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Haldane phases with ultracold fermionic atoms in double-well optical lattices
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We propose to realize one-dimensional topological phases protected by SU(N ) symmetry using alkali or
alkaline-earth atoms loaded into a bichromatic optical lattice. We derive a realistic model for this system and
investigate it theoretically. Depending on the parity of N , two different classes of symmetry-protected topological
(SPT) phases are stabilized at half-filling for physical parameters of the model. For even N , the celebrated
spin-1 Haldane phase and its generalization to SU(N ) are obtained with no local symmetry breaking. In stark
contrast, at least for N = 3, a new class of SPT phases, dubbed chiral Haldane phases, that spontaneously
break inversion symmetry, emerges with a twofold ground-state degeneracy. The latter ground states with
open-boundary conditions are characterized by different left and right boundary spins, which are related by
conjugation. Our results show that topological phases are within close reach of the latest experiments on cold
fermions in optical lattices.
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I. INTRODUCTION

Symmetry-protected topological (SPT) phases have re-
cently attracted lots of attention. These new quantum phases
exhibit short-range entanglement and possess only conven-
tional gapped excitations in the bulk while hosting nontriv-
ial symmetry-protected surface states [1,2]. A paradigmatic
example of one-dimensional (1D) bosonic SPT phases is the
Haldane phase of the spin-1 antiferromagnetic spin chain [3].
While the bulk of this phase looks ordinary, nontrivial spin-
1/2 edge states appear for an open-boundary condition [4] or
when the chain is cut by doping impurities [5]. This phase is
protected by the SO(3) symmetry underlying the Heisenberg
model, and more generally by at least one of the three discrete
symmetries: the dihedral group of π -rotations along the x, y, z
axes, time-reversal or inversion symmetries [6,7].

A fairly complete understanding of 1D bosonic SPT phases
has been obtained through group cohomology, matrix-product
states, entanglement spectroscopy, and field-theoretical ar-
guments [8–12]. The possible 1D SPT phases associated
with a given protecting symmetry G are classified by its
projective representations, i.e., the second cohomology group
H2(G, U(1)): in the presence of SO(3) symmetry, there is a
Z2 classification and the Haldane phase is the only SPT phase
whose edge states obey a nontrivial projective representation
[6,7].

Richer SPT phases can be obtained when G is a more
general Lie group. For instance, the group SU(N ) leads to
a ZN classification predicting N − 1 nontrivial SPT phases
[13] protected by SU(N ) [PSU(N ), more precisely [14]] or
by its discrete subgroup ZN × ZN [15,16]. Their edge
states are labeled by the inequivalent projective representa-
tions of SU(N ), which are specified by ZN quantum numbers
ntop = nY(mod N ), with nY being the number of boxes in

the Young diagram corresponding to the representation of
the boundary spins [13,17] [readers unfamiliar with SU(N )
and its representation are referred to Sec. I of [18]). In stark
contrast to the N = 2 case, i.e., G = SO(3), where all the
projective representations are self-conjugate, the left and right
edge states of the SU(N ) SPT phases with N > 2 might
belong to different projective representations that are related
by conjugation. This leads to an interesting class of SPT
phases, dubbed chiral Haldane (χH). These phases necessitate
broken inversion symmetry (whether explicit or spontaneous)
[18] and, when it is broken spontaneously, they exist in
pairs; in one phase, the left and right edge states transform,
respectively, in the SU(N ) representation R and its conjugate
R̄, and vice versa in the other [19–23]. In the following, we
label the SPT phases by the number of boxes in the Young di-
agrams as (nY(R), nY(R̄)) (mod N). In reflection-symmetric
systems, the two topological ground states (nY(R), nY(R̄))
and (nY(R̄), nY(R)) are degenerate.

