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Quantum scar affecting the motion of three interacting particles in a circular trap

D. J. Papoular * and B. Zumer
LPTM, UMR8089 CNRS & CY Cergy Paris Université, 95032 Cergy-Pontoise, France

(Received 26 September 2022; revised 21 January 2023; accepted 31 January 2023; published 17 February 2023)

We propose theoretically a quantum scar affecting the motion of three interacting particles in a circular trap.
We numerically calculate the quantum eigenstates of the system and show that some of them are scarred by a
classically unstable periodic trajectory, in the vicinity of which the classical analog exhibits chaos. The few-body
scar we consider is stabilized by quantum mechanics, and we analyze it along the lines of the original quantum
scarring mechanism [Phys. Rev. Lett. 53, 1515 (1984)]. In particular, we identify towers of scarred quantum
states which we fully explain in terms of the unstable classical trajectory underlying the scar. Our proposal is
within experimental reach owing to very recent advances in Rydberg atom trapping.
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I. INTRODUCTION

The thermalization of closed interacting quantum systems
[1] may be impeded by various mechanisms [2,3] whose
investigation is strongly motivated by contemporary appli-
cations [4,5]. Indeed, slowly thermalizing systems retain
memory of their initial state over longer times [6], making
them useful for quantum simulation [4] and quantum informa-
tion processing [5]. Atomic systems are an excellent test-bed
for chaos [7–9], and techniques for the individual manipula-
tion [10] of Rydberg atoms [11] have extended its exploration
to interacting systems. A recent experiment on Rydberg atom
arrays [12] has initiated the investigation of weak ergodicity
breaking in many-body systems [13,14]. Systems exhibiting
this phenomenon thermalize rapidly for most initial condi-
tions, but specific initial states yield nonergodic dynamics.
This behavior is analogous to the quantum scars initially pre-
dicted [15] and observed [16] in the absence of interactions,
which also lead to weak ergodicity breaking [17] by impacting
some [[18], chap. 22] quantum eigenstates. Hence, it is also
called “many–body scarring” [19]. A similar phenomenon
has been predicted in the context of the Dicke model [20],
where the quantum scars are due to the collective light–matter
interaction and impact many quantum eigenstates [21].

Despite the intense theoretical scrutiny [22], only two
experiments [12,23] and one explicit proposal [19] explore
many-body scarring so far [12,19,23]. In all three cases, the
observed nonergodic behavior is linked to classical physics.
The experiments of Refs. [12,23] both probe the PXP model
[24] in regimes where the classical analog system [25] ex-
plores the vicinity of classically stable periodic trajectories,
so that the absence of thermalization may be traced back
to the classical Kolmogorov–Arnold–Moser theorem [[26],
Sec. VI]. The proposal of Ref. [19] refers to spin helices in
various geometries. Their classical limit is stable [27], and
from the quantum point of view they generalize helices pre-
dicted [28] and observed [19] in the integrable XXZ chain.
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Hence, the proximity of integrable models is expected to play
a key role.

In this article, we propose a three-body system hosting a
quantum scar which relies on the interaction between parti-
cles. It may be realized experimentally owing to very recent
advances in Rydberg atom trapping [29,30]. It is simple
enough to be fully analyzed by combining the numerical
calculation of stationary states and well-established tools for
the analysis of chaotic systems [31], in the spirit of Heller’s
original proposal [15].

The system we consider exhibits “towers” of scarred states
which are approximately evenly spaced in energy. These are a
key feature of both quantum scars [32] and many-body scars
[13,14,22,23,33]. In the present context, we explain them in
terms of the classically unstable periodic trajectory causing
the scar, in the spirit of Heller’s original argument [[32],
Fig. 22]. The phase-space dimensionality of the few-body
system we consider [(4), see below] matches the maximum
number of independent parameters introduced so far in the
variational approaches applied to the many-body PXP model
and its generalizations [[26], §III.A]. In stark contrast with
the many-body PXP model where approximate classical limits
have to be cleverly constructed [25], our few-body system
affords an exact reduction to four parameters and the iden-
tification of the classical analog is straightforward.

