ĥ1 + Ĥ2(t) where

Ĥ2(t) = Ĥs + Ĥmw(t), (5)

with Ĥs =
µB

ℏ

(
gsŜ+ giÎ

)
·Bs (6)

and Ĥmw(t) =
µB

ℏ

(
gsŜ+ giÎ

)
·Bmw(t). (7)
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Here, µB is the Bohr magneton, gs ≃ 2 is the Landé g-
factor of the electronic spin and gi ≪ gs is the nuclear g-
factor. Both in the hyperfine basis |{f1, f2};F,mF ⟩ and
in the singlet/triplet basis, the Hamiltonian Ĥs is pri-
marily diagonal. Off-diagonal couplings are proportional
to µBgsBs and can be treated perturbatively as long as
they remain small compared with the energy difference
between the two coupled states. In this case, Ĥs mostly
leads to a small shift of each eigenstate energy, yielding
a linear Zeeman effect proportional to µBgsBs.

The effect of the microwave field depends on the fre-
quency ω. When the latter is close to the frequency dif-
ference between two eigenstates of Ĥ1, it leads to co-
herent Rabi oscillations between them. For off-resonant
frequencies and at large microwave amplitude, it also in-
duces significant AC Zeeman shifts on the eigenstates of
Ĥ1.

An accurate numerical treatment of Ĥ(t) is involved.
To estimate the energies of the bound molecular states
presented in the next sections, we rely on the follow-
ing model. We numerically find the eigenstates of Ĥ1

from the analytical potentials VS and VT described in [22]
(see Appendix A for details). Among the whole set
of eigenstates, we only keep the states which are rele-
vant to describe the least-bound molecular states of Na2:
the triplet states |χF,mF

νT=15⟩ with F = 1, F = 3 and

F = 4 and mF = −F . . . F , the two states |χ0,0
{1,1}⟩ and

|χ0,0
{2,2}⟩ and the states |χ2,mF

{1,1}⟩, |χ
2,mF

{1,2}⟩ and |χ2,mF

{2,2}⟩ for

mF = −2 . . . 2. We then project Ĥ(t) on the subspace
spanned by these 36 eigenstates. We finally rely on Flo-
quet analysis to compute the least-bound molecular state
energy in the presence of a static magnetic field and mi-
crowave fields.

In order to characterize the molecular states submit-
ted to predissociation, we rely on a different approach
based on coupled-channels calculations, as detailed in
Appendix B.

III. PHOTOASSOCIATION SPECTROSCOPY
OF THE LAST NA2 BOUND STATES

We now turn to the experimental outcome of single-
photon photoassociation spectroscopy of Na2, starting
from a Bose-Einstein condensate (BEC) of 23Na atoms
polarized in the |f = 1,mf = −1⟩ Zeeman state. The
spin projection of the atom pair along the quantization
axis being mF = −2, the single-photon transitions al-
lowed by selection rules are the molecular states with a
spin projection mF ∈ {−3,−2,−1} in the states with
F = 1, 2 or 3 of the manifolds {f = 1, f = 2} and
{f = 1, f = 1}. In this section, we present the ex-
perimental results of microwave photoassociation spec-
troscopy for these transitions.

A. Experimental procedure

The microwave spectroscopy of the molecular lines is
conducted as follows. We produce a Bose-Einstein con-
densate (BEC) with no visible thermal fraction in a very
elongated magnetic trap realized with an atom chip as
described in Ref. [27]. The chip design includes a mi-
crowave coplanar waveguide (CPW) in the vicinity of
which the gas is transported magnetically. At the end
of the evaporative cooling procedure, we obtain degener-
ate gases of typically 106 atoms in the |f = 1,mf = −1⟩
Zeeman substate. The confinement is very anisotropic
with trapping frequencies ωy ≃ ωz ≃ 2π × 3.3 kHz and
ωx ≃ 2π × 6.5Hz, where the x-axis is the common axis
of the CPW and of the main trapping wires on the atom
chip. At the bottom of the trap, the atoms experience a
local magnetic field Bs oriented approximately along the
x-axis, with a typical amplitude Bs = 0.9G that can be
increased up to 4.6G. The chemical potential of the sys-
tem µ is typically lower than h × 20 kHz or equivalently
kB × 900 nK, and its temperature stays below µ/kB .

The CPW induces a microwave field Bmw(t) =
1

2

[
Be−iωt + c.c.

]
with B = B+e+ + B−e− + B0e0 such

that |B+| ≃ 1.1|B−| ≫ B0, with e+ = −(ez − iey)/
√
2,

e− = (ez + iey)/
√
2, e0 = ex. At the position of the

atoms, the amplitude |B−| can be tuned up to 8.35G
for a microwave frequency around 1.56GHz, see also
Appendix C. The calibration of these fields is based
on the measurement of coherent Rabi oscillations be-
tween the Zeeman atomic states |f = 1,mf = −1⟩ and
|f = 2,mf = −2⟩ or |f = 1,mf = 0⟩ performed at low
microwave power and for ω ≃ ωhfs, assuming a linear re-
sponse of the microwave amplifier. Since the transmission
of the CPW also depends on ω, we calibrate it relying on
a vector network analyzer and take it into account in the
estimation of |B−|. The local amplitude of the magnetic
field Bs can also be precisely determined from atom loss
spectroscopy on the same transitions [27].

The spectroscopy of Na2 least bound states is per-
formed by atom loss spectroscopy. The microwave field is
switched on at a given power, characterized by an ampli-
tude |B−| of its σ− component, and for a fixed duration τ .
We record the losses induced by the photoassociation of
two |f = 1,mf = −1⟩ atoms into one of the least-bound
Na2 molecular states, while scanning the microwave field
frequency ω. The experimental parameters for the differ-
ent spectra are detailed in Appendix D. After the pulse,
the atoms are kept in the trap for 440µs before a com-
plete switch off. The molecular states addressed from
the initial atomic state are not trapped in the magnetic
potential and are then quickly lost in a typical timescale
of ω−1