In this paper, we propose an implementation of the Haldane
phase (N = 2) and its generalizations to even-N , as well as
the χH phases for N = 3, with half-filled ultracold fermions
loaded into 1D double-well optical lattices. These clean and
controllable systems offer an ideal framework for realizing
the SPT phases, which require precise symmetries. The N = 2
case may be realized using the two lowest hyperfine states
of 6Li. Larger values of N may be explored experimentally
using 87Sr or 173Yb atoms in their 1S0 ground states, which
possess SU(N)-symmetry (N � 10) [24–30]. By means of
complementary strong-coupling and numerical techniques,
we show that, for all even N � 2 and (at least) N = 3, fully
gapped featureless Mott-insulating phases show up in the
phase diagram of the underlying lattice fermion models with
repulsive interactions. The phases occurring for even-N are
identified as the Haldane phase (N = 2) or its generalization
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FIG. 1. The potential Vlat in the xy plane (right panel): three
double-well ladder systems are visible. The two independent Wan-
nier functions w1(y) and w2(y) along y (left, green and blue) are
centered on the two chains (� = 1, 2). Lengths and energies are,
respectively, expressed in units of the reduced wavelength 1/k and
the recoil energy ER = h̄2k2/2m. This optical potential yields t⊥/t =
2.9 and V/U = 0.086.

(N � 4). On the other hand, for odd N (at least for N =
3), we find that χH phases emerge breaking the inversion
symmetry spontaneously. These SPT phases are stabilized for
realistic parameters of the model, paving the way toward their
experimental investigation for N � 10.

II. MODEL

We consider ultracold (alkali, alkaline-earth, or ytterbium)
fermions with SU(N ) symmetry, trapped inside the following
potential representing a three-dimensional array of double
wells (see Fig. 1):

Vlat(x, y, z) = V0y[sin2(ky) + r cos2(2ky)]

+V0x sin2(2kx) + V0z sin2(2kz), (1)

where 1/k denotes the reduced wavelength and r is a tunable
parameter. This potential can be realized optically, using a
bichromatic lattice [31] or exploiting interference patterns in-
volving two differently polarized light beams [32]. Choosing
sufficiently large values of V0y and V0z, we obtain a single 1D
two-leg ladder whose legs (� = 1 or 2) and rungs (labeled i)
are, respectively, parallel to the x and y axes.

We restrict our analysis to the lowest bands in the x and z
directions. In the y-direction, we keep the two lowest bands to
resolve the two minima of each double well. This leads to the
following lattice model:

H0 = −t
∑
i,�

N∑
α=1

(c†
�α,i+1c�α,i + H.c.) − μ

∑
i

ni

− t⊥
∑

i

N∑
α=1

(c†
1α,ic2α,i + H.c.), (2)

where c†
�α, i creates a fermion in the nuclear-spin state α (=

1, . . . , N ) on the leg � and the rung i. In Eq. (2), the total den-
sity operator on the rung i is ni = ∑

�α c†
�α,ic�α,i = ∑

�α n�α,i.

The tunneling amplitudes t along a leg and t⊥ along a rung
may be different. We now account for SU(N )-symmetric
two-body interactions modeled by the contact Hamiltonian
g
∑

α �=β

∫
d3r nα (r)nβ (r), where nα (r) is the density operator

for fermions in the state α [24–26]. Retaining the same bands
as in Eq. (2), we obtain the interaction Hamiltonian:

Hint = U

2

∑
i

2∑
�=1

∑
α �=β

n�α,in�β,i

+V
∑

i

∑
α �=β

{
n1α,in2β,i + c†

1α,ic
†
2β,ic1β,ic2α,i

+ 1

2
(c†

1α,ic
†
1β,ic2β,ic2α,i + H.c.)