We formulate our proposal in terms of trapped Rydberg
atoms [29,30]. However, we expect other interacting systems
with the same symmetries to exhibit similar quantum scars.
We substantiate this claim in the Appendix (Sec. A 1) by iden-
tifying the quantum scar for the Hénon–Heiles (HH) potential
[34]. In particular, the scar may be probed using three dipolar
particles [35].

II. THE CONSIDERED SYSTEM

We consider three identical bosonic particles of mass m in
a circular trap of radius R. The Hamiltonian reads

H = (
l2
1 + l2

2 + l2
3

)/
(2mR2) + v(d12) + v(d23) + v(d31),

(1)
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FIG. 1. (a) Three particles (orange disks) interacting via a re-
pulsive van der Waals interaction of strength C6 > 0, constrained
to move on a circle of radius R, their angular coordinates θi and
distances di j . (b) The (x, y) configuration space is the inside of the tri-
angle defined by the points A(−π/

√
3, −π/3), B(+π/

√
3,−π/3),

C(0, 2π/3). The dashed golden line limits the classically accessible
region for the energy E = 7C6/R6. The three dotted red lines show
the three classical periodic trajectories of type B for this energy. The
small green triangle OLB is the reduced configuration space within
which quantum wave functions are calculated.

where li is the component of the angular momentum of
particle i along the rotation axis, which is perpendicular
to Fig. 1(a). We assume that the interaction v(di j ) be-
tween the particles i and j only depends on their distance
di j = 2R| sin[(θi − θ j )/2]|. For circular Rydberg atoms whose
electronic angular momenta are perpendicular to the plane,
v(di j ) = C6/d6

i j with C6 > 0 [[36], Appendix A].
We introduce the Jacobi coordinates [[38], §1.2.2]

x = [(θ1 + θ2)/2 − θ3 + π ]/
√

3, y = (θ2 − θ1)/2 − π/3, z =
(θ1 + θ2 + θ3)/3 − 2π/3, and their conjugate momenta px,
py, pz (which carry the unit of action). In terms of these,
H = p2

z/(3mR2) + H2D, where

H2D = (
p2

x + p2
y

)/
(4mR2) + V (x, y). (2)

Here, V (x, y) = v(x, y)C6/R6, with

v(x, y) = [sin−6(π/3 + y) + sin−6(π/3 + x
√

3/2 − y/2)

+ sin−6(π/3 − x
√

3/2 − y/2)]/64 − 1/9, (3)

energies being measured from the minimum V (0). The free
motion of the coordinate z reflects the conservation of the total
angular momentum pz = l1 + l2 + l3. The Hamiltonian H is
invariant1 under the point group C3v [[40], §93], generated
by the threefold rotation about the axis (x = y = 0) and the
reflection in the plane (x = 0).

III. CLASSICAL PHYSICS

We first analyze the classical dynamics described by the
Hamiltonian H . Expressing momenta, energies, and times in
units of Pref = (mC6/R4)1/2, C6/R6, and (mR8/C6)1/2, respec-
tively, the classical results are independent of m, C6, and R,
leading to the scaled predictions in Figs. 1–4. We choose
the rotating reference frame such that pz = 0 and z = 0. The

1The full plane group characterizing the symmetries of v(x, y) is
p6mm [[39], Part 6].

FIG. 2. (a) Periodic trajectory B for the energy ε = 7C6/R6, de-
scribed by its coordinates x(t ) and y(t ) as a function of time t . (b) The
period TB(ε), and the product λBTB of the Lyapunov exponent and the
period, for the periodic trajectory B as a function of the energy ε.

divergence of v(di j ) prevents the particles from crossing, so
that we assume θ1 < θ2 < θ3 < θ1 + 2π at all times. Hence,
the classical problem is reduced to a point moving in the two-
dimensional (2D) plane (x, y) within the equilateral triangle
of Fig. 1(b), in the presence of the potential V (x, y).