⊥ ≃ 50 µs, except for the two states |χ2,−2
{1,1}⟩ and

|χ2,−1
{1,1}⟩ which undergo a magnetic confinement with re-

spective oscillating frequencies
√
2 larger, or identical,

compared with the atomic ones. We observe a loss sig-
nal for these states as well, which can be attributed to
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FIG. 2. (a) Photoassociation spectroscopy of Na2 molecular states of the {f = 1, f = 2} manifold in the presence of a static
magnetic field of amplitude Bs = 0.89(1)G. The black disks correspond to the average over three experimental measurements
of the remaining atom number after a microwave pulse duration of 80ms and a microwave field amplitude |B−| = 5.33G for
ω ≃ 2π × 1254 MHz. Error bars represent the standard deviation of the different measurements and give an indication of
the atom number stability in the experiment. In addition to the atomic hyperfine resonance at 1.77GHz towards the f = 2
atomic states, visible for frequencies above 1500MHz, we observe two molecular resonances: a broad resonance at low frequency
and a thin resonance closer to the atomic resonance. The broad resonance, fitted with a Lorentzian function, is centered at
1254.1(36)MHz and can be attributed to the F = 2 molecular spin states. Its large width of 86(11)MHz is due to predissociation
(see text). The thin resonance at 1561.9MHz corresponds to the F = 1, 3 molecular spin states. (b) Numerical characterization
of the energy width of F = 2 molecular states of the {f = 1, f = 2} manifold. The orange line corresponds to the energy
derivative of the s-wave scattering phase shift δ0 as a function of the incident energy E, assuming a single open channel,
namely |{1, 1}; 2,mF ⟩. The black line is a Lorentzian function fit supplemented with a linear background representing potential
scattering. This leads to a peak energy of E = h× 1278MHz, slightly detuned compared to the experimental observations and
a half-width of γ/2 = 2π × 80MHz in excellent agreement with the experimental data.

inelastic two-body and three-body collisions among the
atoms or between the atoms and the molecules.

B. Observation and characterization of
{f = 1, f = 2} predissociated states

Fig. 2(a) shows a photoassociation spectroscopy of the
{f = 1, f = 2} manifold for Bs = 0.89(1)G. The large
peak partially visible on the right part of the plot corre-
sponds to the atomic hyperfine resonance at 1.77GHz to
the |f = 2,mf ⟩ spin states with mf = −2,−1, 0. While
these states are untrapped by the magnetic potential, the
width of the loss signal is mainly due to the effect of the
AC Zeeman shift which expels the atoms from the mag-
netic trap [29]. For |B−| = 5.33G and a pulse duration
of 80ms, we observe a very broad photoassociation res-
onance centered at 1254.1(36)MHz with a half width at
half maximum (HWHM) of 86(11)MHz, as well as a thin
resonance centered at 1561.9MHz. The first one can be
attributed to the F = 2 predissociated states and the sec-

ond one to the |χF=1,3
15 ⟩ triplet molecular states, which

we address in Sec. III C.
As discussed previously, the large energy width of the

F = 2 resonance reflects the finite lifetime of the reso-
nant two-atom state, which decays through predissocia-
tion [2, §90]. We represent this process using a quasi-
discrete state [2, §134], corresponding to the complex en-
ergy E0−iℏγ/2. Its real part E0 is above the dissociation

threshold, and its imaginary part sets the lifetime γ−1.
Earlier characterizations of this resonance [15, 16] have
involved numerical simulations which closely mimicked
the experimental conditions, revealing its impact on the
observed resonance position and strength [16, Fig. 5]. By
contrast, we explore here a different approach and char-
acterize in the absence of static or oscillating magnetic
fields this quasi–discrete level, whose energy and width
are intrinsic parameters which are independent of the ex-
perimental details. Our approach relies on the extraction
of the energies and widths of the quasi–discrete states
from the energy dependence of the phase shift of scat-
tering wavefunctions [2, §134] restricted to the spin state
basis |{1, 1}; 2,mF ⟩, |{1, 2}; 2,mF ⟩, |{2, 2}; 2,mF ⟩, hence
limiting the calculation to 3 coupled-channels.
Instead of calculating the complex energy of the quasi–

discrete state directly, we exploit its impact on scatter-
ing states with energies E near the energy of the quasi-
discrete state. Among their three spatial components,
a single channel is open, namely, |{1, 1}; 2,mF ⟩. Hence,
they are fully characterized by the s-wave phase shift,

δ0(E) = δ
(0)
0 −arctan[ℏγ/(2(E−E0))] [2, §134]. Here, the

term δ
(0)
0 represents potential scattering, and the arctan-

gent accounts for the resonance near the quasi–discrete
state. Its energy derivative exhibits a Lorentzian be-
haviour:

dδ0
dE

= P
(0)
0 +

ℏγ/2
(E − E0)2 + ℏ2γ2/4

, (8)
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FIG. 3. Photoassociation spectroscopy of Na2 molecular states in the presence of a static magnetic field of amplitude
Bs = 0.89(1)G. The black disks correspond to the average over three experimental measurements of the remaining atom number
after a microwave pulse duration of 30ms. Error bars represent the standard deviation of the different measurements and give
an indication of the atom number stability in the experiment. (a) Photoassociation spectroscopy of the F = 1, 3 molecular spin
states of the {f = 1, f = 2} manifold evidencing the Zeeman structure for a microwave field amplitude |B−| = 0.66G. The four
resonances correspond to different F , mF states given in the figure whose coupling is allowed by selection rules. The red line is
a fit to a sum of four Lorentzian functions. (b) Photoassociation spectroscopy of F = 2 molecular states of the {f = 1, f = 1}
manifold for a microwave field amplitude |B−| = 1.09G. The very thin resonance at 299.87MHz is a π-polarization microwave
resonance corresponding to mF = −2, while the broader resonance at 300.42MHz can be attributed to mF = −1. The red line
is a fit to the sum of two Lorentzian functions. The inset is a zoom of the mF = −2 resonance. Detailed results of the fits for
each picture are given in Table II of Appendix D.

where P
(0)
0 (E) = dδ

(0)
0 /dE softly depends on E.

Further details of the coupled–channels calculation
are given in Appendix B. Fig. 2(b) shows dδ0/dE that
we extract from the results. We fit to it Eq. (8) as-

suming P
(0)
0 (E) linear. We find the half–width γ/2 =

2π×80MHz, in excellent agreement with the experimen-
tal result 86(11)MHz. The predicted resonance energy
E0 satisfies E0/h = 1278MHz, slightly shifted compared
to the experimental observation 1254.1(36)MHz.
In Appendix B, the same treatment is applied to the

other two molecular states submitted to predissociation,
|χ0,0

{2,2}⟩ and |χ2,mF

{2,2}⟩ which we have not investigated ex-

perimentally in this work.

C. Observation of individual photoassociation lines

Reducing the microwave field amplitude to |B−| =
0.66G with a pulse duration of 30ms allows us to resolve

the complete Zeeman structure of the |χF=1,3
15 ⟩ resonance

as shown in Fig. 3(a). We observe four resonances corre-

sponding to the molecular states |χ1,−1
15 ⟩, |χ3,−3

15 ⟩, |χ3,−2
15 ⟩

and |χ3,−1
15 ⟩. The coupling to other |χF=1,3

15 ⟩ molecular
states is forbidden by selection rules. Fitting each res-
onance by a Lorentzian function allows us to determine
their center frequency. Note that at resonance ℏω = ∆E
corresponds to the energy difference between the initial
two-atom state and the molecular state which can both
be shifted by the Zeeman effect.
The same procedure allows us to observe the Zeeman

structure of F = 2 molecular states of the {f = 1, f = 1}

manifold near ω ≃ 2π × 300MHz as shown in Fig. 3(b).

