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Evaporative cooling to a Rydberg crystal close to its ground state

M. Brune 1 and D. J. Papoular2

1Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-Université PSL, Sorbonne Université, France
2LPTM, UMR 8089 CNRS & Université Cergy–Pontoise, France

(Received 5 September 2019; accepted 6 March 2020; published 8 April 2020)

We theoretically show how to obtain a long one-dimensional crystal near its quantum ground state. We
rely on an evaporative cooling scheme applicable to many-body systems with nonzero-ranged interactions.
Despite the absence of periodic potentials, the final state is a crystal that exhibits long-range spatial order. We
describe the scheme thermodynamically, applying the truncated Boltzmann distribution to the collective
excitations of the chain, and we show that it leads to a novel quasiequilibrium many-body state. For longer chains,
comprising about 1000 atoms, we emphasize the quasiuniversality of the evaporation curve. Such exceptionally
long one-dimensional (1D) crystals are only accessible deep in the quantum regime. We perform our analysis on
the example of an initially thermal chain of circular Rydberg atoms confined to a 1D geometry. Our scheme may
be applied to other quantum systems with long-ranged interactions such as polar molecules.
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I. INTRODUCTION

Systems presenting long-ranged interactions exhibit
strongly correlated crystalline phases [1–4]. Among them,
quantum crystals are those whose constituents undergo
large-amplitude zero-point motion [5]. The collective
nature of their excitations leads to spectacular phenomena
including the Tkachenko oscillations of a vortex lattice in a
superfluid [6,7], the giant plasticity of helium crystals [8],
and supersolidity in ultracold gases presenting interactions
beyond the contact limit [9–13].

Up to now, the investigation of one-dimensional (1D) quan-
tum crystals has been hindered by the difficulty of obtaining
large crystals in this geometry, where thermal and quantum
fluctuations both destroy long-range order in macroscopic sys-
tems [14]. Nevertheless, crystallization does occur in finite-
sized systems [15]. It has been unambiguously observed in
the absence of any external periodic potential only in small
systems of up to 50 ions [16–19] or 10 electrons [20,21]. The
realization of larger 1D crystals requires going deep into the
quantum regime. There, thermal fluctuations are suppressed,
and long-range order is only limited by quantum fluctuations,
which are less stringent [14]. The realization of large 1D crys-
tals will pave the way toward the investigation of 1D quantum
crystals, where one may look for, e.g., giant plasticity through
the tunneling of defects [22,23].

We focus on one way of obtaining spatial order that
relies on strong nonzero-range dipole interactions between
Rydberg atoms [24]. Rydberg atoms are ideally suited
for quantum information processing [25,26] and quantum
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simulation [27,28]. Nontrivial many-body states [29–31] of up
to 50 atoms manipulated with optical tweezers have been pre-
pared through resonant coupling to Rydberg states [32–35].
Rydberg states may be weakly admixed to the atomic ground
state [36–38] or resonantly excited [39] so as to study the
interplay between anisotropic interactions and disorder or
frustration [40]. Quantum gases resonantly coupled to Ryd-
berg states have been predicted to exhibit a quantum phase
transition to a Rydberg crystal [41], leading to a universal
scaling behavior observed in the critical region [42].

In all those cases, low-angular-momentum Rydberg states
were considered, leading to a strong limitation on the lifetime
(100 μs per atom, a few μs for many atoms), limiting the size
of the system. Circular Rydberg atoms [43–46], whose excited
electron has maximal orbital and magnetic quantum numbers,
overcome this limitation and offer a very promising platform
for the quantum simulation of many-body problems [27].
Using spontaneous emission inhibition [47,48], their already
long lifetime (30 ms) is expected to be extended to more than
1 min. This timescale allows for implementing an evaporative
cooling scheme applicable to Rydberg atoms [27], whose
classical analysis shows great promise for reaching extremely
low temperatures.