We have characterized the periodic trajectories of V using
our own C++ implementation of the numerical approach of
Ref. [41]. We find three families of periodic trajectories, ex-
isting for all energies ε > 0: we label them A, B, C in analogy
with the results for the HH potential [42]. We shall analyze
them and their bifurcations in a forthcoming presentation [43].
Here, we focus on family B, which yields the quantum scar.
For a given ε, there are three trajectories of type B, due to
the threefold rotational symmetry of the potential V . They are
represented in the (x, y) plane in Fig. 1(b), and the one which

FIG. 3. Classical surface of section [[37], §1.2] for the Hamil-
tonian of Eq. (2) with pz = 0, ε = 7C6/R6, x = 0, and px � 0. The
dark blue dots and outer curve indicate the periodic trajectories of
type A; the red and green dots show those of types B, and C. The
closed blue and green curves show nonergodic trajectories near A
and C. The ≈287 000 thin brown dots all belong to the same ergodic
trajectory. The periodic trajectories of type B, which yield the quan-
tum scar, are all within the classically ergodic region.
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FIG. 4. Probability density |ψ (x, y)|2 of the scarred quantum eigenstate whose energy is closest to 7C6/R6 in each irreducible representation
ρ = (a) A1, (b) A2, and (c) E . The dashed red lines show the three classically unstable periodic trajectories of type B for the corresponding
energy ε. The densities are maximal near the unstable trajectories, signaling the quantum scar. The integer ν (ρ ) in an approximation to the
index of the shown quantum state in the representation ρ.

is symmetric about the vertical axis is shown as a function of
time in Fig. 2(a). They are unstable for all energies, as shown
by the Lyapunov exponent λB > 0 in Fig. 2(b). Figure 2(b)
shows that trajectory B satisfies both conditions heralding a
quantum scar: λBTB < 2π [[18], ch. 22], and lower values
of λBTB signal stronger scarring [[44], §9.3]. The unstable
trajectory B does not bifurcate [[44], §2.5], so that the scar
strengths associated with it for all E > 0 do not benefit from
the classical enhancement due to the proximity of bifurcations
[45]. This sets it apart from a previous proposal involving
a scar hinging on this enhancement [46] so that, in stark
contrast to ours, it is captured by Einstein–Brillouin–Keller
quantization [47].

To visualize effects beyond the linear regime, Fig. 3 shows
the surface of section [[37], §1.2] of H for ε = 7C6/R6 and
the conditions x = 0, px > 0 (allowing for a comparison
with the HH potential [48]). It exhibits both nonergodic re-
gions comprising tori [[49], Appendix 8] and an ergodic
region, as is typical for a nonintegrable system [[50], §1].
The three fixed points corresponding to trajectories B are all
located in the ergodic region. This precludes their stabilization
by any classical mechanism.

IV. QUANTUM PHYSICS

We seek the eigenfunctions of H in the form
	n(θ1, θ2, θ3) = ψn(r)einz, where r = (x, y) and n = pz/h̄.
The wave function ψn is an eigenstate of H2D with the energy
ε. It is defined on the whole (x, y) plane. Its symmetries are
related to (i) angular periodicity, (ii) bosonic symmetry, and
(iii) the point group C3v .

We first discuss (i) and (ii). (i) The 2π periodicity of
	n in terms of (θi )1�i�3 yields ψn(r − BC) = ψn(r − CA) =
ψn(r − AB) = ψn(r)e−i2πn/3, so that n is an integer. (ii) The
bosonic symmetry of 	n leads to ψn(Sr) = +ψn(r), where S
is the symmetry about any of the lines (AB), (BC), or (CA)
in the (x, y) plane. Hence, we may restrict the configuration
space to the inside of the triangle ABC of Fig. 1(b). Along
its edges, v(x, y) strongly diverges [e.g., v ≈ (y + π/3)−6

near [AB]], so that ψn = 0 there. Combining (i) and (ii), and
calling R the rotation of angle 2π/3 about O, ψn(Rr) =
ψn(r)e2inπ/3.