We observe two resonances that we attributes to |χ2,−2
{1,1}⟩

and |χ2,−1
{1,1}⟩ which are the only molecular states that can

be reached from the initial two-atom state with a single-
photon transition because of selection rules.

The width and depth of each of these resonances
mainly reflect the strength of the coupling which is set
by the matrix elements of Ĥmw(t) between the two-atom
state and the molecular state multiplied by their spatial
wave function overlap. As the microwave field amplitude
depends on the distance to the CPW [27], we expect an
additional broadening of the order of 10%. Within the
atom trap, the magnetic field amplitude and orientation
slightly vary around Bs and ex. If the energy dependence
of the initial atomic state with the static magnetic field is
different from the one of the molecular state, this results
in an inhomogeneous broadening of the resonance. This
effect typically corresponds to a fraction of the chemical
potential µ. It also sets a lower limit on the resonance
width at low microwave field amplitude. This applies for
instance to the π lines towards |χ3,−2

15 ⟩ and |χ2,−2
{1,1}⟩ since

|B0| ≪ |B−|.

D. Zero field energy and Zeeman shifts

In order to access the zero-magnetic-field energy of
these molecular states and their Landé g-factor, we have
repeated the measurement of the photoassociation reso-
nance frequency for different values of the static magnetic
field Bs at the bottom of the magnetic trap. Note that
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FIG. 4. Photoassociation spectroscopy for different values of the static magnetic field Bs. Black squares correspond to
experimental measurements based on a Lorentzian fit of each resonance (see Table III of Appendix D for the microwave pulse
parameters used for each point and the detailed fit results). (a) F = 2 molecular states of the {f = 1, f = 1} manifold. The
orange lines correspond to numerical calculations shifted by −6.13MHz. (b) F = 1, 3 molecular states of the {f = 1, f = 2}
manifold. The colored lines correspond to numerical calculations shifted by −2.97MHz. The brown color of the mF = 0 states
is a symbol for the strong mixing of |χ1,0

15 ⟩ and |χ
3,0
15 ⟩ by off-diagonal elements of Ĥs, see main text.

tuning this parameter also modifies the trapping frequen-
cies and atom number in the trap.

The measurements are presented in Fig. 4 and the pa-
rameters deduced from the fits are given in Table III
of Appendix D. We have compared our results to the
model presented in Sec. II and detailed in Appendix A.
This model reproduces well the Landé g-factor of each
individual molecular Zeeman states. We observe how-
ever that the energy obtained from numerical calcula-
tions at Bs = 0 based on the analytical expression for
VS and VT described in [22] need to be slightly shifted
to reproduce our results. The numerical resolution gives
−293.5(15)MHz for the energy of |χ2

{1,1}⟩ at Bs = 0 while

our experimental results lead to −299.66(2)MHz, see Ta-
ble I. Moreover, it predicts 1566.8(15)MHz for the energy

of |χ1,3
15 ⟩ at Bs = 0 while our experimental results lead to

1563.81(2)MHz. To estimate the accuracy on the numer-
ical calculations, we have investigated the dependence of
the molecular state energy with the number of points in
the spatial grid (see Appendix A). It allows us to esti-
mate an upper limit on the accuracy of the calculations
of the order of 1.5MHz.

The uncertainty in the experimental value of the zero-
magnetic-field energy of the molecular states is ulti-
mately limited by the inhomogeneous magnetic trapping
of the atoms and by collisional shifts between atoms [27]
or between atoms and molecules [26]. A precise calibra-
tion of these effects goes beyond the scope of this paper.
We estimate that it is bound by the typical chemical po-
tential of the system µ/h ≃ 20 kHz. The uncertainty
deduced from the fit of the spectroscopy spectra, of the
order of a few kHz, does not limit the final precision.

We now turn to the estimation of the Landé-g factor of

the molecular states. Since |χF=1,3,mF

15 ⟩ are pure triplet
states, their energy dependence with Bs when mF ̸= 0
is directly given by the diagonal elements of Ĥs in the

|{f1, f2};F,mF ⟩ basis because second order Zeeman shift
is negligible in this case. The Zeeman shift can be ex-

pressed as g
(F )
{f1,f2}mFµBBs, where

g
(1)
{1,2} =

1

2
(gi + gs) ≃ 1 and (9)

g
(3)
{1,2} =

1

12
(11gi + gs) ≃

1

6
. (10)

The states |χ1,0
15 ⟩ and |χ3,0

15 ⟩ are exactly degenerate at

Bs = 0 and their corresponding diagonal elements in Ĥs

are also zero. Off-diagonal couplings in Ĥs lift this degen-
eracy and strongly mix |χ1,0

15 ⟩ and |χ3,0
15 ⟩ (see also [26]).

The energy dependence of |χ2,mF

{1,1}⟩ with Bs reflects

its spin decomposition in the basis {|{1, 1}; 2,mF ⟩,
|{1, 2}; 2,mF ⟩ and |{2, 2}; 2,mF ⟩}, since each of these
spin components presents a different energy dependence
with Bs:

g
(2)
{1,1} =

1

4
(5gi − gs) ≃ −1

2
, (11)

g
(2)
{1,2} =

1

6
(5gi + gs) ≃

1

3
and (12)

g
(2)
{2,2} =

1

4
(3gi + gs) ≃

1

2
. (13)

The results of the numerical calculations shown in
Fig. 4(a) reproduce well our experimental observations.
This means that the model correctly captures the weight
of the three spin components despite the slight shift at
Bs = 0 mentioned above.
In these studies, we have completely neglected possible

AC Zeeman shifts in the energy of these states due to the
non-zero value of the microwave field amplitude during
the spectroscopy. Relying on our numerical model, we
have estimated their amplitudes for |B−| = 0.6G and
|B+| = 1.1|B−|: they are of the order of 250Hz for
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FIG. 5. Two-photon photoassociation spectroscopy for different values of the microwave field amplitude |B−| and with
Bs = 0.92(1)G. Black squares correspond to experimental measurements based on a Lorentzian fit of each resonance (see
Table IV of Appendix D). The strong AC Zeeman shift on the atomic transition is compensated relying on a second microwave
field as explained in Appendix C. (a) F = 4 molecular states of the {f = 2, f = 2} manifold. The blue points correspond
to numerical calculations. An offset of −2.99MHz has been added to the calculated values. (b) F = 2 molecular states of
the {1, 1} manifold. The orange points correspond to numerical calculations. An offset of −6.13MHz has been added to the
calculated values.

|χ2,mF

{1,1}⟩, 2 kHz for |χ
1,mF

15 ⟩ and 1 kHz for |χ3,mF

15 ⟩ molecu-

lar states, one order of magnitude below the experimental
uncertainty.