In this article, we show that large 1D Rydberg crystals may
be prepared very close to their quantum ground state in real-
istic experimental conditions [27,49] through this evaporative
cooling scheme. Despite the absence of any spatially periodic
potential, these crystals exhibit long-range spatial order. This
is in stark contrast to the classical analysis of 1D systems,
which would predict the absence of long-range order [14].
We introduce a quantum thermodynamic model, applying the
truncated Boltzmann distribution to the collective excitations
of the chain. We show that it leads to a novel quasiequi-
librium regime that differs from the truncated Bose-Einstein
distribution applicable to quantum-degenerate gases [50]. In
contrast to dilute systems in which the evaporation is driven
by two-body collisions [51], the mechanism we describe here
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FIG. 1. A Rydberg-atom chain (orange) confined in a 1D trap of
size L. The potential maxima VL and VR satisfy VL < VR, so that atoms
are expelled from the left edge of the trap.

hinges on many-body physics, whereby the phonons present
in the chain lead to the expulsion of a single atom. Hence, it is
related to the quantum evaporation of liquid helium [52–54],
also predicted to affect cold bosonic atoms [55].

II. THE SYSTEM AND THE HAMILTONIAN
UNDER CONSIDERATION

We first consider a fixed number N of Rydberg atoms con-
fined in a 1D trap of fixed size L (see Fig. 1). We illustrate our
model using the parameters of Ref. [27]. The atoms are con-
fined radially using the ponderomotive potential [56] induced
by a Laguerre-Gaussian laser beam (Ref. [57], Chap. 2). They
are trapped axially between two optical plugs yielding the
potential VT (x) = VL exp[−2(x − xL )2/w2] + VR exp[−2(x −
xR)2/w2]. The barrier width and heights are, respectively,
w = 30 μm, VL/h = 3 MHz, and VR/h = 4 MHz. The trap
size L = xR − xL is slowly decreased from its initial value so
as to induce successive atomic expulsions, providing the evap-
orative cooling. Unlike for gases, the barrier heights remain
constant during the whole process. The atoms interact via
the strongly repulsive van der Waals interaction V (xi, x j ) =
C6/|xi − x j |6 with C6/h = 3 GHz μm6, corresponding to 87Rb
atoms with the principal quantum number n = 50. The equi-
librium positions x0

1, . . . , x0
N are evenly spaced in the bulk of

the chain, but not on the edges, due to the finite spatial extent
of the barriers. Two neighboring atoms are distant by l ≈
5 μm, leading to interaction energies C6/l6 ≈ h × 200 kHz.

We describe the atomic vibrations in terms of a quadratic
Hamiltonian:

H =
N∑

k=1

[
p̃2

k

2m
+ 1

2
mω2

k ũ2
k

]
with ũk =

N∑
n=1

Rnkun. (1)

In Eq. (1), the N vibrational modes {ũk} have the frequencies
ω1 < · · · < ωN , and the { p̃k} are their conjugate momenta.
They are related to the atomic displacements {un = xn − x0

n}
through the orthogonal matrix R. The applicability of Eq. (1)
only requires local order (see Appendix A 1): the averages
〈(un+1 − un)2〉1/2 involving two neighboring atoms should
remain small compared to l = L/N . For a thermal chain at
the temperature T , this requires kBT < 2C6/l6, and is well
satisfied for up to 1000 atoms with l ∼ 5 μm and kBT �
h × 100 kHz ≈ kB × 5 μK.

III. CLASSICAL THERMODYNAMICS

For a given configuration characterized by the phonon
mode energies {εk}1�k�N and phases {φk}1�k�N , the
position of the leftmost atom at time t is u1(t ) =∑

k R1k[2εk/(mω2
k )]1/2 cos(ωkt + φk ). It remains trapped

as long as |u1(t )| < uM , where uM = x0
1 − xL. We

consider the time-averaged mean-square displacement
〈u2

1〉 = u2
M

∑N
k=1 εk/EMk , where the quantities EMk =

mω2
k u2

M/R2
1k increase with k. Hence, for a given α, the

lowest-energy configurations for which 〈u2
1〉1/2 = αuM are

those where only the mode k = 1 is excited, with the energy
E = ε1 = α2EM1. For α = 1/

√
2, they correspond to atom

1 barely reaching u1 = −uM , i.e., to the lowest-energy
untrapped configurations. Their energy E cl

M = mω2
1u2

M/(2R2
11)

is set by ω1. Furthermore, numerical simulations of the
classical (cl) dynamics of the atom chain [58] have shown
the atomic motion to be chaotic. Hence, exploiting ergodicity,
the trapped configurations are those with E < E cl

M . We
describe the quasiequilibrium thermodynamics of the chain
using a Boltzmann distribution truncated at the energy E cl

M ,
whose partition function reads

Zcl =
∫

E<E cl
M

∏
[d p̃kdũk]

hN
e−βE = P

(
N, βE cl

M

)
βN h̄ω1 · · · h̄ωN

. (2)

In Eq. (2), β = 1/(kBT ) is the inverse temperature, E =
H ({ p̃k, ũk}), and P(a, z) = γ (a, z)/�(N ) is the normalized
lower incomplete gamma function [59]. The mean (quadratic)
energy U cl(L, T ) associated with the Hamiltonian H and the
entropy Scl(L, T ) follow from U cl = −∂β ln Zcl and Scl/kB =
ln Zcl − β∂β ln Zcl.