}
, (3)

where U is the on-site interaction, and V encodes the off-site
interaction between the two sites on a given rung. There are
three types of off-site processes: (i) density-density interac-
tion, (ii) spin-exchange interaction, and (iii) pair-hopping of
fermions with different spins from one leg to the other. Hence,
Eq. (3) can be viewed as a generalized two-leg fermionic
SU(N ) ladder model with pair-hopping processes. The co-
efficients t , t⊥, U , and V characterizing the lattice model
H = H0 + Hint are determined by the Wannier functions [33]
that are calculated numerically for Vlat(r) as in Ref. [34].
Along the rung direction y, we choose the Wannier functions
w1(y) and w2(y) to be real and localized on the legs � = 1 and
2, respectively (see Fig. 1). The orthogonality of the Wannier
functions necessitates that w1(y) and w2(y) have a finite extent
around their center with changing signs. The coefficient V
is proportional to g

∫
dy w2

1w
2
2, and it is finite because of a

nonzero overlap between the positive functions w2
1 and w2

2.
Besides the above three interactions, density-assisted hopping
terms [35], proportional to the integral g

∫
dy w1w

3
2, are also

present. However, now the sign change of the Wannier func-
tions strongly suppresses the integral, so that we can safely
drop them in Eq. (3) [36]. The ratios t⊥/t and V/U are fixed
by the optical potential Vlat(x, y, z): t⊥/t can be tuned from 1 to
a few units by varying the parameter r in Eq. (1) [37], whereas
V/U is of the order of 10−1. The ratio U/t can be tuned using a
magnetic Feshbach resonance [38,39] or an optical Feshbach
resonance for alkaline-earth atoms [40,41].

III. STRONG-COUPLING ANALYSIS

We now consider the atomic limit of the model (3) to
look for SPT phases in the large-U limit. Introducing the
(anti)symmetric combinations d1α,i = (c1α,i − c2α,i )/

√
2 and

d2α,i = (c1α,i + c2α,i )/
√

2, H reduces to the p-band model of
Refs. [42–44] in an (effective) orbital magnetic field propor-
tional to t⊥:

H = −t
∑
i,α

∑
m=1,2

(d†
mα, idmα, i+1 + H.c.)

−
(

μ + U + V

2

) ∑
i

ni + 2t⊥
∑

i

T z
i

+ U + V

4

∑
i

n2
i + 2V

∑
i

(
T z

i

)2 + (U − V )
∑

i

(
T x

i

)2
,

(4)
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where T a
i = 1

2

∑
m,n,α d†

mα, iσ
a
mndnα, i is the pseudospin opera-

tor for the orbital degrees of freedom and σ a(a = x, y, z) are
the Pauli matrices. We restrict ourselves to half-filling (i.e.,
N fermions per rung). The atomic-limit (U,V, t⊥ � t) energy
spectrum of the model (4) is readily obtained once the SU(N )
and the pseudospin (T) irreducible representations are known
[18]. For even N , in most of the region U > V > 0, the orbital
pseudospin T is quenched to a singlet, while the SU(N ) spin
is maximized into a self-conjugate representation of SU(N )
described by a Young diagram with two columns of lengths
N/2 [44]. To second order in t , the effective Hamiltonian is
the SU(N ) Heisenberg model [44]:

H(even)
eff = J

∑
i

N2−1∑
A=1

SA
i+1SA

i , (5)

where J = 2t2/(U + V ) is the spin-exchange constant, and
SA

i are the local SU(N ) spin operators belonging to the self-
conjugate representation mentioned above. For N = 2, Eq. (5)
reduces to the spin-1 Heisenberg chain, whose ground state is
in the Haldane phase [3]. For generic even N , the ground-state
properties of the model (5) have recently been investigated in
detail in Refs. [17,44–47], where the ground state has been
identified with an SU(N ) SPT phase with ZN quantum num-
bers ntop = N/2 (with ntop given by nY modulo N ; see Sec. I B
of [18]) characterized by edge states in the antisymmetric
(N/2)-tensor representation of SU(N ). Remarkably, for odd
N , the orbital degrees of freedom play a crucial role. Indeed,
let us consider the N = 3 case and start from U = V and
t⊥ = 0, where each site of a rung is occupied either by 3 ( )