IV. TWO-PHOTON PHOTOASSOCIATION
SPECTROSCOPY

Due to selection rules, in order to perform the mi-
crowave spectroscopy of other molecular states, it is nec-
essary to rely on multiple-photon transitions. This re-
quires large microwave field amplitudes and in turn re-
sults in significant AC Zeeman shifts on the atomic and
molecular states energies. For |B−| above a few gauss, we
have observed that AC Zeeman shifts due to the atomic
transition exceeds the chemical potential of the atoms
even for a detuning δ = ω − ωhfs larger than a few hun-
dreds of MHz. The equilibrium position of the atoms
in the magnetic potential is then significantly displaced
resulting in large excitations of the cloud during the mi-
crowave pulse. At the largest microwave field amplitudes,
AC Zeeman shift becomes so strong that the atoms are
not trapped anymore. Nevertheless, it is possible to com-
pletely compensate this effect at first order relying on a
second microwave field of frequency ωc with the same
amplitude and symmetric with respect to the hyperfine
transition, such that δc = ωc−ωhfs = −δ. Mixing two mi-
crowave signals with such characteristics in the CPW, we
have experimentally checked the reliability of this tech-
nique (see Appendix C for technical details). This allows
us to reach a microwave field amplitude of |B−| ≃ 8.21G
for a microwave frequency around 1.66GHz without vis-
ible distortion of the trapping potential.

Two-photon or Raman spectroscopy can then be per-
formed either with two photons having the same fre-
quency ω, or with two photons of frequency ω and ωc.

Setting δc = 2π × 100MHz and scanning δ ≃ −δc over a
few MHz, we have first investigated the two-photon spec-
troscopy of |χ4,mF

15 ⟩molecular states of the {f = 2, f = 2}
manifold. For these measurements, the two-photon tran-
sition is excited with two photons at ω while the sec-
ond microwave field at ωc is only here to compensate the
strong AC Zeeman shift induced on the atomic transition.
Nevertheless, both fields may also induce a significant
AC Zeeman shift on transitions between two molecular
states. In order to extract the transition frequency in the
limit of vanishing microwave amplitude, we have repeated
the procedure for different microwave field amplitudes
and identical static magnetic field Bs = 0.92(1)G, and
fitted each resonance with a Lorentzian function. The
results are presented in Fig. 5(a) (see also Table IV of
Appendix D for the complete fit results). We observe
three distinct resonances corresponding to the molecu-
lar states |χ4,−4

15 ⟩, |χ4,−2
15 ⟩ and |χ4,0

15 ⟩. For the resonance

toward |χ4,−4
15 ⟩, two σ− photons contribute. For the res-

onance toward |χ4,−2
15 ⟩, a σ− photon and a σ+ photon

contribute. For the resonance towards |χ4,0
15 ⟩, two σ+

photons contribute. In principle, other states and other
polarization combinations are accessible according to se-
lection rules. However, the small relative amplitude of
|B0| compared to |B+,−| doesn’t allow us to reach a suf-
ficient coupling to induce two-photon photoassociation.

We have compared these observations to the predic-
tions of the numerical model. As in Sec. IIID for
the single photons transitions, the energy of |χ4

15⟩ at
Bs = 0 and |B+,0,−| = 0 obtained from the calculations,
h×3338.4(15)MHz, differs slightly from our experimental
observations. Introducing a constant offset in the model
and adjusting its value by minimizing the difference be-
tween the experimental and numerical data leads to a
value of h × 3335.37(2)MHz for the zero-field energy of
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the |χ4
15⟩ molecular bound state. The plots in Fig. 5(a)

take this correction into account. From this measure-
ment, we can deduce the energy difference between the
F = 4 molecular states of the {2, 2} manifold and the
F = 1, 3 molecular states of the {1, 2} manifold. In units
of frequency, it is smaller by 67 kHz than the hyperfine
splitting frequency ωhfs/2π. This slight difference corre-
sponds to the effect of the parameter αhfs introduced in
Eq. (2).

Interestingly, we do not observe any dependence of the
energies of these three states with the microwave field
amplitude. As mentioned above, a large AC Zeeman
shift may also be expected for the molecular states at
such microwave amplitudes. However, since the F = 4
molecular states are only coupled to the F = 3 molec-
ular states and their energy difference is close to ℏωhfs,
the microwave field at detuning δc = −δ compensates
exactly the AC Zeeman shift induced by the field at de-
tuning δ, confirming in turn the accuracy of the method.
This compensation is also well captured by the numerical
calculations.

A similar protocol allows us to perform the two-photon
photoassociation spectroscopy of the F = 2 molecular
states of the {f = 1, f = 1} manifold, with one photon
absorbed from the microwave at δ followed by a stimu-
lated emission of a second microwave photon at δc (see
Fig. 5(b)). We fix δc = 2π×−150.5MHz and vary δ. We

only observe a resonance to the |χ2,−2
{1,1}⟩ molecular state.

This corresponds to the interference of two processes: an
absorption of a σ− photon from the microwave field with
a detuning δ associated with a stimulated emission of
a σ− photon into the microwave field with a detuning
δc, or the same process with σ+ photons. Two-photon
resonances toward |χ2,−1

{1,1}⟩ are in principle allowed but

rely on one π polarized photon, for which the microwave
amplitude is weak. |χ2,0

{1,1}⟩ is also accessible with a two-

photon process, however the matrix element of the mi-
crowave coupling is about 14 times smaller in this case
as compared with |χ2,−2

{1,1}⟩ and our experimental signal to

noise ratio is not sufficient to observe the resonance, even
at the largest microwave amplitudes accessible.

We have also investigated the energy dependence of the
single-photon F = 1, 3 molecular resonances with the mi-
crowave field amplitude, as shown in Fig. 6. In this case,
the numerical model reproduces less accurately the ex-
perimental data, in particular for |χ3,−3

{1,2}⟩ and |χ3,−1
{1,2}⟩.

We have checked that the numerical results are sensitive
to the characteristics of the F = 2 states submitted to
predissociation, e.g. zero-field energy and overlap of the
spatial wavefunctions. These features are probably over-
simplified in our model. These limitations call for future
improvement in our numerical model.

Finally, we have also tried to look for the |χ0,0
{1,1}⟩

molecular state, which is accessible through the absorp-
tion of a σ− microwave photon and the subsequent emis-
sion of a σ+ microwave photon. However, the matrix
element of the microwave coupling to this state is about

FIG. 6. Photoassociation spectroscopy of the F = 1, 3 molec-
ular states of the {f = 1, f = 2} manifold for different values
of the microwave field amplitude |B−|. The static magnetic
field is equal to Bs = 0.90(1)G. Black squares correspond to
experimental measurements based on a Lorentzian fit of each
resonance (see Table V of Appendix D). The colored points
correspond to numerical calculations. The strong AC Zeeman
shift on the atomic transition is compensated relying on a sec-
ond microwave field as explained in Appendix C.

10 times smaller as compared with the coupling to the
|χ2,−2

{1,1}⟩ state and despite our efforts our signal to noise

ratio did not allow us to locate the resonance.