The function P(a, z) also appears in the thermodynamics
of the evaporation of a gas (a = 3 for a harmonic trap) [51].
Here, a = N ranges from 40 to 1000, so that the role of trunca-
tion is strongly enhanced with respect to gases of ground-state
atoms (see Appendix A 3). It is important for kBT � E cl

M/N .
For larger T , all trapped configurations are equally populated.
The probability density for a configuration to have the energy
E is NEN−1/(E cl

M )N , hence nearly all configurations have
energies ∼E cl

M . Both U cl and Scl reach finite maxima U N
max(L)

and SN
max(L) (see Fig. 2), where

U (N )
max = NE cl

M

N + 1
and S(N )

max = kB ln

( (
E cl

M

)N
/N!

h̄ω1 · · · h̄ωN

)
. (3)

For fixed N , both maxima increase with L, because less strin-
gent traps will accommodate higher-energy excitations. This
novel regime is inaccessible with gases, where an atom whose
energy is close to the evaporation threshold is expelled when
it undergoes a collision [51,60]. However, it is accessible for
a Rydberg chain (see Appendix A 2).

IV. QUANTUM THERMODYNAMICS

For lower quadratic energies, we use a quantum (quant)
description. Assuming ergodicity in the quantum regime, we
introduce the energy En = ∑N

k=1 h̄ωk (nk + 1/2) of the con-
figuration labeled by the integer multiplet n = {nk}1�k�N . The
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FIG. 2. (a) Entropy and (b) energy per particle for N = 50 atoms
in a trap of size L = 243 μm (close to the end of the evaporation
for the chain of Fig. 4). The solid (dashed) lines show the quantum
(classical) prediction.

threshold energy Equant
M for trapped configurations satisfies

Equant
M = min

n

[
En with

N∑
k=1

h̄ωk (nk + 1/2)

EMk
� α2

]
, (4)

where we choose α = 1/
√

2 as in the classical case. The en-
ergy Equant

M exceeds both E cl
M and the zero-point energy EZP =∑N

k=1 h̄ωk/2. The quantum partition function reads Zquant =∑
n e−βEn 
(Equant

M − En), where 
 is the Heaviside function,
illustrating an important difference with respect to gases of
ground-state atoms. There, the truncation selects the trapped
single-particle modes without constraining their populations,
yielding a truncated Bose-Einstein distribution [50]. Instead,
for Rydberg chains, the truncation involves the configuration
energies En. This prevents Zquant from factorizing and reflects
the correlations between the trapped phonon modes, leading to
a novel quasiequilibrium state that does not obey a truncated
Bose-Einstein distribution.

We assume Equant
M � EZP + h̄ωN , which is well satisfied

for all parameters considered in this paper. Then, Equant
M ≈

E cl
M + EZP. For kBT � Equant

M /N , we evaluate the quantum en-
ergy U quant (L, T ) and entropy Squant (L, T ) (see Appendix A 3)
starting from Eq. (2), replacing E cl

M by Equant
M and including

the leading quantum correction, proportional to h̄2 (Ref. [61],
Sec. 33). For kBT < Equant

M /N , the energy and entropy reflect
the nontruncated thermodynamics of a harmonic-oscillator
chain. They overlap with U quant, Squant for a range of values
of T , yielding the full quantum thermodynamic functions (see
Fig. 2).

V. EVAPORATION

We now describe the evaporation process. Initially, the
chain is comprised of N = NI atoms in a trap of size L(N ) =
LI , with the energy U (N ) = UI . For all considered parameters,
UI � EZP, signaling the classical regime, and UI � E cl

MI , so
that it is described by nontruncated thermodynamics. Thus,

FIG. 3. The first few expulsions for a chain with NI = 100 atoms
and LI = 550 μm, in terms of (a) entropy S/N and (b) energy U/N
per particle, for various initial energies. The maxima S(N )

max(L)/N and
U (N )

max(L)/N are shown in gray. Each expulsion yields a discontinuity
in both S and U .