We now analyze the role of the point group C3v . We
classify the energy levels in terms of its three irreducible
representations ρ = A1, A2, and E [[40], §95]. Hence, the
Hilbert space is split into three unconnected blocks. These
may be told apart through the behavior of ψn under two oper-
ations in the (x, y) plane [51]: R and the reflection S
 about
the line 
 = (CL) [see Fig. 1(b)]. Wave functions pertaining
to the one-dimensional (1D) representations A1 or A2 satisfy
ψn(Rr) = ψn(r), so that n = 0 modulo 3. Under reflection,
ψn(S
r) = ±ψn, where the + and − signs hold for A1 and A2,
respectively. Wave functions pertaining to the 2D representa-
tion E satisfy ψn(Rr) = exp(±2iπ/3)ψn(r), so that n = ±1
modulo 3 [52]. Then, exploiting time-reversal invariance we
may choose the two degenerate basis states to be ψn and its
complex conjugate ψ∗

n with ψn(S
r) = ψ∗
n (r).

These symmetry considerations further reduce the config-
uration space to the green triangle OLB of Fig. 1(b). We deal
with representations A1, A2, and E separately by applying
different boundary conditions on its edges (see Sec. A 2b in
the Appendix). We solve the resulting stationary Schrödinger
equations using the finite-element software FREEFEM [53].
The classical scaling no longer holds. Instead, the energy
spectra and wave functions depend on the dimensionless ra-
tio η = h̄/Pref = h̄R2/(mC6)1/2. Smaller values of η signal
deeper quasiclassical behavior: we choose η = 0.01. We fo-
cus on energies ε ∼ 7C6/R6, which are large enough for the
classical ergodic trajectory (brown dots on Fig. 3) to occupy a
substantial part of phase space.

Figure 4 shows the probability density for the quantum
scarred state whose energy is closest to 7C6/R6 for each ρ. It
is maximal near the three classical trajectories B. This signals
a stabilization of trajectory B, whose origin is purely quantum
since the unstable trajectories belong to the ergodic region of
classical phase space (see Fig. 3).

V. SEMICLASSICAL ANALYSIS

For the majority of the calculated quantum states, the
probability density |ψ (x, y)|2 is unrelated to the periodic tra-
jectories of type B. Nevertheless, for each representation,
we find multiple scarred quantum states, represented by the
vertical dashed lines in Fig. 5, whose energy spacing is ap-
proximately regular. This is analogous to the tower of scarred
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FIG. 5. For each irreducible representation ρ = (a) A1, (b) A2,
and (c) E , the solid curve shows the semiclassical contribution 
nB

[Eq. (4)] to the density of states n due to the periodic trajectory B, as a
function of the energy ε. The dashed vertical lines show the energies
of the scarred quantum states, which closely match the maxima of

nB. The integers above them specify the relative state indices 
νA1 ,

νA2 , 
νE/2 with respect to the index ν (ρ ) of the scarred states in
Fig. 4.

many-body states with an approximately constant energy sep-
aration found in a PXP chain [13], which is a recurrent
feature in theoretical analyses of weak ergodicity breaking
[14,22,33]. In the present context, we explain the series of
scarred quantum states semiclassically. We use Gutzwiller’s
trace formula [[31], chap. 17] describing the impact of the
classical periodic trajectories on the quantum density of states
n(ε). We isolate the contribution 
n(ρ)

B to n coming from the
unstable trajectory B, which depends on the representation ρ

[54,55]:(

n(ρ)

B 2π h̄/T (ρ)
B + 1

)/
α

(ρ)
B

=
∞∑

k=0

{[
SB(ρ)/h̄ − 2π (k(ρ) + 1/2)

]2 + (
α

(ρ)
B

/
2
)2}−1

. (4)

The parameters T (ρ)
B (ε), S(ρ)

B (ε), α
(ρ)
B (ε), and k(ρ) in Eq. (4)

are defined in Table I for each representation. They are di-
rectly related to the classical period TB(ε) and action SB(ε) =∮

p · dx along one trajectory B, the product λB(ε)TB(ε), and
the summation index k, respectively. Figure 5 shows 
n(ρ)

B (ε)
for each representation. Its maxima agree with the energies
of the scarred states. Hence, the series of scarred states found
in each representation reflects the multiple resonances in n(ε)
due to the unstable trajectory B. The regularity in their energy

TABLE I. Parameters T (ρ )
B , S(ρ )

B , α
(ρ )
B , k(ρ ) for Eq. (4), depending

on the irreducible representation ρ = A1, A2, or E .