V. CONCLUSION

In this paper we have carried out the microwave spec-
troscopy of Na2 least-bound states and pushed the preci-
sion on the determination of the energies of these states
by nearly three orders of magnitude compared with pre-
vious works. The residual uncertainty comes from the
inhomogeneity of the magnetic field in the atom trap
and from collisional shifts between atoms but also be-
tween atom and molecules. This is responsible for a sys-
tematic uncertainty in the determination of the energies
of Na2 least-bound states. We estimate that this un-
certainty is bounded by the chemical potential of the
gas µ ≃ h × 20 kHz. We have compared our experi-
mental results to numerical calculations, which show a
good agreement with the experimental data despite small
shifts in the zero-magnetic field energy of the probed
states. Thanks to the relatively large amplitude of the
microwave field available on the experiment setup, we
have been able to measure the energy width of a molecu-
lar state submitted to predissociation. These experimen-
tal results are in good agreement with coupled-channel
calculations that have allowed us to characterize other
molecular states submitted to predissociation. At large
amplitude of the microwave fields, it is also possible to
access specific molecular states with a two-photon tran-
sition. The microwave dressing of the molecular states
themselves is responsible for an AC Zeeman shift that
we have characterized. The main results of the paper are
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{f1, f2} F Exp. [MHz] F.G. [MHz] C.C. [MHz] Prev. [MHz]

{1, 1} 0 -366.4(15) -393(21) [15]
2 -299.66(2) -293.5(15) -293(10) [18]

{1, 2} 1,3 1563.81(2) 1566.8(15) 1568(10) [18]
2 1254.1(36) 1266.8(15) 1278 1224(24) [15]

{2, 2}
0 2961.4(15) 2908 ∼ 3300 [16]
2 3016.6(15) 3138 ∼ 3300 [16]
4 3335.37(2) 3338.4(15) 3343(10) [18]

TABLE I. Summary of the results concerning the zero-magnetic-field energy of the least-bound molecular states of Na2. The
‘Exp.’ column gives the experimental results obtained from the fit of the microwave spectroscopy spectra. The ‘F.G.’ column
shows the numerical results obtained with the Fourier grid method. The ‘C.C.’ column displays the results of the coupled-
channel calculations. Finally, the ‘Prev.’ column give the best previous experimental result we have found in the literature.

summarized in Table I.

For alkali atoms, the microwave coupling of a scat-
tering state to a molecular bound state has been shown
to give rise to a Feshbach resonance [30, 31], whose fre-
quency width ∆ω scales as the square of the microwave
field amplitude. For sodium atoms, numerical calcula-
tions predict a scaling of 2π×1.4 kHz/G2. For the largest
microwave amplitude accessible on the experiment, the
estimated width should be significantly larger than the
energy spread of the gas in the magnetic trap and lead
to observable effects on the equilibrium properties of the
system due to the modification of the scattering length.
These considerations stimulate dedicated investigations
in the vicinity of the molecular resonances.

Strong microwave coupling leads to the mixing of the
hyperfine states of the atom, but also of the hyperfine
molecular states. As inelastic collisions in a degenerate
gas of alkali atoms substantially depend on the spin state
of the atoms [32, 33], a complete characterization of the
2- and 3-body loss rate of the system in the presence of
a large amplitude microwave field and possibly near a
microwave-induced Feshbach resonance would constitute
an interesting achievement. It relates to a very recent
work on the control of the imaginary part of the lithium
scattering length with a radiofrequency modulation of a
magnetic field near a Feshbach resonance [34].
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Appendix A: Numerical calculations

In order to find the eigenstates and eigenenergies of
Ĥ1 defined by Eq. (2), we rely on the Fourier grid
method [35]. We use a spatial grid of 104 evenly spaced
points between 3 a0 and 350 a0 where a0 is the Bohr ra-
dius. Since F = 1, 3, 4 spin states are eigenstates of Ĥhfs

and also pure triplet states, we can restrict the problem
to a given |F,mF ⟩ state and write

⟨F,mF |Ĥ1|F,mF ⟩ = T̂ + VT(r) + lF
αhfs(r)

4
ℏωhfs, (A1)

where l1 = l3 = −1 and l4 = 3. Solving the corre-
sponding Schrödinger equations, we determine the spa-

tial wavefunctions ⟨r|χF,mF

ξ ⟩ and their energies. Note
that these solutions do not depend on the value of mF .
For F = 0 or F = 2, mF states, we solve instead

the coupled-channel system in the subspace spanned
by |{1, 1}; 0, 0⟩ and |{2, 2}; 0, 0⟩ or by |{1, 1}; 2,mF ⟩,
|{1, 2}; 2,mF ⟩ and |{2, 2}; 2,mF ⟩, respectively. Again,
the results do not depend on the value of mF . In all
these calculations we rely for VS(r), VT(r) and αhfs(r) on
the analytical expressions given in [22].

Among all the numerical solutions |χF,mF

ξ ⟩, we identify
the ones corresponding to the least-bound states of Na2
molecules. For F = 1, 3 and 4, it simply corresponds to

|χF,mF

νT=15⟩. For F = 0 and F = 2, it is relatively easy to

identify |χ0,0
{1,1}⟩ and |χ2,mF

{1,1}⟩ since they are pure bound

states and isolated in energy compared with other eigen-
states. Since |χ0,0

{2,2}⟩, |χ
2,mF

{1,2}⟩ and |χ2,mF

{2,2}⟩ are degenerate
in energy with continuum states, the numerical solutions
correspond to mixtures of each of these states with con-
tinuum states or predissociated states. Among those, we
pick the ones which lead to the largest overlap with pre-
viously identified states. For the results presented in the
main text, we have checked that this choice is not very
sensitive.

We then project Ĥ(t) = Ĥ1 + Ĥ2(t) to the subspace
spanned by the collection of eigenstates identified as
least-bound states of Na2 molecules as we just explained.
In this subspace, Ĥ1 is obviously diagonal. The static
part of Ĥ2(t), which corresponds to Ĥs, has diagonal
elements corresponding to the first order Zeeman en-
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FIG. 7. (a) Numerical characterization of the energy width of the F = 0 molecular state of the {f = 2, f = 2} manifold.
The purple line corresponds to the energy derivative of the s-wave scattering phase shift δ0 as a function of the incident energy
E, assuming a single open channel, namely |{1, 1}; 0, 0⟩. The black line is a Lorentzian function fit supplemented with a
linear background representing potential scattering. This leads to a peak energy of E = h × 2908MHz and a half-width of
γ/2 = 2π × 258MHz. (b) Numerical characterization of the energy width of F = 2 molecular states of the {f = 2, f = 2}
manifold. From the S-matrix defined on the subspace spanned by the two open channels |{1, 1}; 2,mF ⟩ and |{1, 2}; 2,mF ⟩,
we define the phase ∆0 as det(S) = exp(2i∆0). The orange line in the plot corresponds to the energy derivative of ∆0 as a
function of the incident energy E. The black line is a Lorentzian function fit supplemented with a quadratic background. This
leads to a peak energy of E = h× 3138MHz and a half-width of γ/2 = 2π × 162MHz.