UI/NI = kBTI is the initial temperature. We adiabatically com-
press the chain by slowly decreasing L (see Fig. 3). Hence,
the entropy S(N ) remains constant. Expelling an atom is irre-
versible, therefore N also remains constant. However, T and
U (N ) increase, whereas U (N )

max(L) and S(N)
max(L) decrease. The

compression proceeds until the trap no longer accommodates
the entropy, i.e., up to the trap size L(N )

f such that S(N )
max(L(N )

f ) =
S(N ). This implies T → ∞, hence U (N )

f = U (N )
max(L(N )

f ). At this
point, the leftmost atom is expelled from the trap, its kinetic
energy being the barrier height VL. The (N − 1) remaining
atoms thermalize to the new initial energy U (N−1)

i , where

U (N−1)
i = U (N )

f + V (N )
0 − V (N−1)

0 − VL. (5)

Here, V (N )
0 and V (N−1)

0 are the static equilibrium energies for
N and (N − 1) atoms in a trap of size L(N )

f . Then, adiabatic
compression resumes until the next expulsion.

The complete evaporation curve consists of a repeated
sequence of these two steps. Figure 4 compares our classical
(dark red) and quantum (red) predictions, down to the trap
size LF = 200 μm, where Equant

M � EZP + h̄ωN . The result of
our classical model closely matches the classical-dynamics
simulations reported in Ref. [27] (Fig. 14, phase II). Our quan-
tum approach predicts that, starting from NI = 100 atoms,
the final state with NF = 40 atoms obeys a Bose-Einstein
distribution with UF /(NF h) = 7.0 kHz, slightly above the
zero-point energy EZP/(NF h) = 5.9 kHz. The shown average
energies account for the uncertainty �UI = UI/

√
NI = h ×

6.5 kHz on UI , which washes out their jaggedness due to
the expulsions (see Fig. 3 and Appendix A 4). The final
state is in the 1D regime if the radial confinement frequency
ω⊥/(2π ) � UF /(NF h). Smaller values of ω⊥ will lead to
quasi-1D chains exhibiting the “zigzag” transition observed
with ion chains [23,62] and in electronic systems [63].
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FIG. 4. Classical (dark red) and quantum (red) predictions for the
mean quadratic energy, interaction (blue), and ground-state (green)
energies per particle during the evaporation, starting from NI = 100,
LI = 550 μm, down to NF = 40, LF = 200 μm. The shaded red and
blue areas show the standard deviations on the quadratic and inter-
action energies. Energies are measured in kHz, with h × 100 kHz ∼
kB × 5 μK.

VI. QUASIUNIVERSALITY FOR LONGER CHAINS

Finally, we focus on long chains with NI ≈ 1000, keeping
lI = LI/NI = 5.5 μm. Then, the inhomogeneities near the
trap edges are negligible, and both S/N = s(l, T ) and U/N =
u(l, T ) only depend on l = L/N and T . The evaporation
is conveniently described in terms of l , s, u, and the atom
number fraction n = N/NI . The evaporation curve consists
of two parts (see Fig. 5). First, the initial compression at
constant NI depends on uI = UI/NI . The second part consists
of all subsequent expulsions and compressions. The mean
distance l increases at each expulsion and decreases during
each compression; on average, l decreases. The quantities s
and u always remain close to the universal curves smax(l ) =
Smax(N, L)/N and umax(l ) = Umax(N, L)/N , respectively (see
Appendix A 5). Their fluctuations, visible in the insets of
Fig. 5 for NI = 1000 and kBTI/h = 65 kHz, decrease with
increasing NI for two reasons. First, the changes δu and δs in
the energy and entropy per particle upon expelling an atom are
decreasing functions of N . Second, larger NI lead to smaller
�UI = UI/

√
NI , and hence to smaller uncertainties on s and

u. Quasiuniversality also applies to the fluctuations �u and
�s on the energy and entropy (see Appendix A 5).

The fraction n = N/NI [Fig. 5(c)] is not universal (see
Fig. 11 in the Appendix). For NI = 1000, n reaches a sta-
tionary value nF as u goes to eZP(l ) = EZP(l )/N . The value
nF (uI ) is a decreasing function of uI = UI/NI . The curves in
Fig. 5 are truncated at the minimum value l = 4.4 μm, where
Equant

M � EZP + h̄ωN . Then, for kBTI/h = 65 kHz, the chain
comprises NF = 764 atoms with the energy UF /(NF h) =
8.5 kHz, close to EZP/(NF h) = 6.6 kHz.