T (ρ )
B S(ρ )

B α
(ρ )
B k(ρ )

A1 TB/2 SB/2 λBTB/2 k
A2 TB/2 SB/2 λBTB/2 k − 1/2
E 2TB SB λBTB k + 1/2

spacing follows from the resonance maxima being evenly
spaced in terms of the classical action, S(ρ)

Bmax/h̄ = 2π (k(ρ) +
1/2).

VI. EXPERIMENTAL PROSPECTS AND OUTLOOK

We consider e.g., 87Rb atoms in the 50C circular Rydberg
state [36,56], for which C6/h = 3 GHzμm6. The value η =
0.01 corresponds to R = 7 μm. The ring-shaped trap may be
realized optically using Laguerre–Gauss laser beams and light
sheets [[57], §II.C.2]. The energy ε = 7C6/R6 = h × 200 kHz
is within experimental reach [36]. For small angular momenta,
the centrifugal energy, which is proportional to (ηn)2/3, is
negligible compared with ε. The position of the atoms may
be detected at a given time by turning on a 2D optical lattice
trapping individual Rydberg atoms [36,58], which freezes the
dynamics, followed by atomic deexcitation and site-resolved
ground-state imaging [59].

Further investigation will be devoted to the stability of the
quantum scar. Recent experiments [23,60] have shown that it
may be enhanced by periodically modulating the parameters.
Depending on the stabilization mechanism (see, e.g., Ref. [61]
or Ref. [[62], §27]), this may lead to a discrete time crystal
[63] which is either quantum or classical.
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APPENDIX

The goal of this Appendix is twofold. In Sec. A 1,
we identify quantum scars supported by the Hénon–Heiles
Hamiltonian, and characterize them using the same semiclas-
sical argument as in the main text. In Sec. A 2, for each of the
three irreducible representations of the group C3v , we derive
boundary conditions defining quantum stationary states within
the reduced configuration space.

1. Quantum scars in the Hénon–Heiles model

In this Section, we briefly describe our results, analogous
to those of the main text, for the Henon–Heiles Hamiltonian
[34] HHH = (p2

x + p2
y )/(2m) + VHH, where

VHH = mω2
0(x2 + y2)/2 + α(x2y − y3/3). (A1)

Equation (A1) is written in the dimensional form of Refs.
[[64], §5.6.4] which assumes that the coordinates x and y
carry the unit of length. The quantities px, py are their con-
jugate momenta, the parameters m and ω0 denote a mass
and a frequency, and the coefficient α sets the strength of
the cubic term. If lengths, momenta, energies, and times are
expressed in units of LHH = mω2

0/α, PHH = m2ω3
0/α, EHH =

m3ω6
0/α

2, THH = 1/ω0, the dimensionless form matches that
of Ref. [34]. As in the main text, in terms of these units, the
classical dynamics is independent of m, ω0α. As for quantum
physics, the classical scaling no longer holds, and the en-
ergy spectra and wave functions depend on the dimensionless
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FIG. 6. Probability density |ψ(x,y)|2 of the scarred quantum eigenstate of the Hénon–Heiles Hamiltonian HHH whose energy is closest
to 0.13EHH in each irreducible representation (a) A1, (b) A2, and (c) E . The dashed red lines show the three classically unstable periodic
trajectories of type B for the corresponding energy ε. The densities are maximal near the unstable trajectories, signaling the quantum scar. The
integer ν (ρ ) is the index of the shown quantum state in the representation ρ. (This figure is the analog, for the Hénon–Heiles potential, of Fig. 4
in the main text.)

parameter ηHH = h̄/(LHHPHH) = h̄α2/(m3ω5
0 ). Smaller val-

ues of ηHH signal deeper quasiclassical behavior.
The Hénon–Heiles potential is related to our main discus-

sion for two reasons. First, its symmetry group is C3v [55],
which is the point group of the system analyzed in the main
text. Second, expanding Eq. (3) there to third order in x and
y near the equilibrium position O shows that it reduces to
Eq. (A1) in the low-energy limit.