ergy shift, while off-diagonal coupling is responsible for
second-order Zeeman energy shifts. The time-dependent
part of Ĥ2(t) corresponds to the coupling to the mi-
crowave field Bmw(t). Relying on the Floquet formal-

ism [36], we transform the Hamiltonian Ĥ(t) into a time-
independent Hamiltonian that can be expressed as the
sum of two terms,

Ĥ0 =

∞∑
n=−∞

[
Ĥ1 + Ĥs + nℏω

]
|n⟩⟨n| and (A2)

Ĥc =

∞∑
n=−∞

Ĥmw|n⟩⟨n+ 1|+ Ĥ†
mw|n+ 1⟩⟨n|, (A3)

with

Ĥmw(t) = Ĥmwe
−iωt + Ĥ†

mwe
iωt. (A4)

Restricting Ĥ0+Ĥc to the Floquet manifolds n = −3 . . . 3
and diagonalizing it, we deduce the energies of the molec-
ular states in the presence of the microwave field.

Appendix B: Numerical characterization of
resonances at quasi–discrete levels

In order to characterize numerically the energy width
of molecular states submitted to predissociation, we cal-
culate the corresponding scattering wavefunctions using
the coupled–channels approach [37], our C++ implemen-
tation of which is described in Ref. [31, chap. 12]. We use
the singlet and triplet potentials VS,T(r) for sodium given
in Ref. [22], and apply the adiabatic accumulated–phase
boundary condition at the radius r0 = 16 a0. We choose

the phases at r0 to reproduce the singlet and triplet scat-
tering lengths, and calculate their derivatives from the
potentials VS,T(r) for r < r0. For testing purposes, we

have supplemented the Hamiltonian Ĥ1 with the Zeeman
term Ĥs, and checked that we reproduce the positions of
the four s-wave Feshbach resonances known to affect 23Na
[21, 22] with a relative accuracy < 1%. Subsequently, we
have performed all calculations in the absence of a mag-
netic field.

We now describe the results obtained for the two res-
onances corresponding to the F = 0 and F = 2 quasi-
discrete states whose energies lie below the dissociation
threshold of the {f = 2, f = 2} manifold. They are both
mentioned e.g. in Ref. [16, Fig. 5b], but to our knowledge
their energies and widths have not yet been accurately
determined. As for |χ2,mF

{1,2}⟩ discussed in Sec. III B, we

follow the quasi-discrete level formalism [2, §134].
As mentioned in Sec. II A, the F = mF = 0 subspace is

spanned by the two states |{1, 1}; 0, 0⟩ and |{2, 2}; 0, 0⟩.
The real part E0 of the eigenvalue of H1 corresponding to
the quasi–discrete level lies between the dissociation limit
of the {1, 1} and {2, 2} manifolds. Hence, the relevant
collisions involve a single open channel |{1, 1}; 0, 0⟩. The
same theory than the one discussed in the main text is
then directly applicable and the results are illustrated in
Fig. 7(a). We find E0/h = 2908MHz and γ/2 = 2π ×
258MHz.

For each mF , the F = 2 subspace has dimension
3 and can be spanned by |{1, 1}; 2,mF ⟩, |{1, 2}; 2,mF ⟩
and |{2, 2}; 2,mF ⟩. The real part E0 of the eigenvalue
of H corresponding to the quasi–discrete level lies now
between the dissociation limit of the {1, 2} and {2, 2}
manifolds. Hence, the relevant collisions involve two
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open channels |{1, 1}; 2,mF ⟩ and |{1, 2}; 2,mF ⟩. They
are characterized by a 2 × 2 unitary scattering matrix
S, whose determinant det(S) = exp(2i∆0) has modulus
1. The resonant behavior is described by Eq. (8) where
δ0 is replaced by ∆0 [2, §145]. We fit it to d∆0/dE ob-
tained from our numerical coupled–channel calculations,

with P
(0)
0 (E) quadratic. We find E0/h = 3138MHz and

γ/2 = 2π × 162MHz.

Appendix C: AC Zeeman shift compensation

In a two-level approximation, the AC Zeeman shift in-
duced on the |f = 1,mf = −1⟩ to |f = 2,mf = −2⟩
atomic transition by the microwave field can be approx-
imated by 6|Ω−|2/4δ where Ω− = −gsµBB−/4ℏ. For
the highest microwave amplitude accessible in the exper-
iment, this corresponds to an AC Zeeman shift of about
h×220 kHz. Since the CPW produces an inhomogeneous
microwave field whose amplitude decreases with the ver-
tical distance to the waveguide (see [27]), this results in a
gradient which perturbs the magnetic confinement of the
atoms. As a result, abruptly switching on the microwave
field leads to the transverse excitation of the BEC and
hence to atomic losses. For the highest microwave am-
plitude that we can reach experimentally, all the atoms
are lost.

In order to compensate this AC Zeeman shift, we rely
on a second microwave field of frequency ωc and of equal
amplitude Bc

+,−,0 = B+,−,0 but with opposite-sign de-
tuning δc = −δ. At first order, this completely suppresses
any AC Zeeman shift.

To finely tune the parameters of this second microwave
field for AC-Zeeman-shift compensation, we shine the two
strong-amplitude microwave fields onto the atoms for a
duration of 1ms and with δc = −δ = 206.6MHz. After
the pulse, we keep the atoms in the trap for 500 µs before
complete switch off. We then image the atoms after 10ms
time of flight. We have repeated this protocol for different
amplitude Bc

−, keeping |B−| = 5.53(8)G constant.

When the AC Zeeman shift is not perfectly compen-
sated, the transverse dipole mode of the BEC is excited
which is reflected in the shape of the cloud after 10 ms
time of flight as shown in the top left inset of Fig. 8.
The snake-shape of the cloud in this case comes from
the fact that the transverse oscillating frequency is not
homogeneous along the longitudinal direction of the gas
but varies by about 10%, which leads to a dephasing in
the transverse oscillation. We take advantage of this de-
phasing to identify the optimal amplitude for the second
microwave field to compensate the AC Zeeman shift of
the first one. The optimal amplitude is the one that mini-
mizes the dephasing in the transverse oscillation, that we
observe in the vertical direction.