The final state of such a long chain is a crystal exhibit-
ing true long-range order, with all spatial correlators Cnm =
〈(un − um)2〉 � l2 [see Fig. 6(c) in the Appendix]. This is
only possible deep in the quantum regime, where thermal
fluctuations are suppressed [14]. The crystalline order may be

FIG. 5. Quasiuniversal evaporation of a chain with NI = 1000
and lI = 5.5 μm, in terms of the mean (a) entropy and (b) energy
per particle, for various initial energies. The thin gray lines show
Smax(L/N )/N and Umax(L/N )/N for N = 50, 100, 200, 400, and 800
(from right to left), which converge toward smax(l ) and umax(l ) (thick
gray lines). (c) Nonuniversal atom fraction N/NI . The vertical red
line shows the first expulsion for UI/(NI h) = 65 kHz. The insets
zoom in on the same small fraction of the curves for UI/(NI h) =
65 kHz, and show the jagged curves obtained before averaging; the
shaded areas show the standard deviations.

fully characterized experimentally through microwave spec-
troscopy, revealing the regularity and fluctuations of the lat-
tice parameter, combined with spatially resolved ground-state
imaging [33,64].

VII. CONCLUSION AND OUTLOOK

We have introduced a quantum thermodynamic model for
the evaporative cooling of 1D Rydberg-atom chains [27].
Unlike the evaporative cooling of ground-state atoms, the
final temperatures accessible with our scheme are not of the
order of the barrier heights. Instead, they are determined
by the maximum energy umax(l ) compatible with the trap.
This reflects the many-body character of the evaporation
scheme and leads to final temperatures that are radically lower
than the barrier heights by three orders of magnitude. We
have shown that, under realistic experimental conditions, this
scheme yields large near-ground-state Rydberg crystal. The
long-range spatial order of these 1D structures is a feature
of the deep quantum regime. Our scheme will also apply to
other interacting 1D systems such as polar molecules [65,66].
There, the nonzero-ranged interaction between the particles is
provided by the dipole-dipole interaction, which scales with
1/r3 and may be made purely repulsive in low-dimensional
geometries [67].
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The following directions warrant further investigation. (i)
For higher initial temperatures or mean atom spacings, the ini-
tial state is a liquid and Eq. (1) does not hold, but our scheme
will still drive the system toward its crystalline ground state.
(ii) For longer chains, a prolonged evaporation going beyond
the regime of Fig. 5 leads to Equant

M � EZP + h̄ωN , in which
case the calculation of the quantum thermodynamic functions
is more involved. (iii) The timescale ensuring adiabaticity is
set by the anharmonic processes neglected in Eq. (1). (iv)
Our scheme is also applicable in two dimensions, where the
expected ground state is a hexagonal crystal that we shall
investigate both theoretically and experimentally.
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APPENDIX

This Appendix provides complementary information on
the following topics: (i) the applicability of the quadratic
Hamiltonian; (ii) the anharmonic terms and their twofold
role; (iii) the partition function and its numerical evaluation;
(iv) the observability of the adiabatic plateaus with constant
atom numbers; and (v) the quasiuniversal description for long
chains and its limits.

1. The quadratic Hamiltonian

The Hamiltonian describing the harmonic vibrations of
the atoms about their equilibrium positions {x0

n} [Eq. (1)] is
applicable as soon as the chain exhibits local order. Indeed, in
the chain bulk, the trapping potential is negligible and, within
the nearest-neighbor approximation, the interaction energy of
atom n is EI

n = C6[1/(xn − xn−1)6 + 1/(xn − xn+1)6]. Here,
xn = x0

n + un is the position of atom n. Expanding EI
n to

second order in the displacements {un}, and exploiting the
near-translational invariance, we find that the harmonic ap-
proximation is valid if ηn = 21 〈(un+1 − un)2〉 /l2 < 1, where
l = L/N is the mean interatomic distance and the average
〈(un+1 − un)2〉 is the spatial correlator between two neighbor-
ing atoms. For a thermal distribution, this condition reduces
to kBT < 2C6/l6. Accounting for the trap and the truncated

thermodynamics, we find this criterion to be well satisfied
all along the evaporation [see Fig. 6(a)] for the long chain of
Fig. 5.