The Hénon–Heiles Hamiltonian has been extensively stud-
ied (see, e.g., Ref. [[37], §1.4]). Our goal in revisiting it was
twofold. First, we have calibrated our codes against published
results for this potential. Second, we have identified quantum
scars for the Hénon–Heiles Hamiltonian. At the end of the sec-
tion, we point out the relevance of the Hénon-Heiles potential
in relation to a broad family of systems, which includes the
case of dipolar particles.

a. Calibration

We have used our codes to reproduce the known classi-
cal periodic trajectories of HHH, their periods and Lyapunov
exponents [42], and its surfaces of section for various ener-
gies [48]. We have also recovered the quantum energy levels
and wave functions, belonging to all three representations,
in Refs. [51,65] for ηHH = 1/80 and in Ref. [52] for ηHH =
0.062.

b. Quantum scars for the Hénon–Heiles potential

We now turn to the lower value η = 0.042, so as to con-
sider the deep quasiclassical regime. We focus on energies
ε ∼ 0.13 EHH: these are large enough for the ergodic region to
occupy a substantial part of phase space [48], while remaining
below the threshold energy EHH/6 above which HHH supports
trajectories that are not bound [42]. Figure 6 shows the prob-
ability density density for the scarred state with the energy ε

closest to 0.13 EHH for each representation. It is maximal near
the three trajectories B for the energy ε, signaling the scar.

In each irreducible representation ρ = A1, A2, and E , we
find multiple scarred quantum states for the Hénon–Heiles po-
tential (vertical dashed lines in Fig. 7) whose energy spacing
is approximately regular, in direct analogy with the results
of the main text. They may be explained by using the same

semiclassical argument relying on Gutzwiller’s trace formula.
We isolate the contribution 
n(ρ)

B to the density of states n for
each representation ρ due to the unstable trajectory B. Both
Eq. (4) and Table I in the main text are applicable to the
Hénon–Heiles potential with no change. We have calculated
the required period TB, action SB and Lyapunov exponent λB

characterizing the periodic trajectory B in the Hénon–Heiles
potential as a function of the energy ε using our codes.
Figure 7 shows 
n(ρ)

B for each representation ρ. Just like in
the main text, its maxima coincide with the energies of the
scarred states. Hence, the same conclusion holds, and we may
ascribe the regularity in their energy spacing to the resonance
maxima being equally spaced in terms of the classical action
SB.

FIG. 7. For each irreducible representation ρ = (a) A1, (b) A2,
and (c) E , the solid curve shows the semiclassical contribution 
nB

to the density of states n of the Hénon–Heiles potential due to the
periodic trajectory B as a function of the energy ε. The dashed
vertical lines show the energies of the scarred quantum states, which
closely match the maxima of 
nB. The integers above them specify
the relative state indices 
νA1 , 
νA2 , 
νE/2 with respect to the
index ν (ρ ) of the scarred states in Fig. 6. (This figure is the analog,
for the Hénon–Heiles potential, of Fig. 5 in the main text.)
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c. Generality of the Hénon–Heiles potential

The potential VHH combines a 2D isotropic harmonic trap
with a two-variable cubic polynomial function. Hence, it may
be seen as the simplest possible 2D potential exhibiting C3v

symmetry. The three-body Hamiltonian given by Eq. (1) in the
main text reduces to it near one of its (equivalent) minima for
the repulsive pair-wise interaction v(di j ) = a d−α

i j regardless
of the power-law exponent α > 0. The presence of quantum
scars in the Hénon–Heiles model leads us to expect similar
scars in all of these systems. In particular, the dipole–dipole
interaction [35] in the case where all three dipole moments are
polarized perpendicular to the plane, corresponding to α = 3,
is expected to yield the same phenomena.