or 3̄ ( ) in the atomic-limit ground state. Regarding 3 and

3̄ as the two orbital states (e.g., up and down) and carrying
out the second-order perturbation in U − V and t⊥, we obtain
a spin-orbital effective Hamiltonian, which, when U > V ,
reduces to an SU(3) two-leg ladder with different spins (3
and 3̄) on the two legs (Sec. II B in [48]). The couplings
depend on the orbital part; after tracing it out, the system
reduces to the two-leg ladder with diagonal interactions. We
have shown numerically that the χH phase is stabilized only
when finite diagonal interactions exist [48]. A relatively large
t⊥ (>0) polarizes the orbital pseudospins, and the diagonal
couplings, which are crucial to the SPT phase, disappear. In
fact, both the strong-coupling expansion assuming large t⊥
and direct numerical simulations for large enough t⊥ found
only a featureless trivial phase, in agreement with the above
scenario.

IV. NUMERICAL CALCULATIONS

We mapped out the zero-temperature phase diagram of the
model (4) at half-filling using density-matrix renormalization-
group (DMRG) calculations [49]. We used open boundary
conditions, keeping between 2000 and 4000 states depend-
ing on the parameters and sizes to keep a discarded weight
below 10−5. We fix t = 1 as the unit of energy and, in-
stead of the full SU(N ) symmetry, we have implemented
the U(1)N symmetry corresponding to the conservation of
each species α = 1, . . . , N . Starting with the simplest N = 2
case, we reveal that the SU(N ) SPT phases, predicted in the
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FIG. 2. Local densities and bond energies obtained by DMRG
for a chain of length L = 96 in the cases N = 2, 3, and 4, using t⊥ =
1, U = 12, V = 4. The densities and x-bond (i.e., rung) energies
are found to be equal on both chains, and we show them for � = 1.
By summing up n�α,i near the edge, we can determine the boundary
“spin” corresponding to each plot that strongly suggests the SPT state
shown in the inset [18].

strong-coupling regime, persist down to realistic regions. Fig-
ure 2(a) shows the presence of exponentially localized edge
states in the spin-resolved local densities n�α,i, which is a
clear signature of the spin-Haldane (SH) phase with spin-1/2
edge states. The SPT phases for N = 3 and 4 can also be
probed using their particular edge states [Figs. 2(b) and 2(c)]
or their entanglement spectra (ES) [Figs. 3(b) and 3(c)]. The
precise nature of the edge states can be inferred from Fig. 2.
For SU(3), we find that the phase for t = t⊥ = 1 is a χH
phase (nY(R), nY(R̄)) = (1, 2) with the left and right edge
states, respectively, transforming in the 3 and 3̄ representa-
tions of SU(3) [18]. As mentioned above, when the system
is inversion-symmetric, this and the second χH phase (2,1)
must be degenerate; DMRG simulations randomly pick one
of the two minimally entangled states. We can find the second
one with slightly different initial parameters [18]. This signals
the emergence of the χH phase (1,2) or (2,1) for t = t⊥ =
1, which spontaneously breaks inversion symmetry [19,20].
Similarly, for N = 4, the edge states in Fig. 2(c) strongly
suggest one of the three SPT phases (2,2) protected by SU(4).
The edge states belong to the self-conjugate antisymmetric
representation of SU(4) with dimension 6, in agreement with
previous studies [17,44–46]. To provide additional insight into
these SPT phases, we plot in Fig. 3 their ES obtained by
cutting the chain in the middle and computing the Schmidt
eigenvalues of the ground-state wave function. The ES of
the SH phase is known to exhibit double-degeneracy for all
levels [11], which is a signature of the underlying SPT phase.
Figure 3(a) shows the correct evenfold degeneracy in the
low-lying part of the spectrum, giving further evidence for
the SH phase. For higher N , we expect [46] that degeneracy
must be compatible with SU(N ) representations allowed for
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FIG. 3. The ES obtained by DMRG on the L = 48 chain in the
N = 2, 3, and 4 model (from top to bottom) using t⊥ = 1, U = 20,
V = 2. In all three cases, the system is in the SPT phase. Bosonic
(fermionic) levels are shown by red (black) circles. Numbers and
Young diagrams, respectively, denote the number of quasidegenerate
levels and the corresponding edge representations. Since a represen-
tation cannot be distinguished from its conjugate by the degeneracy
alone, we show [in (b)] only one of the two compatible with the
assumed topological class.