The present criterion is less stringent than asking for the
chain to be in a crystalline phase. This is especially true in
one dimension, where thermal fluctuations quickly rule out
long-range order [14]. For example, the long chain of Fig. 5
exhibits no long-range spatial correlations in its initial state
(Ni = 1000, li = 5.5 μm, kBTi/h = 65 kHz). This can be seen
in Fig. 6(b): the correlator 〈(un − um)2〉 /l2 > 1 for distant
atoms. However, our scheme brings the chain close to its
quantum ground state, which does exhibit long-range corre-
lations [〈(un − um)2〉 /l2 � 1 for all n and m; see Fig. 6(c)].

2. Anharmonic effects

The leading anharmonic contribution to the Hamiltonian
follow from the third- and fourth-order terms in the displace-
ments {un}. For gases, they yield two-body collisions that are
essentially instantaneous. By contrast, for Rydberg chains,
they generate many-body correlations over the characteristic
time τpropag for propagation along the chain, set by the sound
velocity. They are mostly due to interactions and occur in
the chain bulk, where their probability does not depend on
position (see Fig. 7). They are much less probable near the
edges, where the trapping potential leads to larger distances
between the static equilibrium positions of the atoms.

The role of these anharmonic processes is twofold. First,
they are responsible for thermalization and ergodicity on
a timescale involving τpropag. Second, they set the (longer)
timescale ensuring the adiabaticity of the compression be-
tween two atomic expulsions. The classical-dynamics simu-
lations reported in Ref. [27] have shown that, for the shorter
chain of Fig. 3 (Ni = 100), compression rates of the order of
40 μm/ms are adequate. The optimal compression rate will
be investigated elsewhere.

For gases, anharmonic processes directly drive the atomic
expulsions, which immediately follow two-atom collisions
during which one atom has acquired enough energy. Their
relation to expulsions is more involved for Rydberg chains. If
the trap size is such that an expulsion is expected (T → ∞),
ergodicity causes the system to explore various configurations
until the leftmost atom is expelled with the energy VL. If no
expulsion is expected (T finite), the compression of the trap
causes an increase in energy due to the atoms on the edges of

(a) (b) (c)

FIG. 6. (a) Harmonicity ratio ηn for the long chain of Fig. 5, at the beginning of the evaporation (red), just before the first expulsion (green),
and at the end of the evaporation (blue). (b) and (c) Spatial correlator 〈(un − um )2〉 /l2 at the beginning [(b), N = 1000, L = 5500 μm] and the
end [(c), N = 764, L = 3820 μm] of the evaporation, in units of l = L/N .
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FIG. 7. Third- (blue crosses) and fourth-order (golden lines)
anharmonic amplitudes from the interaction energy (nonzero ampli-
tudes) and the trapping potential (negligible amplitudes), calculated
for the shorter chain of Fig. 3, just before the first expulsion. They
are expressed in units of their bulk values, namely 56C6/l9 and
126C6/l10.

the chain being set in motion toward the bulk. Expelling the
leftmost atom before thermalization has taken place (i.e., with
an energy >VL) is likely to involve a two-atom collision at the
open end of the trap. There, anharmonic terms are strongly
suppressed (see Fig. 7), so that these higher-energy expulsions
are rare. Instead, the energy increase is most often mediated,
through harmonic vibrations, to the chain bulk where ther-
malization occurs. The rare cases in which the leftmost atom
is expelled are not captured by our thermodynamic model.
However, they are not a hindrance as long as their rate remains
small: instead, they speed up the evaporation process with
respect to our thermodynamic prediction. The presence of a
single open end (the left end in Fig. 1) is favorable for two
reasons: (i) it leads to longer propagation times, and hence
more efficient thermalization; and (ii) it helps reduce the rate
of nonthermalized expulsions.

3. The partition function

a. Normalized lower incomplete γ function

The thermodynamics of the (classical or quantum) trun-
cated Boltzmann distribution involve the normalized lower

incomplete γ function P(a, z), defined as [59]

P(a, z) = γ (a, z)

�(a)
= 1

�(a)

∫ a

0
dt e−t t z−1. (A1)

For given values of the trap size L and atom number
N , the classical partition function Zcl is proportional to
P(N, βEM )/βN . Hence, a is of the order of N , whereas z =
βEM is the ratio of the threshold energy to the temperature.
For a given a, the function P(a, z) resembles a step function
[see Fig. 8(a)] which is equal to 0 for small z (representing the
truncation for large T ) and to 1 for large z (truncation plays no
role for small T ). The smooth transition occurs for z ≈ a, so
that truncation plays a role for kBT/EM � 1/a. The parameter
a = 3 for a gas in a truncated 3D harmonic trap [51], whereas
for Rydberg chains a ≈ N ranges from 40 to 1000. Hence,
Rydberg chains are affected by the truncation starting from
much lower temperatures than gases are.