2. Boundary conditions defining a basis
of quantum stationary states

In this section, we exploit the spatial symmetries of the
point group C3v and time-reversal symmetry to state boundary
conditions uniquely defining a basis of quantum stationary
states. We state our reasoning in terms of the system con-
sidered in the main text, but it applies without change to the
Hénon–Heiles Hamiltonian discussed in Sec. A 1 above.

We expect the quantum states scarred by the classically
unstable periodic trajectory B to exhibit an enhanced proba-
bility density along all three trajectories B at a given energy
[red dotted lines in Figs. 1(a) and 4(a)–4(c) in the main text
for the system discussed there, and in Figs. 6(a)–6(c) in the
present Appendix for the Hénon–Heiles model]. Hence, the
probability density for the scarred states is expected to exhibit
C3v symmetry. Therefore, we construct a basis of quantum sta-
tionary states whose corresponding density profiles all exhibit
this symmetry. This property is not automatically satisfied and
requires choosing appropriate basis functions. For example,
Figs. 7(a) and 7(b) in Ref. [51] show probability densities cor-
responding to eigenstates of the Hénon–Heiles model which
do not exhibit C3v symmetry despite the fact that the Hamilto-
nian does, see Sec. A 1 above.

The group C3v admits three irreducible representations,
ρ = A1, A2, and E [[40], §95]. Representations A1 and A2 are
1D, whereas representation E is 2D. For each representation,
we shall formulate a boundary condition defining basis func-
tions belonging to it. All wave functions ψ (r) are normalized
according to

∫∫
ABC d2r|ψ (r)|2 = 1, the integral being taken

over the triangle ABC.

a. One-dimensional representations A1 and A2

We first consider a 1D representation ρ = A1 or A2. Let ψ

be an eigenstate of H2D for the energy ε transforming accord-
ing to ρ. We call S1, S2, S3 = S
 the reflections about (AH ),
(BK ), (CL) in the (x, y) plane (see Fig. 8). The wave function
ψ (Sir) is also an eigenstate of H2D for the same energy ε.
Because ρ is 1D, ψ (Sir) = χiψ (r) for some complex number
χi. The reflections Si satisfy S2

i = 1, so that χi = ±1. They
also satisfy S2S1 = S3S2 = R, with R being the rotation of
angle 2π/3 about the point O. The transformation R3 = 1, so
that (χ1χ2)3 = (χ2χ3)3 = 1. Hence, χ1 = χ2 = χ3 = ±1.

The case χ1 = χ2 = χ3 = 1 leads to ρ(R) = ρ(Si ) = 1,
so that ρ = A1 [[40], §95, Table 7]. Then, ψ (Sir) = +ψ (r),

FIG. 8. The black triangle ABC is the classical configuration
space for the Hamiltonian H2D of the main text. The smaller green
triangle OLB is the reduced configuration space within which we
solve for the quantum stationary states. The classically accessible
region, limited by the dotted golden line, is shown for the energy
ε = 7C6/R6. We enforce the boundary condition ψ = 0 on the quan-
tum wave functions along the horizontal dashed green line. The three
classical periodic trajectories B (dotted red lines) are also shown.

leading to the boundary condition ∂nψ = 0 along the sides
[LO] and [OB] of the green triangle OBL in Fig. 8. Combined
with the condition ψ = 0 along the side [LB] derived in the
main text, it defines a basis of wave functions ψ for Repre-
sentation A1.

The case χ1 = χ2 = χ3 = −1 leads to ρ(R) = 1 and
ρ(Si ) = −1, so that ρ = A2. Then, ψ (Sir) = −ψ (r), leading
to the condition ψ = 0 along the sides [LO] and [OB]. Hence,
imposing the Dirichlet boundary condition on the three edges
of the triangle OBL defines a basis of wave functions ψ for
Representation A2.