In order to quantify the amplitude of the excitation, we
first calculate the vertical position of the center of mass
of a narrow longitudinal section of the gas at a given

FIG. 8. Ratio of the standard deviation ∆σ with the mean
transverse width of the cloud σ0 for different values of the
amplitude of |Bc

−| and for fixed |B−| = 5.53(8)G. This quan-
tity characterizes the amplitude of the cloud excitation when
the AC Zeeman shift is not perfectly compensated (see text
for details). The error bars represent the standard deviation
of two measurements. The red line is a guide to the eye.
The top left inset shows an absorption imaging picture of the
cloud after 10ms time of flight. The snake shape of the cloud
is due to the excitation of the transverse dipole mode of the
BEC and to the fact that the transverse oscillating frequency
varies by about 10% along the x-direction. The middle inset
shows an absorption imaging picture of the cloud when the
AC Zeeman effect is optimally compensated at |Bc

−| = 5.70G.
We attribute the slight difference between |Bc

−| and |B−| to
systematic errors in the microwave field calibration (see text).
The bottom right inset shows an absorption imaging picture
of the cloud when |Bc

−| = |B−| = 0G.

position x along the longitudinal axis

z(x) =
1

n̄(x)

∫
dz z n(x, z) (C1)

where n(x, z) is the 2D density obtained by absorption
imaging along the y-axis and n̄(x) =

∫
dz n(x, z) is the

density integrated along the z-axis at position x. We
then compare z(x) to z0(x) obtained for Bc

− = B− = 0
by calculating the standard deviation ∆σ of z̄(x) given
by

∆σ =

√
1

Lx

∫ Lx

0

dx [z(x)− z0(x)]
2

(C2)

where Lx is the longitudinal length of the BEC.
In the absence of excitation, the rms transverse width

of the system σ0 for |Bc
−| = |B−| = 0G is given by

σ0 =

√
1

N

∫
dxdz z2 n(x, z)−

[
1

N

∫
dxdz z n(x, z)

]2
(C3)

with N the total atom number in the gas. We show in
Fig. 8 the ratio of ∆σ/σ0 for different microwave ampli-
tudes of the compensation field Bc

−. We observe a clear
minimum for |Bc

−| = 5.70G.
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We attribute the slight difference between the opti-
mum |Bc

−| and the amplitude |B−| to systematic errors
in the microwave field amplitude calibration. They are
calibrated independently by measuring the frequency of
coherent Rabi oscillations at resonance with the |f =
1,mf = −1⟩ to |f = 2,mf = −2⟩ atomic transition at
low microwave power as described in [27]. We then cali-
brate each microwave field amplitude at the entrance of
the CPW with a spectrum analyzer, for the settings used
in Fig. 8 as well as for the one used for the Rabi frequency
measurements. Assuming a linear response of the CPW
and the complete independence of both fields, we deduce
B− and Bc

− for Fig. 8.

Appendix D: Experimental parameters and fit
results

Tables II, III, IV and V present all the relevant ex-
perimental parameters and fit results for the microwave

photoassociation spectra discussed in the main text. The
value of the static magnetic field Bs is calibrated from mi-
crowave spectroscopy of the atomic transition [27]. The
calibration of the microwave field amplitude is made with
the method explained in Appendix C. All spectra are fit-
ted with a Lorentzian function, except the broad reso-
nance toward the bound molecular state |χ2,mF

{1,2}⟩, fitted
with a Gaussian function. All the uncertainties indicated
in the Tables are deduced from the fit covariance matrix.
They do not take into account the systematic uncertain-
ties discussed in the main text.
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resolution spectroscopy of the 13Σ+

g (b)← 13Σ+
u (x) tran-

sition of Na2, Z. Phys. D 36, 249 (1996).
[10] A. Färbert and W. Demtröder, Fine and hyperfine struc-
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Final main spin state Polarization Bs [G] |B−| [G] τ [ms] ω0/(2π) [MHz] HWHM [MHz]
|{f = 1, f = 2};F = 3,mF = −3⟩ σ− 0.89(1) 0.66 30 1561.9146(37) 0.1205(73)
|{f = 1, f = 2};F = 3,mF = −2⟩ π 0.89(1) 0.66 30 1562.1311(25) 0.0178(45)
|{f = 1, f = 2};F = 3,mF = −1⟩ σ+ 0.89(1) 0.66 30 1562.3420(15) 0.0373(26)
|{f = 1, f = 2};F = 1,mF = −1⟩ σ+ 0.89(1) 0.66 30 1561.2835(31) 0.0317(55)
|{f = 1, f = 2};F = 2,mF = −2,−1⟩ σ+, π 0.89(1) 5.33 80 1254.1(36) 86(11)
|{f = 1, f = 1};F = 2,mF = −2⟩ π 0.89(1) 1.09 30 299.8698(2) 0.0032(4)
|{f = 1, f = 1};F = 2,mF = −1⟩ σ+ 0.89(1) 1.09 30 300.4173(9) 0.0213(14)

TABLE II. Experimental parameters and fit results for the microwave photoassociation spectra of Fig. 2(a) and Fig. 3. For
each probed molecular state, we indicate the polarization of the microwave photon involved in the transition from the initial
atomic state, the amplitude of the static magnetic field Bs and of the σ− component of the microwave field |B−|, the duration
of the microwave pulse τ , the fitted frequency of the microwave field at resonance ω0 and its corresponding HWHM.

Final main spin state Polarization Bs [G] |B−| [G] τ [ms] ω0/(2π) [MHz] HWHM [MHz]
|{f = 1, f = 2};F = 1,mF = −1⟩ σ+ 0.88(1) 0.59 20 1562.362(1) 0.023(2)
|{f = 1, f = 2};F = 3,mF = −3⟩ σ− 0.88(1) 0.33 10 1561.942(1) 0.022(2)
|{f = 1, f = 2};F = 3,mF = −2⟩ π 0.88(1) 0.83 30 1562.158(1) 0.028(10)
|{f = 1, f = 2};F = 3,mF = −1⟩ σ+ 0.88(1) 0.83 30 1561.328(2) 0.030(3)

|{f = 1, f = 1};F = 2,mF = −2⟩ π 1.88(1) 1.09 30 300.0628(2) 0.0014(2)
|{f = 1, f = 1};F = 2,mF = −1⟩ σ+ 1.88(1) 1.09 30 301.2037(9) 0.015(2)
|{f = 1, f = 2};F = 1,mF = −1⟩ σ+ 1.88(1) 0.60 20 1560.731(1) 0.022(2)
|{f = 1, f = 2};F = 3,mF = −3⟩ σ− 1.88(1) 0.34 10 1559.833(1) 0.025(2)
|{f = 1, f = 2};F = 3,mF = −2⟩ π 1.88(1) 0.83 200 1560.281(1) 0.014(4)
|{f = 1, f = 2};F = 3,mF = −1⟩ σ+ 1.88(1) 0.83 100 1558.508(2) 0.022(3)

|{f = 1, f = 2};F = 1,mF = −1⟩ σ+ 2.43(1) 0.60 50 1559.852(2) 0.017(2)
|{f = 1, f = 2};F = 3,mF = −3⟩ σ− 2.43(1) 0.34 10 1558.694(1) 0.024(2)
|{f = 1, f = 2};F = 3,mF = −2⟩ π 2.43(1) 0.34 200 1559.272(4) 0.022(6)
|{f = 1, f = 2};F = 3,mF = −1⟩ σ+ 2.43(1) 0.60 100 1556.980(2) 0.024(4)