b. Quantum partition function

For a given L, and assuming Equant
M � EZP + h̄ωN , we

evaluate the quantum partition function Zquant for kBT �
Equant

M /N using Eq. (2) in the main text, replacing E cl
M by

Equant
M . We go beyond the quasiclassical integral expression

and include the leading-order quantum correction, propor-
tional to h̄2 (Ref. [61], Sec. 33). Hence, we write Zquant =
Zcl(1 + 〈h̄2χ2〉), where the correction 〈h̄2χ2〉 is expressed in
terms of the moments 〈x2

k 〉cl, 〈p2
k〉cl, and 〈x2

k p2
k〉cl of Zcl. We

find

〈
h̄2χ2

〉
E2

M/

N∑
k=1

(h̄ωk )2

= z2

24

(
−1 + [3z − 5(N + 1)]

zN e−z

�(N + 2)

1

P(N, z)

)
,

(A2)

with z = βEM . For kBT < EM/N , we use the quantum parti-
tion function Z0 = ∏N

k=1[csch(β h̄ωk/2)/2] of a nontruncated
chain. The functions U quant and Squant overlap with those
extracted from Z0 for a range of values of kBT , thus yielding
the full quantum thermodynamic functions. The classical and
quantum predictions for U and S are compared in Fig. 8.
At the beginning of the evaporation [panel (b)], they only
differ over a narrow range of temperatures near T = 0; the

FIG. 8. (a) Normalized incomplete γ function P(a, z) as a function of z = βEM for a = 3, 50, and 100. (b) and (c) s = S/N and u = U/N
as a function of T for 100 atoms in a trap of size L = 550 μm (beginning of the evaporation in Fig. 4 of the main text). (d) and (e) s and u for
50 atoms with L = 243 μm (close to the end of the evaporation in Fig. 4).
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FIG. 9. Mean trapped atom number as a function of the trap size
L for the short chain initially comprising NI = 100 atoms with LI =
550 μm for various initial temperatures. The red curve, calculated
for kBTI = 65 kHz, corresponds to Fig. 4 of the main text. The
discrete steps on the atom number become visible at the end of the
evaporation; for lower initial temperatures, they are well resolved
earlier on. The shaded areas show the mean standard deviation due
to the initial fluctuations �UI = UI/

√
NI on the quadratic energy.

difference is more striking near the end of the evaporation
[panel (c)].

c. Numerical evaluation

The evaluation of U (L, T ) and S(L, T ) involves calculating
P(a, z) for 40 � a � 1000. To capture the steep variation
of these functions for z ∼ a, we resort to arbitrary-precision
numerics using the BOOST.MULTIPRECISION C++ library [68].

4. Constant atom number plateaus

Between two atomic expulsions, the chain undergoes an
adiabatic compression during which N remains constant (see

Fig. 3). For kBTI/h ∼ 65 kHz, these constant-N plateaus are
smoothed out for most of the evaporation because of the
uncertainty �UI = UI/

√
NI on the initial energy. Indeed, it

reflects on the entropy as �SI = �UI/TI , and leads to sizable
fluctuations �S(N ) during most of the evaporation. These yield
the uncertainty �L(N )

f = �S(N )/S(N )′
max (L f ) on the trap size L(N )

f
at which the atom N is expelled.

For shorter chains, the constant-N plateaus become well
resolved at the end of the evaporation, as the chain approaches
its ground state. For Fig. 4 and kBTI/h = 65 kHz, these
plateaus are visible when the remaining trapped atom number
N � 45 (see Fig. 9), in agreement with the classical-dynamics
results of Ref. [27]. The plateaus are resolved earlier on for
lower initial temperatures and later on for higher ones.