The energy levels transforming according to the 1D
representations A1 and A2 are nondegenerate, hence, the time-
reversal invariance of H2D allows us to choose all basis wave
functions ψ (r) to be real [[40], §18]. Furthermore, ψ (r) =
ψ (R−1r) = χiψ (Sir) differ by a sign at most. Hence, the cor-
responding probability densities coincide, and |ψ (r)|2 does
exhibit C3v symmetry.

b. Two-dimensional representation E

We now turn to the 2D representation ρ = E . Let ε be
a twice–degenerate energy level of H2D. The corresponding
eigenspace is spanned by two complex wave functions, φ+
and φ− which transform according to ρ:

φ±(R−1r) = e±i2π/3φ±(r), (A2a)

φ±(S
r) = φ∓(r), (A2b)

where the transformations R and S
 are defined as in
Sec. A 2 a above and the main text.

The time-reversal invariance [[40], §18] of H2D entails that
the complex-conjugate wave functions φ∗

+(r) and φ∗
−(r) are

also eigenstates of H2D with the same energy ε. Complex-
conjugating Eqs. (A2a), accounting for normalization, and
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writing (φ∗
+)∗ = φ+ lead to φ∗

± = eiαφ∓, where eiα is a com-
plex number of modulus 1. Introducing the new basis wave
functions ψ+(r) = eiα/2φ+(r) and ψ−(r) = ψ∗

+(r), Eqs. (A2)
reduce to two conditions on ψ+:

ψ+(R−1r) = ei2π/3ψ+(r), (A3a)

ψ+(S
r) = ψ∗
+(r). (A3b)

The probability densities |ψ+(r)|2 = |ψ+(R−1r)|2 =
|ψ+(S
r)|2 coincide. Hence, |ψ+(r)|2 exhibits C3v symmetry:
this is the probability density plotted in Figs. 4(a)–4(c) of
the main text (three Rydberg atoms) and Figs. 6(a)–6(c)
(Hénon–Heiles model).

We seek ψ+(r) in the following form, which is more
amenable to numerical computation:

ψ+(r) = (x − iy)[u1(r) + iu2(r)], (A4)

where u1 and u2 are two real functions satisfying coupled
Schrödinger equations. In Eq. (A4), the factor (x − iy) ac-
counts for the fact that ψ+(0) = 0, like for the stationary
states of the 2D isotropic harmonic oscillator carrying angular
momentum [[40], §112]. Equations (A3) yield the boundary
conditions u1 = 0, ∂nu2 = 0 along both [LO] and [OB] (see
Fig. 8). Combined with the condition ψ = 0 along [LB] de-
rived in the main text, they define a basis of stationary states
related to Representation E . For each of the twice-degenerate
energy levels, ψ+(r) is given by Eq. (A4) and the second basis
function is ψ∗

+(r).

c. Spatial extent of the wave functions

For a given energy level ε, the spatial extent of the sta-
tionary states defined in Secs. A 2 a and A 2 b barely exceeds
the classically accessible region (limited by the dotted golden
line in Fig. 8 for the Hamiltonian H2D of the main text and
ε = 7C6/R6). Therefore, we restrict the region within which
we solve for the wave functions to a part of the triangle OLB
which slightly exceeds this region. In other words, we enforce
the condition ψ = 0 not on [LB], but on the horizontal dashed
line in Fig. 8.

d. Indices of the quantum states

We order the quantum states pertaining to a given irre-
ducible representation ρ by increasing energies. This gives
rise to the state index ν (ρ) appearing in Figs. 4 and 5 in
the main text, and Figs. 6 and 7 in the present Appendix.
The irreducible representations A1 and A2 have dimension
1, so that, barring accidental degeneracies, the corresponding
energy levels are nondegenerate. By contrast, the irreducible
representation E has dimension 2, meaning that each energy
level is twice degenerate. For this representation, we consis-
tently indicate one half of the state index, ν (E )/2, and one half
of the density of states contribution 
n(E )

B /2.
The relative level indices 
ν (ρ) given in Fig. 5 of the main

text and in Fig. 7 of this Appendix are exact. The level indices
of Fig. 6, concerning the Hénon–Heiles model, are also ex-
act. We obtain approximations to the level indices of Fig. 4
in the main text, concerning three Rydberg atoms moving
along a circle, using the semiclassical approximation to the
density of states, accounting for the role of discrete spatial
symmetries [66].
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