|{f = 1, f = 1};F = 2,mF = −2⟩ π 2.93(1) 3.10 30 300.2769(8) 0.004(1)
|{f = 1, f = 1};F = 2,mF = −1⟩ σ+ 2.93(1) 1.09 30 302.0457(13) 0.015(3)
|{f = 1, f = 2};F = 1,mF = −1⟩ σ+ 2.93(1) 0.60 50 1559.038(2) 0.036(8)
|{f = 1, f = 2};F = 3,mF = −3⟩ σ− 2.93(1) 0.34 10 1557.628(1) 0.014(2)
|{f = 1, f = 2};F = 3,mF = −2⟩ π 2.93(1) 0.83 200 1558.354(1) 0.011(5)
|{f = 1, f = 2};F = 3,mF = −1⟩ σ+ 2.93(1) 0.84 100 1555.594(4) 0.013(8)

|{f = 1, f = 1};F = 2,mF = −1⟩ σ+ 4.57(1) 1.09 30 303.358(1) 0.012(2)
|{f = 1, f = 2};F = 3,mF = −1⟩ σ+ 4.57(1) 0.84 30 1556.425(2) 0.035(9)
|{f = 1, f = 2};F = 3,mF = −3⟩ σ− 4.57(1) 0.77 10 1554.205(3) 0.010(6)

TABLE III. Experimental parameters and fit results for the microwave photoassociation spectra of Fig. 4. For each probed
molecular state, we indicate the polarization of the microwave photon involved in the transition from the initial atomic state, the
amplitude of the static magnetic field Bs and of the σ− component of the microwave field |B−|, the duration of the microwave
pulse τ , the fitted frequency of the microwave field at resonance ω0 and its corresponding HWHM.

Feshbach spectroscopy and analysis of the interaction po-
tentials of ultracold sodium, Phys. Rev. A 83, 042704
(2011).

[23] E. Tiesinga, C. Williams, P. S. Julienne, K. Jones,
P. Lett, and W. Phillips, A spectroscopic determination
of scattering lengths for sodium atom collisions, J. Res.
Natl. Inst. Stand. Technol. 101, 505 (1996).

[24] F. A. van Abeelen and B. J. Verhaar, Determination
of collisional properties of cold Na atoms from analysis
of bound-state photoassociation and Feshbach resonance
field data, Phys. Rev. A 59, 578 (1999).

[25] A. Crubellier, O. Dulieu, F. Masnou-Seeuws, M. Elbs,
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Final main spin state Polarization |B−| [G] τ [ms] ω0/(2π) [MHz] HWHM [MHz]
|{f = 1, f = 1};F = 2,mF = −2⟩ [σ+,σ+], [σ−,σ−] 8.27 1 298.273(10) 0.30(2)
|{f = 1, f = 1};F = 2,mF = −2⟩ [σ+,σ+], [σ−,σ−] 7.42 2 298.573(20) 0.38(5)
|{f = 1, f = 1};F = 2,mF = −2⟩ [σ+,σ+], [σ−,σ−] 6.61 2 298.860(9) 0.218(17)
|{f = 1, f = 1};F = 2,mF = −2⟩ [σ+,σ+], [σ−,σ−] 4.12 4 299.458(10) 0.057(20)
|{f = 2, f = 2};F = 4,mF = −4⟩ [σ−,σ−] 8.21 10 3331.5409(18) 0.0297(18)
|{f = 2, f = 2};F = 4,mF = −4⟩ [σ−,σ−] 6.56 10 3331.5726(18) 0.0306(20)
|{f = 2, f = 2};F = 4,mF = −4⟩ [σ−,σ−] 4.92 10 3331.5760(20) 0.0234(20)
|{f = 2, f = 2};F = 4,mF = −2⟩ [σ+,σ−] 8.21 10 3332.8502(11) 0.0146(11)
|{f = 2, f = 2};F = 4,mF = −2⟩ [σ+,σ−] 7.39 10 3332.8470(15) 0.0190(19)
|{f = 2, f = 2};F = 4,mF = −2⟩ [σ+,σ−] 6.57 10 3332.8438(16) 0.0141(17)
|{f = 2, f = 2};F = 4,mF = 0⟩ [σ+,σ+] 8.22 10 3334.1152(8) 0.0158(10)

TABLE IV. Experimental parameters and fit results for the microwave photoassociation spectra of Fig. 5. For each probed
molecular state, we indicate the polarization of the microwave photons involved in the transition from the initial atomic state,
the amplitude of the σ− component of the microwave field |B−|, the duration of the microwave pulse τ , the fitted frequency
of the microwave field at resonance ω0 and its corresponding HWHM. For all these data, the amplitude of the static magnetic
field Bs is 0.92(1)G.

Final main spin state Polarization |B−| [G] τ [ms] ω0/(2π) [MHz] HWHM [MHz]
|{f = 1, f = 2};F = 3,mF = −3⟩ σ− 2.50 0.25 1561.8314(10) 0.0519(24)
|{f = 1, f = 2};F = 3,mF = −3⟩ σ− 4.17 0.1 1561.7012(13) 0.0646(29)
|{f = 1, f = 2};F = 3,mF = −3⟩ σ− 5.85 0.1 1561.5072(19) 0.114(6)
|{f = 1, f = 2};F = 3,mF = −3⟩ σ− 7.52 0.1 1561.172(6) 0.199(12)
|{f = 1, f = 2};F = 3,mF = −3⟩ σ− 8.35 0.1 1561.103(5) 0.261(14)

|{f = 1, f = 2};F = 3,mF = −1⟩ σ+ 2.50 10 1562.2630(18) 0.039(3)
|{f = 1, f = 2};F = 3,mF = −1⟩ σ+ 4.16 5 1562.1948(18) 0.0544(4)
|{f = 1, f = 2};F = 3,mF = −1⟩ σ+ 5.83 3 1562.0945(35) 0.0439(6)
|{f = 1, f = 2};F = 3,mF = −1⟩ σ+ 6.67 2 1562.0381(69) 0.081(21)

|{f = 1, f = 2};F = 1,mF = −1⟩ σ+ 2.50 10 1561.0613(34) 0.136(10)
|{f = 1, f = 2};F = 1,mF = −1⟩ σ+ 4.17 10 1560.7824(95) 0.159(16)
|{f = 1, f = 2};F = 1,mF = −1⟩ σ+ 5.86 5 1560.3491(292) 0.193(57)

TABLE V. Experimental parameters and fit results for the microwave photoassociation spectra of Fig. 6. For each probed
molecular state, we indicate the polarization of the microwave photon involved in the transition from the initial atomic state,
the amplitude of the σ− component of the microwave field |B−|, the duration of the microwave pulse τ , the fitted frequency
of the microwave field at resonance ω0 and its corresponding HWHM. For all these data, the amplitude of the static magnetic
field Bs is 0.90(1)G.
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