5. Quasiuniversality

We now focus on longer chains with N ∼ 1000 and l ∼
5 μm. Then, the quadratic energy U (N, L, T ) = Nu(l, T ), the
entropy S(N, L, T ) = Ns(l, T ), their maxima Umax(N, L) =
Numax(l ) and Smax(N, L) = Nsmax(l ), and the zero-point en-
ergy EZP(N, l ) = NeZP(l ) are all extensive.

a. Energy and entropy

We consider two consecutive adiabatic plateaus corre-
sponding to N and N − 1 trapped atoms. Equation (5) pro-
vides the initial energy per particle u(N−1)

i = U (N−1)
i /(N − 1)

for the second plateau in terms of its final value for the first
one, u(N )

f = U (N )
f /N , and the mean distance l (N )

f = L(N )
f /N :

u(N−1)
i = u(N )

f + (
u(N )

f + 7C6/l (N )6
f − VL

)
/N. (A3)

Hence, starting from the first atomic expulsion, u remains
close to the universal curve u = umax(l ), within small devia-
tions that decrease like 1/N . Furthermore, the entropies s(N ) =
smax(l (N )

f ), which are constant during each plateau, all lie near

FIG. 10. Standard deviations (a) �s, (b) �u, and (c) �n on the entropy per particle s = S/N , the energy per particle u = U/N , and the
remaining atom fraction n = N/NI , for the long chain of Fig. 5 in the main text. The ratios (d) �s/�l and (e) �u/�l , with �l = (l/n)�n,
closely follow the derivatives dsmax/dl and dumax/dl starting from the first expulsion.
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0.71

0.67

FIG. 11. (a) Scaled atom fraction n = N/NI for NI = 1000 and various uI , showing an approximate scaling whose breakdown is visible in
the inset. (b) The derivative ∂s/∂l|u calculated along the horizontal dark red path in panel (c). This path crosses the curve u = umax(l ) (dashed
gray line) at the first expulsion point (l1, u1) for uI/h = 65 kHz. The dotted-dashed red line shows the isentropic curve followed up to the first
expulsion.

the universal curve s = smax(l ). Both of these properties are
illustrated in Fig. 5 for various uI = UI/NI , which set the mean
atomic distance l1 at which the first expulsion occurs.

b. Fluctuations

The quasiuniversality of the evaporation constrains the
fluctuations �u and �s on the energy and entropy per par-
ticle to follow those on the atomic distance, �l . Neglecting
the small deviations from the universal curves u = umax(l )
and s = smax(l ), they satisfy �u/�l = u′

max(l ) and �s/�l =
s′

max(l ) (see Fig. 10).
The constraint on �u/�l has an important consequence.

As l decreases, umax(l ) tends toward eZP(l ) [see Fig. 5(b)].
Hence, the derivative u′

max(l ) goes to zero. The fluctuations
�u do not vanish, therefore �l increases and so does �n =
(n/l )�l [see Fig. 10(a)]. Thus, as long as the quasiuniversal
regime holds, the constant-N plateaus will be poorly resolved.
If the evaporation proceeds further, it will eventually drive
the system out of the universal regime. Then, we expect to
recover the short-chain behavior described in Appendix A 4.
For the chain considered in Figs. 5 and 10, this occurs beyond
the validity range of our assumption Equant

M � EZP + h̄ωN , and
will be investigated elsewhere.

c. Nonuniversality of N/NI

The entropy per particle s(l, u) may be seen as a function
of l and u. The derivative ∂s/∂u|l = 1/T goes to zero on the
curve u = umax(l ), which is reached for T → ∞. However,
our numerical results show that ∂s/∂l|u diverges along the
curve u = umax(l ) [see Fig. 11(b)]. Therefore, s(l, u) may
not be linearized near this curve, and the entropy difference
s(N−1) − s(N ) = s(l (N−1)

i , u(N−1)
i ) − s(l (N )

f , u(N )
f ) goes to zero

slower than 1/N . This rules out any exact universal behavior
for the atom number fraction n = N/NI . However, the devia-
tion from universality is small. For a given NI , we consider
two initial energies uI1 < uI2, and we compare the curves
nuI1 (l ) and nuI2 (l ) for l < l1, where l1 is the mean atom spacing
leading to the first expulsion for uI1. Our numerical results
show that these two curves nearly satisfy the scaling relation,
which would have been exact had ∂s/∂l|u not been divergent,
namely nuI2 (l1)nuI1 (l ) ≈ nuI2 (l ) [see Fig. 11(a), whose inset
highlights the breakdown of this scaling behavior].

The divergence of ∂s/∂l|u = p/T along the curve u =
umax(l ) signals that the pressure p goes to infinity faster than
T does. This starkly contrasts with the behavior of the ideal
gas, where p/T = nkB is finite, its constant value being set by
the particle density n.
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