the topological class (see Sec. I B of [18]). Since our ES are
obtained for the fermionic model (4), some of the higher-lying
levels belong to the “fermionic sector” of the spectrum and
may not exhibit the structure expected in bosonic SPT phases
(see, e.g., Refs. [50,51]). Hence, we separate the bosonic
sector (shown by red circles) from the fermionic one (black
circles) in Fig. 3. The degeneracy structure of the bosonic
sector now perfectly agrees with what we expect for the
corresponding SPT phases. Given the recent developments
in entanglement measurements in cold-atom settings [52],
our proposal would make the precise characterization of SPT
phases possible in experiments. To show that the SU(N ) SPT
phases found above are not restricted to the strong-coupling
regime, we plot their extent in Fig. 4 as a function of U along
the physically relevant line U/V = 10 at fixed t⊥ = t (= 1).
These phases occur in the large-U regime, and, for weaker
interactions, quantum phase transitions are expected toward
fully gapped trivial or dimerized phases, which break the
translation symmetry spontaneously.

V. SUMMARY AND EXPERIMENTAL PROSPECTS

We have introduced a simple one-dimensional microscopic
model describing alkali or alkaline-earth ultracold fermionic
atoms loaded into a bichromatic optical lattice. Using ana-
lytical and numerical insight, we have shown how SU(N )
SPT phases emerge for a large range of parameters. This
provides a physical route to realize the SH phase (N =
2), its generalization for even N , and the χH phase with
N = 3, which spontaneously breaks inversion symmetry. The
SH phase with N = 2 may be realized experimentally using
the two lowest hyperfine states of 6Li, for which the ratio

0 10 20

0 10 20

0 2 4 6 8 10 15 20

5

17

trivial

0-
SP

-SP

-SP

SPT (SH)

SPT

SPT (chiral)

FIG. 4. Phase diagram for N = 2, 3, and 4 at fixed t⊥ = t = 1,
as a function of U (with U/V = 10; see the text) obtained from
DMRG simulations. In all three cases, we find different SPT phases
at strong coupling. For weaker interactions, we find trivial nonde-
generate gapped phases, or the out-of-phase (in-phase) dimerized
spin-Peierls-like π -SP (0-SP) phase.

U/t may be tuned using a broad Feshbach resonance [53].
Furthermore, detection resolved in both density and spin is
possible by combining a Fermi-gas microscope with Stern-
Gerlach techniques [54] or by ejecting unwanted spin states
using resonant pulses [55,56]. The temperature scale of re-
cent experiments involving 6Li atoms is T � (0.5−0.8)4t2/U
[54]. This is of the same order of magnitude as the gap
of the SH phase [49]: �SH � 0.41J � 0.8t2/U for large U
[57]. As was recently shown numerically in Ref. [58], the
main characteristics of the thermal spectral functions of the
SH phase with localized edge states are still visible at finite
size for T � �SH, a temperature scale that is within the
reach of forthcoming experiments. Larger values of N are
experimentally accessible using fermionic alkaline-earth or
ytterbium atoms. Using typical experimental values for 173Yb
(N = 6; scattering length ag = 10.55 nm [59] and lattice spac-
ing π/k ≈ 400 nm [60]), we find U/V ∼ 10. Spin-resolved
measurements may be performed on these systems using
optical Stern-Gerlach techniques [61,62]. Thanks to the recent
experimental achievements with cold fermionic gases, we
expect the SPT phases discussed in this paper to be observed
in the near future.
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